Rigorous Business Process Modeling with OCL

Tsukasa Takemura'? and Tetsuo Tamai?

1 Software Development Laboratory, IBM Japan, Ltd.,
Yamato-shi, Kanagawa-ken, Japan,
tsukasa@jp.ibm.com
2 Graduate School of Arts and Sciences, The University of Tokyo,
Tokyo, Japan,
tamai@graco.c.u-tokyo.ac. jp

Abstract. Recently business process modeling is getting a lot of at-
tention as a predominant technology to bridge Business-IT gaps. UML
activity diagram was drastically changed in UML 2.0 to support busi-
ness process modeling. However, this emerging technology is insufficient
to bridge the business-IT gaps as we expected because;
— Business process modeling is not so simple as business persons ex-
pected.
— Business process models don’t provide enough information about
activities’ behavior.
In this paper, we show that;
— Rigorous description of business helps derivation of business process
models.
— Rigorous business process models help to bridge the business-IT
gaps.
We propose to use OCL to describe business and to model business
process rigorously. We also show necessity of extension of OCL to express
constraints of business process models and propose an extension of OCL
for business process modeling.

1 Introduction

Enterprises must change their business processes in response to changes in their
business enthronement to survive in the intensely competitive society in these
days. When enterprises change their business processes, their IT systems also
need to be changed according to the changes in their business processes.

Description about the business process provided by business persons tends
to be ambigious and does not provide IT persons with enough information to
build/change IT systems. This issue is called ”business-IT gap”, and this gap
makes it difficult to change IT systems rapidly according to changes in the
business. It is expected that a new technology to bridge business and IT becomes
available.

Recently business process modeling is getting a lot of attention as a pre-
dominant technology to bridge Business-IT gaps. Business process modeling is

a method to model activities and their sequence, business objects passed among
activities, resources, time, and cost required to perform the activities[3]0

This emerging technology is not powerful enough to bridge the business-
IT gaps as we expected because business process models provided by business
persons are tend to be ambiguous. Many business consultants use presentation
tools or drawing tools to depict business processes, and the business processes
described in this manner have no formal syntax nor semantics. It is one of the
reasons to make business process models ambiguous. This ambiguity makes it
difficult for IT persons to understand the business process models and realize
them as IT systems.

To bridge the business-IT gaps, business process models need to be more
rigorous. To make business process models rigorous, we need to define formal
syntax and semantics for business process models. One reason of drastic changes
in UML activity diagram in UML 2.0[5] was to support business process mod-
eling. Its foundation was changed from state chart diagram to Petri-net. This
change allows us to describe data flows and parallel execution of activities in
UML 2.0 activity diagrams.

Despite the change, business process models expressed in UML 2.0 activity
diagram is still insufficient to bridge the business-IT gap because behavior of each
activity or action is not expressed in the activity diagrams. Activities and actions
in a business process model need to be implemented as application programs or
Web services and so on in order to realize the business process on IT systems. To
implement the activities or the actions, their behaviors need to be expressed in
the business process model. Without this information, IT persons have no mean
to realize the activities nor the actions on IT systems. OCL is thought as the
best way to express such information in UML activity diagrams, however, the
current OCL is not ready to be used in UML activity diagrams and we propose
to be extended to add such information to business process models.

Present methodologies and notations of business modeling assume that it is
not complicated work to model Asls business processes by using control flows
and data flows such as UML activity diagram. In some cases, business processes
consist of asynchronous activities repeated with different intervals. It is difficult
to model such processes only by connecting activities with control flows and
object flows. We need to establish a modeling methodology for such complicated
asynchronously repeated processes.

2 Case study

2.1 The company

The company in this case study is in manufacturing industry. It obtains materi-
als from suppliers, builds up products from materials, and delivers products to
customers.

When the company receives a customer order from a customer, it returns a
promise for the customer order to the customer in order to ensure delivery of

products on the expected delivery date specified in the order. A customer order
from customers includes product type, quantity, and expected delivery date. A
promise also includes includes product type, quantity, and estimated delivery
date. For correlation, a promise has the same ID as its associated customer
order. In this paper, this business process is called ”Order Promising”.

The product is made of some materials obtained from suppliers, and the
company issues purchase orders to suppliers and receives promises for them
from suppliers to obtain the materials. Fig.1 shows Business Use Case diagram
for this company’s business process, ”Order Promising”.

#BuzineszUzeCaze

. Order products and Receive promizes .
“Buziness Actors “Buziness Actors

Customer Supplier

Fig. 1. Business Use Case for Order Promising

This company receives two types of orders; one is ”customer order”, and
another is ”forecast”. A customer order is a firm order and customers can not
cancel it while a forecast shows customer’s intention to order products in a
specific time frame. The company returns ”promise for customer order” when it
receives a customer order but does not return promise for ”forecast”.

The company creates the following three types of plans to prepare materials
and satisfy customer orders, and issues purchase orders for materials to satisfy
plans. Each plan this company creates includes product type, quantity, and
execution complete date.

Resource Plan (RP) Long term plan including productive facilities, alloca-
tion of human resources, etc.

Production Plan (PP) Intermediate term plan including provision of long
lead time materials

Master Production Schedule (MPS) Short term plan including provision
of short lead time materials

The product is made of two types of materials; One is long lead time (LLT)
material and another is short lead time (SLT) material. The purchase orders are
issued to satisfy the plans.

Fig.2 shows Business Entities in this company and passed between the com-
pany and external entities.

“BusinessEntity»
{2 ResourcePlan

O product Type
- - o guantity
“BuginessEntity:» o executionCompletzDate
{2 Forecast

oD

o productType

o quantity . “BusinessEntity

o expectedDeliveryDate 12 LLTMaterialPurchaseOrder
= I
<= materialType
= quantity

< expectedDeliveryDate

%BusinessEntity»
€2 ProductionPlan
O product Type
o guantity
o executionCompleteDate " -
\- . %BusinessEntity»
- - iz PromizeFor L TPurchaseOrder
“BusinessEntity» -
(2 GustomerQOrder s ID
= 0 S materialType
o productType = qua.ntlty .
o quantity S estimatedDeliveryDate
o expectedDeliveryDate
. “BusinessEntitys . %BusinessEntity®
£ PromiseForCustomerOrder g SLTMaterialPurchaseOrder
o ID = 1D
o product Type = materialType
o quantity = quantity
o estimatedDaliveryDate “BusinessEntity® / < expectedDeliveryDate
02 MRS

o product Type
quantity
executionCompleteDate

oo

«Business Entity»
< PromizeForSLTPurchaseQrder
= I
= materialType
= guantity
= ggtimatedDelivery Date

Fig. 2. Business Entities in Order Promising

This business process have predetermined time duration so-called order lead
time and planning horizon. Planning horizon is duration from start of execution
of a plan to completion of it. Order lead time is duration from issue of a order to
expected time of products/materials delivery. Each type of order and plan has
a specific lead time or a horizon.

In this case study, we use the following lead times, and planning horizons;

FORCASTLEADTIME Forecast lead time, the shortest duration from receiving a
forecast to product delivery associated to the forecast.

CUSTOMERLEADTIME Customer lead time, the shortest duration from receiving a
customer order to product delivery associated to the order.

LLTMATERIALLEADTIME Lead time for the long lead time material, the shortest
duration from issueing a purchase order for the long lead time material to
receiving the material.

SLTMATERIALLEADTIME Lead time for the short lead time material, the shortest
duration from issueing a purchase order for the short lead time material to
receiving the material.

MPSHORIZON MPS horizon, the duration from start of execution of a MPS to
completion of execution of the MPS.

PPHORIZON Production Plan horizon, the duration from start of execution of a
production plan to completion of execution of the production plan.

RPSHORIZON Resource Plan horizon, the duration from start of execution of a
resource plan to completion of execution of the resource plan.

2.2 Order Promising

In this business process, a promise for a customer order is returned in order to en-
sure delivery of products on the expected delivery date specified in the customer
order. To ensure it, a concept, available to promise (ATP) is used in this business
domain. ATP is the amount of products available on a specific date including
future. It can be calculated by subtracting accumulated amount of promised
delivery by the specific date from accumulated amount of products planned to
be produced by the specific date(Fig.3). Fig.4 shows ATP conceptually. As is
clear from Fig.4, ATP varies on magnitude relation of lead times and planning
horizons. From the domain knowledge depict in this figure, it is unveiled that
ATP consists of what already provisioned by executed and executing plans and
what already committed to promises, and ranges of plans and promises included
in ATP are depend on the expected time of delivery.

To ensure delivery of requested products on the expected delivery date,
the quantity the company can promise is less than ATP. ”"Order Promising”
is thought as a process to allocate products to a customer order from ATP. In
other words, ATP is the least upper bound of a promise for a customer order.

ATP is a key concept of ”Order Promising” and it is required for ”Order
Promising” business process model to express what APT is to transfer the do-
main knowledge about this process to I'T persons.

3 Business modeling

3.1 Business object model

The domain knowledge described rigorously brings out what are inputs to ac-
tivities and what are outputs from activities. These inputs and outputs can be
modeled in a business object model (a kind of class diagram with an UML
profile for business process modeling) as shown in Fig.5. In this business object
model, classes with <« BusinessEntity>> stereotype represent business entities, A
class with <business process>> stereotype is not a business entity but an arti-
ficial class introduced to specify a context for OCL expressions. By introducing
this context in business entity model, the domain knowledge described in the
previous section can be expressed in OCL expressions as follows.

Volume

Customer Lead Time

- Executed MPS

. Executing MPS

|:| Executing Production Plan

EI Executing Resource Plan
Time

MPS horizon
l -

Production Plan horizon

Resource Plan horizon

Fig. 3. Rectangles surrounded by bold lines indicate accumulated amount of products
planned to be produced within Customer Lead Time

Note that capitalized words in these OCL expressions represent process
scoped constant values or operations.

context AvailableToPromise::getQuantity(date : Date) : Integer
body :

existingPlans.getQuantity(date)

- existingPromises.getQuantity(date)

context ExistingPlan::getQuantity(date : Date) : Integer

body :

mpss->select(executionCompleteDate <= date).quantity->sum()

+ productionPlans->select(executionCompleteDate <= date and
executionCompleteDate - TODAY() > MPSHORIZON).quantity->sum()
+ resourcePlans->select(executionCompleteDate <= date and
executionCompleteDate - TODAY() > PPHORIZON).quantity->sum()

context ExistingPromise::getQuantity(date : Dime) : Integer

body :

promisesForCustomerOrders->select(estimatedDeliveryDate <= date and
estimatedDeliveryDate - TODAY() > CUSTOMERLEADTIME).quantity->sum()

context OrderPromising::promiseOrder()

pre :

newCustomerOrder.expectedDeliveryDate >= TODAY() + CUSTOMERLREADTIME and
/I Lead time of the new customer order is longer than CUSTOMERLREADTIME
newPromisesForCustomerOrder->select(ID = newCustomerOrder.ID)->isEmpty()

Volume

Custemer Lead Time

D Promise

- Executed MPS

. Executing MPS

|:| Executing Production Plan

EI Executing Resource Plan
Time

MPS horizon
l -

Production Plan horizon

Resource Plan horizon

Fig. 4. Rectangles with hatching indicate Available to promise within Customer Lead
Time

/I no promise for the customer order exists

post :

newPromisesForCustomerOrder->select(ID = newCustomerOrder.ID)->notEmpty()

/I if there are any promise for the customer order

implies

newPromisesForCustomerOrder->select(ID = newCustomerOrder.ID)->size() = 1 and
/I there is only one promise for the customer order and
newPromisesForCustomerOrder->select(ID = newCustomerOrder.ID).quantity->sum()
= newCustomerOrder.quantity and

/I total quantity of promises is equal to requested quantity in the customer order and
newPromisesForCustomerOrder->select(ID = newCustomerOrder.ID)->

forAll(estimatedDeliveryDate = newCustomerOrder.expectedDeliveryDate) and

/I estimated delivery date of the promise is equal to

/I expected delivery date of the customer order and
newPromisesForCustomerOrder->select(ID = newCustomerOrder.ID)->

forAll(quantity <= availableToPromise@pre.getQuantity(estimatedDeliveryDate))

/I total quantity of promises is equal to or less than ATP

3.2 Business process model with constraints

When the business process is modeled in UML activity diagram, ” promise order”
is modeled as an activity or an action. In this paper, we assume that ”promise
order” is modeled as an action. From the description in the previous section, we
modeled ”promise order” as an action with five input pins and one output pin
as shown in Fig.6.

- customerorder - promiseforcustomerorder

“BusinessEntity» .. “BusinessEntity»
2 GustomerOrder 2 PromizeForGustomerOrder
= 1 1 a I
= productType a productType
I quantity o quantity
= expectedDeliveryDate o estimatedDaliveryDate

+
- newOustDmer’Ordel’\ /r newPromisesForGustomerOrder
1

t
«husiness process
OrderPromising

o date
<+ promizeCrder ()

1

4

04 - availableToPromize

“BusinessEntity?
(2 AvailableToPromize

< getQuantity (7

~ . 1 1
EX\SNNEPM \XIS“HEPWWHSES
0.1

«BusinessEntity» 0.1 “BusinessEntity»

3 ExistingPlans {2 ExistingPromises

O getGuantity ()) getluantity ©)

1 1
1
% # .| — promises ForDmandOrder
mpes & o] productionPlans - resourcePlans
* . %BusinessEntitys
«Business Entity» “BusinessEntity® “BusinessEntity» 2 PromiseForGustomerOrder
2 MPS) ProductionPlan ResourcePlan R -

o productType = product Type o product Type o productType
o quantity = quantity o quantity o quantity - newPromizes ForGustomerQOrder
o executionGompleteDate = executionCompleteDate 0 executionComplete Date o estimatedDaliveryDate

Fig. 5. Business object model for Order Promise

Most commonly, activity diagrams are created prior to a business object
model in business process modeling because activity diagrams are more intuitive
for business persons like business consultants and their customers.

When an OCL expression is attached to the action, it is required to express
the equivalent information as one expressed by OCL attached to the business
object model in Fig.5. Especially, we need to describe constraints on output pins
by using values of input pins. It means that the OCL expression specifies the
action as a context and refers to the pins like as attributes of a class. It requires
to extend OCL as we explain in the next section.

3.3 Customization

In this section, we show that the business process can be customized by using
constraints defined in the business environment.
Let’s say the company in this case study has defined the planning horizons
and the lead times as follows;
MPSHORIZON < CUSTOMERLAEDTIME < PPHORIZON < FORECASTLEADTIME < RPHORIZON

nem Customer Order
£l

promizeOrder

mpEs
productionP lan
rezourcePlans

promizesForGustomerOrde newPromizsesForCustomerOrder

Order Promizing:pro miseOrder{)

pres

newCustomerOrder_expectedDelivervDate »= TODAY D + GUSTOMERL READTIME and
newPromizesForCustomerOrder-rzelect{ 1D = newCustomerCrder. ID)->izEmpty(

post:

newPromisesForCGustomerOrder—rselect{ID = newCustomerCrder ID)-»notEmpty O
implies

newPromizesForGustomerOrder-rselect (1D = newGustomerOrder ID J->size(= 1 and
newPromizesForCGustomerOrder-rzelect(ID = newCustomerQOrder. ID L quantity->sum®
= newCustomerOrder.quantity and

newPromizesForCGustomerOrder-rzelect (1D = newCustomerCrder 1D 2->

for &Il estimatedDe liveryDate = newGustamer Order expectedDeliveryDate) and
newPromizesForCGustomerOrder-rselect (1D = newCustomerCrder 1D 2->

for &Il quantity <= available ToPromise®@pre.getQuantit v estimatedDeliveryDate 3)

Fig. 6. PromiseOrder action with constraints in activity diagram

By using the magnitude relation PPHORIZON > CUSTOMERLEADTIME

and an equation

newCustomerOrder.expectedDeliveryDate = TODAY() + CUSTOMERLEADTIME
in the postcondition of promiseOrder,
the last term in body of ExistingPlans.getQuantity can be reduced as
follows;

resourcePlans->select(executionCompleteDate <= date and executionCompleteDate - TODAY()
> PPHORIZON).quantity->sum()

4

resourcePlans->select(executionCompleteDate <= date and executionCompleteDate - TODAY()
> PPHORIZON).quantity->sum()

4

resourcePlans->select(executionCompleteDate <= date and executionCompleteDate > TODAY()
+ PPHORIZON).quantity->sum()

4

resourcePlans->select(executionCompleteDate <= date and executionCompleteDate > TODAY()
+ CUSTOMERLEADTIMEquantity->sum()

resourcePlans->select(executionCompleteDate <= date and executionCompleteDate >
newCustomerOrder.expectedDeliveryDate).quantity->sum()

resourcePlans->select(executionCompleteDate <= date and executionCompleteDate > date
).quantity->sum()

resourcePlans->select(false).quantity->sum()

4

0

This reduction indicates that ResourcePlan does not contribute to Available-
ToPromise for this action in this business environment, and we can eliminate
input pins from promise order action. As in a case of promise order action, some
inputs pins and output pins can be eliminated from some other actions. This
suggests that constraints for actions help customization of a business process in
a specific business environments.

3.4 Composition

Actions modeled in this method have rigorously defined input pins and output
pins, these actions can be composed into one business process by connecting pins
to common data stores. Fig.7 shows the composed business process model. The
gray object flows in this figure denote the object flows connected to the pins
eliminated on the customization.

As a result of this composition, a complicated business process where actions
are repeated asynchronously can be modeled in an UML activity diagram.

4 OCL extension for business process modeling

As shown in the previous section, OCL is useful for rigorous business process
modeling. However, OCL is required to be extended to add the constraints de-
scribed with OCL to UML activity diagrams. In this section, we explain the
required extension for business process modeling using OCL and UML activity
diagrams.

4.1 Contexts

To describe behavior of actions, it is required to express preconditions and post-
conditions of actions. Consequently, OCL expression needs to have a context
from which we can navigate to input pins and output pins of actions in order

Fig. 7. Composed Business Process Model

to express the constraint of the pins. The action is the best candidate of the
context of OCL expression because the action owns the pins.

UML metamodel[5] allows to add Constraint to Actions, however, OCL spec-
ification[4] does not expect to specify an action as a context.

The chapter 7.3.4 of OCL specification denotes;

The OCL expression can be part of Precondition or Postcondition, corre-
sponding to <Kprecondition’> and <Kpostcondition™> stereotypes of Constraint
associated with an Operation or other behavioral feature. The contextual instance
self then is an instance of the type which owns the operation or method as a fea-
ture.

First of all, neither Action nor Activity is BehavioralFeature. Even if Con-
strains are allowed to associate to Actions and Activities, an owner of Actions
and Activities is an entity which is executing the business process[8]. The entity
executing the business process is a company or an enterprise, and they are not
appropriate as a context of OCL expression because we don’t model such entities
in business process models.

We propose to extend OCL to allow to specify an Action as a context of OCL
expression and navigate to its input/output pins.

4.2 Q@Qpre

To describe behavior of actions, it is required to express constraints on outputs of
actions. Consequently, constraints on objects on output pins need to be expressed
by value of objects on input pins. It also required to express the constraints by
using the value of inputs on their arrival on the input pins. To refer the value of
an input object on arrival on an input pins, it is natural to use ”@pre” keyword.
We propose to extend OCL to allow to use the keyword for this purpose.

4.3 Example

By these extensions, we can express constraints on objects on output pins by
using value of objects on input pins in the similar way as constraints on opera-
tions.

context promiseOrder

pre :

newCustomerOrderPin.expectedDeliveryDate >= TODAY() + CUSTOMERLRADTIME and
newPromisesForCustomerOrderPin->select(id = newCustomerOrderPin.ID)->isEmpty()

post :

newPromisesForCustomerOrderPin->select(id = newCustomerOrderPin.ID)->notEmpty()

implies

newPromisesForCustomerOrderPin->select(id = newCustomerOrderPin.ID@pre)->size() =

1 and

newPromisesForCustomerOrderPin->select(id = newCustomerOrderPin.ID@pre).quantity->sum()

= newCustomerOrderPin.quantity@pre and

newPromisesForCustomerOrderPin->select(id = newCustomerOrderPin.ID@pre)->

forAll(estimatedDeliveryDate = newCustomerOrderPin.expectedDeliveryDate@pre) and
newPromisesForCustomerOrderPin->select(id = newCustomerOrderPin.ID@pre)->

forAll(quantity <= availableToPromise.quantity@pre(estimatedDeliveryDate))

5 Related works

As a notation for business process, UML and its extensions are proposed[1][2][7]0
Most notations use UML activity diagrams or similar diagram to express activi-
ties and their sequence. Modeling methods for these notations assume that per-
sons related to business processes understand the flow of their business process.
Our approach does not assume this situation because object flows and control
flows of some business process are very complicated and difficult to understand.
In our approach, complicated business processes as shown in this paper can be
modeled rigorously.

Koubarakis and Plexousakis[6] proposed to model an organization and its
business process formally, and showed importance of enterprise model.

6 Conclusion

In this paper, we showed that rigorous description about the business and its
related domain knowledge helps creation of business process models. And the
created business process models are also rigorously described because precon-
ditions and postconditions of each action are rigorously described by OCL. IT
persons can use the preconditions and postconditions to implement the action
in the business process on IT systems because the model describes what the
action should perform and should not perform formally. If the business process
is implemented on Service Oriented Architecture (SOA), the preconditions and
postconditions depict requirements for a service.

By describing business environments rigorously, the business process model
can be customized systematically. It helps rapid transition of a business process
and its IT systems. We can expect the business process models help to bridge
Business-IT gaps.

We proposed extension of OCL to support our approach. To describe con-
straints on actions in UML activity diagram, it is appropriate to specify an
action as a context of OCL expression. To support this notation, we proposed
extension of OCL.

As shown in this paper, OCL is a powerful tool for business process modeling.
But, its syntax and semantics are still difficult to learn for business persons.
To resolve this issue,dijkman2002algorithm we are planning to define domain
specific languages to simplify OCL for business persons.

References

1. Nuno Castela, Jose M. Tribolet, Alberto Silva, and Arminda Guerra. Business
process modeling with UML. In 3rd International Conference on Enterprise Infor-
mation Systems, Vol. 2, pp. 679-685, Setubal, Portugal, July 2001.

2. Hans-Erik Eriksson and Magnus Penker. Business Modeling With UML Business
Patterns at Work. John Wiley & Sons Inc., 2000.

3. Jaap Gordijn, Hans Akkermans, and Hans van Vliet. Business modelling is not
process modelling. In Conceptual modeling for e-business and the web (ECOMO-
2000), pp. 40-51, Salt Lake City, USA, October 2000. Springer-Verlag.

4. Object Management Group. Ocl 2.0 specification version 2.0. http://www.omg.

org/cgi-bin/doc?ptc/05-06-06 , 2005.
5. Object Management Group. Uml 2.0 superstructure specification. http://www.
omg.org/cgi-bin/doc?formal/05-07-04 , 2005.

6. Manolis Koubarakis and Dimitris Plexousakis. A formal model for business process
modeling and design. In Conference on Advanced Information Systems Engineering,
pp- 142-156, 2000.

7. Chris Marshall. Enterprise Modeling with UML:Designing Successful Software
Through Business Analysis. The Addison-Wesley Object Technology Series.
Addison-Wesley, 1999.

8. Jos B. Warmer and Anneke Kleppe. The Object Constraint Language: Getting Your
Models Ready for Mda. The Addison-Wesley Object Technology Series. Addison-
Wesley, second edition, 2003.

