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Preface 
This Technical Report contains the final versions of papers accepted at the workshop OCL 
for (Meta-)Models in Multiple Application Domains, held in Genua (Italy), October 2, 2006. 
The workshop was organized as a satellite event of the ACM/IEEE 9th International 
Conference on Model Driven Engineering Languages and Systems (MoDELS/UML 2006). 
 It continues the series of OCL workshops held at previous UML/MoDELS conferences: 
York (2000), Toronto (2001), San Francisco (2003), Lisbon (2004) and Montego Bay 
(2005). Similar to previous OCL workshops, the majority of papers were proposed by 
researchers coming from the academia. Apart from the above mentioned workshops, 
three accepted papers were proposed by researchers affiliated to IBM and SAP, two of 
most influential worldwide software companies. Hoping that this represents an 
encouraging sign of a future enhanced use of the OCL in the industry. 

The 18 accepted papers cover a large spectrum of OCL related topics. They reflect 
research contributions and experience reports about using OCL for models and meta 
models in multiple application domains. The papers are divided into four sections 
concerning new applications, model transformations pertaining to the MoDELS/UML 2006 
conference as well as implementation and language issues.   
In the section Applications there are five contributions including new paradigms and 
technologies. The paper Customer Validation of Formal Contracts by Heldal and 
Johannisson deals "customer-readable" specifications for systems modeled with UML and 
OCL. Kolovos, Paige and Polack show in their paper Towards Using OCL for Instance-
Level Queries in Domain Specific Languages how to align OCL querying and navigation 
facilities with arbitrary Domain Specific Languages (DSLs). In the paper OCL-based 
Validation of a Railway Domain Profile Berkenkötter uses OCL to validate models of a 
railway domain profile and the profile itself. Opoka and Lenz built a model assessment 
framework based on EMF and show in their experience report Use of OCL in a Model 
Assessment Framework: An Experience report that OCL 2.0 is expressive enough to be 
applied as a query language for model analysis. In the paper Rigorous Business Process  
Modeling with OCL the “Business-IT gap" issue, a well-known problem in business 
process modelling, is investigated. Takemura and Tetsuo Tamai enrich activity diagrams 
by (extended) OCL constraints to model business processes rigorous.  

Some of the OCLApps2006 papers deal with model transformations that are contained in 
the section Model transformations. Milanovic et al focus in their paper On Interchanging 
Between OWL/SWRL and UML/OCL on the reconciliation of OCL and Semantic Web 
languages. In the paper Realizing UML Model Transformations with USE, Büttner and 
Bauerdick enrich the USE specification language with imperative elements to realize class 
diagram transformations. Wahler, Koehler and Brucker form the notion of Model-Driven 
Constraint Engineering in their paper with the same title. The idea is to define constraint 
patterns, integrate them into the UML metamodel and transform them into platform-
specific constraints by model transformation.  

In the section Implementations several authors deal with a better implementation of OCL 
support in tools. In the paper OCL support in an industrial environment Altenhofen, Hettel 
and Kusterer describe their method of impact analysis to reduce the number of necessary 
(re-)evaluations of OCL constraints when the underlying model changes. Stölzel, Zschaler 
and Geiger discuss in the paper Integrating OCL and Model Transformations in Fujaba the 
integration of the Dresden OCL Toolkit into the Fujaba Tool Suite. This adds OCL support 



both for class diagrams and for model transformations. Mezei, Levendovszky and Charaf 
present in the paper Restrictions for OCL constraint optimization algorithms an 
optimization algorithm for the evaluation of OCL constraints used in graph rewriting based 
model transformations. The paper An MDA Framework Supporting OCL by Brucker, 
Doser and Wolff describes a rather complete tool chain for processing UML/OCL 
specifications, including a proof environment and flexible code generation. Amelunxen and 
Schürr explain in the paper On OCL as part of the metamodeling framework MOFLON the 
role of OCL in the metamodeling framework MOFLON, a framework designed by the 
authors to support the definition of domain specific languages with MOF, OCL and graph 
transformations. 
 
In the section Language issues there are multiple proposals to improve the syntax and 
semantics of the language. Cabot identifies in the paper Ambiguity issues in OCL 
postconditions common ambiguities appearing in OCL postconditions and provides a 
default interpretation for each of them in order to improve the usefulness of declarative 
specifications. Akehurst, Howells and McDonald-Maier sketch in the paper UML/OCL - 
Detaching the Standard Library some ideas for detaching certain aspects of the OCL 
language such as types and operations from its current definition. The goal is to facilitate 
support for different modeling languages and implementations. In the paper Semantic 
Issues of OCL: Past, Present, and Future Brucker, Doser and Wolff summarize the most 
important results of a formalization of OCL and proceed to make suggestions on how OCL 
may be improved in order to have a cleaner formal semantics. The paper Improving the 
OCL Semantics Definition by Applying Dynamic Meta Modeling and Design Patterns  by 
Chiaradía and  Pons try to improve the definition of the OCL semantics (in particular the 
Expression-Evaluation package) by means of applying the visitor pattern and the Dynamic 
Meta-Modeling technique. Süß proposes in the paper Sugar for OCL three shorthand 
notations for representing OCL in the Latex, HTML, and Unicode encoding systems.  
 
Finally, we would like to thank all members of the program committee for their dedication 
to writing reviews and for useful suggestions to improve the submitted papers. We were 
very pleased about the numerous contributions to this year’s OCL workshop. Thank to the 
authors of all submitted papers who made this workshop possible. May the workshop 
presentations and discussions inspire all workshop attendees to enhance the application 
of OCL in industrial environments, the tool support for OCL, the scientific foundation and, 
last but not least, the language OCL itself.   
 
 
September 2006                                                                Birgit Demuth 
                                                                                               Dan Chiorean 
                                                                                           Martin Gogolla 
                                                                                                Jos Warmer 
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Customer Validation of Formal Contracts

Rogardt Heldal and Kristofer Johannisson

Chalmers University of Technology
Gothenburg, Sweden

[heldal|krijo]@cs.chalmers.se

Abstract. This paper shows how to write formal OCL contracts for
system operations in such way that a translation to natural language
(a subset of English), understandable by a customer, can be obtained
automatically. To achieve natural language text understandable by a
customer we use the vocabulary of the problem domain when writing
formal contracts for system operations. The benefits of our approach are
that we increase the precision of the model by using formal specifications,
and that a customer is able to validate (by viewing the natural language
rendering) if a contract actually describes the behavior desired from the
system. Without validation of this kind there is generally no guarantee
that the formal specification states the correct properties.

1 Introduction

Large programs need specifications. These specifications might be used in dif-
ferent contexts: for software developers to support the implementation of the
software, for testers to understand the required behavior of the software, for
customers to validate the correctness of the system, and for users of the software
to understand the behavior of the system.

It is important that the specifications are of high quality to avoid problems
such as ambiguity and under-specification. To that end, several formal languages
have been developed to write more precise specifications [1, 4, 5]. The nature of
these languages forces one to be more precise than when using natural language
to specify behavior of programs. The problem is, however, that not everyone
involved in the software process — for example the customers — can be expected
to understand these formal languages. So, the customer cannot, at least easily,
validate whether a formal specification states the correct behavior or not. There
is little point in being precise if the specification states wrong properties. This
is the problem we deal with in this paper.

We consider formal contracts similar to those in Eiffel [11] by attaching OCL
(Object Constraint Language)[12] constraints to system operations in UML [12]
class diagrams. The constraints specify the signature of an operation together
with its pre- and post-conditions. We previously developed a tool[3] which trans-
lates OCL constrains to natural language text (a subset of English). But remov-
ing the overhead of OCL does not necessary make the natural language text
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understandable for customer and users. The text might contain too many de-
sign and implementation details and is therefore more suited for designers and
implementers.

This paper is about controlling the vocabulary used in OCL pre- and post-
conditions for system operations, in such a way that natural language text pro-
duced by our tool can be read by customers and users having domain knowledge,
but not necessarily computer science knowledge. Not only does our tool make
translation understandable for customers, users, and domain experts, but it also
permits the tool to be used earlier in a software development process than pre-
viously [3]. With respect to our previous work in [9, 3], the contribution of this
paper is not to improve the tool itself, but rather a new use of the tool.

In our previous work [3] the focus was on the quality of the translation for any
type of OCL contracts. In this work we restrict ourself to contracts for system
operations, which represent the external interface of the system. The reason
for only considering these operations is that customers and users are mostly
interested in these operations, and not in the internals of the system. It is crucial
that the contracts for system operations capture the behavior customers want.
It is impossible to build a system correctly if one does not know its expected
behavior. It is well known that requirement deficiencies are the prime source of
project failures [7].

We introduce the notion of abstract contracts, which abstract away from
implementation details by using problem domain models instead of class dia-
grams for system operations contracts. Both problem domain models and class
diagrams can be represented by UML class diagrams, but they differ in an im-
portant way: the vocabulary of domain models should be fully understood by
the customer but it is not a requirement for class diagrams used in the design
phase. Domain models restrict OCL constraints to a vocabulary, which should
be completely understood by the customer. Translating these formal contracts
using our tool does not only remove OCL, but also guarantees that the natural
language text obtained contains vocabulary of the domain model — the vocab-
ulary of the customers, users, and domain experts. So the only requirement for
reading these specifications are domain knowledge which permits validation of
the abstract formal contracts without having to read OCL — the customer only
needs to read the natural language text produced by our tool.

There are further benefits of our work going beyond the validation of formal
specifications. The natural text produced can be used as a documentation of the
system. Since the text is generated from formal specifications, even the natural
language text will be in some sense formal, but of course readable for customers.
So, the benefit is more precise natural language specifications avoiding ambiguity
and under-specification. Furthermore, if the formal specifications change, one can
just produce new natural language text, avoiding the problem of synchronizing
formal and informal specifications.

One important lesson to learn from our work is that if the translation being
for most parts compositional, as in our case, from formal to natural language the
choice of vocabulary of the formal specification becomes crucial in controlling
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the vocabulary of the natural text produced. Customer- and user-understandable
natural text does not come for free. In our case the trick was to use the domain
model.

The key contributions: (1) We create a formal, machine-transformable model
early in the software engineering process (2) The model can be validated by cus-
tomers, since the OCL contracts can be translated into understandable natural
language. (3) By automatically translating OCL to natural language and using
OCL as a single source, we avoid the problem of synchronizing formal specifi-
cations with natural language text describing customer requirements. (4) The
natural text produced can be used as part of the documentations of systems.

Paper Overview. Some background on the translation tool and domain models
is given in Sect. 2 and 3. We then discuss system operations, contracts and the
vocabulary of the domain model in Sect. 4, 5 and 6. Finally, Sect. 7 describes
related work and we conclude in Sect. 8.

2 From OCL To Natural Language

We have developed a tool for linking specifications in OCL to natural language
specifications. It has been previously described in [9], where we give basic mo-
tivation and design principles, and in [3], where we conduct a case study. It is
based on the Grammatical Framework (GF) [13], and is being integrated into
the KeY system [2]. The basic idea of the tool is to define an abstract representa-
tion (an abstract syntax) of “specifications” and to relate this representation to
both OCL and English using a GF grammar. The GF system then allows us to
translate between OCL and English using the abstract syntax as an interlingua.
We can therefore always keep OCL and English in sync.

Given a UML model, the tool provides two basic functionalities: (1) Auto-
matic translation of OCL specifications into English. (2) A multilingual, syntax-
directed editor which allows editing of OCL and English specifications in parallel.
The input to the translator is an OCL specification, along with a description of
the UML model (a domain model or class diagram) in question. The output is
English text, formatted in HTML or LATEX. In the editor, OCL and English are
kept in sync since the editing takes place on the level of abstract syntax.

In previous work [3] we did not consider the style of formal abstract contracts.
These contracts contained design and implementation details, and we refer to
them as concrete contracts, for an example see Fig. 1. This figure shows parts
of the OCL specification for the operation check of the class OwnerPIN, a class
in the Java Card API. Java Card [17] is a subset of Java, tailored to smart
cards and similar devices, which comes with its own API. The operation check

checks whether a given PIN matches the PIN on a smart card, keeps track of
the number of times you have entered an incorrect PIN, and so on.

Translating concrete contracts to natural language text removes the overhead
of having to understand OCL, but they still contain design and implementation
details, see Fig. 2. This figure shows the natural language translation provided
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context OwnerPIN::check(pin: Sequence(Integer),

offset: Integer, length: Integer): Boolean

post: (self.tryCounter > 0 and not (pin <> null and offset >= 0

and length >= 0 and offset+length <= pin->size()

and Util.arrayCompare(self.pin, 0, pin, offset, length) = 0)

) implies (not self.isValidated()

and self.tryCounter = tryCounter@pre-1 and

(( not excThrown(java::lang::Exception) and result = false)

or excThrown(java::lang::NullPointerException) or

excThrown(java::lang::ArrayIndexOutOfBoundsException)))

Fig. 1. Design Level OCL Contract

by our system. The translation will make sense only to a reader who already has
an understanding of the Java Card API classes. He or she must be familiar with
the use of byte arrays and their representation in OCL, as well as with various
Java Card exceptions.

For the operation check ( pin : Sequence(Integer) , offset : Integer , length :
Integer ) : Boolean of the class javacard::framework::OwnerPIN ,
the following post-condition should hold :

– if the try counter is greater than 0 and at least one of the following conditions is
not true
• pin is not equal to null
• offset and length are at least 0
• offset plus length is at most the size of pin
• the query arrayCompare ( the pin , 0 , pin , offset , length

) on Util is equal to 0
then this implies that the following conditions are true
• this own er PIN is not validated
• the try counter is decremented by 1
• at least one of the following conditions is true

∗ Exception is not thrown and the result is equal to false
∗ NullPointerException is thrown
∗ ArrayIndexOutOfBoundsException is thrown

Fig. 2. Design Level Natural Language Contract

In summary, concrete contracts, in formal or natural language, are not gen-
erally understandable to customers, since customers cannot be expected to be
familiar with design and implementation matters.

If we compare the natural language text in Fig. 2 to the original OCL con-
tract in Fig. 1, we can note that they both share roughly the same structure
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and vocabulary. This is a consequence of our translation being (for most parts)
compositional, using the same abstract syntax for both OCL and natural lan-
guage. If an OCL contract uses the vocabulary of a UML class diagram (design
phase), which is not normally understandable to a customer, the natural lan-
guage translation will not be understandable either. This is fine since concrete
contracts are meant to be read and understood by designers and implementers
but not customers and users.

The goal of this work is to obtain specifications understandable by customers,
users, and domain experts not trained in computer science. We show how domain
models can be used for this purpose, but first we will have closer look at what
we mean by a domain model.

3 Domain Models

In this section we provide background on domain models used in our work. The
problem domain models we use are as in the book of Larman [10]. A problem
domain model is a visualization of concepts in a real-life domain of interest
without behavior, not software classes such as Java, C++, or C# classes.

UML does not offer separate notation for domain models, but a restricted
form of UML class diagrams can be used. For example, the operation compart-
ment of UML classes are not needed. On the other hand, the benefit is that this
permits OCL constraints to be written over the domain models. As a running
example we will consider an ATM system. The concepts involved in such a sys-
tem would include Card, Customer, Account, and Bank, as shown in Fig. 3. In
general, a banking application would require more concepts and attributes, but
for our purposes this domain model is sufficient. To make our example simpler,
we assume that a customer can never have more than one account.

Customer Card

 pin: Integer

Account

 balance: Integer
Bank

1 0..1

*

1

customers

card

1account

1

Fig. 3. Domain model of an ATM machine

Concepts can have attributes. For example, a Card has a PIN code, and an
Account has a balance. Furthermore, concepts can stand in relationship to each
other; in our example a Card is associated with Customer. With the help of
multiplicity annotations, one can describe constraints on how many instances of
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one concept are related to another. For example, one can express the constraint
that each card can be linked to only one customer.

There are no hard and fast rules of how to choose the correct abstraction
level for domain models. But there is one rule which should never be broken:
whatever abstraction level one chooses, the domain model should always be
understandable for customers, users, and domain experts. Of course, the more
concrete and detailed domain model the more concrete contracts can be written.
Yet, a domain model should never be so concrete and detailed that the customer
does not understand it anymore.

Before considering how domain models permit to create formal contracts
rather early in the development process we will have a closer look at system
operations.

4 System Operations

System operations are the operations that deal with the events coming from out-
side the system. For information about how to obtain system operations from
use cases we refer to [15]. From a customer’s point of view system operations
are the important operations: they define the functionality of the system. To
exemplify we consider three operations for our ATM system: identify, authenti-

cate, and withdraw, as seen in Fig. 4. We collect the system operations in a class
ATMController, further explained in Sect 5.

ATMController

 identify(card:Card)

 authenticate(pin:Integer): PinResult

 withdraw(amount:Integer): Boolean

<<enumeration>>

PinResult

 Correct

 Wrong

 Abort

Fig. 4. System Operations for an ATM

The identity of a customer is given by presenting a card, using the operation
identify, the operation authenticate ensures that the card is used by the autho-
rized person, and withdraw is used to retrieve money from the ATM machine.
We introduce an enumeration type to indicate the result of authenticate: either
the pin is accepted (Correct), or it is wrong but the user is given another chance
to enter the correct code (Wrong), or the wrong code has been given too many
times (Abort). The result of withdraw is a boolean, indicating whether there was
enough money in the account or not. In next section we will consider how to
obtain contracts for these system operations.
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5 Abstract Formal Contracts

To write OCL contracts for system operations requires a context for the oper-
ations. Our approach is to include all system operations in one UML class and
associate this class to appropriate concepts of the problem domain — creating
a hybrid between a class representing the system and concepts. This permits us
to write OCL pre- and post-conditions for the system operations. It might be
necessary to add attributes to the system class to model the state of the sys-
tem not captured by the domain model. In our running ATM example, we put
the system operations in a class ATMController and attach it to the domain
model as shown in Fig. 5. We have also added two attributes numberOfTries

and pinAccepted to keep track of the state.

Customer Card

 pin: Integer

Account

 balance: Integer

Bank

1 0..1

*

1

customer

card

ATMController

 numberOfTries: Integer

 pinAccepted: Boolean

 identify(card:Card)

 authenticate(pin:Integer): PinResult

 withdraw(amount:Integer): Boolean

<<enumeration>>

PinResult

 Correct

 Wrong

 Abort

customers
0..1

0..1

1

*

bank

account

1

1

Fig. 5. The System Class Attached to the Domain Model

The UML class diagram in Fig. 5 can be viewed as the first approximation
of the system to be built, but it is important to point out that it is not the
final software design. In an object oriented design one will expect that some
or all of the concepts of Fig. 5 to become design classes with operations and
possibly more attributes. Furthermore, new classes will most often be added due
to for example design patterns. The purpose of the class diagram in Fig. 5 is to
permit writing formal contracts for system operations using the vocabulary of
the customer.

Fig. 6 shows abstract OCL contracts for our example ATM system operations
using the class diagram of Fig. 5. Let us consider the operation identify. This
operation should initialize the state of ATMController : the association from
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context ATMController::identify(card:Card)

post: customer = card.customer

and numberOfTries = 0

and not pinAccepted

context ATMController::authenticate(userPin:Integer) : PinResult

pre: not pinAccepted

post: numberOfTries = numberOfTries@pre + 1

and if userPin = customer.card.pin and numberOfTries <= 3

then pinAccepted and result = PinResult::Correct

else not pinAccepted

and if numberOfTries <= 3

then result = PinResult::Wrong

else result = PinResult::Abort

endif

endif

context ATMController::withdraw(amount:Real) : Boolean

pre: pinAccepted

post: if (amount <= customer.account.balance)

then customer.account.balance =

customer.account.balance@pre - amount

and result = true

else customer.account.balance =

customer.account.balance@pre

and result = false

endif

Fig. 6. OCL Abstract Contracts

ATMController to Customer is instantiated with the customer of the card, the
number of tries is 0, and a correct pin code has not yet been entered.

Obtaining a customer from the association of the card is not enough. In
addition, a guarantee that one is dealing with the right customer is desirable.
According to the domain model the concept Card is related to a customer.
So, the operation authenticate compares the PIN given as argument with the
PIN stored in the card associated with the customer. Depending on whether
the PIN argument matches the PIN on the card, and on the number times an
incorrect PIN has been entered, the state of the system class ATMController is
set appropriately.

Finally, there is withdraw which gives the customer money if there is enough
money in the account. The return value indicates whether the withdrawal was
successful or not.

Both problem domain model and system operations are found early in the
development process, so abstract contracts like the one in Fig. 6 can be created
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at an early stage of the development process. Even though the contracts in Fig. 6
are not readable for people not trained in formal methods, we will see that the
natural language counterpart will indeed be readable.

Using the domain model in the contracts also provides a validation of the
domain model, which is important since the domain model is the foundation
of the system to be built. One might discover shortcomings — e.g. a missing
attribute or concept — when creating the contract. In this sense, writing the
contract over the domain model may improve the domain model itself.

6 The Vocabulary of the Domain Model

Fig. 7 shows what our translator produces from the OCL specification in Fig. 6.
Natural language contracts should be understandable to customers not only
because it has been translated from OCL to natural language, but also because
it uses a vocabulary of the problem domain model.

If we compare the natural language text in Fig. 7 to the original OCL con-
tract in Fig. 6, we can note that they both share roughly the same structure
and vocabulary. Again, this is a consequence of our translation being (for most
parts) compositional, using the same abstract syntax for both OCL and natural
language. In comparison to the natural language text produced in Fig. 2 the text
in Fig. 7 do not contain any design and implementation details.

Improving the style of the natural language text is still ongoing research. For
example, we can see from Fig. 5 that fragments of the formal abstract contract
can be found in the natural language text, such as identify(card : Card). We
have not found a way of translating this fragment better and more clear than
just keeping the method signature.

It is important to point out that formal abstract contracts such as in Fig. 6
probably have to be produced by formal methods experts, but customers and
users only need to consider the natural language counterpart.

In this work we are not directly considering the problem of formalization:
constructing formal specifications from informal ones. However, once an OCL
contract has been developed, our tool can be used to generate a natural language
contract, which can then be validated against the informal specification. This
can be used to improve the original informal specification as well as the formal
one.

7 Related Work

The approach taken in [16, 15] is similar to ours in the sense that they also provide
OCL contracts for system operations. An important difference to our work is that
they do not consider customer validation of the OCL contracts, which reduces
the benefit of using formal contracts at an early stage in the process. They also
consider how to find the system operations based on descriptions of use cases,
which we do not discuss. Our work is more focused on the domain model and
the translation to natural language.
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For the operation identify (card: Card) of the class ATMController ,
the following post-condition should hold:

– the following conditions are true
• the customer is equal to the customer of card
• the number of tries is equal to 0
• the property pinAccepted does not hold

For the operation authenticate (userPin: Integer): PinResult of the class
ATMController ,
given the following pre-condition:

– the property pinAccepted does not hold

then the following post-condition should hold:

– the number of tries is incremented by 1 and if userPin is equal to the pin of the
card of the customer and the number of tries is at most 3 then:
• the property pinAccepted holds and the result is equal to Correct

otherwise:
• the property pinAccepted does not hold and if the number of tries is at most

3 then:
∗ the result is equal to Wrong

otherwise:
∗ the result is equal to Abort

For the operation withdraw (amount: Real): Boolean of the class ATMCon-
troller ,
given the following pre-condition:

– the property pinAccepted holds

then the following post-condition should hold:

– if amount is at most the balance of the account of the customer then:
• the balance of the account of the customer is decremented by amount and

the result is equal to true
otherwise:
• the balance of the account of the customer does not change and the result is

equal to false

Fig. 7. Contracts in Natural Language
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The UP process [10] also makes use of contracts for system operations, which
are based on the domain model. However, the contracts are informal. We believe
that rather than having another informal specification, system operation con-
tracts are a good place to become formal. Our approach could be incorporated
into the UP process by replacing informal system operation contracts with for-
mal ones. In that way one can introduce formal specification into the UP process
at an early stage in the development process.

Previously, we have also been working on relating formal and informal spec-
ifications [6]. In that paper we gave a method for relating post-conditions of use
cases to OCL contracts. In that paper, we did not consider different styles of
writing contracts or translation to natural language text. Furthermore, we re-
quired formal method experts to use our method of relating formal and informal
specifications.

The idea of producing natural language from a formal representation to en-
able validation by people not trained in formal languages is familiar from concep-
tual modelling and requirements engineering. For instance, the paper [8] presents
a system for generating natural language explanations from conceptual models,
and also gives an overview of related work. The basic difference to our approach
is that we translate textual OCL contracts for system operations — not the do-
main model itself — into natural language, while [8] generates explanations from
“. . . process-oriented and static ER-like languages. . . ”, e.g. data flow diagrams.
As explained in Sect. 6, the translations we provide have the same basic struc-
ture as the OCL specifications, and are understandable to a customer because
of the use of the vocabulary of the domain model. In contrast, the process of
generating explanations from conceptual models in [8] involves information ex-
traction from the model, and various strategies for presenting this information
in natural language. There is also work on going in the other direction: from
informal, natural language text to conceptual models, e.g. [14].

8 Conclusion and Future Work

We have presented a way of attaching system operations to a domain model
which permits the creation of formal abstract contracts, which in turn can be
translated to natural language understandable to a customer. The purpose is to
provide a precise model at an early stage which can be validated by customers.
Formal specifications require more precision than informal ones, such as infor-
mal contracts and use cases. So, the developer has to make decisions about the
behavior of the system. Our approach permits the customer to validate that the
decisions made in the formal specification are really what the customer wants.
This is crucial to provide a good starting point for the development process.

Since we have an automatic translation from OCL to natural language, we
can always keep formal and natural language contracts synchronized. This is in
general considered a very hard task. We have also identified the importance of
using domain models when writing contracts, in particular with respect to the
readability of natural language translation of the contracts.
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As future work, we want to look at how to relate our work to Model Driven
Architecture (MDA) [12]. Maybe our abstract contract could be a good starting
point for MDA transformations. At some point models need to be related to
informal specifications.

In addition, we plan to test how real customers react to our generated texts.
The vocabulary should be known to the customers since the generated text
contains the vocabulary of the domain model. However, the style of the generated
text might be confusing.

We also plan to further investigate the quality of the natural language text
produced. For example, given a system to be specified one can have groups
writing informal contracts and other groups writing formal abstract contracts.
Thereafter our tool would translate the formal abstract contracts to natural
language contracts. This permits comparison between informal text produced
by hand and the text produced by our tool.

Another interesting experiment would be to start from an informal specifi-
cation, and then create an abstract formal specification. Then our tool would
be used to translate the abstract formal specification into natural language text.
Thereafter, make a comparison between the two natural language specifications.
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Abstract. The Object Constraint Language (OCL) provides a set of powerful
facilities for navigating and querying models in the MOF metamodelling archi-
tecture. Currently, OCL queries can be expressed only in the context of MOF
metamodels and UML models. This adds an additional burden to the develop-
ment and use of Domain Specific Languages, which can also benefit from an
instance-level querying mechanism. In an effort to address this issue, we report
on ongoing work on defining a rigorous approach for aligning the OCL querying
and navigation facilities, with arbitrary Domain Specific Languages to support
instance-level queries. We present a case-study that demonstrates the usefulness
and practicality of this approach.

1 Introduction

The MOF metamodelling architecture is a four-level integrated architecture for defin-
ing, persisting and managing modelling languages and models. At its meta-meta-model
level (M3), lies the Meta Object Facility (MOF) [13], a self-defined language for build-
ing modelling languages (metamodels). At the metamodel-level (M2) exist languages
defined using MOF. The most prominent example of an M2 metamodel is the Unified
Modeling Language (UML) [16]. Models expressed in M2-languages are considered to
belong to the model-level (M1) while instances of M1 models are placed at the instance-
level (M0) (or system-level according to [11]).

The Object Constraint Language (OCL) [15] is a language originally developed
to support capturing constraints in models of the MOF metamodelling architecture.
However, due to its expressive and efficient model navigation and querying facilities,
OCL has also been used extensively as a query language both for expressing stand-alone
queries [5], and in the context of model management languages for tasks such as model
transformation (e.g. QVT [14], ATL [9], YATL [17]), code generation (e.g. MOFScript
[2]) and model merging (e.g. EML [6]). The navigation and querying facilities of OCL
operate at two levels: at the metamodel-level (M2), it can be used to define queries in
the context of the abstract syntax of a modelling language. Metamodel-level queries can
then be evaluated on M1 models. Similarly, at the model-level (M1), it can be used to
define queries in terms of model-specific constructs that can then be evaluated on M0
instances.

OCL is currently aligned with MOF and UML. Due to the MOF-OCL alignment,
OCL queries can be expressed at the metamodel level and evaluated at the model-level
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for all MOF-based languages. By contrast, instance-level queries are supported only for
UML models, since OCL is not aligned with any other MOF-based languages. The rea-
son for this is the absence, to our knowledge, of appropriate techniques in the literature
and the tool-market, for aligning OCL with arbitrary DSLs to support instance-level
queries. As a result, in practice, alignment needs to be implemented manually for each
DSL within the context of a specific OCL execution engine. This is certainly not a trivial
task, as it requires significant expertise with the internals of the engine. Moreover, even
if the alignment is successfully implemented for a specific engine, the alignment speci-
fication will be highly coupled with the architecture and platform of the engine and thus
hard to port or reuse in a different context. In our view, the absence of a generic high-
level technique for using OCL to express instance-level queries in DSL models limits
the expressive power of DSLs and consequently their usefulness as viable alternatives
to UML in a practical software development environment.

To address this issue, in this paper we introduce a generic technique for aligning the
OCL navigational and querying facilities with arbitrary modelling languages to support
instance-level queries. The remainder of the paper is organized as follows. In Section
2 we discuss the problem of aligning OCL with arbitrary DSLs in detail and identify
the key-challenges. In Section 3 we introduce our technique and discuss its rationale
as well as the architecture of the infrastructure that allows us to realize it in practice.
In Section 4 we provide a case study that demonstrates a working example of aligning
a DSL with OCL. Finally, in Section 5 we conclude and discuss interesting issues for
further research.

2 Background and Motivation

The principal difficulty in aligning OCL with arbitrary DSLs lies in the two different
instantiation mechanisms used in the context of the MOF architecture, as also discussed
in [10]. To illustrate this problem we discuss the two different instantiation mechanisms
involved in UML 1.5. As illustrated in Figure 1, an object (e.g.: Customer) in a
UML model is an instance of theObject metaclass defined in the UML metamodel.
Similarly, a class (e.g.Customer) is an instance of theClass metaclass. Moreover,
although both instances are contained in the same (M1) model, the: Customer object
is conceptually an instance ofCustomer class. By convention, instances produced
with that implicit instantiation mechanism belong to the M0 level but from a strict
technical perspective, both Objects and Classes are M1 instances (instances of meta-
classes defined in the M2 level). While theM2 → M1 instantiation mechanism is
well-defined in the MOF specification [13], there is no consensus on the semantics of
theM1→M0 mechanism[12].

The presence of a loosely-definedM1 → M0 instantiation mechanism renders
alignment of OCL with custom DSLs to support instance-level queries particularly
challenging. The reason is that an OCL engine needs to be aware of the instantiation
mechanism to support built-in OCL features such asallInstances, oclIsTypeOf()
andoclIsKindOf(). A work-around for this problem is to use OCL expressions at the
M2 level (where the instantiation mechanism is well-defined) to query M0 instances like
any other M1 model elements. In this way, if we wanted to query all adult customers
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Fig. 1.Demonstration of explicit and implicit instantiation relationships in the MOF architecture

in our UML model of Figure 1, we would have to write the OCL query displayed in
Listing 1.1 (or a similar one). The complexity of the OCL expression needed for such a
simple query illustrates that while this approach makes querying models at the instance-
level feasible, it does not scale for complex queries. By contrast, an OCL engine that is
aware of the UMLM1 → M0 instantiation mechanism allows us to specify the same
query in a much more compact and meaningful manner, as displayed in Listing 1.2.

Listing 1.1. Querying an M1-level UML model with M2-level OCL

1 Object.allInstances->
2 select(o :Object | o.classifier.name->includes(’Customer’))->
3 select(o :Object | o.slot->exists(aL :AttributeLink |
4 aL.attribute.name = ’age’ and aL.value.toInteger() > 18))

Listing 1.2. Quering an M1-level UML model with M1-level OCL

1 Customer.allInstances->select(c:Customer|c.age > 18)

Apart from theM1→M0 instantiation mechanism, a UML-OCL execution engine
needs to be aware of the semantics of thepoint (.) navigational operator to calculate
the result of expressions such as thec.age in Listing 1.2. The semantics of the point
operator consist of three parts; the navigation path that must be followed (in terms of
M2), the multiplicity of the returned value (single value or collection) and the type of
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the returned value (Integer, String, Boolean, some other user-defined type etc). Consider
the M2-level query in Listing 1.1. The navigation path is defined in lines 1-4 (Object -¿
slot -¿value). The multiplicity is defined by accessing a single-valued feature (aL.value).
This indicates that the result should be a single value rather than a collection. The return
type is defined via explicit cast of the value of the slot to an Integer. This is done via the
built-in toInteger() operation in line 4.

In summary, in order for an OCL engine to support instance-level queries for a
new DSL, it must be aware of at least: the semantics of theM1 → M0 instantiation
mechanism and the semantics of the point navigation mechanism for the instance-level.
Currently these semantics can be specified using the programming language in which
the OCL engine is implemented (e.g. Java) and this is how UML-aware OCL engines,
such as [3, 4, 19, 1], have been implemented so far. However, as discussed in [7], 3rd
generation languages (3GL) are not particularly efficient for model navigation. More-
over, by adopting this approach, the specification of the semantics becomes bound to
the proprietary architecture and platform of the OCL engine. Finally, from a technical
perspective, modifying an OCL engine to support a new DSL is by far not a trivial task
and this is partly justified by the fact that there is no published work, to our knowledge,
on aligning an OCL engine with languages other than UML and MOF.

To address this issue in the following section we propose a generic and platform
independent mechanism for specifying the required semantics: OCL itself.

3 Proposed Approach

In this section we demonstrate how we can specify the semantics of theM1 → M0
instantiation mechanism and the instance-level point operators using OCL itself as the
specification mechanism.

For practical reasons, in this work instead of using pure OCL we are using the Ep-
silon Object Language (EOL) [7], an OCL-based model management language. The
reason we use EOL and not pure OCL is that from our experiments, we have found
that the OCL expressions needed to specify the semantics of the instantiation mech-
anism and the point operator tend to be rather complex and consequently difficult to
test and debug when expressed in pure OCL. This is because OCL does not support
statement sequencing and therefore expressing complex queries requires deep nesting
of expressions (includingif-elseexpressions and variable declarations usinglet expres-
sions) in a single statement. Instead, in EOL, complex expressions can be decomposed
into sequences of simpler expressions that are both easier to read, understand and de-
bug. However, we should stress that in principle, exactly the same functionality can be
implemented in pure OCL.

3.1 Relationship between EOL and OCL

EOL supports almost all the navigational and querying facilities of OCL. However, it
also supports additional features and also deviates from OCL in some aspects. There-
fore, in this section we provide a brief discussion of the additional or deviant features
we are using in the EOL listings that follow, for readers that are already familiar with
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OCL. For a detailed discussion on EOL and its differences with OCL, readers can refer
to [7].

Statement sequencing:In OCL, there is no notion of statement sequencing and, as
already discussed, this can lead to extremely complex expressions that are difficult to
read and debug. By contrast, in EOL statements can be separated using the semi-column
(;) delimiter (similarly to Java,C++ and C#). In our view, this feature greatly enhances
readability and renders it easier to debug a fragment of code.

Variable definition: The latest version of OCL (2.0) provides thelet expression for
creating temporary variables in the context of a single query. Similarly, EOL supports
thedef statement for defining variables in the context of a block of statements.

Helpers: OCL supports definition of custom operations (helpersaccording to the OCL
specification) on meta-classes. Since OCL does not support statement sequencing, the
body of an OCL helper is a single OCL expression. By contrast, in EOL, the body of a
helper operation is a sequence of statements and values are returned using thereturn
statement.

Style: In EOL, theOcl prefix has been removed from the names of features such as
OclAny, oclIsTypeOf or oclIsKindOf (in EOL they are calledAny, isTypeOf ,
isKindOf ). Moreover, built-in operations such asselect() andsize() that are acces-
sible using the→ operation in OCL, are also accessible using the point operator in
EOL.

3.2 Contents and Structure of an Alignment Specification

To align EOL with a DSL, we need to construct analignment specification. Such a
specification consists of the following operations (orhelpersin OCL terms) that operate
at the meta-model level and define the required semantics:

operation String allOfType() : SequenceTheallOfType operation applies to a String
that specifies the name of the type under question and returns all the model elements
that are direct instances of the type. This is needed both to be able to calculate the result
of theisTypeOf operation at the instance-level.

operation String allOfKind() : SequenceTheallOfKind operation applies on a String
that specifies the name of the type under question and returns all the model elements that
are either direct or indirect (through some kind of inheritance in the M1 level) instances
of the type. TheallOfKind method is needed to be able to calculate the result of
theisKindOf and theallInstances operations at the instance-level. The existence of
both theallOfKind and theallOfType operations allows us to support inheritance in
the model-level (if the DSL supports such a feature).
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operation Type getProperty(property : String) : AnyFor eachType of instance at the
instance-level, agetProperty operation must be defined that specifies the semantics
of the point navigational operator in the model-level. As discussed in Section 2, a
getProperty operation must define: the navigation path for retrieving the value of the
property, the multiplicity and the type of the returned value.

3.3 Implementation Architecture

A basic design principle of EOL was that it should be able to manage models of diverse
metamodels and technologies. This principle is implemented in the underlying Epsilon
Model Connectivity (EMC) layer. The basic concept of EMC is theEolModel interface
to which all EOL-compatible models must conform. Implementations ofEolModel
include theMdrModel, EmfModel andXmlDocument that allow EOL to manage
MDR [18] and EMF-based [8] models as well as XML documents. In the aforemen-
tioned implementations ofEolModel, the required methods (e.g.allOfType, allOfKind)
are specified using Java.

To align with custom DSLs we have defined a new specialization ofEolModel
namedEolM0Model that delegates calls to its methods to the underlying alignment
specification (instead of implementing them in Java). For example, if the instance-
level query contains theX.allInstances expression, the EOL engine will invoke the
allOfKind(X) Java-method of theEolM0Model that will in its turn delegate the
call to theallOfKind(X) EOL operation defined in the alignment specification. This
is illustrated in Figure 2.

Fig. 2.Architecture of the alignment mechanism
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Using this approach, to align with a new DSL, engineers do not need to be aware
of the internals of the execution engine, the modelling framework (EMF, MDR etc) or
write code in the implementation language of the engine (Java) at all. Instead, they need
only provide a high-level alignment specification, in EOL, that implements the required
operations.

4 Case Study

Having outlined our approach in Section 3, in this section we present a case-study of
aligning OCL with a DSL for modelling Relational Databases. The metamodel of the
Relational DSL (constructed using EMF) is presented graphically in Figure 3. There, a
Database consists of many tables and eachTable consists of a number ofColumns.
All Database, Table andColumn have aname andColumn also has atype. Re-
lated columns are linked each other using foreign-keys. EachForeignKey defines a
parent and achild column and also if the relationship is one-to-one or one-to-many
(oneToMany). In the shaded part of the metamodel theM0 constructs1 appear. A
TableData contains a set ofRows that represent exemplar data of the relatedtable.
Finally, aRow contains many cells and eachCell corresponds to acolumn of the table
and also has avalue.

Fig. 3.The abstract syntax of a DSL for Relational Databases

1 By M0 constructsof the metamodel, we refer to metamodel constructs, instances of which
belong to the M0 level
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A visualized version of an instance of the Relational DSL is illustrated in Figure 4.
There, the two shapes on the top represent instances ofTable and the two shapes at the
bottom represent instances ofTableData.

4.1 Defining theM1 → M0 instantiation semantics

In our DSL, aRow is conceptually an instance of aTable. Therefore, the expression
Customer.allInstances should return all the rows in the model that belong to the
TableData that has an associatedTable with the nameCustomer. This is formally
defined by theallOfKind operation of Listing 1.3. In Listing 1.3, theallOfType
operation is also defined. The fact that they both return the same result indicates that
there is no notion of inheritance in our DSL.

Listing 1.3. Specification of the allOfType and allOfKind operations
1 operation String allOfType() : Sequence(Row) {
2 return Row.allInstances().
3 select(r|r.tableData.table.name = self );
4 }
5
6 operation String allOfKind() : Sequence(Row) {
7 return self .allOfType();
8 }

Fig. 4.An instance of the Relational DSL

4.2 Defining the point operator semantics

Having defined theM1 → M0 instantiation semantics, we must now define the se-
mantics of the point operator for the instance level. To provide better understanding,
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we first describe the semantics informally through a set of small examples: Letc be
the first row of the Customer table-data displayed in Figure 4. In this case, the expres-
sionc.age should return anInteger (25). Similarly,c.details should return aString
(George). Moreover,c.invoice should return a collection of all the rows of the Invoice
table-data where the value ofcustomerId is equal to the value ofc.id. This is dictated
by the foreign key that relates the repsective columns in the model. The complete for-
mal semantics of the point operator are captured in thegetProperty(name : String)
operation of Listing 1.4. ThegetProperty operation delegates the task of defining the
navigation path and the multiplicity of the returned result to thegetRowsOrCell() op-
eration. Finally, thegetV alue() operation (lines 12-23), casts the string values of cells
to the respective OCL data-types (Boolean, String, Integer and Real) according to the
thetype of the respectiveColumn (BIT, VARCHAR, INT and REAL).

Listing 1.4. Specification of the getProperty operation
1 operation Row getProperty(name : String ) : Any {
2 def ret : Any;
3 ret := self .getCellOrRows(name);
4 if (ret.isTypeOf(Cell)){
5 return ret.getValue();
6 }
7 else {
8 return ret;
9 }

10 }
11
12 operation Cell getValue() : Any {
13 if (cell.column.type = ’INT’){
14 return cell.value.asInteger();
15 }
16 if (cell.column.type = ’BIT’){
17 return cell.value.asBoolean();
18 }
19 if (cell.column.type = ’REAL’){
20 return cell.value.asReal();
21 }
22 return cell.value.asString();
23 }
24
25 operation Row getCellOrRows(name : String ) : Any {
26
27 def cell : Cell;
28
29 -- First try to find a cell with that name
30 cell := self .cell.select(c|c.column.name = name).first();
31
32 if (cell.isDefined()){
33 -- If a cell with that name exists, return it
34 return cell;
35 }
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36 else {
37 -- Try to find a foreign child-key with that name
38 def childKeyCell : Cell;
39
40 childKeyCell := self .cell.select
41 (c|ForeignKey.allInstances().
42 exists(fk|fk.child.participant =
43 c.column and fk.parent.name = name)).first();
44
45 if (childKeyCell.isDefined()) {
46 def ck : ForeignKey;
47 ck := ForeignKey.allInstances().
48 select(fk|fk.child.participant = childKeyCell.column)
49 .first();
50 return Row.allInstances().
51 select(r|r.cell.exists(c|c.column = ck.parent.participant
52 and c.value = childKeyCell.value)).first();
53 }
54 else {
55 -- Try to find a foreign parent-key with that name
56 def parentKeyCell : Cell;
57 parentKeyCell := self .cell.select
58 (c|ForeignKey.allInstances()
59 .exists(fk|fk.parent.participant = c.column
60 and fk.child.name = name)).first();
61
62 if (parentKeyCell.isDefined()) {
63 def pk : ForeignKey;
64 pk := ForeignKey.allInstances().
65 select(fk|fk.parent.participant = parentKeyCell.column)
66 .first();
67 def rows : Sequence(Row);
68 rows := Row.allInstances().
69 select(r|r.cell.exists(c|c.column = pk.child.participant and
70 c.value=parentKeyCell.value));
71 if (pk.oneToMany){
72 return rows;
73 }
74 else {
75 return rows.first();
76 }
77 }
78
79 }
80
81 }
82 throw ’Undefined property: ’ + name;
83 }
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4.3 Running instance-level queries on the model

Having defined the alignment specification, we can now express and evaluate OCL
instance-level queries on our model. The OCL expression of Listing 1.5 returns aCollection
of thedetails of all the customers in our model that have an age under 18 (’Nick’). In a
more complex query, Listing 1.6 prints a message for every customer that has unpayed
invoices, the sum of which exceed his/her credit.

Listing 1.5. Instance-level query for retrieving under-aged customers
1 Customer.allInstances.select(c|c.age < 18).collect(c|c.details);

Listing 1.6. Instance-level query for retrieving customers in debt
1 for (c in Customer.allInstances){
2
3 def balance : Real ;
4
5 balance := c.invoice.select(i|i.payed = false)
6 .collect(i|i.total).sum();
7
8 if (balance > c.credit){
9 (’Customer ’ + c.details + ’ has a negative balance’).println();

10 }
11 }

5 Conclusions and Further Work

In this paper we have presented a novel technique for aligning OCL with custom Do-
main Specific Languages to support instance-level queries. Moreover, we have pre-
sented a working example of applying this technique in a DSL for modelling Relational
Databases that demonstrates its practicality and usefulness. However, we plan to con-
tinue our experiments with diverse metamodels to further validate or refine (where this
is required) our approach.

As discussed in Section 3, we are using EOL instead of pure OCL for defining the
alignment specification. This is primarily due to the practical difficulties involved in
capturing complex expressions such as this displayed in thegetRowOrCells opera-
tion of Listing 1.4 using pure OCL. However, we realize that expressing the alignment
specification in that way renders re-use from plain OCL engines impossible. Therefore,
we are considering developing a transformation from EOL to pure OCL that will be
able to translate sequential EOL statements into a single OCL-compatible statement.
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Abstract. Domain-specific languages become more and more important
these days as they facilitate the close collaboration of domain experts and
software developers. One effect of this general tendency is the increasing
number of UML profiles. UML itself as the most popular modeling lan-
guage is capable of modeling all kinds of systems but it is often inefficient
due to its wide-spectrum approach. Profiles tailor the UML to a specific
domain and can hence be seen as domain-specific dialects of UML. At
the moment, profiles mainly introduce new terminology, often in com-
bination with OCL constraints which describe the new constructs more
precisely. As most tools do not support validation of OCL expressions
let alone supplementing profiles with OCL constraints, it is difficult to
check if models based on a profile comply to this profile. A related prob-
lem is checking whether constraints in the profile contradict constraints
in the UML specification. In this paper, it is shown how to complete
these tasks with the tool USE. As an example, a profile from the railway
control systems domain is taken which describes the use of its modeling
elements quite strictly. Models based on this profile serve as a foundation
for automated code generation. Therefore, they require a rigorous and
unambiguous meaning. OCL is heavily used to reach this goal.

1 Introduction

The current interest in model driven architecture (MDA) [OMG03] and its sur-
rounding techniques like metamodeling and model driven development (MDD)
has also increased the interest in domain-specific languages (DSL) and their de-
velopment. MDA enforces the idea of platform independent models (PIM) as
main artifact in the design of software systems, while the concrete implemen-
tation will be based on a platform specific model (PSM). The step from PIM
to PSM is performed by transformations while the generation of code is based
on the PSM and a description of the concrete target platform called platform
model (PM).

In the context of MDA, several standards have been developed like the Meta
Object Facility (MOF) [OMG06] for designing metamodels and the Unified Mod-
eling Language (UML) [OMG05c,OMG05b] as a modeling language. UML has
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become the de-facto standard for modeling languages and is supported by various
tools. Due to its wide-spectrum approach, it can be used for modeling all kinds
of systems. This is an advantage as one tool can be used to develop different
kinds of systems. In contrast, it may also lead to inefficiency and inaccuracy as
each domain has its own need, e.g. domain-specific terminology that differs from
the one of UML may lead to misunderstandings. Another problem are seman-
tic variation points in UML. These are necessary to enable the wide-spectrum
approach but not useful if the model is to be used in the MDA context as trans-
formations and code generation cannot be utilized with an ambiguous model as
foundation.

A good example are railway control systems that are described in specific ter-
minology and notation. The domain of control are track networks that consist
of elements like segments, points, or signals. Routes are defined to describe how
trains travel on the network. In addition, there are rules that specify in which
way a network is constructed and how it is operated. Some rules apply to all
kinds of railway systems and some are specific for each kind of railway system,
e.g. tramway or railroads. In principle, UML is capable of modeling such sys-
tems: class diagrams can be used to describe segments, points, and other track
elements and their dependencies while object diagrams model concrete track
layouts and routes. Rules can be specified by means of OCL. The problem is
that we have to model each kind of railway system with all rules explicitly. The
domain knowledge that covers the common parts of all railway control systems
is not captured in such models. Neither is specific notation that is used in the
domain like symbols for signals and sensors.

Domain-specific languages are a means to overcome these disadvantages
[Eva06]. Designing a new modeling language from scratch is obviously time-
consuming and costly, therefore UML profiles have become a popular mechanism
to tailor the UML to specific domains. In this way, different UML dialects have
been developed with considerably low effort. New terminology based on existing
UML constructs is introduced and further supplied with OCL [OMG05a,WK04]
constraints to specify its usage precisely. Semantics are often described in natural
language just as for UML itself.

With respect to railways, the Railway Control Systems Domain (RCSD)
profile has been developed [BHP,BH06] as domain-specific UML derivative with
formal semantics.The main reason for developing this profile was to simplify the
collaboration of domain experts of the railway domain and software developers
that design controllers for this domain. With the help of the profile, the system
expert develops track networks for different kind of railway systems consisting
of track segment, signal, points, etc. The software specialist works on the same
information to develop controllers. In the end, controller code which satisfies
safety-critical requirements shall be generated automatically. Railway control
systems are especially interesting as the domain knowledge gathered in the long
history of the domain has to be preserved while combining it with development
techniques for safety-critical systems. Structural aspects are specified by class
and object diagrams (see Fig. 8 and Fig. 9) whose compliance to the domain
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is ensured by OCL constraints. Semantics are based on a timed state transition
system that serves as foundation for formal transformations towards code gen-
eration for controllers as well as for verification tasks. In this paper, the focus is
on the validation of the structural aspects to ensure the correct and successful
application of transformations and verification. Details about semantics can be
found in [PBD+05,BH06,BHP].

A problem that has not been tackled until now is to validate that the con-
straints of a profile comply to the ones of UML and that models using a profile
comply to this profile. One reason for this is that CASE tools often support
profiles as far as new terminology can be introduced but lack support of OCL
[BCC+05]. One of the few tools that support OCL is USE (UML Specification
Environment) [Ric02,GZ04]. It allows the definition of a metamodel supplied
with OCL constraints and checks whether models based on this metamodel ful-
fill all constraints. Using (a part of) the UML metamodel in combination with
a profile as the USE metamodel allows for fulfilling three goals: (a) Validating
that this profile complies to the UML metamodel as each model has to fulfill
the invariants of the UML metamodel and the profile. (b) Validating that class
diagrams comply to the profile. (c) Validating that object diagrams comply to
the profile if the profile describes instances as well as instantiable elements. This
approach has been used to validate the RCSD profile and models based on this
profile.

The paper is organized in the following way: the next section gives an intro-
duction to UML profiles and the usage of OCL in this context. After that, the
railway domain is briefly introduced in Sec. 3, followed by a description of the
RCSD profile and typical constraints in Sec. 4. After that, Sec. 5 describes the
validation with USE on the different levels. At last, the results of this validation
approach and future work are discussed in Sec. 6.

2 UML Profiles and OCL

UML profiles as described in in [OMG05b] and [OMG05c] offer the possibil-
ity to tailor the UML to a specific domain in several ways: (a) introducing
new terminology, (b) introducing new syntax/notation, (c) introducing new con-
straints, (d) introducing new semantics, and (e) introducing further information
like transformation rules.

Changing the existing metamodel itself e.g. by introducing semantics con-
trary to the existing ones or removing elements is not allowed. Consequently,
each model that uses profiles is a valid UML model. Profiles are therefore not a
means to develop domain-specific languages that contradict UML constraints or
semantics. Due to the wide-spectrum approach of UML, semantics are loosely
enough to allow all kinds of profiles. A UML 2.0 profile mainly consists of stereo-
types, i.e. extensions of already existing UML modeling elements. You have to
choose which element should be extended and define the add-ons. In addition,
new primitive datatypes and enumerations can be defined as necessary.

OCL can be used in various ways to specify the stereotypes more precisely:

OCLApps 2006 Workshop 40



(a) Constraining property values: A stereotype has all properties of its base class
and can add only attributes. Defining new associations to classes in the refer-
ence metamodel or other stereotypes is not allowed. Therefore, constraining
values of existing attributes and associations is a useful means to give a
stereotype the desired functionality.

(b) Specifying dependencies between values of different properties of one ele-
ment: Often, it is necessary to describe dependencies between the properties
of a modeling element precisely.

(c) Specifying dependencies between property values of different instances of one
element: Some properties like identification numbers need specific values for
different instances of one element.

(d) Specifying dependencies between property values of different instances of
different elements: In the same way, several elements may have properties
whose values have some kind of relationship. Here, it is important to chose
the context of the constraint carefully such that the constraint is not unnec-
essarily complicated because another modeling element would have been the
better choice as basis for the constraint.

3 Short Introduction to the Railway Domain

Creating a domain specific profile requires identifying the elements of this domain
and their properties as e.g. described in [Pac02]. In the railway domain, track
elements, sensors, signals, automatic train runnings, and routes have been proven
essential modeling elements. They are described shortly in the following, more
details can be found in [BH06]:
Track Elements The track network consists of segments, crossings, and points.
Segments are rails with two ends, while crossings consist of either two crossing
segments or two interlaced segments. Points allow a changeover from one seg-
ment to another one. Single points have a stem and a branch. Single slip points
and double slip points are crossings with one, respectively two, changeover pos-
sibilities.
Sensors Sensors are used to identify the position of trains on the track network,
i.e. the current track element. To achieve this goal, track elements have entry and
exit sensors located at each end. The number of sensors depends on the allowed
driving directions, i.e. the uni- or bidirectional usage of the track element.
Signals Signals come in various ways. In general, they indicate if a train may
go or if it has to stop. The permission to go may be constrained, e.g. by speed
limits or by obligatory directions in case of points. As it is significant to know if
a train moves according to signaling, signals are always located at sensors.
Automatic Train Running Automatic train running systems are used to enforce
braking of trains, usually in safety-critical situations. The brake enforcement
may be permanent or controlled, i.e. it can be switched on and off. Automatic
train running systems are also located at sensors.
Route Definition As sensors are used as connection between track elements,
routes of a track network are defined by sequences of sensors. They can be
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entered if the required signal setting of the first signal of the route is set. This
can only be done if all points are in the correct position needed for this route.
Conflicting routes cannot be released at the same time.

4 RCSD Profile

Unfortunately, defining eight stereotypes as suggested by the domain analysis
in Sec. 3 is not sufficient. New primitive datatypes, enumerations, and special
kinds of association to model interrelationships between stereotypes are needed.
Furthermore, UML supports two modeling layers, i.e. the model layer itself (class
diagrams) and the instances layer (object diagrams). In the RCSD profile, both
layers are needed: class diagrams are used to model specific parts of the railway
domain, e.g. tramways or railroad models, while object diagrams show explicit
track layouts for such models. Hence, stereotypes on the object level have to
be defined. For these reasons, the RCSD profile is structured in five parts: the
definition of primitive datatypes and literals, network elements on class level,
associations between these elements, instances of network elements and associa-
tions, and route definitions.

4.1 Types and Literals

0..1
LiteralId

LiteralAutoRunId
<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

<<stereotype>>

LiteralSensorId

LiteralSignalId

LiteralPointId

LiteralRouteId

LiteralDuration

LiteralTimeInstant

<<stereotype>>

<<stereotype>>

<<stereotype>>0..1

0..1

LiteralInteger
<<metaclass>>

value:Integer prefix:String

Fig. 1. Literals part of the RCSD profile

Several new datatypes are needed: identifiers for all controllable elements, identi-
fiers for routes (e.g. to specify conflicting ones), time instants and durations. All
of them have in common that the value domain is N. Defining different datatypes
facilitates constraints like: all signal identifiers are unique, all point identifiers
are unique and so on. In addition, each new datatype has a dedicated stereotype
to model literals of this type (see Fig. 1). For the identification types, the corre-
sponding literal consists of an integer value and a prefix character. Literals for
time instants and durations are integer values.
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inv LiteralPointId1:

value >= 0

inv LiteralPointId2:

prefix = ’P’

OCL constraints for these stereotypes are simple as only values of properties are
restricted. Integers values have to be from N; prefixes for different identification
types have specific values: ’S’ for sensors, ’Sig’ for signals, ’P’ for points, ’A’
for automatic runnings, and ’R’ for routes. As an example, the two constraints
needed for LiteralPointId are given above. For the sake of brevity, the name of
invariants and the invariants context, where it is unmistakable, are omitted in
the following.

4.2 Network Elements

<<stereotype>>
Segment

<<stereotype>>
Crossing

<<stereotype>>
Sensor

0..1

AutomaticRunning
<<stereotype>>0..1

<<metaclass>>
Class

<<stereotype>>
Point

0..1 <<stereotype>>
TrackElement

<<stereotype>>

<<stereotype>>

SinglePoint

SlipPoint

0..1 <<stereotype>>
Signal

<<enumeration>>

LOW
HIGH
FAILURE

SensorStateKind
<<enumeration>>

GO
STOP

<<enumeration>>

STRAIGHT
LEFT
RIGHT
FAILURE

PointStateKind
<<enumeration>>

GO
STOP
FAILURE

SignalStateKind

<<enumeration>>

OFF
FAILURE

ON

AutoRunKind

LEFT
RIGHT

STRAIGHT

<<enumeration>>
RouteKind PermissionKind

Fig. 2. Network elements of the RCSD profile

The next part of the profile defines track network elements, i.e. segments, cross-
ing, points, signals, sensors, and automatic train runnings (see Fig. 2). Segment,
Crossing, and Point have in common that they form the track network itself,
therefore they are all subclasses of the abstract TrackElement. Similarly, Single-
Point and SlipPoint are specializations of Point. Enumerations are defined to
specify values of properties. All elements are equipped with a set of constraints
that define which properties must be supported by each element and how it is
related to other elements.
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An instance of TrackElement on the model layer must provide several proper-
ties: maximalNumberofTrains to restrict the number of trains on a track element
at one point in time (mandatory) and limit to give a speed limit (optional). Both
properties have to be integers. The first one has a fixed multiplicity 1, the second
one may have multiplicities 0..1 or 1. Such requirements for TrackElement are
defined in the following way:

ownedAttribute->one(a | a.name->includes(’maxNumberOfTrains’) and

a.type.name->includes(’Integer’) and

a.upperBound() = 1 and a.lowerBound() = 1 and

a.isReadOnly = true)

At each end of a TrackElement, entry or exit sensors can be associated. e1Entry,
e1Exit, e2Entry, and e2Exit are used to model these ends of associations to
sensors (optional). All outgoing associations must be SensorAssociations.

ownedAttribute->one(a | a.name->includes(’e1Entry’) and

a.upperBound() = 1 and a.lowerBound() >= 0 and

a.isReadOnly = true and

a.outgoingAssociation.

oclIsTypeOf(SensorAssociation)) or

(not ownedAttribute->exists(a2 | a2.name->includes(’e1Entry’)))

...

ownedAttribute->collect(outgoingAssociation)->

forAll(a | a.oclIsTypeOf(SensorAssociation) or a.isUndefined)

To understand the structure of these constraints, a look at the UML meta-
model is helpful. As all network elements are stereotypes of Class from the UML
2.0 Kernel package, we can refer to all properties of Class in our constraints.
Properties on the model level are instances of class Property on the metamodel
level, which are associated to Class by ownedAttribute. As a StructuralFeature,
Property is also a NamedElement, a TypedElement, and a MultiplicityElement,
which allows to restrain name, type, and multiplicity as shown in the constraints
above. Such constraints are defined for all network elements. They all belong ob-
viously to the category (a) as described in Sec. 2. They restrict properties on
the metamodel level for the usage on the model level.

4.3 Associations

Three types of associations are defined: SensorAssociation that connect track
elements and sensors, SignalAssociations that connect signals and sensors, and
AutoRunAssociations that connect automatic train runnings and sensors (see
Fig. 5). Constraints are needed e.g. to determine the kind of stereotype at the
ends of each association and their number. As an example, each SignalAssocia-
tion is connected to one sensor and one signal:

inv SignalAssociation1: memberEnd->size() = 2

inv SignalAssociation2: endType->size() = 2

inv SignalAssociation3: endType->one(t | t.oclIsKindOf(Sensor))

inv SignalAssociation4: endType->one(t | t.oclIsKindOf(Signal))

Similar constraints are defined for the other kinds of association.
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4.4 Instances of Network Elements and Associations

For each non-abstract modeling element and each association, there exists a cor-
responding instance stereotype (see Fig. 6). Here, the domain-specific notation
is defined. In Fig. 3, two unidirectional segments connected by a sensor S1 are
shown. For comparison, the same constellation in object notation is given in
Fig. 4.

S1

Fig. 3. RCSD notation

exit e2exit
S1:<<Sensor>>Sens

entrye1entry
:<<Segment>>Seg:<<Segment>>Seg

Fig. 4. UML notation

The instances are heavily restricted by OCL constraints as the instance level
serves as the basis for automated code generation. Again, we find several con-
straints of category (a), where the values of properties are specified explicitly. To
give an example, the maximal number of trains on a crossing or point is always
defined and the value is 1:

slot->one(s1 | s1.definingFeature.name->includes(’maxNumberOfTrains’) and

s1.value->size()= 1 and

s1.value->first().oclIsTypeOf(LiteralInteger) and

s1.value->first()->oclAsType(LiteralInteger).value = 1)

0..1

SensorAssociation
<<stereotype>>

0..1 <<stereotype>>
AutoRunAssociation

<<metaclass>> 0..1
SignalAssociation

<<stereotype>>
Association

Fig. 5. Associations part of the
RCSD profile

<<stereotype>>
AutomaticRunningInstance

0..1 <<stereotype>>
SignalInstance

<<stereotype>>
AutoRunLink

<<stereotype>>
SignalLink

<<stereotype>>
SensorLink

<<stereotype>>
SensorInstance

<<metaclass>>

InstanceSpecification

0..1

0..1

SegmentInstance
<<stereotype>>

CrossingInstance
<<stereotype>>

<<stereotype>>

<<stereotype>>

0..1

0..1

0..1

SinglePointInstance

SlipPointInstance

0..1 0..1

0..1

0..1

Fig. 6. Instances of network elements and as-
sociations part of the RCSD profile

Similar constraints appear for all kinds of track elements, e.g. the limit on track
elements must have a value from N if present. More interesting are the constraints
from category (b) that describe the dependencies between properties of one
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stereotype. As an example, each Point has a plus and minus position. One of
these has to be STRAIGHT and the other one LEFT or RIGHT :

slot->select(s1 | s1.definingFeature.name->includes(’minus’) or

s1.definingFeature.name->includes(’plus’))->

one(s2 | s2.value->size()= 1 and

s2.value->first().oclIsTypeOf(InstanceValue) and

s2.value->first().oclAsType(InstanceValue).instance.name->

includes(’STRAIGHT’)) and

slot->select(s1 | s1.definingFeature.name->includes(’minus’) or

s1.definingFeature.name->includes(’plus’))->

one(s2 | s2.value->size()= 1 and

s2.value->first().oclIsTypeOf(InstanceValue) and

(s2.value->first().oclAsType(InstanceValue).instance.name->

includes(’LEFT’) or

s2.value->first()->oclAsType(InstanceValue).instance.name->

includes(’RIGHT’)))

An example from category (c) are identification numbers of sensors that have
to be unique. Each Sensor must have a property sensorId that is unique with
respect to all instances of Sensor :

SensorInstance.allInstances->collect(slot)->asSet->flatten->

select(s | s.definingFeature.name->includes(’sensorId’))->

iterate(s:Slot;

result:Set(LiteralSensorId) = oclEmpty(Set(LiteralSensorId)) |

result->including(s.value->first.oclAsType(LiteralSensorId)))->

isUnique(value)

4.5 Route definitions

<<stereotype>>

<<stereotype>>
Route

<<metaclass>>

0..1

0..1 <<stereotype>>
Class SignalSetting

<<stereotype>>
RouteConflict

PointPosition

0..1

0..1

<<enumeration>>
RouteConflictKind

<<stereotype>><<metaclass>>
InstanceSpecification RouteInstance

0..1

noAllocation
stopSignal

Fig. 7. Route definition part of the RCSD profile

Moreover, the profile defines routes and their instances as shown in Fig. 7.
Each Route is defined by an ordered sequence of sensors. The signal setting
for entering the route and sets of required point positions and of conflicts with
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other routes are further necessary information. Again, constraints are used for
unambiguous and strict definitions of properties. Constraints from category (d)
are typical as sensors, signals, and points are referenced by their id in route
definitions. This implies that these ids belong to some existing instances, e.g.
the sensor ids given in the definition of a route. Hence, the following constraint
must hold for each RouteInstance:

let i:Set(Integer) =

slot->select(s | s.definingFeature.name->includes(’routeDefinition’))->

asSequence->first().value->

iterate(v:ValueSpecification;

result:Set(Integer)=oclEmpty(Set(Integer)) |

result->including(v.oclAsType(LiteralSensorId).value))

in

i->forAll(id | SensorInstance.allInstances->exists(sens |

sens.slot->select(s | s.definingFeature.name->includes(’sensorId’))->

asSequence->first().value->first().

oclAsType(LiteralSensorId).value = id))

5 Validation of Wellformedness Rules with USE

The next step is adapting the profile and its various invariants to USE for the
validation process. USE expects a model in textual notation as input. For syntax
details, we refer to [GZ04]. In our case, this is the metamodel consisting of (a
part of) the UML metamodel and the profile. On this basis, instance models
can be checked with respect to the invariants in the metamodel. In our case,
the instance model consists of both class layer and object layer, i.e. models
using the RCSD profile. A similar application of USE with respect to the four
metamodeling layers of UML is shown in [GFB05].

This metamodel file includes both the necessary part of the UML 2.0 meta-
model and the RCSD profile for two reasons: first, the profile cannot exist with-
out its reference metamodel and second, one goal is to check the compliance of
the profile to the metamodel. This task must be performed implicitly as USE
does not check if the given constraints contradict. Instead, we assume the profile
compliant to the metamodel as long as both the constraints in the metamodel
and the constraints in the profile are all valid. Contradicting constraints can be
identified if all constraints in the profile evaluate to true but some constraint(s)
in the metamodel evaluate(s) to false.

5.1 Modeling the UML Metamodel and the RCSD Profile for USE

In the metamodel file, a description of classes with attributes and operations,
associations, and OCL constraints is expected. OCL constraints are either in-
variants as shown in Sec.4, definitions of operations, or pre-and postconditions of
operations. Only operations whose return value is directly specified in OCL and
not dependent on preconditions are considered side-effect free and may be used
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in invariants. For the validation of the profile, all invariants must be fulfilled by
the instance model(s).

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}

TramCrossing
<<Crossing>>

<<Sensor>>
TramSensor

TramSegment
<<Segment>>

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}

<<RouteConflict>>
Conflicts

routeId:RouteId {readOnly}
kind:RouteConflictKind {readOnly}

Signals
<<SignalSetting>>

sigState:SignalStateKind {readOnly}
signalId:SignalId {readOnly}

dirState:RouteKind[0..1] {readOnly}

Points
<<PointPosition>>

pointId:PointId {readOnly}
pointState:PointStateKind {readOnly}

TramRoute
<<Route>>

routeId:RouteId {readOnly}
routeDefinition:SensorId[0..*] {readOnly, ordered}

actualState:SignalStateKind
requestedState:SignalStateKind

delta_s:Duration {readOnly}

signalId:SignalId {readOnly}

requestTime:TimeInstant

direction:RouteKind

<<Signal>>
TramSignal

TramPoint
<<SinglePoint>>

pointId:PointId {readOnly}
plus:PointStateKind {readOnly}
minus:PointStateKind {ReadOnly}
actualState:PointStateKind
requestedState:PointStateKind
requestTime:TimeInstant

limit:Integer[0..1] {readOnly}
maxNumberOfTrains:Integer=1 {readOnly}
delta_p:Duration {readOnly}

e4exit

e3exit

e2exit
0..1

1

11

actualState:SensorStateKind
sentTime:TimeInstant
counter:Integer
delta_l:Duration {readOnly}
delta_tram:Duration {readOnly}

sensorId:SensorId {readOnly}

e2exit

e2exit

e1exit

sensor

e3entry

e2entry

e3entry

e1entry

e1entry

e1entry

1

0..1

0..1 0..1

0..1

1

1

1

pointPosrouteConflict

signalSetting{readOnly}
1

signal 0..1

0..* 0..*

entrySeg exitSeg

exitPointentryPoint

{readOnly} {readOnly}

entryCross exitCross

1 1

0..1

0..1

0..1

0..1

0..1

Fig. 8. Tram network definitions - class level

From the UML metamodel, the Kernel package has been modeled with some
modifications: (a) Packages are not needed by the RCSD profile and therefore
skipped in all diagrams, diagram Packages has been omitted completely. (b)
Lower and upper bounds of multiplicities have been changed to LiteralInteger
instead of ValueSpecification for easier handling. One reason is that the invariants
in the context of MultiplicityElement are not specific enough to guarantee that
the ValueSpecification really evaluates to LiteralInteger as necessary. Therefore,
expressions cannot be used to specify multiplicities. The invariants of Multiplic-
ityElement have been adapted to this. (c) Several invariants and operations had
to be rewritten or omitted completely as they are erroneous in the UML specifi-
cation. More information about this problem can be found in [BGG04]. (d) Some
names in the UML specification had to be changed due to conflicts with USE
keywords or multiple usage in the specification which also leads to conflicts. This
problem is also described in [BGG04]. (e) USE does not support UnlimitedNat-
ural as type. This problem has been overcome by using Integer and additional
constraints that restrict corresponding values to N. All in all, 34 invariants have
been modeled here. Further packages from the UML metamodel are not needed.

Profiles are not directly supported by USE. This problem has been overcome
by modeling each stereotype as a subclass from its metaclass, i.e. a metamodel
extension. Modeling profiles as restricted extensions to metamodels is feasible
with respect to [JSZ+04]. Here, modifications to metamodels are classified in
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level one (all extensions to the reference metamodel allowed), level two (new
constructs can be added to the referenced metamodel, but existing ones cannot
be changed), level three (each new construct must have a parent in the reference
metamodel), and level four (new relationships are only allowed as far as existing
ones are specialized. The lower levels include all restrictions of the levels above.
Therefore, profiles can be considered a level four metamodel extension and mod-
eled as such in USE. 1 All in all, the following invariants of types (a) - (d) have
been specified:

Profile part (a) (b) (c) (d)

Types and Literals 12 0 0 0
Network Elements 92 0 0 0
Associations 23 0 0 0
Instances 101 21 5 0
Route Definitions 36 4 1 16

5.2 Compliance of RCSD Model to Profile on Class Level

Evaluating constraints is possible for instances of the given (meta)model. As
an example, a tram network description is used on class level. Tram networks
consist of segments, crossing and single points that are all used unidirectionally.
Furthermore, there are signals, sensors, and routes, but no automatic runnings.
This constellation is shown in Fig. 8.

In USE, an instance model can be constructed step by step by adding in-
stances of classes and associations of the metamodel to an instance diagram.
More convenient is the usage of a *.cmd command file where instance creation
and setting of property values are specified in textual notation. Again, we refer
to [GZ04] for syntax details.

5.3 Compliance of RCSD Model to Profile on Instance Level

A concrete network of a tram maintenance site with six routes is shown in Fig. 9.
Note that this is diagram is given in RCSD notation and can also be shown in
UML object notation as discussed in Sec. 4. The explicit route definitions have
been omitted for the sake of brevity, but can be easily extracted from Fig. 9.
This diagram has been used for the validation on the instance level. It consists
of 12 segments, 3 crossing, 6 points, 25 sensors, 3 signals, and 6 routes, specified
in a second *.cmd file. The two *.cmd files form a complete instance model of
the metamodel consisting of classes and their instances.

5.4 Results

In this example, all invariants have been fulfilled. The correctness of the OCL
constraints could be easily checked by adding intentional errors like incorrect
association ends or signals with the same id. USE facilitates tracing of such

1 [JSZ+04] considers profiles as level three which is incorrect as the relationship re-
striction has to be respected by profiles.

OCLApps 2006 Workshop 49



W100

S22−G21.1

G25.1

G24.1

TRAM MAINTENANCE SITE

ROUTE 3: S21−G25.1

ROUTE 5:

G25.0
ROUTE 0:
S20−G21.1

S21−G23.1
ROUTE 2

G23.0

G23.1G20.0

G20.1

G21.0

G21.1

G22.1

ROUTE4: S22−G23.1

G22.9 G24.3G20.3G20.2

W102 W119

G22.3G22.2

W118

G22.0

G20.9 G20.8

W103

W101

G24.2

G22.9

G24.0

G30.1

G29.9

G30.0

S20−G25.1
ROUTE 1:

S21

S20

S22

Fig. 9. Concrete track network - instance level

errors by (a) showing which instance of the metamodel has violated an invariant
and by (b) decomposing the invariant in all sub-clauses and giving the respective
evaluation. In Fig. 10, we can see that sensor2 and sensor3 have a duplicate
identification numbers.

Fig. 10. Evaluation example - two identical sensor ids

For the validation process, some effort has to be made for the modeling part.
Fortunately, the metamodel and profile have to be modeled only once for each
profile. The part of the UML metamodel that has to be included varies from
profile to profile depending on the metaclasses references by stereotypes. The
current version of the USE model file consists of approximately 4000 lines. As
this task is performed once per profile, the effort seems reasonable. With respect
of the RCSD profile, the instance model on class level has to be modeled once per
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specific railway system, e.g. once for trams. With this part of the instance model,
all kinds of concrete track layouts can be checked. The tram example consists
of approximately 1500 lines of input data to USE. These can be generated from
class diagrams by parsing the output of CASE tools and adapting them to USE.
Concrete track layout can also be generated, this time from object diagrams. In
this way, all kinds of track layouts for one system can be checked. The example
track layout needs about 5000 lines. As writing them for each layout would be
an obnoxious task, automation is highly required.

6 Conclusion

The validation of models of the RCSD profile and the profile itself based on OCL
constraints with USE has been proven useful in several ways. It has been shown
that the profile complies to UML as it is required and that an example model
for tramways is valid in the RCSD context. This makes object diagrams for
such tramways applicable for transformation and verification purposes. Another
effect of the validation with USE was the improvement of the OCL constraints
themselves. As most case tools have no OCL support, it is hard to detect if
constraints exhibit syntax errors or if complicated constraints really have the
intended meaning.

An adaption of the validation process to other profiles can be performed
straightforward as the same kinds of constraints should appear. It is possible
that the UML metamodel part has to be enhanced for other profiles as this
depends on the metaclasses referenced by stereotypes. Validation is reasonable
in each profile whose application relies on a solid and unambiguous model.

With respect to the RCSD profile, future work has to investigate the behav-
ioral aspects of track layouts as described in [BH06]. At the moment, only statical
aspects have been examined, but USE can also be applied to the validation and
test of controllers that have been generated for a concrete track network. Passing
trains have to be simulated by changes of sensor values just as route requests by
trains to the controller. Signals and points have to be switched by the controller
with respect to safety conditions like ’only one tram on a point at one point in
time’ or ’only one tram on conflicting routes’. Such safety requirements can also
be expressed in OCL. As train movements and signal and point switches are
all modeled by variables in the track network, the outcome is always an object
diagram with changed variable values whose invariants can be checked.

Acknowledgments Special thanks go to Fabian Büttner and Arne Lindow for
their help with USE and to Ulrich Hannemann for his valuable feedback to the
first versions of this paper and the related work.
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Abstract. In a model assessment framework different quality aspects
can be examined. In our approach we consider consistency and perceived
semantic quality. The former can be supported by constraints and the
later by queries. Consistency can be checked automatically, while for
the semantic quality the human judgement is necessary. For constraint
and query definitions the utilisation of a query language was necessary.
We present a case study that evaluates the expressiveness of the Object
Constraint Language (OCL) in the context of our approach. We focus
on typical queries required by our methodology and we showed how they
can be formulated in OCL. To take full advantage of the language’s
expressiveness, we utilise new features of OCL 2.0. Based on our exam-
ination we decided to use OCL in our analysis tool and we designed an
architecture based on Eclipse Modeling Framework Technology.

1 Introduction

The necessity of model maintenance is growing together with the increasing size
of models used in real applications. The importance of integration grows with
the size and the number of designed models. The aspect of integration becomes
crucial if the modelling environment is not homogeneous, i.e., it has to be dealt
with diverse modelling tools and even with diverse notations. Such a situation is
common if various aspects of the same system have to be described. For example
in the domain of enterprise architecture modelling, for the description of business
processes and technical infrastructure different tools and notations can be used.

If additionally the models are large scale models with hundreds or thousands
of elements they might very likely contain inconsistencies and gaps. Quality
assurance of these models can not be done by pure manual inspection or review
but requires tool assistance to support model assessment.

We have developed a framework that is dedicated to both the integration and
the assessment of models. To support the former we designed a modular archi-
tecture with a generic repository as a central point, with a common meta model
and consistency checks. For the latter we defined a mechanism for information
retrieval, namely queries of different types. In our entire approach we focus on
the static analysis of models.
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The languages for expressing constraints and queries over models are an im-
portant part of the model assessment process. Depending on their expressiveness
it is possible to cover a wider or a narrower range of constraints and to retrieve
more or less information from models.

One of the components of our heterogeneous tool environment for model
assessment [1] is a generic analysis tool supporting queries over the model re-
pository. Therefore, we started our case study on Object Constraint Language
(OCL, [2,3]). In our study we want to examine all types of queries required
by our methodology [4]. The OCL 2.0 provides a new definition and querying
mechanisms which extend the expressiveness of this language. As described in
[5,6], previous versions of OCL (1.x) were not expressive enough to define all
of the operations required by relational algebra (RA) and were not adequate
query languages (QLs). The main deficit of previous versions was the absence of
the tuples concept. In the current version of OCL, tuples are already supported.
Thus all primitive operators [7] needed to obtain full expressiveness of a QL,
namely Union, Difference, Product, Select and Project, can be expressed. This
fact encouraged us to use OCL within our framework.

The remainder of the paper is structured as follows. In the next section
we give a brief introduction to our methodology. Then, we present exemplary
models (section 3.1) on which the case study from section 3.2 relies. In section 4
we present a design of our analysis module and finally, in the last section we
draw a conclusion.

2 Model Assessment Framework

In this section, the methodology developed within the MedFlow project [4,1]
is briefly described. A broader description of the methodology developed for
systematic model assessment can be found in [4]. The architecture of our tool
and the technologies and standards used for its implementation were described in
[1]. The design based on the Eclipse Modeling Framework with a generic analysis
tool is described in section 4.

As depicted in Fig. 1 at the topmost level of our architecture three compo-
nents can be distinguished: a modelling environment, a model data repository,
and an analysis tool. In this section, only the main ideas related to OCL appli-
cation within our framework, which are necessary to understand the examples
presented in section 3.2, are described.

Modelling

Environment
←→

Model Data

Repository
←→

Analysis

Tool

Fig. 1. Base components of our framework
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The main assumption in our framework is that all designed models are based
on a common meta model. Based on the meta model, the constraints for mo-
delling tools are provided and the structure of the common central repository
of model elements is generated. User models can be imported into the repo-
sitory from modelling tools via adapters. The usage of a common meta model
is crucial for model integration in a heterogeneous modelling environment with
diverse notations and modelling tools.

Within our framework we consider two types of OCL expressions: constraints
and queries, both defined at the meta model level and evaluated over user models.
Constraints are related to modelling and extend the specification of models.
The aim of using constraints is to support model consistency in an early mo-
delling phase. They can be checked automatically each time model elements are
saved to the repository or on demand. The expressions used for ensuring syn-
tactical correctness are called checks (compare section 3.2). Queries are related
to the analysis phase and provide aggregated information on sets of model el-
ements. The analysis by means of queries support semantic quality of models.
As stated in [8], semantic quality belongs to the social layer and needs to be
judged by humans. Our framework supports the user in the judgement process
by providing mechanisms for information retrieval. Moreover, we can only eval-
uate the perceived semantic quality comparing user knowledge of the considered
domain with his interpretation of models [8] or in our case the results obtained
by query evaluations. Both aspects of semantic quality examination — validity

and completeness — can be supported by queries. In the first case we check if
all model elements are relevant to the domain. This can be achieved by listing
all instances of a given meta model element and human inspection of their rel-
evance. In the second case we look for elements from the domain in the model
data repository.

We classify the constraints and queries in four categories (see examples in
section 3.2):

Primitive query is the simplest query, which takes as arguments OCL Primi-
tive Types or MOF Classes.

Check is a special kind of primitive query which returns a Boolean value. It is
considered as a constraint for a model or, in particular case, as an invariant
for a classifier.

Compound query is a query which aggregates results of primitive queries.
The arguments of the query are collections. For a given collection the Carte-
sian Product is built and for each of its element a given primitive query is
evaluated. The result is of Set(TupleType) type.

Complementary query is a query evaluated over the result of a given com-
pound query. All other queries are evaluated over a set of model elements.
The query can use checks and primitive queries for result calculation.

All types of queries and checks can be evaluated on demand in different scopes
selected by a user. We distinguish two types of scopes, namely an evaluation and
an initiation scope. The evaluation scope (Fig. 2.a) determines, over what content
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the query will be interpreted, and the initiation scope (Fig. 2.b), how the query
is called.

evaluation scope initiation scope

repository
<

model
∨

diagram

>

single
<

global

>

a) b)

Fig. 2. The classification of scopes

Furthermore in both scopes we distinguish modes. In the evaluation scope
we distinguish three modes:

Repository mode — the complete set of model elements is considered, i.e., a
given expression is evaluated over the content of the repository.

Model mode — only a single user model is considered, e.g. in a running mo-
delling tool on a local machine or model of a predefined type (filtered from
the repository). This mode can be used if the queries do not need to be
evaluated in the context of the complete set of elements (e.g. checks).

Diagram mode — only one diagram is considered. The usage of this mode is
similar to the model mode.

The repository mode is typical for queries in the analysis phase. The ad-
vantage of the model and the diagram mode is the possibility of making fast
evaluation and ongoing corrections during the modelling phase.

In the initiation scope we consider two different modes, both can be evaluated
in any evaluation scope.

Single (element) mode — only queries related to a given element can be
activated. This mode enables fine granular analysis of models.

Global mode — all queries can be activated. This mode enables global analysis
of models.

An analysis module for our methodology should be generic enough to enable
both the definition and interpretation of arbitrary queries. In section 3.2, we
examine the expressiveness of OCL and evaluate the possibility of its usage in
the analysis module.

3 Case study

In this section the case study from the MedFlow project is presented. At first
(section 3.1) the excerpt of the domain in question, in form of meta and user
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models, is presented. Then examples of queries are presented (section 3.2) and
their analysis within our framework is conducted (section 3.3).

3.1 Modelling of clinical processes

In the subsequent sections, parts of a meta model designed within the MedFlow

project and exemplary user models are presented. The meta model is used as
a base for check and query definitions, the user models as a base for check
and query evaluations (section 3.2). For our study we used a tool dedicated for
OCL compilation, namely the OCL Environment (OCLE, [9]). In this tool, OCL
expressions can be compiled and evaluated for single instances or for an entire
project. The models and all queries were implemented in the OCLE version 2.0.
We stress the fact that the used OCL syntax is the one implemented in the
OCLE.

Meta model The aim of the MedFlow project was the optimisation of clinical
processes. Within the project, we developed a meta model of the clinical pro-
cesses domain. Fig. 3 shows a fragment of the meta model (the complete meta
model can be found in [4]).

Fig. 3. Part of the MedFlow’s meta model

In the meta model excerpt we can distinguish two main classes: Information

and LogicalTool. LogicalTool is an abstract class with two subclasses: ITBasedSystem

and PaperBasedSystem. Information can be saved in LogicalTool, expressed by an as-
sociation providedByTool. LogicalTool can use another LogicalTool, what is expressed
by the association uses. This simplified meta model is used as a base for the check
and query definitions in section 3.2.

User models Based on an meta model (c.f. the previous section) user mo-
dels are created. In our case study, we used the simplified meta model and two
exemplary user models presented in Fig. 4.

In the first user model (Fig. 4.1) four instances of Information and four in-
stances of LogicalTool are defined. The instances of Information have diverse persis-
tence levels (low, medium, high) and instances of LogicalTool are of diverse type (IT–
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(1) (2)

Fig. 4. Exemplary user models: (1) instances of classes Information, LogicalTool
and associations between them, (2) hierarchy of instances of LogicalTool

and paper–based). An Information can be saved in a LogicalTool if the LogicalTool

is a medium (c.f. Example 2). There are four association links between instances
of Information and instances of LogicalTool. In the second user model (Fig. 4.2) the
hierarchical dependencies between four instances of LogicalTool are defined. These
simplified user models are used as a base for the check and query evaluations in
the next section.

3.2 Definition and evaluation of checks and queries

In this section, we present typical checks and queries. All definitions conform
to the MedFlow meta model (Fig. 3) and their results are evaluated over the
exemplary user models (Fig. 4). The examples are based on a representative
selection of all types of checks and queries used within our framework for model
assessment.

In the examples the checks and queries are defined in natural language and
inspected manually. The corresponding listings are expressed in OCL 2.0 and
automatically evaluated in OCLE version 2.0.

If not stated divers, definitions (def) and invariants (inv) are defined and
evaluated in the context of Information (context Information) and based on
the diagram depicted in Fig. 4.1. This context is added for technical reasons
to enable easier compilation of OCL expressions. The definitions themselves are
not context dependent (no reference of self is used within them).

Primitive query A primitive query can return a value of primitive type (except
the Boolean type), class type or collection type. The construction of a primitive
query is similar to the below defined examples for checks, thus we do not provide
additional examples.

Check The simplest concept for information retrieval is a check. It is a function
with a set of objects as a domain.
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In Example 1 and Listing 1, the check is defined and evaluated. It checks if
there exists an association between a given Information and a given LogicalTool.

Example 1. (theCheck)
Definition: Is a given information saved in a given logical tool?

Evaluation for XLI and KIS: no.

Listing 1 (theCheck)
Definition:

1 def : l et

theCheck ( i : Information , l t : LogicalTool)

3 = i . providedByTool−>i n t e r s e c t i o n (Set{ l t})−>notEmpty ( )

Evaluation:

1 def :

l et ob j In f o = Information . a l l I n s t a n c e s

3 −>s e l e c t (name=”X−ray lung image ”)

−>any ( t rue )

5 l et objLTool = LogicalTool . a l l I n s t a n c e s

−>s e l e c t (name=”Hosp i ta l Information System ”)

7 −>any ( t rue )

l et theCheckResult = theCheck ( ob j In fo , objLTool )

9 −− Se l e c t ion : Boolean = f a l s e

Predefined check Checks can be used to express some well–formedness rules.
Such checks should be defined during the meta modelling phase and are called
predefined checks.

In Example 2 and Listing 2 a predefined check is defined and evaluated.

Example 2. (thePredefinedCheck)
Definition: An information can be saved only in logical tools which are mediums.

Evaluation: is fulfilled for all instances.

Predefined checks can be expressed in the form of invariants and checked for
all instances of the context class by calling the function check UML models for

errors in the OCLE tool.

Listing 2 (thePredefinedCheck)
Definition:

1 inv : s e l f . providedByTool−>f o rA l l ( l t | l t . isMedium=t rue )

Evaluation check UML models for errors:

- Model appears to be correct according to the selected rules.

Compound query In order to aggregate information collected with single
queries, we can build a compound query. The collections of elements, used as
arguments, can be build in different manners, we can use all instances or a subset
of them.
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Example 3 and Listing 3 depict the results of the compound query with the
check defined in Example 1 and Listing 1, applied for all instances of Information
and LogicalTool. In Example 3, the result is presented in form of a table while
in the Listing 3 it is presented as a set of tuples.

Example 3. (theCompoundQuery)
Definition:

Evaluate theCheck for all instances of Information and LogicalTool classes.

Evaluation:
Information \ Logical Tool KIS PACS PN Cal

XR no no no no
XLI no yes yes no
XWI no yes no no
XDF yes no no no

Listing 3 (theCompoundQuery)
Definition:

1 def : l et

theCompoundQuery( InfC : Set ( Information ) , LToolC : Set (LogicalTool ) ) :

3 Set (TupleType(

i : Information ,

5 l t : LogicalTool ,

r : Boolean ) ) =

7 InfC−>c o l l e c t ( i n f o | LToolC−>c o l l e c t ( l t o o l |
Tuple {

9 i : Information = info ,

l t : LogicalTool = l t o o l ,

11 r : Boolean = theCheck ( in fo , l t o o l )

}))−> asSet ( )

Evaluation:

def :

2 l et theCompoundQueryResult =

theCompoundQuery( Information . a l l I n s t anc e s , LogicalTool . a l l I n s t an c e s )

4 /∗
Se l e c t ion : Set (Tuple ( i : Information , l t : LogicalTool , r : Boolean )) = Set {

6 Tuple{ XDF , PN , f a l s e } , Tuple{ XDF , PACS , f a l s e } ,
Tuple{ XDF , Cal , f a l s e } , Tuple{ XDF , KIS , true } ,

8 Tuple{ XR , PN , f a l s e } , Tuple{ XR , PACS , f a l s e } ,
Tuple{ XR , Cal , f a l s e } , Tuple{ XR , KIS , f a l s e } ,

10 Tuple{ XWI , PN , f a l s e } , Tuple{ XWI , PACS , true } ,
Tuple{ XWI , Cal , f a l s e } , Tuple{ XWI , KIS , f a l s e } ,

12 Tuple{ XLI , PN , true } , Tuple{ XLI , PACS , true } ,
Tuple{ XLI , Cal , f a l s e } , Tuple{ XLI , KIS , f a l s e }

14 } ∗/

Filtering We can additionally apply filters before or after evaluating the result
of a given compound query.

The filtered compound query presented in Example 4 and Listing 4 is eva-
luated only for instances of Information and LogicalTool classes, which fulfil addi-
tional constraints.

Example 4. (theFilteredCompoundQuery)
Definition:
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Evaluate theCheck for instances of Information, which have the persistence attribute

set to medium or high and instances of LogicalTool, which have the attribute isMedium

equal to true.

Evaluation:
Information \ Logical Tool KIS PACS PN

XLI no yes yes
XWI no yes no
XDF yes no no

The definition of theFilteredCompoundQuery presented in Listing 4 uses the
result theCompoundQuery from Listing 3. Like in the previous section, the result
(theFilteredCompoundQueryResult) is presented as a set of tuples.

Listing 4 (theFilteredCompoundQuery)
Definition:

def : l et

2 theFilteredCompoundQuery ( ) = theCompoundQueryResult−>s e l e c t ( t |
( t . i . p e r s i s t en c e=#medium or t . i . p e r s i s t e n c e=#high )

4 and t . l t . isMedium = t rue )

Evaluation:

def :

2 l et theFilteredCompoundQueryResult = theFilteredCompoundQuery ( )

/∗
4 Se l e c t ion : Set (Tuple ( i : Information , l t : LogicalTool , r : Boolean))= Set {

Tuple{ XDF , PN , f a l s e } , Tuple{ XDF , KIS , true } ,
6 Tuple{ XDF , PACS , f a l s e } , Tuple{ XWI , PN , f a l s e } ,

Tuple{ XWI , KIS , f a l s e } , Tuple{ XWI , PACS , true } ,
8 Tuple{ XLI , PN , true } , Tuple{ XLI , KIS , f a l s e } ,

Tuple{ XLI , PACS , true } } ∗/

Collecting Elements can be collected according to specific properties (e.g. values
of slots, existing links). In the example below we collect elements according to
the element hierarchy (c.f. Fig. 4.2). We do not construct a complete definition
of a compound query, we only demonstrate how to create a collection using a
recursive OCL function.

Example 5. (theCollection)
Definition:
Collect all LogicalTools used by a given LogicalTool.
Evaluation for KIS: {PN, Cal, PACS}
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Listing 5 (theCollection)
Definition:

1 context LogicalTool

def : l et

3 getUsedTools ( t : LogicalTool) : Set (LogicalTool )

= t . uses−>c o l l e c t ( x | getUsedTools (x))−>asSet()−>union ( t . use s )

Evaluation:

def :

2 l et objLTool = LogicalTool . a l l I n s t a n c e s

−>s e l e c t (name=”Hosp i ta l Information System ”)

4 −>any ( t rue )

l et LToolC = getUsedTools ( objLTool )

6 −−− Se l e c t ion : Set ( LogicalTool ) = Set{ PN , Cal , PACS }

Complementary query After the evaluation of a compound query, comple-
mentary queries can be evaluated over the obtained result.

In Example 6, a complementary query is defined and evaluated.

Example 6. (theComplementaryQuery)
Definition:
Which instances of LogicalTool are use to save Information objects with persistence level
medium.
Evaluation:
{PACS, PN}

The OCL expression presented below depicts one of the possible ways to
express this complementary query. The condition in line 4 corresponds to the
filtering condition and the remaining conditions correspond to the iteration over
the result of the compound query.

Listing 6 (theComplementaryQuery)
Definition:

def : l et

2 theComplementaryQuery : Collection ( LogicalTool ) =

LogicalTool . a l l I n s t a n c e s ( )

4 −>s e l e c t ( l t o o l | theCompoundQueryResult

−>s e l e c t ( t | ( t . i . p e r s i s t en c e = #medium) and

6 ( t . l t = l t o o l and t . r = t rue))−>notEmpty ( ) )

Evaluation:

def :

2 l et theComplementaryQueryResult = theComplementaryQuery

−− Se l e c t ion : Co l l e c t ion ( LogicalTool)= Set { PACS , PN }

One can notice that the usage of compound queries does not simplify OCL
expressions for complementary queries. The complementary query defined in
Example 6 can be expressed based on the result of the previously defined com-
pound query (theCompoundQueryResult) as in Listing 6 or without any def-
inition as in Listing 7. The results in both listings, 6 and 7, are equal. The
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expression in Listing 7 seems to be easier and does not depend on any other
definitions.

Listing 7 (theComplementaryQueryBis)
Definition:

1 LogicalTool . a l l I n s t a n c e s

−>c o l l e c t ( l t o o l | Information . a l l I n s t a n c e s

3 −>s e l e c t ( i | i . p e r s i s t e n c e=#medium ) . providedByTool)−>asSet ( )

At this point, the question why compound queries are useful for complemen-
tary queries may arise. Let us explain our motivation for the usage of the first
variant. In our prototype for the MedFlow project we have a common repository
for all models. To evaluate a compound query we have to gather information
from the repository, which can be located on a remote server. If we define a
complementary query based on the result of the compound query, then the eval-
uation is faster, otherwise for the evaluation of a complementary query we again
need to gather information from the repository. Moreover, we can evaluate more
complementary queries over the same compound query without further connec-
tion to the repository. The second reason for using the variant with compound
queries is the modified presentation of the results of complementary queries.
With some additional effort the result can be presented as a set of elements in
form of highlighted elements in the result of compound query (c.f. Example 7).

Example 7. (theComplementaryQuery)
Evaluation: {PACS,PN}

Persistence \ Logical Tool KIS PACS PN Cal

low 0 0 0 0
medium 0 2 1 0
high 1 0 0 0

3.3 Summary

We showed how to construct all types of checks and queries used in our frame-
work. The OCL 2.0 is expressive enough to be applied in our framework for
model assessment.

The models created in our framework are MOF compliant and as the OCL
supports the object oriented paradigm, it is easy to navigate through the ob-
ject structures and create checks (compare Example 1) and queries. The in-
variants can be used as consistency checks before saving models to the repo-
sitory (Example 2). Tuples provide useful mechanisms for the aggregation of
information of different types. Using tuples it is possible to evaluate the Carte-
sian Product of given sets, what was used within our compound queries con-
cept (Example 3). Using the select operation it is possible to filter collections.
The select operation can be applied either to the result of a compound query
(Example 4) or to a domain of it (for each argument separately). The first
manner enables the expression of more complex conditions (e.g. in the form
(e1.a1 = v1

1
∧ e2.a1 = v1

2
) ∨ (e1.a1 = v2

1
∧ e2.a1 = v2

2
), where ei denotes an
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element i, aj an attribute j, and v
j

i some value). OCL does not have a built–in
operator for transitive closure, but it allows definitions of recursive functions. In
Listing 5 used tools are recursively collected in order to represent the transitive
closure of the relation defined by uses. Complementary queries can be expressed
in OCL in two different manners. The first is based on a previously defined com-
pound query and the second is a definition from scratch. The first one seems to
be easier to automate regarding query definition and results presentation.

4 Technical aspects

In the SQUAM project we continue development of the system for quality as-
sessment of models started in the MedFlow project [1]. In this section we present
redesigned architecture of our system which utilises the newest components de-
veloped within the Eclipse Modeling Framework (EMF1). The architecture pre-
sented below integrates three components of Eclipse Modeling Framework Tech-
nology (EMFT2), namely Connected Data Objects (CDO3), Object Constraint
Language (OCL4) and Query (QUERY5), to create a system with a central
model repository and a generic analysis tool. The architecture of the repository
and the management of checks and queries are described in subsequent sections.

4.1 Architecture

As mentioned above the design of the model data repository is based on the
EMF and some of the EMFT projects. EMF is a modelling framework and code

generation facility for building tools and other applications based on a structured

data model [10]. The model data repository uses EMF as the meta model, it can
save model instances of different EMF meta models (c.f. Fig. 5).

The architecture of the model data repository is based on the client–server
paradigm. The repository clients can connect to a relational database manage-
ment system via CDO, which provides multi user support. The connected clients
can search, load, save or create new EMF model instances of an arbitrary EMF
meta model. Moreover CDO provides a notification mechanism to keep connected
clients up to date on model changes.

The repository client integrates the EMFT projects, OCL and QUERY, to
specify and execute queries on EMF model elements. OCL component provides
an Application Programming Interface (API) for OCL expression syntax which
can be used to implement OCL queries and constraints. The QUERY compo-
nent facilitates the process of search, retrieval and update of model elements; it
provides an SQL like syntax.

1 http://www.eclipse.org/emf/
2 http://www.eclipse.org/emft/
3 http://www.eclipse.org/emft/projects/cdo/
4 http://www.eclipse.org/emft/projects/ocl/
5 http://www.eclipse.org/emft/projects/query/
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The SQUAM tool family is based on the above described core functionalities
out of the EMF and EMFT projects. The repository client API (CDO, EMF,
OCL and QUERY) provides an access mechanism for other tools, mostly mo-
delling tools. The tree–based editors can be generated out of EMF meta model
definitions. The native editors are especially useful for the prototyping phase,
later on we plan to integrate some graphical editors to create model instances.
In the MedFlow prototype we integrated the MS Visio6 and MagicDraw7 mo-
delling tools. We plan to integrate these two modelling tools as well as editors
developed within the Graphical Modeling Framework (GMF8) with the SQUAM

tool family.

Fig. 5. The model data repository architecture design

For the analysis purposes we use the repository client which uses the OCL
component to make queries on the model instances. The management of checks
and queries is described in the subsequent section.

4.2 Checks and queries management

The OCL component provides mechanisms for check and query definitions and
evaluations. In our framework it should be possible to evaluate checks and queries
on demand, thus we need an OCL management system to store OCL expressions.
For this purpose we implement a checks and queries catalogue. The catalogue
enables users to evaluate OCL expressions in different modes (c.f. Fig. 2 in
section 2).

The meta model of the OCL management system is also modelled in EMF,
therefore the OCL expressions can also be saved in the model data repository in
the same manner as other model instances.

Fig. 6 illustrates the simplified meta model for the OCL management sys-
tem. The model data repository supports the storage of several meta models. To

6 http://office.microsoft.com/visio/
7 http://www.magicdraw.com/
8 GMF is a combination of the EMF and GEF (Graphical Editing Framework)

projects, http://www.eclipse.org/gmf/
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Fig. 6. The meta model of the OCL management system

differentiate between queries specific to a given meta model we assign OCL ex-
pressions to a specific Bundle. The Bundle defines the type of the model instances
by specifying the meta model they have to conform to.

Further we consider queries, where each Query is placed in a particular
OCLContext. The context of the OCL expression enables the usage of the self

element. The context can also be NULL, it is useful for expressions without any
particular contexts. In the example listings presented in section 3.2, for all list-
ings except Listing 2 and Listing 5, NULL context can be used (these listings do
not use the self keyword and the definitions are not related to the particular
classifier). The Query element contains one OCLExpression.

We distinguish between a definition (Definition) and an evaluation (Evalu-
ation) of queries. Within one Definition the prior definitions can be used, e.g.
a compound query can use a primitive query (compare section 3.2). An OCL
expression in the Evaluation also uses definitions. The Definition is split into the
Check, Primitive, Compound and Complementary expressions. The Definition ele-
ments are elements which can be used as subroutines in other expressions and
the Evaluation elements are evaluated over an explicit data model, where the
OCLContext has to be set to an explicit instance of a model element.

The presented design is a proof of concept for the model data repository. Used
technologies and design allow easy extensions with additional features such as
dynamic load of new meta models, or an extended editor for the OCL manage-
ment system with OCL syntax check and compilation at design time.

5 Conclusion

Our examination shows that the OCL is expressive enough to be applied as a
query language for model analysis. It is possible to define all types of checks and
queries required by our model assessment framework (section 3.2). There are
two other reasons for OCL usage within our framework. Firstly, there are more
and more tools supporting the OCL notation, also non–commercial tools (e.g.
OCL project within EMFT described in section 4 or tools presented in [11]).
The second reason ensues from the first: the knowledge of the notation is getting
broader among scientists and pragmatic modellers.

We presented a proof of concept for the model data repository created within
EMF and EMFT technologies. In the pesented architecture OCL queries for as-
sessment of models can be saved in the repository (section 4.2) and evaluated
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on demand. Currently we are developing full support for the OCL management
system (section 4.2). We plan to carry out more case studies to determine more
requirements for model assessments queries and define patterns for query defi-
nitions.
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Abstract. Recently business process modeling is getting a lot of at-
tention as a predominant technology to bridge Business-IT gaps. UML
activity diagram was drastically changed in UML 2.0 to support busi-
ness process modeling. However, this emerging technology is insufficient
to bridge the business-IT gaps as we expected because;

– Business process modeling is not so simple as business persons ex-
pected.

– Business process models don’t provide enough information about
activities’ behavior.

In this paper, we show that;

– Rigorous description of business helps derivation of business process
models.

– Rigorous business process models help to bridge the business-IT
gaps.

We propose to use OCL to describe business and to model business
process rigorously. We also show necessity of extension of OCL to express
constraints of business process models and propose an extension of OCL
for business process modeling.

1 Introduction

Enterprises must change their business processes in response to changes in their
business enthronement to survive in the intensely competitive society in these
days. When enterprises change their business processes, their IT systems also
need to be changed according to the changes in their business processes.

Description about the business process provided by business persons tends
to be ambigious and does not provide IT persons with enough information to
build/change IT systems. This issue is called ”business-IT gap”, and this gap
makes it difficult to change IT systems rapidly according to changes in the
business. It is expected that a new technology to bridge business and IT becomes
available.

Recently business process modeling is getting a lot of attention as a pre-
dominant technology to bridge Business-IT gaps. Business process modeling is
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a method to model activities and their sequence, business objects passed among
activities, resources, time, and cost required to perform the activities[3]．

This emerging technology is not powerful enough to bridge the business-
IT gaps as we expected because business process models provided by business
persons are tend to be ambiguous. Many business consultants use presentation
tools or drawing tools to depict business processes, and the business processes
described in this manner have no formal syntax nor semantics. It is one of the
reasons to make business process models ambiguous. This ambiguity makes it
difficult for IT persons to understand the business process models and realize
them as IT systems.

To bridge the business-IT gaps, business process models need to be more
rigorous. To make business process models rigorous, we need to define formal
syntax and semantics for business process models. One reason of drastic changes
in UML activity diagram in UML 2.0[5] was to support business process mod-
eling. Its foundation was changed from state chart diagram to Petri-net. This
change allows us to describe data flows and parallel execution of activities in
UML 2.0 activity diagrams.

Despite the change, business process models expressed in UML 2.0 activity
diagram is still insufficient to bridge the business-IT gap because behavior of each
activity or action is not expressed in the activity diagrams. Activities and actions
in a business process model need to be implemented as application programs or
Web services and so on in order to realize the business process on IT systems. To
implement the activities or the actions, their behaviors need to be expressed in
the business process model. Without this information, IT persons have no mean
to realize the activities nor the actions on IT systems. OCL is thought as the
best way to express such information in UML activity diagrams, however, the
current OCL is not ready to be used in UML activity diagrams and we propose
to be extended to add such information to business process models.

Present methodologies and notations of business modeling assume that it is
not complicated work to model AsIs business processes by using control flows
and data flows such as UML activity diagram. In some cases, business processes
consist of asynchronous activities repeated with different intervals. It is difficult
to model such processes only by connecting activities with control flows and
object flows. We need to establish a modeling methodology for such complicated
asynchronously repeated processes.

2 Case study

2.1 The company

The company in this case study is in manufacturing industry. It obtains materi-
als from suppliers, builds up products from materials, and delivers products to
customers.

When the company receives a customer order from a customer, it returns a
promise for the customer order to the customer in order to ensure delivery of
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products on the expected delivery date specified in the order. A customer order
from customers includes product type, quantity, and expected delivery date. A
promise also includes includes product type, quantity, and estimated delivery
date. For correlation, a promise has the same ID as its associated customer
order. In this paper, this business process is called ”Order Promising”.

The product is made of some materials obtained from suppliers, and the
company issues purchase orders to suppliers and receives promises for them
from suppliers to obtain the materials. Fig.1 shows Business Use Case diagram
for this company’s business process, ”Order Promising”.

Fig. 1. Business Use Case for Order Promising

This company receives two types of orders; one is ”customer order”, and
another is ”forecast”. A customer order is a firm order and customers can not
cancel it while a forecast shows customer’s intention to order products in a
specific time frame. The company returns ”promise for customer order” when it
receives a customer order but does not return promise for ”forecast”.

The company creates the following three types of plans to prepare materials
and satisfy customer orders, and issues purchase orders for materials to satisfy
plans. Each plan this company creates includes product type, quantity, and
execution complete date.

Resource Plan (RP) Long term plan including productive facilities, alloca-
tion of human resources, etc.

Production Plan (PP) Intermediate term plan including provision of long
lead time materials

Master Production Schedule (MPS) Short term plan including provision
of short lead time materials

The product is made of two types of materials; One is long lead time (LLT)
material and another is short lead time (SLT) material. The purchase orders are
issued to satisfy the plans.

Fig.2 shows Business Entities in this company and passed between the com-
pany and external entities.
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Fig. 2. Business Entities in Order Promising

This business process have predetermined time duration so-called order lead
time and planning horizon. Planning horizon is duration from start of execution
of a plan to completion of it. Order lead time is duration from issue of a order to
expected time of products/materials delivery. Each type of order and plan has
a specific lead time or a horizon.

In this case study, we use the following lead times, and planning horizons;

FORCASTLEADTIME Forecast lead time, the shortest duration from receiving a
forecast to product delivery associated to the forecast.

CUSTOMERLEADTIME Customer lead time, the shortest duration from receiving a
customer order to product delivery associated to the order.

LLTMATERIALLEADTIME Lead time for the long lead time material, the shortest
duration from issueing a purchase order for the long lead time material to
receiving the material.
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SLTMATERIALLEADTIME Lead time for the short lead time material, the shortest
duration from issueing a purchase order for the short lead time material to
receiving the material.

MPSHORIZON MPS horizon, the duration from start of execution of a MPS to
completion of execution of the MPS.

PPHORIZON Production Plan horizon, the duration from start of execution of a
production plan to completion of execution of the production plan.

RPSHORIZON Resource Plan horizon, the duration from start of execution of a
resource plan to completion of execution of the resource plan.

2.2 Order Promising

In this business process, a promise for a customer order is returned in order to en-
sure delivery of products on the expected delivery date specified in the customer
order. To ensure it, a concept, available to promise (ATP) is used in this business
domain. ATP is the amount of products available on a specific date including
future. It can be calculated by subtracting accumulated amount of promised
delivery by the specific date from accumulated amount of products planned to
be produced by the specific date(Fig.3). Fig.4 shows ATP conceptually. As is
clear from Fig.4, ATP varies on magnitude relation of lead times and planning
horizons. From the domain knowledge depict in this figure, it is unveiled that
ATP consists of what already provisioned by executed and executing plans and
what already committed to promises, and ranges of plans and promises included
in ATP are depend on the expected time of delivery.

To ensure delivery of requested products on the expected delivery date,
the quantity the company can promise is less than ATP. ”Order Promising”
is thought as a process to allocate products to a customer order from ATP. In
other words, ATP is the least upper bound of a promise for a customer order.

ATP is a key concept of ”Order Promising” and it is required for ”Order
Promising” business process model to express what APT is to transfer the do-
main knowledge about this process to IT persons.

3 Business modeling

3.1 Business object model

The domain knowledge described rigorously brings out what are inputs to ac-
tivities and what are outputs from activities. These inputs and outputs can be
modeled in a business object model ( a kind of class diagram with an UML
profile for business process modeling ) as shown in Fig.5. In this business object
model, classes with ¿BusinessEntityÀ stereotype represent business entities, A
class with ¿business processÀ stereotype is not a business entity but an arti-
ficial class introduced to specify a context for OCL expressions. By introducing
this context in business entity model, the domain knowledge described in the
previous section can be expressed in OCL expressions as follows.
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Fig. 3. Rectangles surrounded by bold lines indicate accumulated amount of products
planned to be produced within Customer Lead Time

Note that capitalized words in these OCL expressions represent process
scoped constant values or operations.

context AvailableToPromise::getQuantity( date : Date ) : Integer

body :

existingPlans.getQuantity( date )

- existingPromises.getQuantity( date )

context ExistingPlan::getQuantity( date : Date ) : Integer

body :

mpss->select( executionCompleteDate <= date ).quantity->sum()

+ productionPlans->select( executionCompleteDate <= date and

executionCompleteDate - TODAY() > MPSHORIZON ).quantity->sum()

+ resourcePlans->select( executionCompleteDate <= date and

executionCompleteDate - TODAY() > PPHORIZON ).quantity->sum()

context ExistingPromise::getQuantity( date : Dime ) : Integer

body :

promisesForCustomerOrders->select( estimatedDeliveryDate <= date and

estimatedDeliveryDate - TODAY() > CUSTOMERLEADTIME ).quantity->sum()

context OrderPromising::promiseOrder( )

pre :

newCustomerOrder.expectedDeliveryDate >= TODAY() + CUSTOMERLREADTIME and

// Lead time of the new customer order is longer than CUSTOMERLREADTIME

newPromisesForCustomerOrder->select( ID = newCustomerOrder.ID )->isEmpty()
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Fig. 4. Rectangles with hatching indicate Available to promise within Customer Lead
Time

// no promise for the customer order exists

post :

newPromisesForCustomerOrder->select( ID = newCustomerOrder.ID )->notEmpty()

// if there are any promise for the customer order

implies

newPromisesForCustomerOrder->select( ID = newCustomerOrder.ID )->size() = 1 and

// there is only one promise for the customer order and

newPromisesForCustomerOrder->select( ID = newCustomerOrder.ID ).quantity->sum()

= newCustomerOrder.quantity and

// total quantity of promises is equal to requested quantity in the customer order and

newPromisesForCustomerOrder->select( ID = newCustomerOrder.ID )->

forAll( estimatedDeliveryDate = newCustomerOrder.expectedDeliveryDate ) and

// estimated delivery date of the promise is equal to

// expected delivery date of the customer order and

newPromisesForCustomerOrder->select( ID = newCustomerOrder.ID )->

forAll( quantity <= availableToPromise@pre.getQuantity( estimatedDeliveryDate ) )

// total quantity of promises is equal to or less than ATP

3.2 Business process model with constraints

When the business process is modeled in UML activity diagram, ”promise order”
is modeled as an activity or an action. In this paper, we assume that ”promise
order” is modeled as an action. From the description in the previous section, we
modeled ”promise order” as an action with five input pins and one output pin
as shown in Fig.6.
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Fig. 5. Business object model for Order Promise

Most commonly, activity diagrams are created prior to a business object
model in business process modeling because activity diagrams are more intuitive
for business persons like business consultants and their customers.

When an OCL expression is attached to the action, it is required to express
the equivalent information as one expressed by OCL attached to the business
object model in Fig.5. Especially, we need to describe constraints on output pins
by using values of input pins. It means that the OCL expression specifies the
action as a context and refers to the pins like as attributes of a class. It requires
to extend OCL as we explain in the next section.

3.3 Customization

In this section, we show that the business process can be customized by using
constraints defined in the business environment.

Let’s say the company in this case study has defined the planning horizons
and the lead times as follows;

MPSHORIZON < CUSTOMERLAEDTIME < PPHORIZON < FORECASTLEADTIME < RPHORIZON
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Fig. 6. PromiseOrder action with constraints in activity diagram

By using the magnitude relation PPHORIZON > CUSTOMERLEADTIME
and an equation
newCustomerOrder.expectedDeliveryDate = TODAY() + CUSTOMERLEADTIME
in the postcondition of promiseOrder,

the last term in body of ExistingPlans.getQuantity can be reduced as
follows;

resourcePlans->select( executionCompleteDate <= date and executionCompleteDate - TODAY()

> PPHORIZON ).quantity->sum()

⇓
resourcePlans->select( executionCompleteDate <= date and executionCompleteDate - TODAY()

> PPHORIZON).quantity->sum()

⇓
resourcePlans->select( executionCompleteDate <= date and executionCompleteDate > TODAY()

+ PPHORIZON).quantity->sum()
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⇓
resourcePlans->select( executionCompleteDate <= date and executionCompleteDate > TODAY()

+ CUSTOMERLEADTIME).quantity->sum()

⇓
resourcePlans->select( executionCompleteDate <= date and executionCompleteDate >

newCustomerOrder.expectedDeliveryDate ).quantity->sum()

⇓
resourcePlans->select( executionCompleteDate <= date and executionCompleteDate > date

).quantity->sum()

⇓
resourcePlans->select( false ).quantity->sum()

⇓
0

This reduction indicates that ResourcePlan does not contribute to Available-
ToPromise for this action in this business environment, and we can eliminate
input pins from promise order action. As in a case of promise order action, some
inputs pins and output pins can be eliminated from some other actions. This
suggests that constraints for actions help customization of a business process in
a specific business environments.

3.4 Composition

Actions modeled in this method have rigorously defined input pins and output
pins, these actions can be composed into one business process by connecting pins
to common data stores. Fig.7 shows the composed business process model. The
gray object flows in this figure denote the object flows connected to the pins
eliminated on the customization.

As a result of this composition, a complicated business process where actions
are repeated asynchronously can be modeled in an UML activity diagram.

4 OCL extension for business process modeling

As shown in the previous section, OCL is useful for rigorous business process
modeling. However, OCL is required to be extended to add the constraints de-
scribed with OCL to UML activity diagrams. In this section, we explain the
required extension for business process modeling using OCL and UML activity
diagrams.

4.1 Contexts

To describe behavior of actions, it is required to express preconditions and post-
conditions of actions. Consequently, OCL expression needs to have a context
from which we can navigate to input pins and output pins of actions in order

OCLApps 2006 Workshop 77



Fig. 7. Composed Business Process Model

to express the constraint of the pins. The action is the best candidate of the
context of OCL expression because the action owns the pins.

UML metamodel[5] allows to add Constraint to Actions, however, OCL spec-
ification[4] does not expect to specify an action as a context.

The chapter 7.3.4 of OCL specification denotes;
The OCL expression can be part of Precondition or Postcondition, corre-

sponding to ¿preconditionÀ and ¿postconditionÀ stereotypes of Constraint
associated with an Operation or other behavioral feature. The contextual instance
self then is an instance of the type which owns the operation or method as a fea-
ture.

First of all, neither Action nor Activity is BehavioralFeature. Even if Con-
strains are allowed to associate to Actions and Activities, an owner of Actions
and Activities is an entity which is executing the business process[8]. The entity
executing the business process is a company or an enterprise, and they are not
appropriate as a context of OCL expression because we don’t model such entities
in business process models.

We propose to extend OCL to allow to specify an Action as a context of OCL
expression and navigate to its input/output pins.

4.2 @pre

To describe behavior of actions, it is required to express constraints on outputs of
actions. Consequently, constraints on objects on output pins need to be expressed
by value of objects on input pins. It also required to express the constraints by
using the value of inputs on their arrival on the input pins. To refer the value of
an input object on arrival on an input pins, it is natural to use ”@pre” keyword.

We propose to extend OCL to allow to use the keyword for this purpose.
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4.3 Example

By these extensions, we can express constraints on objects on output pins by
using value of objects on input pins in the similar way as constraints on opera-
tions.
context promiseOrder

pre :

newCustomerOrderPin.expectedDeliveryDate >= TODAY() + CUSTOMERLRADTIME and

newPromisesForCustomerOrderPin->select( id = newCustomerOrderPin.ID )->isEmpty()

post :

newPromisesForCustomerOrderPin->select( id = newCustomerOrderPin.ID )->notEmpty()

implies

newPromisesForCustomerOrderPin->select( id = newCustomerOrderPin.ID@pre )->size() =

1 and

newPromisesForCustomerOrderPin->select( id = newCustomerOrderPin.ID@pre ).quantity->sum()

= newCustomerOrderPin.quantity@pre and

newPromisesForCustomerOrderPin->select( id = newCustomerOrderPin.ID@pre )->

forAll( estimatedDeliveryDate = newCustomerOrderPin.expectedDeliveryDate@pre ) and

newPromisesForCustomerOrderPin->select( id = newCustomerOrderPin.ID@pre )->

forAll( quantity <= availableToPromise.quantity@pre( estimatedDeliveryDate ) )

5 Related works

As a notation for business process, UML and its extensions are proposed[1][2][7]．
Most notations use UML activity diagrams or similar diagram to express activi-
ties and their sequence. Modeling methods for these notations assume that per-
sons related to business processes understand the flow of their business process.
Our approach does not assume this situation because object flows and control
flows of some business process are very complicated and difficult to understand.
In our approach, complicated business processes as shown in this paper can be
modeled rigorously.

Koubarakis and Plexousakis[6] proposed to model an organization and its
business process formally, and showed importance of enterprise model.

6 Conclusion

In this paper, we showed that rigorous description about the business and its
related domain knowledge helps creation of business process models. And the
created business process models are also rigorously described because precon-
ditions and postconditions of each action are rigorously described by OCL. IT
persons can use the preconditions and postconditions to implement the action
in the business process on IT systems because the model describes what the
action should perform and should not perform formally. If the business process
is implemented on Service Oriented Architecture (SOA), the preconditions and
postconditions depict requirements for a service.
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By describing business environments rigorously, the business process model
can be customized systematically. It helps rapid transition of a business process
and its IT systems. We can expect the business process models help to bridge
Business-IT gaps.

We proposed extension of OCL to support our approach. To describe con-
straints on actions in UML activity diagram, it is appropriate to specify an
action as a context of OCL expression. To support this notation, we proposed
extension of OCL.

As shown in this paper, OCL is a powerful tool for business process modeling.
But, its syntax and semantics are still difficult to learn for business persons.
To resolve this issue,dijkman2002algorithm we are planning to define domain
specific languages to simplify OCL for business persons.
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Abstract. The paper presents a metamodel-driven model transformation 

approach to interchanging rules between the Semantic Web Rule Language 

along with the Web Ontology Language (OWL/SWRL) and Object Constraint 

Language (OCL) along with UML (UML/OCL). The solution is based on the 

REWERSE Rule Markup Language (R2ML), a MOF-defined general rule 

language, as a pivotal metamodel and the bi-directional transformations 

between OWL/SWRL and R2ML and between UML/OCL and R2ML. Besides 

describing mapping rules between three rule languages, the paper proposes the 

implementation by using ATLAS Transformation language (ATL) and 

describes the whole transformation process involving several MOF-based 

metamodels, XML schemas, and EBNF grammars.  

1. Introduction 

The benefits of bridging Semantic Web and Model-Driven Architecture (MDA) 

technologies have been recognized by researchers awhile ago. On one hand, 

ontologies are a backbone of the Semantic Web defined for sharing knowledge based 

on explicit definitions of domain conceptualization. The Web Ontology Language 

(OWL) has been adopted as a de facto language standard for specifying ontologies on 

the Web. On the other hand, models are the central concepts of Model Driven 

Architecture (MDA). Having defined a model as a set of statements about the system 

under study, software developers can create software systems that are verified with 

respect to their models. Such created software artifacts can easily be reused and 

retargeted to different platforms (e.g., J2EE or .NET). UML is the most famous 

modeling language from the pile of MDA standards, which is defined by a metamodel 

specified by using Meta-Object Facility (MOF), while MOF is a metamodeling 

language for specifying metamodels, i.e. models of modeling languages. Considering 

that MDA models and Semantic Web ontologies have different purposes, the 

researchers identified that they have a lot in common such as similar language 

constructs (e.g., classes, relations, and properties), very often represent the 

same/similar domain, and use similar development methodologies [25]. The bottom 

line is the OMG’s Ontology Definition Metamodel (ODM) specification that defines 
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an OWL-based metamodel (i.e. ODM) by using MOF, an ontology UML profile, and 

a set of transformations between ODM and languages such as UML, OWL, ER 

model, topic maps, and common logics [17]. In this way, one can reuse the present 

UML models when building ontologies. 

In this paper, we further extend the research in approaching the Semantic Web and 

MDA by proposing a solution to interchanging rules between two technologies. More 

specifically, we address the problem of mapping between the Object Constraint 

Language (OCL), a language for defining constrains and rules on UML and MOF 

models and metamodels, and the Semantic Web Rule Language (SWRL), a language 

complementing the OWL language with features for defining rules. In fact, our 

proposal covers the mapping between OCL along with UML (i.e., UML/OCL) and 

SWRL along with OWL (OWL/SWRL). The main idea of the solution is to employ 

the REWERSE Rule Markup Language (R2ML) [11], [12], [13] (a MOF-defined 

general rule language capturing integrity, derivation, production, and reaction rules), 

as a pivotal metamodel for interchanging between OWL/SWRL and UML/OCL. This 

means that we have to provide a two way mappings for either of two rule languages 

with R2ML. The main benefit of such an approach is that we can actually map 

UML/OCL rules into all other rule languages (e.g., Jess, F-Logic, and Prolog) that 

have mappings defined with R2ML. Since various abstract and concrete syntax are 

used for representing and sharing all three metamodels (e.g., R2ML XMI, R2ML 

XML, OWL XML, OCL XMI, UML XMI, OCL text-based syntax), the 

implementation is done by using Atlas Transformation Language (ATL) [20] and by 

applying the metamodel-driven model transformation principle [21]. 

2. Motivation 

In this section, we give a simple example of sharing OWL/SWRL and UML/OCL 

rules, in order to motivate our work. Let us consider an example of a UML model 

representing relations between members of a family. For a given class Person, we can 

define a UML association with the Person class itself modeling that one person is a 

parent of another one. This is represented by the hasFather association end. In the 

similar way, we can represent relations that one person has a brother by adding 

another association with the hasBrother association end to our model. However, if we 

one wants to represent that a person has an uncle, i.e. the hasUncle association end, 

this should be derived based on hasFather and hasBrother association ends, by saying 

if a person has a father, and the father has a brother, then the father’s brother is an 

uncle of the person. This can be expressed by the UML class diagram and OCL-text 

based concrete syntax as it is shown in Fig. 1. 

 

Fig. 1. The family UML model and a OCL invariant on the Person class 
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The same model can be represented as an OWL ontology consisting of the Person 

class and object properties hasFather, hasBrother, and hasUncle (see Fig. 2a). Like in 

the UML model where the OCL rule has been defined for the hasUncle association 

end, a SWRL rule has to be defined on the OWL ontology for inferring the value for 

the hasUncle object property. This SWRL rule is given in Fig. 2b. 
 

<rdf:RDF> 

  <owl:Ontology rdf:about=""/> 

  <owl:Class rdf:ID="Person"/> 

  <owl:ObjectProperty rdf:ID="hasUncle"> 

    <rdfs:domain rdf:resource="#Person"/> 

    <rdfs:range rdf:resource="#Person"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="hasFather"> 

    <rdfs:range rdf:resource="#Person"/> 

    <rdfs:domain rdf:resource="#Person"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="hasBrother"> 

    <rdfs:domain rdf:resource="#Person"/> 

    <rdfs:range rdf:resource="#Person"/> 

  </owl:ObjectProperty> 

</rdf:RDF> 

 

 <ruleml:imp> 

   <ruleml:_body> 

     <swrlx:individualPropertyAtom swrlx:property="hasParent"> 

       <ruleml:var>x1</ruleml:var> 

       <ruleml:var>x2</ruleml:var> 

     </swrlx:individualPropertyAtom> 

     <swrlx:individualPropertyAtom swrlx:property="hasBrother"> 

       <ruleml:var>x2</ruleml:var> 

       <ruleml:var>x3</ruleml:var> 

     </swrlx:individualPropertyAtom> 

   </ruleml:_body> 

   <ruleml:_head> 

     <swrlx:individualPropertyAtom swrlx:property="hasUncle"> 

       <ruleml:var>x1</ruleml:var> 

       <ruleml:var>x3</ruleml:var> 

     </swrlx:individualPropertyAtom> 

   </ruleml:_head> 

 </ruleml:imp>                    
 

a) b) 

 

Fig. 2. The family OWL ontology (a) and a SWRL rule in the XML concrete syntax (b) 

Even from this rather simple example, one can easily recognize many different 

languages that are directly involved in the process of interchanging OWL/SWRL and 

UML/OCL. Given the solution based on the use of the R2ML metamodel as a pivotal 

metamodel, we can identify the following languages: i) OWL and SWRL abstract 

syntax, OWL and SWRL XML syntax, and OWL RDF/XML syntax is used for 

OWL/SWRL; ii) R2ML abstract syntax, R2ML XMI concrete syntax, R2ML XML 

concrete syntax are used for R2ML; and iii) UML abstract syntax, OCL abstract 

syntax, UML XMI concrete syntax, OCL XMI concrete syntax, and OCL text-based 

concrete syntax are used for UML/OCL. Here we advocate a solution that is based on 

defining mappings between abstract syntax of the three languages where each syntax 

is represented by MOF, i.e. by a MOF-based metamodel. This means that we can 

exploit transformation tools (e.g., ATL) for MOF-based model to enable interchange 

between OWL/SWRL and UML/OCL. In the rest of the paper, we first describe 

R2ML as the core of our solution, and later we give a full process (conceptual 

mappings at the level of abstract syntax and implementation details) of transforming 

between R2ML and OWL/SWRL, and between R2ML and UML/OCL, and thus 

between OWL/SWRL and UML/OCL. 

3. The Interchange Format R2ML 

This section is devoted to the description of integrity rules of R2ML [11], [12], [13] 

developed by the REWERSE WG I11 that is used as a basis for interchanging between 

OWL/SWRL and UML/OCL. 

R2ML supports four kinds of rules, namely, integrity rules, derivation rules, 

production rules, and reaction rules. R2ML covers almost all of the use cases 

requirements of the W3C RIF WG [27]. Since both SWRL rules and OCL constraints 

are integrity rules, we just describe R2ML integrity rules here. An integrity rule, also 

known as (integrity) constraint, consists of a constraint assertion, which is a sentence 

                                                           
1 REWERSE Working Group I1–Rule Markup, http://www.rewerse.net/I1 
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in a logical language such as first-order predicate logic or OCL [6] (see Fig. 3). The 

R2ML framework supports two kinds of integrity rules: the alethic and deontic ones. 

An alethic integrity rule can be expressed by a phrase, such as “it is necessarily the 

case that” and a deontic one can be expressed by phrases, such as “it is obligatory 

that” or “it should be the case that.” 

 

Fig. 3. The R2ML definition of integrity rules 

The corresponding LogicalFormula must have no free variables, i.e. all the 

variables from this formula must be quantified. The metamodel of LogicalFormula is 

depicted in Fig. 4. All first order logic constructs for formulas are supported, i.e. 

conjunctions, disjunctions, and implications. 

 

Fig. 4. R2ML logical formula 

The distinction between a weak and strong negation is used in several 

computational languages: it is presented in an explicit form in extended logic 

programs [4], only implicitly in SQL and OCL, as was shown in [5]. Intuitively, a 

weak negation captures the absence of positive information, while a strong negation 

captures the presence of explicit negative information (in terms of Kleene’s 3-valued 

logic). Under the minimal/stable models [3], a weak negation captures the 

computational concept of negation-as-failure (or closed-world negation) [2]. 

Quantified formulas, i.e. formulas in which all variables are quantified, represent 

the core of integrity constraints. Since expressing cardinality restrictions with plain 

logical formulas leads to cumbersome constructions, R2ML introduces “at least/most 

n” quantified formulas. 

Atoms are basic constituents for formulas in R2ML. Atoms are compatible with all 

important concepts of OWL/SWRL. R2ML distinguishes object atoms (see Fig. 5) 

and data atoms (see Fig. 6). The design of atoms is tailored to the UML [26] and OCL 

[6] concepts as well as to OWL [9] and SWRL [7] concepts. Here we present just 

R2ML atoms necessary for our goal. See [13] for a complete description and use of 

all supported atoms. An ObjectClassificationAtom refers to a class and consists of an 

object term. Its role is for object classification, i.e. an ObjectTerm is an instance of the 
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referred class. A ReferencePropertyAtom associates an object term as “subject” with 

other object term as “object.” This atom corresponds to the UML concept of object 

evaluated property, to the concept of an RDF [10] triple with a non-literal object, to 

an OWL object property, and to the OWL concept of value for an individual-valued 

property. 

 

Fig. 5. Object Atoms 

An AttributionAtom consists of a reference to an attribute, an object term as 

“subject,” and a data term as “value.” It corresponds to the UML concept of attribute 

and to the OWL concept of value for a data-valued property. 

In order to support common fact types of natural language directly, it is important 

to have n-ary predicates (for n > 2). R2ML’s AssociationAtom is constructed by using 

an n-ary predicate as an association predicate, an ordered collection of data terms as 

“dataArguments,” and an ordered collection of object terms as “objectArguments.” It 

corresponds to the n-ary association concept from UML. 

 

 

Fig. 6. Data Atoms 

R2ML EqualityAtom and InequalityAtom consist of two or more object terms. 

They correspond to the SameIndividual and DifferentIndividuals OWL concepts. An 

R2ML DataClassificationAtom consists of a data term and refers to a datatype. Its 

role is to classify data terms. An R2ML DataPredicateAtom refers to a datatype 

predicate, and consists of a number of data terms as data arguments. Its role is to 

provide user-defined built-in atoms. It corresponds to the built-in atom concept of 

SWRL. 

Terms are the basic constituents of atoms. As well as UML, the R2ML language 

distinguishes between object terms (Fig. 7) and data terms (see Fig. 8). An 

ObjectTerm is an ObjectVariable, an Object, or an object function term, which can be 

of two different types: 

1. An ObjectOperationTerm is formed with the help of a contextArgument, a user-

defined operation, and an ordered collection of arguments. This term can be 

mapped to an OCL FeatureCallExp by calling an object valued operation in the 

context of a specific object described by the contextArgument. 
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2. The RoleFunctionTerm corresponds to a functional association end (of a binary 

association) in a UML class model. 

 

Fig. 7. Object Terms 

 

Fig. 8. Data Terms 

Objects in R2ML are the same artifacts like in UML. They also correspond to the 

Individual concept of OWL. Variables are provided in the form of ObjectVariable 

(i.e. variables that can be only instantiated by objects) and DataVariable (i.e. 

variables that can be only instantiated by data literals). 

The concept of data value in R2ML is related to the RDF concept of data literal. As 

well as RDF, R2ML distinguishes between plain and typed literals (see DataLiteral 

and its subclasses in Fig. 8). They also correspond to the OCL concept of LiteralExp. 

A DataTerm (Fig. 8) is either a data DataVariable, a DataLiteral, or a data 

function term, which can be of three different types: 

1. A DatatypeFunctionTerm formed with the help of a user-defined 

DatatypeFunction and a nonempty, ordered collection of dataArguments. 

2. An AttributeFunctionTerm formed with the help of a contextArgument and a user-

defined Attribute. 

3. A DataOperationTerm formed with the help of a contextArgument, a user-defined 

operation that takes as arguments an ordered collection of terms. 
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All of them are useful for the representation of OCL expressions, for example, in 

FeatureCallExp involving data valued operations. 

4. Transforming OWL/SWRL to R2ML 

In this section, we explain the transformation steps undertaken to transform 

OWL/SWRL rules into R2ML. In a nutshell, this mapping consists of two 

transformations. The first one is from OWL/SWRL rules represented in the 

OWL/SWRL XML format [14] into the models compliant to the RDM (Rule 

Definition Metamodel) [15]. Second, such RDM-based models are transformed into 

R2ML models, which are compliant to the R2ML metamodel and this represents the 

core of the transformation between the OWL/SWRL and R2ML.  

The rationale for introducing one more metamodel, i.e. RDM, is that it represents 

an abstract syntax of the SWRL (with OWL) language in the MOF technical space. 

As well as SWRL is based on OWL, RDM is also relies on the most recent ODM 

specification [17]. However, OWL/SWRL is usually represented and used in the 

XML concrete syntax that is a combination of the OWL XML Presentation Syntax 

[16] and the SWRL XML concrete syntax [14], i.e. in the XML technical space. 

However, the RDM metamodel is located in the MOF technical space. To develop 

transformations between these two rule representations, we should put them into the 

same technical space. One alternative is to develop transformations in the XML 

technical space by using XSTL. However, the present practice has demonstrated that 

the use of XSLT as a solution is hard to maintain [18] [19], since small modifications 

in the input and output XML formats can completely invalidate the present XSLT 

transformation. This is especially amplified when transforming highly verbose XML 

formats such as XMI. On the other hand, we can perform this transformation in the 

MOF technical space by using model transformation languages such as ATL [20] that 

are easier to maintain and have better tools for managing MOF-based models. This 

approach has another important benefit, namely, MOF-based models can 

automatically be transformed into XMI. We decide to develop the solution in the 

MOF technical space by using the ATL transformation language. The transformation 

process consists of three steps as follows. Speaking in terms of ATL, the first step is 

injection of the SWRL XML files into models conforming to the XML metamodel 

(Fig. 9). The second step is to create RDM models from XML models, and this 

process is shown in the right part of Fig. 9 . The third step is transforming such RDM 

models into R2ML models in the MOF technical space (i.e. the core transformation of 

the abstract syntax). 

Step 1. This step consists of injecting OWL/SWRL rules from the XML technical 

space into the MOF technical space. Such a process is shown in detail for R2ML 

XML and the R2ML metamodel in [8]. This step means that we have to represent 

OWL/SWRL XML documents (Rules.xml from Fig. 9) into the form compliant to 

MOF. We use the XML injector that transforms R2ML XML documents into the 

models conforming to the MOF-based XML metamodel that defines XML elements 

such as XML Node, Element, and Attribute. This XML injector is distributed as a tool 

along with the ATL engine. The result of this injection is an XML model that can be 

represented in the XML XMI format, which can be later used as the input for the ATL 
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transformation. We start our transformation process from the SWRL rule defined in 

Section 2 and shown in the OWL/SWRL XML concrete syntax (Fig. 2). Fig. 10 

shows the XML model which is injected from the SWRL given in Fig. 2. 

 

Fig. 9. The first and second steps in the transformation scenario: the OWL/SWRL XML format 

into the instances of the RDM metamodel 

<XML.Element xmi.id = 'a8' name = 'swrlx:individualPropertyAtom'  

 value = ''> 

   <XML.Element.children> 

      <XML.Attribute xmi.id = 'a9' name = 'swrlx:property'  

       value = 'hasUncle'/> 

      <XML.Element xmi.id = 'a10' name = 'ruleml:var' value = ''> 

         <XML.Element.children> 

            <XML.Text xmi.id = 'a11' name = '#text' value = 'x1'/> 

         </XML.Element.children> 

      </XML.Element> 

      <XML.Element xmi.id = 'a12' name = 'ruleml:var' value = ''> 

         <XML.Element.children> 

            <XML.Text xmi.id = 'a13' name = '#text' value = 'x3'/> 

         </XML.Element.children> 

      </XML.Element> 

   </XML.Element.children> 

</XML.Element>  

Fig. 10. The IndividualPropertyAtom from Fig. 2 as an instance of the XML metamodel in its 

XMI format 

Step 2. In this step, we transform the XML model (Rules XML from Fig. 9) into 

the RDM-compliant model (Rules RDM from Fig. 9). This transformation is done by 

using the ATL transformation named XML2RDM.atl. The output RDM model (Rules 

RDM) conforms to the RDM metamodel. An excerpt of the RDM model for the rule 

from Fig. 2 is shown in Fig. 11. It is important to say that we can not exploit the 

standardized QVT transformation between UML and OWL from [17], since our input 

rules are a combination of SWRL and OWL (i.e., RDM nad ODM).  

 In the XML2RDM.atl transformation, source elements from the XML metamodel 

are transformed into target elements of the RDM metamodel. The XML2RDM.atl 

transformation is done on the M1 level (i.e. the model level). This transformation uses 

the information about elements from the M2 (metamodel) level, i.e., metamodels 

defined on the M2 level (i.e., the XML and RDM metamodels) in order to provide 

transformations of models on the level M1. It is important to point out that M1 

models (both source and target ones) must be conformant to their M2 metamodels. 

This principle is well-know as metamodel-driven model transformations [21].  
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<XMI xmi.version = '1.2' timestamp = 'Wed Jul 19 23:01:46 CEST 2006'> 

  <!--...--> 

    <RDM.IndividualVariable xmi.id = 'a1' name = 'x2'/> 

    <RDM.IndividualVariable xmi.id = 'a2' name = 'x3'/> 

    <RDM.IndividualVariable xmi.id = 'a3' name = 'x1'/> 

    <RDM.Antecedent xmi.id = 'a4'> 

      <RDM.Antecedent.containsAtom> 

        <RDM.Atom xmi.idref = 'a5'/> 

        <RDM.Atom xmi.idref = 'a6'/> 

      </RDM.Antecedent.containsAtom> 

    </RDM.Antecedent> 

    <RDM.Consequent xmi.id = 'a7'> 

      <RDM.Consequent.containsAtom> 

        <RDM.Atom xmi.idref = 'a8'/> 

      </RDM.Consequent.containsAtom> 

    </RDM.Consequent> 

    <RDM.Atom xmi.id = 'a5' name = 'IndividualPropertyAtom'> 

      <!--...--> 

    </RDM.Atom> 

   <!--...--> 

    <RDM.ODM.ObjectProperty xmi.id = 'a9' name = 'hasBrother' deprecated = 'false' 

functional = 'false' transitive = 'false' symmetric = 'false'  

inverseFunctional = 'false' 

      complex = 'false'/> 

   <!--...--> 

    <RDM.ODM.Rule xmi.id = 'a13'> 

       <RDM.ODM.Rule.hasConsequent> 

          <RDM.Consequent xmi.idref = 'a7'/> 

       </RDM.ODM.Rule.hasConsequent> 

       <RDM.ODM.Rule.hasAntecedent> 

          <RDM.Antecedent xmi.idref = 'a4'/> 

       </RDM.ODM.Rule.hasAntecedent> 

     </RDM.ODM.Rule> 

  </XMI.content> 

</XMI>  

Fig. 11. The RDM XMI representation of the rule shown in Fig. 2 

Step 3. The last step in this transformation process is the most important 

transformation where we transforming RDM model to R2ML model (Fig. 12). This 

means that this step represents the transformation of the OWL/SWRL abstract syntax 

into the R2ML abstract syntax. 

 

Fig. 12. The transformation of the models compliant to the RDM metamodel into the models 

compliant to the R2ML metamodel 

This transformation step is fully based on the conceptual mappings between the 

elements of the RDM and R2ML metamodel.  In Table 1, we give an excerpt of 

mappings between the SWRL XML Schema, XML metamodel, RDM metamodel and 

R2ML metamodel. Due to the size limitation for this paper, we selected a few 

characteristic examples of mapping rules. The current mapping specification contains 

26 rules. 
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Table 1. An excerpt of mappings between the OWL/SWRL XML schema, XML metamodel, 

RDM metamodel, and the R2ML metamodel 

OWL/SWRL XML metamodel RDM metamodel R2ML metamodel 

individualPropertyAtom 
Element name = 

'swrlx:individualPropertyAtom' 
Atom 

UniversallyQuantified 

Formula 

OneOf Element name = 'owlx:OneOf' EnumeratedClass Disjunction 

var Element name = 'ruleml:var' IndividualVariable ObjectVariable 

sameIndividualAtom 
Element name =  

'swrlx:sameIndividualAtom' 
Atom EqualityAtom 

maxcardinality 
Element name =  

'owlx:maxcardinality' 

MaxCardinality 

Restriction 
AtMostQuantifiedFormula 

 

For XML Schema complex types, an instance of the XML metamodel element is 

created through the XML injection described in Step 1 above. Such an XML element 

is then transformed into an instance of the RDM metamodel by using ATL, and then 

to instances of R2ML metamodel. 

The actual transformation between the RDM metamodel and elements of the 

R2ML metamodel are defined as a sequence of rules in the ATL language 

(RDM2R2ML.atl in Fig. 12). These rules use additional helpers in defining mappings. 

Each rule in the ATL has one input element (i.e., an instance of a metaclass from a 

MOF based metamodel) and one or more output elements. ATL in fact instantiate the 

R2ML metamodel (M2 level), i.e. it creates R2ML models. In this ATL 

transformation, we use so-called ATL matched rules. A matched rule matches a given 

type of a source model element, and generates one or more kinds of target model 

elements. Fig. 13 gives an example of a matched rule which is, in fact, an excerpt of 

the RDM2R2ML.atl transformation for the IndividualPropertyAtom class of the RDM 

metamodel.  
rule IndividualPropertyAtom2UniversallyQuantifiedFormula { 

 from i : RDM!Atom ( 

   i.name = 'IndividualPropertyAtom' 

) 

 to 

  o : R2ML!UniversallyQuantifiedFormula ( 

          variables <- i.terms, 

          formula <- refpropat   

  

   ), 

  refpropat : R2ML!ReferencePropertyAtom ( 

          referenceProperty <- refprop, 

          subject <- i.terms->first(), 

          object <- i.terms->last() 

   ), 

  refprop : R2ML!ReferenceProperty ( 

          refPropertyID <- i.hasPredicateSymbol.name 

   ) 

}  

Fig. 13. An excerpt of the ATL transformation: A matched rule that transforms an RDM 

IndividualPropertyAtom to an R2ML UniversallyQuantifiedFormula 

For example, the R2ML model shown in Fig. 14 is the output of the RDM to 

R2ML transformation for the RDM model (IndividualPropertAtom) given in Fig. 11. 

This is actually the end of the transformation between abstract syntax of OWL/SWRL 

and R2ML. 

An additional step (besides the three ones explained in this section) can be to 

transform rules from R2ML into the R2ML XML concrete syntax. For example, the 
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R2ML model shown in Fig. 14 can now be transformed to elements of the XML 

metamodel (R2ML2XML), and then automatically transformed to the R2ML XML 

concrete syntax by using the XML extractor that is included the ATL engine. The 

result of the XML extraction of the R2ML model (from Fig. 14) is shown in Fig. 15. 
<R2ML> 

<!--...--> 

<R2ML.Formulas.UniversallyQuantifiedFormula xmi.id = 'a12'> 

  <R2ML.Formulas.QuantifiedFormula.formula> 

    <R2ML.RelAt.ReferencePropertyAtom xmi.id = 'a13'  

     isNegated = 'false'> 

      <R2ML.RelAt.ReferencePropertyAtom.object> 

        <R2ML.BasContVoc.ObjectVariable xmi.idref = 'a11'/> 

      </R2ML.RelAt.ReferencePropertyAtom.object> 

      <R2ML.RelAt.ReferencePropertyAtom.referenceProperty> 

        <R2ML.BasContVoc.ReferenceProperty xmi.idref = 'a14'/> 

      </R2ML.RelAt.ReferencePropertyAtom.referenceProperty> 

      <R2ML.RelAt.ReferencePropertyAtom.subject> 

        <R2ML.BasContVoc.ObjectVariable xmi.idref = 'a6'/> 

      </R2ML.RelAt.ReferencePropertyAtom.subject> 

     </R2ML.RelAt.ReferencePropertyAtom> 

   </R2ML.Formulas.QuantifiedFormula.formula> 

   <R2ML.Formulas.QuantifiedFormula.variables> 

     <R2ML.BasContVoc.ObjectVariable xmi.idref = 'a6'/> 

     <R2ML.BasContVoc.ObjectVariable xmi.idref = 'a11'/> 

   </R2ML.Formulas.QuantifiedFormula.variables> 

</R2ML.Formulas.UniversallyQuantifiedFormula> 

<!--...--> 

</R2ML> 
 

Fig. 14. An excerpt of the R2ML XMI representation of the RDM rule shown in Fig. 11 

<r2ml:Implication> 

  <r2ml:consequent> 

    <r2ml:UniversallyQuantifiedFormula> 

      <r2ml:ObjectVariable r2ml:name="x1"/> 

      <r2ml:ObjectVariable r2ml:name="x3"/> 

      <r2ml:ReferencePropertyAtom r2ml:refPropertyID="hasUncle"> 

        <r2ml:subject> 

          <r2ml:ObjectVariable r2ml:name="x1"/> 

        </r2ml:subject> 

        <r2ml:object> 

          <r2ml:ObjectVariable r2ml:name="x3"/> 

        </r2ml:object> 

      </r2ml:ReferencePropertyAtom> 

    </r2ml:UniversallyQuantifiedFormula> 

  </r2ml:consequent> 

  <!--...--> 

</r2ml:Implication>  

Fig. 15. An excerpt of the R2ML XML representation of the SWRL rule shown in Fig. 2 

5. Mapping R2ML Integrity constraints to OCL 

In previous section, we have shown how one can get a valid R2ML model from any 

RDM model. The final objective of this section is to explain the transformation of 

R2ML models (rules) into OCL models [6]. To do so, we have defined mappings for 

transforming elements of the OCL metamodel into elements of the R2ML metamodel 

(see Fig. 16). OCL has its own abstract and concrete syntax, and for transformation 

process we use its abstract syntax defined in the form of a MOF-based metamodel [6]. 

Since the R2ML and OCL metamodels are both located in the MOF technical space 

and there is an metamodel for OCL defined in the OCL specification, the 

transformation by ATL is straightforward in terms of technological requirements, i.e. 

we do not have to introduce an additional metamodel like we have done with RDM. 

Step 1. We transform an R2ML model (Rules_R2ML from Fig. 16) into an OCL 

model (Rules_OCL) by using an ATL transformation named R2ML2OCL.atl. The 
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output OCL model (Rules_OCL) conforms to the OCL metamodel. In Table 2, we 

give an excerpt of mappings between the R2ML metamodel and OCL metamodel on 

which this ATL transformation is based. The current version of the transformation 

contains 39 mapping rules. 

 

Fig. 16. The transformation scenario: R2ML metamodel to and from OCL metamodel, with 

EBNF injection/extraction of OCL code 

Table 2. An excerpt of mappings between the R2ML metamodel, OCL metamodel, and OCL 

code 

R2ML metamodel OCL metamodel OCL code 

Conjuction 
OperationCallExp  

   referredOperation (name =  'and') 
Operand and Operand 

Implication 
OperationCallExp 

   referredOperation (name =  'implies') 
Expression implies Expression 

AttributionAtom 

OperationCallExp 

  referredOperation (name =  '=') 

  PropertyCallExp (subject) 

Subject.attribute = value 

ObjectVariable Variable Variable name 

EqualityAtom 
OperationCallExp 

  referredOperation  (name =  '=') 

Expression1 = Expression2 and 

Expression2 = Expression3, ... 

RoleFunctionTerm 

PropertyCallExp 

  referredProperty (name =  'property') 

  source Variable 

Variable.property 

AtMostQuantifiedFormula 

OperationCallExp 

   referredOperation (name =  '<=') 

   argument maxvalue 

Expression <= maxvalue 

For element of the R2ML metamodel, an instance of the OCL metamodel is 

created in the model repository. The ATL transformation is done for classes, 

attributes, and references. For this transformation we have used integrity and 

derivation rules of the R2ML metamodel in its current version (0.3). For the R2ML 

model (rule) shown in Fig. 14, we get an OCL model represented in the OCL XMI 

concrete syntax given in Fig. 17. The figure shows an OCL iterator expression 

(forAll) that has Boolean as the return type, and an operation call expression as its 

source. That operation call expression then calls an operation, which has the set type 

as its return type and a class as its source. 

Step 2. Because the OCL concrete syntax is located in the EBNF technical space, 

we need to get an instance of the OCL metamodel (abstract syntax) into EBNF 

technical space. There are three possible solutions to this problem. The first one is 
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creating another transformation from the OCL metamodel to the ATL metamodel 

(which extends a modified standard OCL metamodel), e.g., to its query expression, 

and then by using the tool "Extract ATL model to ATL file" included in ATL, we can 

get the OCL code. However, the disadvantage of this solution is the creation of a new 

transformation from the OCL metamodel to the ATL metamodel, which is a time 

consuming and more general task overcoming the scope of our research. The second 

solution is to create ATL query expression on OCL metamodel elements, which will 

then generate OCL code in a file. The disadvantage of this solution is that this 

solution can not be used for all OCL metamodel elements, because it will be complex 

to define all mappings. The third solution is to use a TCS (Textual Concrete Syntax) 

interpreter [22] based on the TCS syntax definition of OCL. A TCS represents a 

domain specific language for the specification of textual concrete syntaxes in MDE, 

and it is a part of the ATL tool suite. It can be used to parse text-to-model and to 

serialize model-to-text. The concrete syntax of OCL has been implemented in TCS 

according to the syntax specified in [6]. Fig. 18 shows the mapping from the OCL 

metamodel (in the KM3 format [24]) to its corresponding TCS. 
<OCL.EssentialOCL.IteratorExp xmi.id = 'a11' name = 'forAll'> 

   <UML.TypedElement.type> 

        <UML.PrimitiveType xmi.id = 'a4' name = 'Boolean'/> 

   </UML.TypedElement.type> 

   <OCL.EssentialOCL.CallExp.source> 

      <OCL.EssentialOCL.OperationCallExp xmi.id = 'a18'> 

    <UML.TypedElement.type> 

             <OCL.EssentialOCL.SetType xmi.idref = 'a19'/> 

    </UML.TypedElement.type> 

    <OCL.EssentialOCL.CallExp.source> 

       <UML.Class xmi.idref = 'a17'/> 

    </OCL.EssentialOCL.CallExp.source> 

    <OCL.EssentialOCL.OperationCallExp.referredOperation> 

      <UML.Operation xmi.idref = 'a25'/> 

               <!--...--> 

     <OCL.EssentialOCL.OperationCallExp.referredOperation> 

      </OCL.EssentialOCL.OperationCallExp> 

   </OCL.EssentialOCL.CallExp.source> 

   <!--...--> 

</OCL.EssentialOCL.IteratorExp> 
 

Fig. 17. An excerpt of the OCL XMI representation of the R2ML model shown in Fig. 14 

Using the TCS interpreter and defined mapping rules (as in Fig. 18 for element 

Class), we have done an EBNF extraction from the OCL model to the OCL code. Our 

starting example shown in Fig. 1 is actually the OCL code that represents the OCL 

model from Fig. 17. This OCL code is also the transformed SWRL rule from Fig. 2.  

In the opposite direction, from OCL to R2ML, for Step 1 (the ENBF injection), we 

also have two solutions. The first one is to use the OCL Parser from the Dresden OCL 

Toolkit [23] for parsing OCL code and creating OCL model from it. This solution 

needs a predefined UML model (in the UML XMI format) as the input on which OCL 

code is defined, and this is not what we want, because for the input we want only 

OCL code without the UML model on which it is defined. The second solution is by 

using TCS for creating model from code. Since we used this solution for generating 

code from model and it supports generation of OCL code without UML model, we 

decided to us it, for this direction. When the OCL model is generated form the OCL 

code, we use OCL2R2ML.atl transformation for transforming this model into the 

corresponding R2ML model (as shown in Fig. 16). 
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package OCL { 

 //... 

   class Class extends Type { 

reference ownedOperation[*] container : Operation; 

 reference ownedAttribute[*] container : Property; 

 attribute isAbstract : Boolean; 

   } 

 //... 

} 

a) 

syntax OCL { 

 //... 

   template Class context 

 : (isAbstract ? "abstract") "class" name 

  "{" 

   ownedOperation ownedAttribute 

  "}" 

   ; 

 //... 

} 

b)  

Fig. 18. The transformation of elements of the OCL metamodel into its corresponding OCL 

textual concrete syntax (TCS): a) OCL metamodel; b) OCL TCS 

6. Conclusions 

The presented approach to interchanging OWL/SWRL and UML/OCL is based on the 

pivotal (R2ML) metamodel that addresses the complexity of mappings between two 

languages, which contain many different concepts. In this paper, we have not focused 

only on mapping rules between OWL/SWRL and R2ML and between UML/OCL and 

R2ML [13], but we have also described the whole transformation process based on 

the use of the ATL model transformation language and several other XML schemas 

and MOF metamodels. Besides bridging OWL/SWRL and UML/OCL, the use of 

R2ML allows us to reuse (i.e., apply on OWL/SWRL and UML/OCL) the previously 

implemented transformations between R2ML and R2ML XML concrete syntax, F-

Logic, Jess, and RuleML, thus further  interchanging OWL/SWRL and UML/OCL. 

The presented research is a next step towards the further reconciliation of MDA 

and Semantic Web languages, and hence continues the work established by the 

OMG’s ODM specification that only addressed mappings between OWL and UML, 

while we extended it on the accompanying rule languages, i.e., SWRL and OCL. In 

the future, we finalize the on-going implementation of all transformation proposed in 

the paper, which will be followed by the detailed report on the experience. We also 

plan to extend our rule transformation framework in order to support other OMG’s 

specifications covering rules, i.e., the ones for business and production rules.  
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Abstract. The USE (UML-based Speci�cation Environment) tool has
been successfully applied for model validation in the past. In our cur-
rent work, we are enriching the USE speci�cation language with impera-
tive elements. We employ this extension as an assembler to realize UML
model (class diagram) transformations with USE in a �exible way: UML
transformations are described using a custom abstract language based on
object diagram-like patterns. These descriptions are automatically trans-
lated into the imperative USE extensions. Our approach aims to provide
a �exible instrument to experiment with di�erent transformations and
transformation formalisms.

1 Introduction

In the last years, model transformation has become an increasingly important
�eld within software development. At the same time, the notion of a model
has become more or less a synonym for models in the object-oriented para-
digm. Today, the OMG is about to �nalize the Query, Views, Transformations
(QVT) [OMG06] speci�cation, which aims to provide a set of standardized for-
malisms to transform one object-oriented model into another one.

We have successfully employed our USE tool [GR02] for validation of static
structure models in the past. In our current work, we are employing USE to
develop, apply, and validate model transformations. Although QVT is about to
be �nalized soon, we feel that we still need more evidence on how well it �ts for
di�erent kinds of transformations. Our approach gives us a �exible instrument
to experiment with di�erent transformations and transformation formalisms in
a common and accessible environment.

In earlier work, we utilized several ways to describe transformations of struc-
tural models [Büt05,BG06]. As a central part, we have been working on a catalog
of transformations of OCL annotated UML class diagrams. In our current work,
we are now implementing this catalog based on our extension to USE. We started
with a very simple transformation language based on object diagram-like pat-
terns and regular expressions. Later, we realized a need for certain extensions
to this language to describe our transformation catalog with reasonable e�ort.
Due to the �exibility of our approach, this extensions could be realized quite
easily. We motivate the extensions here, too, because we feel that the underlying
problems may also occur in other model transformation scenarios.
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On the technical level, we did two things: We �rst added a small imperative
OCL-based language to USE which can be used to de�ne operations. We then
created a simple transformation language, based on UML diagrams and a few
elements of graph transformation [Roz97]. We then implemented a UNIX �lter
like program which translates our transformations into the simple imperative
language. This way, we can employ USE as a �virtual machine� to execute and
validate transformations, under (potentially) various transformation formalisms.

Several other approaches to object-oriented model transformation ex-
ists. [CH03] provides a general classi�cation. Existing model transformation
frameworks include ATL [JK05], the TopMODL initiative [MDFH04], Model-
ware [Mod], and the graph transformation-based Fujaba [FUJ]. Our work also
resembles [MFJ05] and Kermeta [FDVF06] as it adds executability to meta-
models.

This paper is structured as follows: In Sect. 2, we introduce our extension to
USE and our transformation language. We then take an excerpt (a �Many2One�
transformation) of our transformation catalog to illustrate our approach in
Sect. 3. After describing Many2One in general, we show how we implemented
the transformation in USE. Section 4 concludes this paper.

2 Realizing UML Model Transformations with USE

In a nutshell, we are employing USE to apply transformations to UML models
� or more speci�cally, to UML class diagrams. Although USE directly supports
class diagrams (USE speci�cations are mainly class diagrams with constraints),
we represent them as object diagrams of the UML meta-model here. The USE
speci�cation is provided by the UML 2.0 meta-model in our current work.

The two basic ideas of our approach are as follows: 1) The USE speci�cation
language is extended to support imperative descriptions of operations.We achieve
this by enriching USE with a minimal object-oriented programming language
that can be used to modify a system state (i.e., an object diagram). This language
resembles the �ImperativeOCL� language of the upcoming QVT speci�cation.
We employ this new feature of USE to formulate additional operations with
side-e�ects for the UML meta-model.

2) Transformations are applied to UML models by adding additional transfor-
mations objects to their meta-level representation. These transformation objects
provide operations that modify the model in the intended way. The operational
transformation semantics is located in explicit transformation meta-classes.

The remaining section explains this sketch in more detail.

2.1 Models Everywhere
Figure 1 shows an overall structural picture of our approach. It shows the di�er-
ent involved modeling artifacts, which creates them, and how they are realized
using USE.

Starting in the lower left-hand corner, we locate the role of the modeler.
That is the origin of our initial model, an exemplary PersonCompany class di-
agram (which we will modify by means of model transformation in Sect. 3).
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This class diagram is created as an instance of the UML meta-model (UM-
LOCL2 in Fig. 1) in USE. As the name suggests, UMLOCL2 actually com-
bines the UML2 and OCL2 meta-models into one meta-model. It is de�ned
as a USE speci�cation (UMLOCL2.use). So far, this speci�cation does not re-
quire any of the extensions mentioned above. In addition, an augmented version
UMLOCL2withTransformations.use exists which contains further meta-classes
which we describe below.

instance of

Many2One

UMLOCL2

( umlocl2.use )

<<generated>>
UMLOCL2WithTransformations

PersonCompany
(many jobs)

PersonComany
with transformation

objects added

(one job)
PersonCompany

Java filter translates
transformations

into imperative OCL

specifies

( umlocl2withTransformations.use )

Transformation
Designer

Modeler

gives class diagram
as personcompany.cmd !create t:Many2One

(create transformation
objects)

!execute t.apply()
(apply transformation)

Fig. 1. The overall picture

The modeler creates his or her model in USE as a sequence of state
manipulation command (a .cmd-�le). After reading and executing this se-
quence, USE holds the PersonCompany class diagram as an instance of UM-
LOCL2withTransformations. Of course, manually specifying a UML class dia-
gram as a meta-model instance is not a pleasing task. Therefore we created an
import �lter, that converts USE speci�cations (.use-�les) into instances of the
UML meta-model (.cmd-�les that are executable w.r.t. UMLOCL2.use). But
this is only for convenience and is not required for our approach. Notice that
PersonCompany could also be instantiated as an instance of UMLOCL2, as only
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meta-classes from this meta-model are used up to this point. But since we want
to enable transformations on PersonCompany, we are using the latter one.

The modeler can now choose one of the transformations that have been pre-
viously de�ned by the transformation designer (explained soon). From the mod-
elers point of view this means to add an instance of a corresponding trans-
formation meta-class (Many2One in Fig. 1) to the meta-level representation of
his or her class diagram. This transformation meta-classes contain operations
with side-e�ects that realize the intended e�ect. By convention, each transfor-
mation meta-class de�nes an entry point operation apply(). By invoking ap-
ply() the transformation object changes its surrounding instances of the UML
meta-model. This may require several internal steps. Finally, the transformation
object is removed again, leaving a meta-level representation of the modi�ed Per-
sonCompany class diagram (for example, with only one job per person now).
Alternatively, transformation objects can also be kept for tracing reasons.

How do the transformation meta-classes come into play? First, the transfor-
mations are developed by the aforementioned transformation designer. In our
case study we employ a formalism which consists of simple transformation steps
(described as object diagrams with some minor extensions) and regular expres-
sions controlling the correct execution sequence of the individual steps. Each
transformation consists of one control expression and one or many transforma-
tion steps. Transformations described in this formalism can be visualized in a
UML-like representation (extended object diagrams). For our purpose, we have
developed a textual syntax, too.

These transformation descriptions, having a high level of abstraction, are
then translated into transformation meta-classes using the minimal imperative
language we added to USE. As a result we achieve an enriched version of the
original UML meta-model. For each transformation class, several internal op-
erations are created to implement the pattern matching and the application of
the transformation steps, and the overall control expression. Furthermore, new
associations can be added to the meta-model to allow to specify the context for
the transformation (e.g., to specify the target association end in the example in
Sect. 3). Finally, the existing meta-classes can be enriched by further operations
to implement cross-cutting functionality such as cloning or component exchange
(described later on).

Currently, this translation (or compilation) from our high level transforma-
tion formalism into the imperative language is realized as a Unix �lter like Java
program. This program takes the original UML meta-model (UMLOCL2.use)
and the textual transformation description (ManyToOneTrans.txt) as input �les
and yields a modi�ed version of the original .use-�le. More than one transfor-
mation can be added by applying this step repeatedly.

2.2 The imperative extensions to USE specifications
We shortly introduce the new USE speci�cation language concepts. In previous
versions of USE, operations could be speci�ed in two ways: a) as OCL queries or
b) by providing pre- and postconditions that characterize operation properties.
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The �rst variant is side-e�ect free. Operations speci�ed by pre- and postcon-
ditions are typically not side-e�ect free, but not automatically executable from
USE's point of view neither. They can validated given a manually provided se-
quence of state manipulation command.

Now we have added a third mechanism to specify operations (with side-
e�ects) in USE. It is a small imperative language that allows us to provide
operational speci�cation. It is build around OCL as an expression language. It
further adds the following imperative elements:

– Basic state manipulation statements: create and destroy objects, insert and
remove links between objects, set attribute values. (These operations were
available in USE before in the (still existing) command �les.)

– Flow control statements: execute conditionally (if-then-else), execute repeat-
edly (while), and iterate over collections.

– Invocation of other operations. Other operations can be invoked if they are
also de�ned using this imperative language. Recursive invocation is sup-
ported. (Of course, OCL query operations can be used as well, but only in
expressions.)

This language resembles the operational mappings language provided by
OMG QVT.

2.3 The transformation language used for the catalog
Due to the expressive power of the added imperative language, we can now realize
arbitrary transformations on instances. This can be done, as illustrated in the
beginning, by putting one or many transformation operations into an explicit
transformation class. But writing transformations on this level is still a tedious
task for complex transformations. Several higher level alternatives exist that are
more appropriate to this task, such as graph transformation or relation-based
approaches like in QVT.

Therefore, we created a small, more abstract transformation language to for-
mulate our UML class diagram transformation catalog. Instead of implementing
this transformation language in USE, too, we de�ned a mapping onto the small
operational language introduced above. This mapping is currently realized by a
small, external piece of software which acts like a Unix �lter. It reads an existing
source speci�cation and one or many transformation descriptions and creates a
speci�cation which is enriched by new transformation classes that implement
the transformations.

In our transformation language, a transformation consists of two parts: a
set of transformation steps and a control expression. The transformation steps
build the atoms of a transformation. They are speci�ed as extended UML object
diagrams. The control expression then speci�es when and in which order the
individual steps have to be applied. The control expression language is a regular
language whose terminal symbols are the transformation steps.

(Transformation steps) Figure 2 shows a simple transformation step, an ex-
tended object diagram. A UML diagram diagram can be regarded as a restricted
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cObj : F

:Assoc2

:Assoc1

aObj : D bObj : E

<<create>>

<<destroy>>

<<create>>

Fig. 2. A simple transformation step

form of a graph transformation rule: Unless marked otherwise, the objects and
links in the diagram determine the context of a gratra rule. Elements marked
with the stereotype �create� are created by the rule. Elements marked with �de-
stroy� are destroyed by the rule. The destroyed and context elements determine
the redex of the rule, i.e. the pattern which must be found in the system state in
order to apply the rule. In Fig 2, the redex of the transformation step consists
of the objects aObj, bObj, and the Assoc2-link that connects them. In order to
apply the step, actual assignments for aObj, bObj and the Assoc2-link have to
be found in the system state. Given a certain valid redex, applying the rule will
create a new object of class F, connected to bObj, and destroy the Assoc2-link.
We further allow OCL preconditions to be part of the extended object diagrams.
This way one can further restrict what is a valid redex (not shown in Fig 2).

(Translation of transformation steps) For each step two operations are cre-
ated in the corresponding transformation class (Many2One in the example which
is described in detail in Sect. 3). First a stepname_redex() operation is de�ned
which returns a redex for the step. The result type is a tuple consisting of all ob-
jects that determine the context of the step. In the above example, the signature
is exampleStep_redex() : Tuple(aObj:D, bObj:E).3 Second, a stepname_apply()
operation is applied which takes a redex tuple and realizes the actual e�ect of
this step. For the example step, this is: exampleStep_apply(redex:Tuple(aObj:D,
bObj:E)).

(Control expression) A transformation can consists of several steps. The
transformation control expression is a regular expression that controls how the
steps are combined. An example may look like this:

MyTransform := Init StepA* (StepB | StepC)* CleanUp

The syntactical elements are as usual. Star means as long as possible (include
zero times), parenthesis group steps, the bar speci�es alternatives. Note that we
do not allow a recursive de�nition (i.e., the derivation tree has to be acyclic).
However, it is still possible to create in�nite loops, due to '*' expressions. It is
the transformation developer's responsibility to ensure that the transformation
process terminates.

3 The links are not a part of the redex tuple, because we assume relation semantics
for associations. Multiple links of the same association are not allowed between a
pair of objects.
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To implement our transformation class for a transformation, we create three
elements in the class:

1. A step() operation that applies one step (if possible). This operation uses
the various ..._redex() operations to determine the next applicable step().

2. A state attribute which keeps track of the current transformation state (a
state of the �nite automata created from the regular control expression).

3. An apply() operation which simply applies step() as long as possible. This
is the entry point to apply the transformation.

3 Case Study

In this section, we show how we implemented the aforementioned transformation
catalog with the extended version of USE. Our transformation catalog resem-
bles the refactorings catalog of Martin Fowler [Fow99]. It contains class diagram
transformations such as moving methods from one class to another, changing
generalizations into compositions, modifying associations, inlining, and extract-
ing classes.

The major feature of our catalog is that it considers OCL annotations on the
UML class diagrams. Because OCL expressions depend on the underlying class
diagram, they have to be incorporated when changing its structure. Of course
on this account, the transformations become more complex.

Due to this complexity our catalog provides a good example to validate an ap-
proach to model transformation (we think). This section provides an exemplary
insight into the catalog and its realization in USE. We pick one transformation
(Many2One) which changes an association multiplicity from many to one. In the
following, we �rst explain Many2One in more detail, independent of its realiza-
tion in USE. Then we describe Many2One by means of the previously explained
meta-model transformation steps and its control condition. Finally, we illustrate
how one of these steps is translated into a USE speci�cation, i.e., into imperative
operations.

3.1 Example Transformation: Many2One
Transforming an association multiplicity from many to one is conceptionally
simple but still interesting: a simple modi�cation to the class diagram part has
some more demanding consequences on those existing OCL formulas that depend
on the modi�ed association.

In OCL, every expression is typed. The type determines which operations can
be applied to its values. When navigating through an association end in an OCL
expression, the type of this expression is determined by the end's multiplicity.
If the multiplicity is 1 or 0..1, the navigation expression has an object type.
Otherwise, the expression results in a collection.

Consequently, when changing the multiplicity of an association end from
many to one, the navigation expression along this end changes from collection-
valued to object-valued. Every OCL expression containing this navigation as
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a sub-expression is a�ected. Accordingly, the Many2One transformation also
consider the OCL expression parts when changing a class diagram. The Person-
Company class diagram in Fig. 3 illustrates the necessary modi�cations.

1

Person

location : String

Company

location : String

Person

location : String

Company

location : String

self.employer.location = self.location

exists( x | x.location

self.employer−>

 = self.location )

employer

WorksFor0..*

employee

0..*

employer

WorksFor0..*

employee

Fig. 3. Transforming an association multiplicity from many to one

Both UML class diagram fractions describe an employer-employee relation-
ship where a person resides in a location and works for a company. The upper
invariant states that a person has to work for at least one company which is
located in the same place. The depicted model transformation changes the mul-
tiplicity at the employer end from arbitrary to one, i.e. that after the transfor-
mation every person work in exactly one company. Accordingly, the type of the
navigation expression self.employer changes from collection-valued to object-
valued. Therefore, the invariant should be simpli�ed to the expression stated in
the lower part of Fig. 3.

Most implied OCL model transformations are dependent on the performed
class diagram transformation. If one for example carries out a class diagram
transformation which changes an attribute name, all OCL expressions which use
this attribute name have to be adapted. However, if an association multiplicity is
changed, more complex OCL expression transformations have to be performed,
as explained above.

There is a great bene�t if one keeps the number of dependent OCL model
transformations to a minimum, because these transformations cannot be reused
in other contexts. In case of Many2One, a separation between the dependent and
the independent transformations can be realized by following the steps below:

1. Transform all OCL collection operations to iterate, if possible.
2. Change the association multiplicity (UML model transformation).
3. Adjust all e�ected OCL expressions.
4. Simplify the OCL expressions.
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Only the second step realizes a transformation of the UML class diagram. The
other three transformations refer to OCL expression transformations.

The �rst step maps all OCL collection operations to iterate, which is the
most powerful collection operation. For almost every collection operation such
a mapping can be de�ned (one exception e.g. is the including operation). The
advantage of this mapping is that after the transformation nearly all collection
operation expressions are iterate expressions. The number of used collection
operations is de�nitely reduced to a minimum and only for this reduced operation
set a corresponding transformation to the UML model transformation has to
be found. The most important issue about the �rst step is that it describes
equivalence transformations, i.e. these transformations can be applied in any
case and does not change the semantic of the expressions. The same holds for the
last step which simpli�es the OCL expressions either by performing an inverse
transformation to the �rst one if possible or by applying some basic simpli�cation
rules.

Only the third step depends on the UML model transformation and can only
be applied if this concrete UML model transformation is performed. The UML
class diagram transformation causes that the a�ected OCL expressions which
normally result in a collection become object-valued (they result in exactly one
element). Thus within this step, the collection operations have to be transformed
to equivalent expressions which only uses object operations.

3.2 Realization of Many2One with USE
All transformations of the case study consist of control expressions and trans-
formation steps. In this section the control expression and the steps of the
Many2One transformation are explained.

As mentioned above, the control expression serves as the control structure
which coordinates the execution order of the transformation steps. These control
expressions are described using regular expressions. The following one describes
the process of the Many2One transformation.

Many2One = Iteratorize* changeMultiplicity AdjustCollectionOps*
Simplify*

Iteratorize = existsToIterate | forAllToIterate | ...

AdjustCollectionOps = AdjustIterate | AdjustIncluding | ...

AdjustIterate = inlineRangeForRangeVar inlineAccuInitForAccuVar
inlineIterateBodyForIterate

Simplify = iterateToExists | iterateToForAll | ...

These control expressions of Many2One are related to the above mentioned
transformation steps. Iteratorize refers to the transformation of the collection
operations to iterate. The association multiplicity of the UML class diagram
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is changed by the step changeMultiplicity. AdjustCollectionOps corresponds to
the adaptation of the OCL expressions which were a�ected by the class diagram
change. AdjustIterate for example transforms an iterate expression to an equiv-
alent object-valued expression, if the source expression of iterate refers to exactly
one element. This means that during the evaluation of the iterate expression
always only one iteration is performed. Consequently, the control variables and
the result variable can be replaced by their initialization values. These substi-
tution steps are realized by all three inline transformation steps. The last step
(Simplify) is related to the simpli�cation of the OCL expressions. This trans-
formation step realizes the inverse e�ect of Iteratorize and also applies some
generic simpli�cation rules.

In the following, some transformation steps of Many2One are exemplarily
described to show the functioning of the transformation steps. Figure 4 shows
an excerpt of the UML and OCL meta-model which is relevant for the transfor-
mation steps of Many2One and consequently fundamental for the understanding
of those steps.

specification

NamedElement

body ownedAttribute

referredProperty

TypedElement

ValueSpecification

ExpressionInOcl

OclExpression

PropertyCallExp

OperationCallExp

Property

Namespace

Association

Class

ownedEnd

referredVariable

Variable
result

iterator
LoopExp

IteratorExp

IterateExp

CallExp NavigationCallExpVariableExp

source

Constraint

ClassifierbodyExpression
initExpression

navigationSourceargument

Fig. 4. Relevant excerpt of the combined UML and OCL meta-model

At �rst, we started to de�ne the Many2One transformation using visual trans-
formation rules. However, these rules quickly become very complex and hard to
maintain. On this account, we de�ned some extensions to signi�cantly reduce
the complexity of the speci�cations, i.e. to reduce the number of transforma-
tion steps. In the following these extensions will be explained considering some
Many2One transformation steps as example.

Step existsToIterate: If we take the example of Fig. 3 as a basis, the �rst
transformation step which could be applied would be existsToIterate. In this
example the expected result of this step would be the following expression:
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self.employer->iterate( x; result:Boolean = false |

result or x.location = self.location )

The transformation schema of the existsToIterate is depicted in the extended
object diagram of Fig. 5.

<<create>>

<<create>>

<<create>>

source

body

<<create>>

<<create>>
<<create>>

result

<<create>>

body

iterator

<<destroy>>

source

<<destroy>>

:Variable

:OclExpression

:OclExpression

orExp:OperationCallExp
<<create>>

accuRef : VariableExp
<<create>>

accu : Variable
<<create>>

varName@post = ’r’

name = ’exists’

<<create>>

<<create>>

referredVariable

<<destroy>>

<<create>>
<<replaceComponent(existsExp)>>

iterateExp:IterateExp

existsExp:IteratorExp
<<destroy>>

argument

iterator

source

initExpression

<<create>>

name = ’Boolean’

:DataType

type

type

feature

:Operation

name = ’or’

type

referredOperation

<<create>>

<<create>>

iterate
replacing

exists
replaced

<<create>>

part of
OCL std lib

name@post = ’false’

:BooleanLiteralExp

Fig. 5. Transformation step of existsToIterate

As mentioned in Section 2, all objects which are not created during this
transformation step and their speci�ed attribute values form the redex of this
step. Within existsToIterate this redex consists of an exists expression (labeled
with replaced exists) and the or operation and boolean type from the OCL
standard library (marked as part from OCL std lib).

As explained before, the existsToIterate replaces the exists expression with
an equivalent iterate expression. Consequently, the replaced exists part drops
out during this step and is replaced by an iterate expression (labeled with
replacing iterate) which holds the same source expression and control vari-
ables. By de�nition the iterate expression also owns an accumulator variable
which is initialized with false. The body expression of exists now becomes the
body expression of iterate, but is extended by the expression result or.

The replacement of expressions is one of our extensions which was introduced
to reduce the number of transformation steps to a minimum. The replacement
is realized by the stereotype �replaceComponent� and indicates that the owner
of the labeled component should replace its part, speci�ed by the parameter
expression, with the caller component (e.g. in this case exists should be replaced
with iterate). The e�ect is that every step only has to be de�ned once and not
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for each possible owner (e.g. if, let, invariant and operation expressions) of the
replaced expression. For this purpose we have introduced an ownership and a
part relationship within the UML and OCL meta-model which are derived from
existing associations.

The @post term indicates another extension within the transformation steps
which describes the setting or changing of attribute values during the transfor-
mation step. An example of this construct can be found in Fig. 5 where the
initialization value of the accumulator is set to false during the transformation.

Step inlineRangeForRangeVar: The existsToIterate step already needed
some of the extensions to be realized. It has also demonstrated how transfor-
mation steps are speci�ed within USE in general. The following transforma-
tion step (inlineRangeForRangeVar) will employ the last remaining extension.
As mentioned above inlineRangeForRangeVar is one of three steps which real-
izes the transformation from iterate to an object-valued expression. It substi-
tutes the source expression of iterate for all occurrences of the control vari-
ables within the body expression. Fig. 6 shows the transformation scheme of
inlineRangeForRangeVar.

referredVariable

assocEnd : Property

lower = 1
upper = 1

copyOfNavCallExp : NavigationCallExp
<<copy(navCallExp)>>

<<replaceComponent(xref)>>

navCallExp : NavigationCallExp

xref : VariableExp
<<destroy>>

x : Variable

iterate : IterateExp

endToChange

<<destroy>>

iteratorsource

self : Many2One

Fig. 6. Transformation step of inlineRangeForRangeVar

As before, the replacement of the control variable is realized using the �re-
placeComponent� stereotype. However, the new extension within this transfor-
mation step is the copying of an OCL expression. Within the UML and OCL
meta-model several compositions, i.e. part-of relationships, are de�ned. These
compositions state that an object should belong to at most one owner object. In
our example transformation, the control variable can occur several times within
the body expression of iterate. Because it should be substituted with the origi-
nal source expression and because there can occur some part-of relationships to
its owner, the source expression has to be copied.

This copying is visualized by the stereotype �copy� and is a mixture of shal-
low and deep copy. If the expression which should be copied has some composi-
tion relationships to its parts, these parts should be copied deeply. Otherwise, a
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shallow copy (i.e. no copying of the related objects, but insertion of links between
the new copy and these objects) is su�cient. The shallow copy also reduces the
complexity of this approach.

As shown in this section, the de�ned extensions highly reduce the number
of the transformation steps, especially the �replaceComponent� stereotype. We
have also detected that some kind of copying is essential for the de�nition of
more complex transformations.

3.3 Excerpt of the resulting USE specification
Finally, the following subsection shows an excerpt of the extended USE speci�-
cation that is created from the last section's transformation speci�cation by our
translation �lter. As explained in Sect. 2.3, one _redex() and one _apply() op-
erations are created in the added transformation class (Many2One). We pick the
two operations that are created for the step inlineRangeForRangeVar because
they are short enough and yet implement several of the features that can occur
in a step. Following the order of execution, we �rst show the _redex() operation,
which tries to �nd a valid tuple of objects for inlineRangeForRangeVar (slightly
reformatted to improve readability).

1 Many2One::inlineRangeForRangeVar redex() :

Tuple(assocEnd:Property, navCallExp:NavigationCallExp,

iterate:IterateExp, x:Variable, xref:VariableExp)

2 begin

3 declare foundRedex : Boolean

4 set foundRedex := false

5 for iterate : IterateExp in IterateExp.allInstances do

6 for xref : VariableExp in VariableExp.allInstances do

7 if (not foundRedex) and

8 xref.referredVariable = iterate.iterator and

9 Set{self, self.endToChange, iterate.source,

iterate, iterate.iterator, xref}->size = 6 and

10 assocEnd.lower = ’1’ and assocEnd.upper = ’1’

11 then

12 set result := Tuple{assocEnd = self.assocEnd,

13 navCallExp = iterate.source

.oclAsType(NavigationCallExp),

14 iterate = iterate,

15 x = iterate.iterator,

16 xref = xref}
17 set foundRedex := true

18 endif

19 next

20 next

21 end

This operation is basically a nested iteration over the potential matches for
the step's context objects (lines 5 and 6). As an runtime optimization, the �lter
program tries to omit iterations for objects that implicitly reachable from other
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redex objects via to-1 navigations. For example, navCallExp is reachable as
iterate.source. The heart of the loops checks for each combination of candidates
if the non-implicit required links exist between them (line 8). If further all objects
are pairwise di�erent and not unde�ned (line 9) and all other preconditions hold
(line 10), the found redex is returned from the operation.

Having a valid redex, we can invoke the _apply operation, which looks as
follows for our step:

1 Many2One::inlineRangeForRangeVar apply(redex :

Tuple(assocEnd:Property, navCallExp:NavigationCallExp,

iterate:IterateExp, x:Variable, xref:VariableExp))

2 begin

3 declare copyOfNavCallExp : NavigationCallExp

4 set copyOfNavCallExp := redex.navCallExp.copy()

.oclAsType(NavigationCallExp)

5 redex.xref.owner().oclAsType(ModelElement)

.replace(redex.xref, copyOfNavCallExp)

6 delete (redex.xref, redex.x) from VariableExp referredVariable

7 destroy redex.xref

8 end

This operation actually applies the step. Beside the basic step semantics (cre-
ating/destroying links/objects, setting attribute values, cf. [BG06]), this step
operation also realizes the �copy� and �replaceComponent� extensions (lines 4
and 5). Both extensions require additional operations to be generated into the
UML/OCL meta-classes (copy() and owner()). Both additional operations can
be generated automatically by exploiting the compositions (the black diamonds)
in the meta-model.

There is a lot more to say about the translation of our transformation lan-
guage into .use �les which does not �t into this paper (for example, the trans-
lation of the control condition). However, we hope that we have illustrated the
general idea of using an imperative OCL as an assembler for our transformation
language.

4 Conclusion

In the previous sections we showed how we are realizing UML model transforma-
tions with USE. We extended the USE tool itself and added a new imperative
language component. We then translated the higher level transformation lan-
guage that we used to implement our catalog onto this imperative language.
We feel that several transformation languages or formalisms can be translated
this way. Actually, we had to extend our initial transformation language by new
elements (�copy� and �replaceComponent�) which underpins the �exibility of
our approach.

Several alternatives exist for the imperative language extensions that we
made. We believe that UML Actions (as part of the speci�cation) could be used
instead � actually, UML Actions provide a lot more features than we require
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for our approach. The Kermeta meta-modelling environment could also be used
for this purpose, as it supports OCL evaluation. Kermeta also provides several
programming language-like extensions such as exception handling.

We do not aim to provide a �better QVT�. Instead, our approach aims to-
wards a support for evaluation and development of both, transformations, and
transformation languages. Because USE (technically) and OCL (conceptually)
can be reused, new transformations concepts can be developed hands-on.
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Abstract. A high level of detail and well-formedness of models have
become crucial ingredients in model-driven development. Constraints
play a central role in model precision and validity. However, the task
of constraint development is time-consuming and error-prone because
constraints can be arbitrarily complex in real-world models.
To overcome this problem, we propose a solution that we call model-
driven constraint engineering. In our solution, we define the notion of
computation-independent constraints that are provided in the form of
meta-model integrated patterns. The parameterized patterns are trans-
formed into platform-independent or platform-independent constraints
by a model transformation. In addition, we show how our approach can
be supported by a tool.

1 Introduction

In model-driven engineering, textual constraints are used to express details about
a model that are either hard or even impossible to express in a diagrammatic way.
For instance, hundreds of constraints are used in the specification of the UML
(Unified Modeling Language [24]) meta-model. Constraints stem from different
sources: there may be legal restrictions that a system needs to obey; there may be
company policies that grant privileges to certain kinds of customers; there may be
technical restrictions on a system [8]; there may be security restrictions [20]; and
there may be facts that are implied by common sense that cannot be expressed
diagrammatically.

While models were solely used for documentation and communication pur-
poses in the past, recent model-centric development approaches such as MDA
(Model Driven Architecture [19]) use models as first-class artifacts in the de-
velopment process. For instance, business process models can be transformed
to executable code that is run on process execution engines [17] or models in
a domain-specific security language are transformed to UML [7]. To guarantee
the correctness of the execution of the generated code, it is crucial that every
model instance conforms to its defining model and satisfies its constraints. These
validity checks can be performed automatically if the constraints are formalized.
For instance, tools exist that type-check a set of OCL (Object Constraint Lan-
guage [23]) constraints and validate a model against them [3]. Alternatively,
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validity checks can be implemented in a programming language, e.g., Java, us-
ing a model access API, e.g., EMF (Eclipse Modeling Framework [14]).

The creation and maintenance of constraints is a tedious task. In a case study
in the business modeling environment that we performed, about 80 constraints
were necessary to guarantee the executability of a behavioral model for business
process monitoring. All the constraints are invariants on the model elements and
restrict the set of allowed model instances to a set that is executable on a process
execution engine. While some of these constraints were rather simple, many
complex constraints needed to be formalized, which turned out to be a time-
consuming and error-prone task. The formalization resulted in approximately
500 lines of OCL code, which by nature are unlikely to be bug-free.

Even when the constraint expressions or validation code do not contain any
errors, they need to be adapted once the model changes. This usually results
in additional time-consuming coding and debugging phases, especially in model
refactorings [11,21] where models undergo frequent changes and the attached
constraints need to be kept consistent with new versions of the model.

Our contribution to solving the problem of constraint development consists
of three parts. Firstly, we introduce the notion of computation-independent con-
straints and transformations to platform-independent constraints. Secondly, we
introduce constraint patterns and separate the patterns into atomic and com-
posite patterns and add a structure to them to enhance their expressiveness and
usability. Thirdly, we discuss the requirements for tool support and illustrate
our prototype for Eclipse/UML2 [13].

We believe that a flexible pattern-based approach that is supported by a tool
offers an important improvement for constraint engineering. Most syntactic and
semantic errors can be avoided because the developer can generate OCL code
instead of writing it by hand. Furthermore, our solution promises to decrease
development time substantially.

2 Background

Our solution is based on the idea of constraint patterns (sometimes called idioms)
for UML models [1,2]. A constraint pattern is a parameterized formula that can
be instantiated to a constraint by providing values for its parameters. In [1],
only two structural constraint patterns—Semantic Key Attribute and Invariant
for an Attribute Value of a Class—are presented, which we consider too little to
have a relevant impact on solving the aforementioned problem.

The semantics of a constraint pattern can be provided in any language,
e.g., parameterized OCL templates such as in [1]. This has the advantage that an
OCL constraint can be simply instantiated by providing values for the pattern
parameters. In our solution that we call model-driven constraint engineering we
follow the MDA approach [19] that comprises models at different levels of ab-
straction. We consider a constraint pattern a computation-independent model
(CIM) of a constraint. A CIM constraint can be transformed into a platform-
independent or platform-specific model (PIM/PSM) by a model transformation.
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CIM constraints are integrated into the UML meta-model. This integration
is accomplished by using the meta-model representation of model elements as
parameters for a constraint instead of their textual representation. The types of
these parameters are thus elements from the UML meta-model and can be both
object types, e.g., Property, or simple types, e.g., String. The PIM constraint,
namely the constraint in a concrete syntax of the constraint language—in our
case, OCL—is automatically generated from model-integrated constraint using
a model transformation.

We illustrate these concepts in Fig. 1. On the left hand side of this figure, a
class Employee is shown. This class owns a property whose name is name and
whose type is String. Class Employee is constrained by C1, which has one param-
eter, targetAttribute, which is an association to a UML Property. Furthermore,
this constraint is stereotyped UniqueAttributeValue which denotes a constraint
pattern. Thus, C1 is the CIM of a constraint.

Employee

salary : Integer

String

«UniqueAttributeValue»

C1

Employee

name : String

salary : Integer

C2

{Employee.allInstances()-> 

isUnique(name)}

T1
- name

- targetAttribute

Fig. 1: Transformation from CIM to PIM

The transformation T1 provides the semantics for the CIM C1 which is
given in this case as a parameterized OCL template. The result can be seen
on the right hand side of Fig. 1 where C2 is the result from transforming C1
into a platform-independent constraint. By replacing the transformation T1,
different target platforms can be served. For instance, instead of generating an
OCL expression, Java code could be generated that implements a constraint
in the Eclipse/EMF [14] framework. In this case, platform-specific knowledge
has to be provided in the transformations because our constraint patterns are
computation- and platform-independent.

3 Example Model and Constraints

In Fig. 2 we illustrate a simple model that serves as running example. The UML
class diagram contains two classes, Manager and Employee. These classes are
related by a many-to-many relation. An instance of Employee worksFor at least
one manager; a manager employs any natural number of employees.

Besides the defined classes and associations, instances of this model are not
restricted in any way. There may be managers without employees, and employees
may have a salary of zero but work for multiple managers.
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Manager

budget : Integer

Employee

name : String

salary : Integer1..*

+ worksFor

*

+ employs

Fig. 2: Manager and Employee Class Diagram

We assume fictitious labor union and company IT requirements that every
work environment has to satisfy. The requirements are captured in the following
constraints informally in English and formally as OCL expressions.

Constraint 1. A manager must employ at least one employee with a salary of
at least 3000.

This constraint requires that for each instance m of Manager there exists an
instance e of Employee that is related to m by the relation employs. Furthermore,
the value of the salary attribute of e must be at least 3000.
context Manager
inv: self.employs−>exists( e | e.salary >= 3000)

Constraint 2. A manager may not occur within his management hierarchy.

This constraint prevents that a manager m is responsible for him-/herself by
being related to him-/herself directly by the worksFor relation or indirectly
by other managers {mi, . . . ,mj} that work for m. For the corresponding OCL
expression, we need to define an operation closureWorksFor(S) that computes the
transitive closure [4] of the worksFor relation. A parameter S in which elements
already processed are stored ensures the termination of this operation.
context Manager
def: closureWorksFor(S:Set(Manager)) : Set(Manager) =

worksFor−>union((worksFor − S)−>
collect(m : Manager | m.closureWorksFor(S−>including(self)))−>asSet())

inv: not self.closureWorksFor(Set{})−>includes(self)

Constraint 3. The company may not have more than five organizational layers.

This constraint restricts the depth of the worksFor navigation path. Because a
manager can employ another manager, arbitrary hierarchy levels can be realized.
However, the fictitious labor union forbids more than five hierarchy levels. A
recursive query pathDepth() needs to be defined to compute the path depth.
This query has two parameters, max and counter, where max is set to the desired
maximum path depth minus 1 and counter is initialized with 0.
context Manager
def: pathDepth(max:Integer, counter:Integer): Boolean =

if (counter > max or counter < 0 or max < 0) then false
else if (self.worksFor−>isEmpty()) then true

else self.worksFor−>forAll(m:Manager|m.pathDepth(max, counter+1))
endif

endif
inv: self.pathDepth(4,0)
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Constraint patterns can be identified by analyzing existing constraints and
abstracting from them. For example, the constraints introduced in this section
can be generalized to the following expressions. Constraint 1 requires the ex-
istence of an instance that is related to the context object and has a value
restriction on an attribute. Constraint 2 prevents cyclic navigation paths in a
model instance. Constraint 3 can be generally seen as a constraint that restricts
the maximum length of a navigation path.

From these general expressions, constraint patterns can be derived and de-
scribed using a schema similar to the one described in [1]. We call the pattern
used for Constraint 1 Exists, the pattern derived from Constraint 2 CyclicDepen-
dency and the pattern from Constraint 3 PathDepthRestriction. These patterns
are part of the taxonomy that we introduce in the following section.

4 A Taxonomy of Structured, Computation-Independent
Constraint Patterns

Although the constraint pattern approach as introduced in [1] reduces both the
development time and error rate for model constraints, it has one important
restriction. As each pattern represents a subset of all possible constraint expres-
sions, even with an extensive pattern library, there will be many constraints that
are not expressible in terms of existing constraint patterns.

Therefore, we introduce the notion of structured constraint patterns that add
a high degree of expressiveness to the existing constraint pattern approach by
two measures. Firstly, we divide constraint patterns into atomic and composite
patterns where we introduce a large set of atomic patterns. Composite patterns
are recursively constructed from atomic patterns. Secondly, we introduce the
logical concepts of implication and negation that allow the applicability of an
instance of a constraint pattern to be restricted.

4.1 Atomic Constraint Patterns

In this section we present an extensible library of atomic constraint patterns.
The constraint patterns are related with generalization associations. Therefore,
we create a taxonomy of patterns. The taxonomy gives a structure to the set of
patterns and helps one to find the right pattern for a specific purpose.

The idea of atomic constraint patterns is to identify a large set of atomic
constraints that restrict fundamental concepts of a model, e.g., attribute values
or relations between objects. Furthermore, atomic constraints can be referenced
from composite constraints to create a complex constraint from several compo-
nents. The atomic constraint patterns that we have identified are illustrated in
Fig. 3 where we included the two structural patterns from [1] as UniqueAttribute-
Value and AttributeValueRestriction. The patterns refer to the UML meta-classes
Class and Property and to the OCL meta-class OclExpression.

In MDA, the semantics of a model is inherent in the model transformations
that generate PIM constraints from parameterized CIM constraint patterns. In
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AtomicConstraint

AssociationTypeRestriction

allowedTypes : Class [1..*]

CyclicDependency PathDepthRestriction

maxDepth : Integer

UniquePath

PathRestriction

navigation : Property [1..*]

InjectiveRelation SurjectiveRelation

RelationProperties

relation : Association

AttributeValueRestriction

operator : OclExpression

operand : OclExpression

targetAttribute : Property

MultiplicityRestriction

navigation : Property

operator : OclExpression

term : OclExpression

UniqueAttributeValue

targetAttribute : Property

ObjectIsInCollection

collection : OCLExpression

{collection.oclIsKindOf(Set(OclAny))}

Fig. 3: UML Class Diagram of Atomic Constraint Patterns

the following, we provide informal semantics for the patterns in Fig. 3 and discuss
the model transformations in Sect. 5.

Pattern descriptions. The MultiplicityRestriction pattern restricts the mul-
tiplicity of an association. Although the multiplicity of an association can be
restricted in a UML class diagram, this pattern allows for multiplicity restric-
tions that depend on properties of the model instance, e.g., an attribute value.

Two constraint patterns target at attribute values. The AttributeValueRe-
striction can be used to restrict the value of an attribute of a class for all in-
stances of the class. The UniqueAttributeValue pattern requires that all instances
of the constrained class have distinct values for the specified target attribute.

The ObjectIsInCollection pattern can be used to require that the context
element is in the specified collection of objects. For instance, we could require
that each manager is in the set of his employees in Fig. 2.

In the lower part of Fig. 3, we show patterns that can be generalized to
PathRestriction constraints. These patterns restrict properties of a navigation
path in a model instance. The AssociationTypeRestriction pattern can be used
to restrict an association a that is defined on a general class C0 in a way that
in an instance, only certain subclasses C1, . . . , Cn of C0 may participate in the
relation that is defined by a.

The CyclicDependency pattern can be used to require cycles in the instance
graph of the model. Such a cycle can occur if an instance element is related to
itself with a certain navigation. This navigation is the only parameter for this
constraint pattern. An example for an instance of this pattern is Constraint 2.

The InjectiveRelation and SurjectiveRelation patterns can be used to estab-
lish the mathematical concepts of injective (f(a) = f(b) → a = b) and surjective
(f : X → Y ∧ range(f) = Y ) relations. Bĳective relations can be modeled by
constraining an element with a constraint for injectivity and one for surjectivity.
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The UniquePath pattern can be used to constrain that there may not be
more than one path from the context element to a related element. An infamous
configuration that can be excluded with this pattern is the “diamond of death”
in object-oriented programming languages [22].

The PathDepthRestriction pattern can be used to restrict the maximum path
length in a model instance for reflexive associations. Constraint 3 from our ex-
ample is an instance of this pattern where the maximum length of the employs
association to 5.

4.2 Composite Constraint Patterns

Apart from atomic constraint patterns, which each represent one property of
a model element, composite constraints can be used to express complex prop-
erties of a model. Therefore, they can integrate an arbitrary number of other
constraints (either atomic or composite). Thus, complex constraints can be de-
veloped by combining several simple constraints.

CompositeConstraint

properties : Constraint [*]

Exists

objects : OclExpression

ForAll

objects : OclExpression

{objects.oclIsKindOf(Set(OclAny))}

IfThenElse

then : Constraint [1..*]

else : Constraint [*]

Fig. 4: Class Diagram of Composite Constraint Patterns

So far, we have identified three composite constraint patterns, Exists, ForAll
and IfThenElse. Constraint 1 is an example instance of the Exists pattern: for
the context element m of class Manager there has to exist an element e that
is related to m with the navigation employs. This element e needs to satisfy a
number of constraints, the properties of the composite constraint. The ForAll
constraint pattern is similar except that all elements in the object collection
need to satisfy the properties specified.

The IfThenElse pattern realizes an if-then-else expression. If the context
element of the constraint satisfies all properties, it also needs to satisfy all then
constraints, otherwise, it needs to satisfy all else constraints.

4.3 Adding Logical Structure to Constraint Patterns

We add structure to the concept of constraint patterns by introducing the con-
cepts of negation and implication in a class StructuredConstraint, which is a
specialization of the UML meta-class Constraint. Class StructuredConstraint has
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StructuredConstraint

negated : Boolean

AtomicConstraint

CompositeConstraint

properties : Constraint [*]

objects : OclExpression

«metaclass»

Constraint

constrainedElement : Element [*]

1

* - assumption

Fig. 5: UML Class Diagram Overview of Structured Constraint Classes

two child classes, namely the previously introduced classes AtomicConstraint and
CompositeConstraint. This idea is illustrated in Fig. 5.

The concept of logical implication is realized as follows. Each structured
constraint c can have a finite set A of assumptions that can be any kind of con-
straint. This is illustrated by the association assumption from StructuredCon-
straint to Constraint. This allows us to use either arbitrary constraints (defined
by a UML ValueSpecification) or structured pattern instances as assumptions for
constraints. The semantics of the assumption relation is defined as follows: Let
c be an instance of a structured constraint and A be a finite set of constraints
that is related to c with the assumption relation. Then the conjunction of all
constraints in A implies c. The concept of logical negation is realized by the
attribute negated of the class StructuredConstraint.

5 Transforming CIM to PIM

Having defined a library of CIM constraint patterns, we provide the transforma-
tion definitions that are necessary to generate PIM constraints from the param-
eterized patterns. In this section, we introduce a transformation that generates
OCL constraints from parameterized CIM constraint patterns. The transforma-
tion transform_OCL(c) uses OCL templates to generate output. We use pseudo
code that has the same expressivity as common programming languages for the
definition of the operations.

Three steps are necessary to transform an atomic constraint pattern.
First, the assumptions need to be generated. Therefore, we define a function
transform_assumptions_OCL(c) (Listing 1.1). Then, the OCL keyword not is
inserted if the pattern attribute negated is true. Finally, the variables in the
templates for the constraint patterns are replaced by concrete values from the
pattern specification. The OCL templates are shown in Table 1.

sub transform_assumptions_OCL ( c : S t r u c t u r e d C o n s t r a i n t ) {
# p r i n t the c o n j u n c t i o n of as sumpt i ons
f o r e a c h p i n c . as sumpt ion

p r i n t ( transform_OCL ( p ) + " and " ) ;
5

# p r i n t the i m p l i c a t i o n o p e r a t o r ;
# i t needs to be p receded by ‘ t rue ’ to g e n e r a t e c o r r e c t s y n t a x
p r i n t " t r u e i m p l i e s " ;

}

Listing 1.1: Transformation Function for assumptions
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For conciseness, we do not present a definition of the replace_parameters(t)
function. Listing 1.2 shows complete the transformation from CIM to PIM for
an atomic pattern.

sub transform_OCL ( c : A t o m i c C o n s t r a i n t ) {
# p r i n t the a s sumpt i ons of the c o n s t r a i n t
transform_assumptions_OCL ( c ) ;

5 # p r i n t the OCL keyword ‘ not ’ i f the c o n s t r a i n t i s negated
i f ( c . negated ) p r i n t " not " ;

# r e p l a c e the v a r i a b l e s i n the t emp la t e and p r i n t c o n s t r a i n t
p r i n t r e p l a c e _ p a r a m e t e r s ( t emp la t e ( c ) ) ;

10 }

Listing 1.2: OCL Transformation Function for Path Depth Restriction Pattern

Pattern Name Template

PathDepthRestriction

def: pathDepth(max:Integer, counter:Integer): Boolean =
if (counter > max or counter < 0 or max < 0) then false
else if (self.<navigation>−>isEmpty()) then true

else self.<navigation>.forAll(e|e.pathDepth(max,counter+1))
endif endif

inv: self.pathDepth(<maxDepth>−1,0)
MultiplicityRestriction inv: self.<navigation>−>size() <operator> <term>
AttributeValue–
Restriction inv: self.<targetAttribute> <operator> <operand>

UniqueAttributeValue inv: self.allInstances()−>isUnique(<targetAttribute>)
ObjectIsInCollection inv: self.<navigation>−>includes(self)
AssociationType–
Restriction

inv: self.<navigation>−>forAll( x | <allowedTypes>
−>exists( c | x.oclIsTypeOf(c)))

CyclicDependency
def: closure<navigation>(S:Set(OclAny)) : Set(OclAny) =

<navigation>−>union((<navigation> − S).
closure<navigation>(S−>union(<navigation>))−>asSet())

inv: not self.closure<navigation>(Set{})−>includes(self)

InjectiveRelation
inv: self.<navigation>.lower = 1 and

self.<navigation>.upper = 1 and
self.allInstances()−>forAll(x1,x2 |

x1.<navigation> = x2.<navigation> implies x1=x2)

SurjectiveRelation inv: self.<navigation>.allInstances()−>forAll( y |
y.<relation>−>size() >= 1)

UniquePath inv: self.<navigation>−>forAll( x |
self.<navigation>−>count(x)=1)

Table 1: OCL Templates for Atomic Constraint Patterns
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The composite constraints we introduced use other constraints as properties
for the elements in their object collections. This higher-order use of constraints
makes the code generation slightly more complicated than for atomic constraints.
A special transformation needs to be written for each composite pattern. For
instance, a transformation function for the Exists pattern is shown in Listing 1.3.
The transformation function for the ForAll is similar; only line 6 needs to be
adapted. The IfThenElse pattern can be transformed analogously.

The OCL generation works as follows. First, the assumptions and the nega-
tion are generated if necessary (lines 2,3). Then, the header for the existential
quantification over the object collection is generated (line 6) where e is the vari-
able that represents an element of the collection. In lines 9-12, a conjunction
of expressions is created from the properties of the Exists pattern. In this con-
junction, every occurrence of the keyword self is replaced by the bound variable
e. Finally, the conjunction is concluded with the constant true and a closing
bracket is added (line 15).

1 sub transform_OCL ( c : E x i s t s ) {
2 transform_assumptions_OCL ( c ) ;
3 i f ( c . negated ) p r i n t " not " ;
4
5 # p r i n t the f i r s t p a r t of the c o n s t r a i n t body and open b r a c k e t
6 p r i n t " s e l f . "+c . o b j e c t s+"→e x i s t s ( e | " ;
7
8 # p r i n t the p r o p e r t i e s t h a t e needs to s a t i s f y
9 f o r e a c h p i n c . p r o p e r t i e s {

10 p r i n t transform_OCL ( c . p r o p e r t i e s ) . r e p l a c e ( " s e l f " , " e " ) ;
11 p r i n t " and " ;
12 }
13
14 # p r i n t a f i n a l i z i n g ‘ t rue ’ and c l o s i n g b r a c k e t
15 p r i n t " t r u e ) " ; }

Listing 1.3: Transformation Functions for Composite Constraints

6 Tool Support for Model-Driven Constraint Engineering

Tool support is essential for the acceptance and success of model-driven engi-
neering approaches. In the following, we present how we employ our idea of
structured CIM constraint patterns in a model-driven development tool.

As depicted in Fig. 5, our concept of structured constraint is a specialization
of the UML meta-class Constraint. We suggest an implementation of our ap-
proach as UML Profile where each structured constraint pattern is represented
by a UML stereotype. The taxonomy of constraint patterns is realized using
generalization associations between the stereotypes. The attributes of the con-
straint patterns become attributes of the stereotypes in the implementation.
Here, one deficiency of UML 2.0 becomes critical. In UML 2.0, stereotypes may
not have associations with meta-classes [24]. Thus, a UniqueAttributeValue con-
straint cannot refer to the UML meta-class Property. Even worse, a composite
constraint cannot refer to other constraints that elements need to satisfy. How-
ever, this deficiency no longer exists in UML 2.1 [25], where associations between
a stereotype and a meta-class may be defined.
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Fig. 6: Screenshot of Eclipse/UML Profile Editor

The Eclipse UML2 project [13] provides an implementation of the UML
2.1 meta-model based on the Eclipse Modeling Framework [14]. This makes
Eclipse/UML2 an ideal platform for realizing tool support for structured con-
straint patterns. In Fig. 6 we show a screenshot of the UML Profile editor in
Eclipse. As can be seen, the taxonomy of structured constraint patterns can be
implemented in a straight-forward manner.

Fig. 7: Screenshot of Constraint Wizard

We prototyped a graphical user interface that guides a user during constraint
creation and maintenance. In Fig. 7 we show a screenshot of our “wizard”. In the
top left window, the user can choose a constraint pattern. When a pattern is se-
lected, a description of the pattern and its parameters are shown in the top right
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part of the window. In the bottom part, the attributes of the selected pattern
are shown and values can be entered for them. As can be seen, the wizard im-
plements one CIM-to-PIM transformation that generates OCL expressions and
one CIM-to-PSM transformation that creates Java code for run-time model val-
idation. Furthermore, the wizard can also be used to modify previously created
structured constraints.

6.1 Applying the Tool to the Example

We have claimed throughout this paper that our approach helps to decrease
development time and rate of syntactic errors. To indicate the practicability of
our approach, we revisit the example from Sect. 3 and apply our method to
it. Using the constraint wizard prototype, we choose appropriate patterns for
Constraints 1–3 and specify their parameters.

The result can be seen in Fig. 8. The class Manager is constrained by two
atomic constraints. An instance of the PathDepthRestriction pattern, represent-
ing Constraint 3, and an instance of the CyclicDependency pattern representing
Constraint 2 are attached to Manager. Constraint 1 is realized as an instance of
the composite pattern Exists: among the set of all employees (self.employs), at
least one element needs to satisfy the AttributeValueRestriction property that is
attached to the composite constraint.

Manager

budget : Integer

Employee

name : String

salary : Integer

Not more than five hierarchy levels.

«PathDepthRestriction»

{navigationPath = employs,

maxDepth = 5}

Must employ one employee with 

salary of at least 3000.

«Exists»

{objects = self.employs}

Salary ist at least 3000.

«AttributeValueRestriction»

{targetAttribute = salary,

operator = >=,

operand = 3000}

properties

May not manage her-/himself.

«CyclicDependency»

{negated = true,

navigation = employs}

1..*

+ worksFor

*

+ employs

Fig. 8: Example Class Diagram with Structured Constraints Attached

This small example shows the benefits of our approach. The two compli-
cated constraints, Constraint 2 and 3, can be specified by simply providing two
parameter values each. If requirements change, these constraints can be quickly
adapted without reading, adapting and testing verbose expressions. Constraint 1
is split into two parts, a quantification and a predicate part. This allows for
advanced graphical input support that may help users without background in
formal languages.

We believe that this small example already shows the practicability of our
approach. Complicated recursive expressions are replaced by structured, concise
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and easy-to-read constraint definitions. In addition, our model-driven approach
enables the automatic generation of platform-independent or platform-specific
constraints in various languages or modeling frameworks.

7 Related Work and Conclusion

The difficulty of developing concise and correct OCL constraints has been ad-
dressed in numerous publications. OCL is considered to be a very important
formalism in today’s modeling technologies, still unsolved problems make con-
straint development difficult [9]. Several solutions have been proposed for dealing
with the complexity of constraints and syntactic hurdles. In [10], a set of recom-
mendations is provided to increase correctness, clearness and efficiency of OCL
specifications. To simplify the syntax of OCL, a visual concrete syntax for OCL
is proposed in [6].

Several publications use the idea of constraint patterns, thus following up
the general idea introduced in [15]. Patterns for model-driven development con-
straints were first mentioned in [5], where one pattern – Singleton – is introduced.
The idea of constraint patterns is further elaborated on in [1,2], where a small
number of constraint patterns are introduced along with OCL templates.

Here, we have introduced the idea of model-driven constraint engineering.
Our approach goes beyond existing work in three directions. Firstly, we have in-
troduced the notion of computation-independent patterns and transformations
to platform-independent constraints. Secondly, we have introduced a library of
patterns that goes far beyond existing pattern solutions in quantity and quality
and provided a high degree of expressiveness to this approach by adding logical
structure and classifying patterns into atomic and composite patterns. Thirdly,
we provide tool support for applying the concepts in a real development envi-
ronment.

We claim that our approach helps to decrease the time and error rate for
constraint development. For instance, the OCL expression that is necessary to
express Constraint 3 (Sect. 3) uses a recursive definition that is not easy to
understand. In contrast to the lengthy and complicated OCL statement, the same
constraint can be defined as an instance of the PathDepthRestriction pattern.
Appropriate tool support (Fig. 7) further reduces the problem of defining a
constraint by pointing-and-clicking to relevant model elements.

The patterns that we present in this paper were elicited from a large set of
structural constraints for a model in the business process modeling domain. From
the current constraint patterns, almost 90% of the constraints in our case study
(cf. Sect. 1) can be instantiated. We believe that more interesting constraint
patterns can be identified in other application domains, e.g., model transfor-
mations [18], ontology modeling [12] or model refactorings [16]. Therefore, we
envision to make the taxonomy publicly available such that any interested user
can use the approach and extend the constraint pattern library.

Future work includes the definition of new atomic and composite constraint
patterns. However, a pattern-based approach such as the one that we introduce
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in this paper is always a tightrope walk between simplicity and completeness
with respect to the expressivity of the underlying constraint language. On the
one hand, patterns are there to simplify the definition of constraints by providing
abstractions for commonly used constraint expressions. On the other hand, given
a set of constraint patterns, you can always find a constraint that cannot be
expressed as an instance of the available patterns. Adding as many patterns in
as much detail as possible to the taxonomy will eventually turn the taxonomy
into a meta-model of the OCL language specification. Such a fine granularity
would not help with the initial problems of time consumption and error rate.

As a rule of thumb, we discourage the introduction of trivial patterns for two
reasons. Firstly, trivial patterns can always be replaced by short OCL expres-
sions. Secondly, a large number of patterns makes it difficult to keep an overview
and select the “right” pattern for a specific purpose. For this reason, we discour-
age the use of the AttributeValueRestriction pattern, which we included in this
paper for “historic” reasons only. The other patterns will be subject to discussion
whether they simplify matters or introduce additional overhead. We believe that
further case studies can clarify this issue. Future work also includes the devel-
opment of constraints for the patterns themselves that deal with problems such
as meaningful input ranges or type safety for the values of pattern variables.

We would like to emphasize that although we have introduced a wizard, we
cannot spirit away the complexity inherent to many constraints. However, we
believe that that our approach offers a powerful tool for dealing with this inherent
complexity.
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Abstract. In this paper, we report on our experiences integrating OCL
evaluation support in an industrial-strength (meta-)modeling infrastruc-
ture. We focus on the approach taken to improve efficiency through what
we call impact analysis of model changes to decrease the number of nec-
essary (re-)evaluations. We show how requirements derived from appli-
cation scenarios have led to design decisions that depart from or resp.
extend solutions found in (academic) literature.

1 Introduction

The MDA [1] vision describes a framework for designing software systems in a
platform-neutral manner and builds on a number of standards developed by the
OMG. Within this paper, we are mostly concerned with the Meta Object Facil-
ity (MOF) [2] used to define, manipulate and integrate meta-data and data in a
uniform manner, and the Object Constraint Language (OCL) [3], originally de-
signed as an extension to the Unified Modeling Language (UML) [4] to formally
capture additional integrity constraints on UML models. In the meantime, the
scope of OCL has been extended towards a model query language suitable for
supporting model-to-model transformation tasks [5].

With its upcoming standard-compliant modeling infrastructure, SAP plans
to support large-scale MDA scenarios with a multitude of meta-models that put
additional requirements on the technical solution that are normally considered
out-of-scope in academic environments. This may lead to solutions that may
be considered inferior at first sight, but actually result from a broader set of
(sometimes non-functional) requirements.

This paper focuses on one particular aspect in SAP’s modeling infrastruc-
ture, namely a efficient support for OCL, both as a constraint language for
meta-models and as query language for other tasks, such as model-to-model
transformations or generic tool support. We will show how we have modified
some of the existing approaches to better fit the requirements we’re facing in
our application scenarios.

The rest of the paper is organized as follows: In section 2, we will give an
overview of SAP’s modeling infrastructure focusing on features that are consid-
ered critical in large-scale industrial environments. Then, in section 3, we will
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summarize related work in the area of OCL impact analysis that has guided
our work leading to a more detailed description of our approach in section 4.
In section 5, we will report on first experimental experiences and conclude in
section 6 by summarizing our work.

2 The SAP Modeling Infrastructure (MOIN)

Mid of 2005, SAP launched “Modeling Infrastructure” (MOIN), a development
project within the NetWeaver4 organization. The goal of the MOIN project is
to implement the platform for SAP’s next generation of modeling tools.

2.1 Modeling at SAP

In the past years, SAP’s development teams made extensive use of modeling ap-
proaches, convinced that this shortens development cycles and improves quality
of both, software designs and implementations. Especially in the area of business
process platform development, modeling has proven as highly efficient.

Often without being aware of it, various teams advanced existing design-time
tools into special purpose modeling solutions. In most cases, being very powerful
with respect to the intended use case, these tools show deficiencies concerning
interoperability. One becomes aware of this after looking at the complete suite
of tools, which has developed over time.

A key to consolidation of the tool suite lies in establishing one common
platform, which offers all the services required by these tools.

2.2 Overview on the Architecture and Services of MOIN

The requirements for MOIN resulted in an architecture, which consists of the
components described in the following sections as major building blocks.

Repository First and foremost, MOIN is a repository infrastructure for meta-
models and models. In particular it is capable of storing any MOF compliant
meta-model together with all the associated models. For accessing this content,
JMI compliant interfaces can be used, which are generated for the specific meta-
model. This allows client applications to navigate and manipulate both, models
and meta-models.

The MOF standard does not impose any concepts for physical structuring
of model content onto the implementer. However, for features like locking or
even the simplest read-operation, some notion of a meaningful group of model
elements is required. For that, MOIN offers the concept of model-partitions,
which allows users splitting up the graphs represented by model content into
manageable buckets.

The MOIN repository component basically deals with storing and loading of
model-partitions.
4 SAP and SAP NetWeaver are trademarks or registered trademarks of SAP AG in

Germany and in several other countries.

OCLApps 2006 Workshop 127



Query Mechanism JMI is well suited for exploring models, by accessing at-
tributes, following links etc. However, for many use-cases more powerful means
of data retrieval are needed. The MOIN query API therefore provides flexible
methods for retrieving model elements, based on their types, attribute values,
relationships to other model elements etc.

As part of the query API, we expose the abstract syntax of a query language,
which is specific for MOIN, the so called MOIN query language (MOIN QL). This
query language is tailored to the needs of the MOIN clients and supports MOIN-
specific concepts like model-partitions, which are not part of OCL. However, it
is planned to implement a mapping mechanism, which is capable of translating
query parts of OCL statements into MOIN QL.

Eventing Framework Events can be used by MOIN clients to receive notifica-
tions for e.g. changes on models. This supports an architecture of loosely coupled
components. More specifically, events are raised upon a. creation or deletion of
model elements, b. attribute changes on a model element (i.e. value change,
add or remove attribute), c. creation or deletion of links or d. creation, storing
or deletion of model partitions, e. membership change of model elements wrt
model-partitions etc.

Commands The MOIN command framework is the basis for undo/redo func-
tionality, which will be part of most of the modeling tools. For that, modeling
tools perform operations on the model content, which is bundled into a command
object. Command objects can be put onto a stack, the so called undo/redo-stack.
All commands implement methods for undo and redo. By calling undo for com-
mands on the undo/redo-stack, any given number of user-actions following a
save-operation can be reverted.

Model Transformation Infrastructure (MTI) The model transformation
infrastructure (MTI) is planned as basis for model-to-model and model-to-text
transformations, which can be defined by MOIN users for specific meta-models.
MTI will provide a framework for defining and executing these transformations,
where OCL is considered as option for describing query parts of transformation
rules. However, since the design of MTI is not final yet, a sound assessment on
the suitability of OCL for these use cases in the context of MOIN can not be
made.

MOIN Core The MOIN core is the central component in the MOIN architec-
ture, implementing and enforcing MOF semantics. It is independent from the
deployment options and development infrastructure aspects and calls the other
components for implementing all of MOIN’s functionality.

By managing the object instances, representing model elements, the MOIN
core can also be seen as in-memory cache for model content. However, it also
manages the complete lifecycle of objects, triggers events, is involved in the
execution of commands and uses the repository layer to read or write data.
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OCL Components Apart from query and probably MTI, OCL is primarily
used in meta-models to state constraints for the associated models, which cannot
be expressed with means of MOF directly.

For the efficient evaluation of constraints, mainly four components are essen-
tial: a. the OCL parser, b. the OCL evaluator, c. the impact analysis and d. the
MOIN core, which manages the checking of constraints by calling the impact
analysis and the OCL evaluator.

The impact analysis is essential for the efficient implementation of constraint
checking, as it avoids the unnecessary evaluation of constraints in specific situ-
ations. The impact analysis is described in section 4 in more detail.

3 Related Work

To our knowledge, there is not much related work in the area of optimization of
OCL expression evaluation at the moment. In [6] the authors describe an algo-
rithm to reduce the set of OCL constraints that have to be reevaluated if a model
change did occur. Our solutions is based on that approach, but is more general
in that it covers any sort of OCL expression, whereas [6] focuses on constraints
only, which makes further optimizations possible: Assuming that all constraints
are initially valid (i.e. works start with a consistent model) it is sufficient to
identify only the events potentially causing constraint violation. However, there
are application scenarios in MOIN where this assumption does not hold at all.
Imagine a tool, which checks constraints while a user is editing, and marks ele-
ments violating constraints. Here it is important to know whether the violation
was fixed so the highlighting can be removed. Sometimes, it may even be desir-
able, or at least tolerable to temporarily leave meta-models in an inconsistent
state, like situations where the architect or designer is not yet able to provide
all mandatory information. In other scenarios, like model transformations, we
have to deal with any sort of OCL expressions, not only constraints, thus any
modification causing the query to evaluate differently are relevant.

In a second paper [7], the same authors describe a method to reduce the num-
ber of context instances for which relevant OCL constraints have to be evaluated.
It can be seen as a further optimization on top of the approach in [6]. The idea
of decomposing expressions into sub-expression and building paths through the
model was taken from there. However, there are two major differences: Firstly,
the introduced method relies on an extension of the constrained model for com-
puting instances. Helper associations are introduced to keep track of the applied
navigations and to finally compute the affected instances, which have to be con-
sidered for reevaluation. This approach clearly violates one of our requirements
that meta-models should stay intact avoiding any modifications not intended by
the user. As we will see in the next section, we have taken a different approach
to compute the relevant instance set which we believe is more flexible and allows
further optimizations. Secondly, [7] leaves out some important details about how
to handle indirect sub-expressions, esp. in the context of loop expressions (like
collect and iterate), user-defined operations and attributes. Aiming at a full
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support of all language features, we have to provide solutions for those topics as
well.

In [8], the authors go even one step further, and actively rewrite constraints
for further optimizations. This may even lead to attaching a constraint to a new
context. While this approach may definitely lead to a better performance than
our approach, we did not consider optimizations in that direction, because this
would introduce additional management overhead if we hid that transformation
from the modeller and kept the two versions of constraints in sync.

In [9] a rule-based simplification of OCL constraints is introduced. These
simplifications involve constant folding, removing of tautologies and unneces-
sary if-then-else constructs and more and are used to simplify automatically
generated OCL constraints. We intentionally abandoned that approach in our
work, because of usability issues: Users may get totally confused if, e.g. viola-
tions are reported on expressions they have never seen before, but merely result
from silent rewrites of their expression by the underlying infrastructure.

4 OCL Impact Analysis in the SAP Modeling
Infrastructure

This section presents the architecture and functionality of the OCL impact analy-
sis and how it fits into SAP’s modeling infrastructure.

4.1 Architecture

To support a wide range of different usage scenarios we decided to implement the
impact analyzer (IA) as a general optimization add-on to applications5, which
have to deal with OCL in some way.

As indicated in Figure 1, interacting with the IA happens in two phases:
Firstly, in the analysis phase (steps 1-3), a set of parsed OCL expressions is
passed to the IA, whereupon a filter expression is returned. This filter can then
be used to register with the eventing framework, so the application will only
be notified about relevant model change events. Secondly, in the filter phase
(steps 4-6), a received event can be forwarded to the IA to identify the OCL
expressions affected by a change and the set of context instances per expression,
for which the expression has to be reevaluated.

In fact, IA does not actually return a set of context instances, but OCL
expressions evaluating to that set. This allows for quick responses and leaves
further optimizations to the evaluator. Furthermore, in contrast to [7], this ap-
proach does not rely on an extension of the meta-model.

Typically, steps 1-3 are only executed once at the beginning, whereas steps 4-
6 are executed often during the run-time of an application using IA.

5 Such an application could be a constraint checker, a model transformation engine,
etc.

OCLApps 2006 Workshop 130



Eventing 
Framework

(1) Analyze({OclStatement})

(2) Event Filter
(5) Event

(6) {(OclStatement, Instances)}
(3

) E
ve

nt
 F

ilte
r

(4
) E

ve
nt

"Application" Impact
Analyzer

Fig. 1. Impact Analyzer Architecture.

During the analysis phase, the OCL expressions are analyzed and internal
data structures are built up, which are then used in the filter phase for quick look-
ups. These data structures are based on so-called internal events which represent
classes of model change events provided by MOIN’s eventing framework. The
relationship between internal events and model change events is shown in Table 1.

The analysis phase itself is split up into a class scope analysis and a sub-
sequent (optional) instance scope analysis. Both methods are described in the
following sections.

4.2 Class Scope Analysis

The goal of the class scope analysis is to find the set of internal events (i.e., all
types of model change events) which can cause the given expression to evalu-
ate differently. At this point, it is assumed that all affected expressions have to
be evaluated for all its context instances6. As outlined in Section 3, we use a
generalized approach from [6] and walk the abstract syntax tree (AST) repre-
senting the given OCL expression in a depth-first manner, tagging each node
with internal events that are relevant to it:

– Variable expressions referring to self→ CreateInstance(context), where
context identifies the type of self

6 Hence the name class scope analysis.
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Internal Event Model Change Event

CreateInstance(c:MofClass) ElementAddedEvent(o:RefObject)
where o.refMetaObject = c

DeleteInstance(c:MofClass) ElementRemovedEvent(o:RefObject)
where o.refMetaObject = c

AddLink(e:AssociationEnd) LinkAddedEvent(f:RefFeatured,
link:Sequence(RefObject))
where e = f

RemoveLink(e:AssociationEnd) LinkRemovedEvent(f:RefFeatured,
link:Sequence(RefObject))
where e = f

UpdateAttribute(a1:Attribute) AttributeValueEvent(RefObject o, Attribute a2)
where a1 = a2

Table 1. Mapping between internal events and model change events

– Operation calls C.allInstances() → CreateInstance(C),
DeleteInstance(C)

– Association end calls to aE → AddLink(a), RemoveLink(a), where a identi-
fies the association to which the association end aE belongs

– Attribute call expressions to a → UpdateAttribute(a)

An OCL expression needs to be reevaluated if an event occurs which matches
one of the internal events attached to a node in its AST. The IA’s internal data
structure therefore associates each internal event with a set OCL expressions
affected by a model change event matching that internal event. Given a concrete
model change event during the filter phase, IA determines the corresponding
internal event and simply looks up the OCL expressions affected by that event.

For user-defined attributes and operations, the analyzer recurses into their
bodies. The evaluation of a user-defined attribute or operation changes if its
body is affected by a change to the model, thus affecting the evaluation of any
expression referring to that user-defined operation or attribute.

i nv : context Department
s e l f . employee−>s e l e c t ( e | e . age<23)−> s i z e ()< s e l f . maxJun io r s

Listing 1.1. Example OCL expression used throughout this paper.

Example: Given the OCL expression in Listing 1.1, stating that per department
only a certain number of junior employees are allowed. After having applied class
scope analysis, the following internal events are relevant to the given expression:
CreateInstance(Department), AddLink(employee), RemoveLink(employee),
UpdateAttribute(age), UpdateAttribute(maxJuniors).
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4.3 Instance Scope Analysis

The goal of instance scope analysis is to reduce the number of context instances
for which an expression needs to be reevaluated. Following the approach in [7],
this is done by identifying navigation paths (i.e., sequences of attributes and
association ends) in an expression starting at the context. If an object is changed,
an OCL expression has to be reevaluated for those context instances from where
the changed object can be reached by navigating along these paths. Given an
element affected by a change, the set of context instances for which an expression
needs to be reevaluated, can be found by following the reverse of the navigation
paths. Once identified, these reverse paths are turned into OCL expressions and
stored in the internal data structure. By evaluating these expressions, the set of
context instances can be computed from a given changed element.

The following sections describe in more detail how sub-expressions and sub-
sequently navigation paths can be identified and how they are reversed and
translated into OCL.

Identifying Sub-Expressions The first step is to find sub-expressions. Sub-
expressions start with a variable, or allInstances() and end in a node being
the source of an operation with a primitive return type or in a node being a
parameter of an operation or the body of a loop expression. Sub-expressions can
also contain child sub-expressions in the body of a loop expression.

Two types of sub-expressions can be distinguished: class and instance.
Class sub-expressions start (directly or indirectly) with allInstances() and

thus have to be evaluated for all instances of a class. There is no way to reduce
the number of instances in this case.

Instance sub-expressions on the other hand start (directly or indirectly) with
self. In this case, a subset of context instances can be identified for which the
expression has to be reevaluated. The following steps only apply to instance
sub-expression.

Example: Given the OCL expression in Listing 1.1, the following sub-expressions
can be identified:

1. self.employee->select()
2. e.age
3. self.maxJuniors

Identifying Navigation Paths As per definition, sub-expressions consist only
of navigation operations but do not necessarily start at the context. To get a se-
quence of navigation operations starting at the context, the navigation contained
in a child sub-expression has to be concatenated with the navigation of the par-
ent sub-expression. This approach only works for loop expressions calculating a
subset of their source (e.g. select, reject).
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i nv : context Employee
s e l f . employer−>c o l l e c t ( d : Department | d . employee )−> . . .

Listing 1.2. The body of collect has to be included in the parent’s navigation
path.

Example: Considering the last example, the corresponding navigation paths,
relative to the context, are:

1. <employee>
2. <employee, age>
3. <maxJuniors>

As the second sub-expression does not start at the context, its navigation
path has to be concatenated with the navigation path of its parent, i.e., the first
sub-expression.

For loop expressions returning a completely different set compared to their
source (e.g. collect, iterate), another approach has to be used. In this case the
navigation contained in the body has to be included in the parent’s navigation
path because it contains vital information about how to get from the source type
to the return type. Otherwise, there would be a gap in the navigation path.

Example: Considering the OCL expression in Listing 1.2, the following two nav-
igation paths can be identified:

1. < employer, employee, . . . > (for the parent sub-expression)
2. < employer, employee > (for the child sub-expression)

In this case, the collect operation takes a set of Departments and returns a
set of Employees. Only by examining the body it can be said how to get from
Department to Employee: by following the employee association end.

Reversing Navigation Paths Having applied class scope analysis before, each
AST node has internal events, by which it is affected, attached to it. For each
AST node and each internal event attached to it, the way back to the context
has to be identified. This is done by reversing the navigation path which leads
from the context to the currently considered AST node.

Example: Continuing the running example in Listing 1.1, we get the reverse
navigation paths for each relevant internal event identified by class scope analysis
as shown in Table 2.

If a new Department is created, the expression obviously has to be evalu-
ated for that Department, therefore, the reverse navigation path is empty. If
an employee is added to or removed from a department, the reverse navigation
path is empty as well. More interesting is the case when the age of an employee
is changed. In this case, navigating along the employer association end (oppo-
site of employee) reveals the department, for which the expression has to be
reevaluated.
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Internal Event Navigation Path

CreateInstance(Department) <>
AddLink(employee), RemoveLink(employee) <>
UpdateAttribute(age) < employer >
UpdateAttribute(maxJuniors) <>
Table 2. Internal events and corresponding navigation paths.

Translating into OCL The identified reverse navigation paths are translated
into OCL and then stored in the internal data structure. Each internal event is
associated with a number of expressions, which are affected by it. For each pair
of internal event and affected expression a set of OCL reverse path expressions is
associated with it. Evaluating that set of expressions for a given changed object
results in the set of affected context instances.

For navigating along association ends, translation is straight forward: An
association call expression is created referring to the reversed, i.e., opposite as-
sociation end. Reversing object-valued attributes, however, is not that easy. Un-
fortunately, OCL does not offer a construct to find the owner of an attribute
value. However, a legal OCL expression can be constructed which finds the at-
tribute value’s owner. The construct simply goes through all instances of a type
T and checks whether it’s attribute attr points to the given value v.

T. a l l I n s t a n c e s ()−> s e l e c t ( a t t r=v )

For performance reasons, an optimized evaluator could simply replace such
a construct by a v.immediateComposite() call on the JMI object to determine
the value’s owner.

Example: Continuing the running example, in case of an UpdateAttribute(age)
event the following OCL expression computes the Department for which the
expression in Listing 1.1 needs to be reevaluated.

i nv : context Employee
s e l f . employer

5 Preliminary results

To show the efficiency of our approach we present a theoretical best and worst
case analysis, assessing the whole range of possible performance benefits. Fur-
thermore, to see the impact on performance in practice we set up a test scenario
using the MOF constraints defined in [2] with the UML meta-model as an in-
stance of MOF.

5.1 Theoretical analysis

How much can be gained from using IA depends on four dimensions: The meta-
model, the set of constraints, the set of instances and the set of events reported
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to an application. Note that these dimensions are not entirely orthogonal to each
other.

Worst case analysis The first optimization used by IA is to reduce the number
of events by removing irrelevant events. If we assume that only relevant events
are reported, then there is no benefit from using IA. The next step is to reduce
the number of expressions to be considered for evaluation to a subset of relevant
expressions. If we further assume that all, or at least a large number of constraints
use the same features, then each event is relevant to all expressions. So, there is
no benefit either. The last optimization step it to reduce the number of context
instances for evaluation. Assuming all expressions are class expressions (i.e.,
use allInstances()), this last optimization step does not yield performance
benefits either. Hence, the worst case is that there are no performance benefits
at all. Even worse, analyzing the set of expressions and computing the affected
context instances adds an extra penalty to the application using IA.

Best case analysis In the very best case we assume that only irrelevant events
occur. Without any optimizations lots of unnecessary work has to be done,
whereas an application using IA is not even bothered – no unrelated events
are reported to the application due to the filter mechanism provided by MOIN.

The second best case is that relevant events occur. If we assume that each
feature in the model is only referred to by one statement, each event is only
relevant to one statement. Given n statements, only 1/n of the statements have
to be considered for evaluation. Furthermore, if we assume, that the model makes
only use of one-to-one associations, for each model element affected by a change,
only one context instance has to be considered for evaluation. In total, given n
OCL statements and m instances per context, the work can be reduced to 1

nm
of the work of an application without IA support. Depending on the number of
statements and instances, this can be an enormous reduction.

5.2 UML-meta-model + MOF-constraints

To have a more realistic assessment of the performance benefits achieved by
IA, we used the MOF-constraints7 and the UML-meta-model, an instance of
MOF, as a test scenario. Both, the MOF-constraints and the UML-meta-model
are taken from real life and are non-trivial. As a reference, we shall compare
all results to a naive application, i.e. an application which has no means of
optimization and has to reevaluate all constraints for any change to the model.

There are two different applications using IA to different extents. Firstly,
class scope application, which uses only the class scope analysis part. Secondly,
instance scope application, which uses IA to its fullest extent. All three appli-
cations are exposed to the same model changes in the same order. Each model

7 As not all of the constraints where proper OCL and our evaluator did not support
type conversion at the time, we used only a subset of 38 constraints.
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element in MOF is covered by exactly one event if there exists an instance of
that model element in the UML-meta-model.

Reduction of expressions We consider the number of expressions which have
to be evaluated after an event has been reported. In Figure 2 we compare the
results from the class scope application to the naive application8. As the naive
application has no means of optimization, it has to evaluate all (38) expressions
for any event, whereas the class scope application does not have to evaluate
expressions which cannot have changed due to the reported event.

For about 1/4 of the events, the number of relevant expressions could be
reduced to one by applying class scope analysis. This is a reduction by 97%. For
about 1/8 of the events, the number of relevant expressions could only be reduced
to 12 and 11 respectively. Still, this is a reduction by 68% (71%). In average, the
number of expressions to evaluate was reduced by 88%. The Median is 92%. As
instance scope analysis does not reduce the number of expressions further, it is
omitted.
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Fig. 2. Reduction of relevant expressions.

Reduction of context instances Here we consider the number of evaluator
calls necessary to evaluate all affected expressions. An evaluator call is equal
to the evaluation of one expression for one context instance. The numbers in
Figure 3 also include evaluator calls necessary to compute the set of affected
context instances. As class scope analysis reduces the number of expressions to
evaluate, the number of evaluator calls is reduced as well. Therefore, the number
of evaluator calls experiences about the same reduction as the number of expres-
sions. After an already substantial reduction by class scope analysis, instance
8 As class scope analysis does not reduce the number of expressions to be considered

for reevaluation, it is not included in the chart. The results are equal to class scope
application.
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scope analysis achieves another enormous reduction: From several thousands to
twenty or less for about 77% of the events (compare Figure 3). In total, the num-
ber of evaluator calls was reduced by three to four orders of magnitude, which is
an enormous benefit in performance. In contrast to that, the naive application
has to do some 26 000 evaluator calls per event to check the consistency of all
constraints.
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Fig. 3. Reduction of evaluator calls, including evaluator calls for computing the set of
relevant context instances.

6 Conclusion

While efficient support for OCL is considered crucial in large-scale modeling
environments, surprisingly little work has been published on optimizing OCL
expression evaluation in case of arbitrary model changes. In this paper, we have
reported on our experiences with integrating OCL into SAP’s next generation
modeling infrastructure MOIN.

Although some of the basic approaches from literature could be reused [6, 7],
the actual implementation had to divert from these methods to cope with the
(non-)functional requirements pertinent to MOIN. Most notably, we currently
refused to implement any techniques that would result in silent or user-invisible
changes to either the meta-models or the OCL expressions related to those
meta-models. We know that this may lead to sub-optimal results in terms of
performance, but preliminary experimental results show that the implemented
techniques can still lead to a significant and hopefully sufficient performance
gain. Further optimization techniques may be considered in the future, but they
will have to be evaluated carefully on their trade-offs regarding other desired
features.

Another path of optimization that we have not fully explored yet is the way
how context instances are computed. The current approach is built on using
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OCL as the expression language, but we plan to investigate using the internal
MOIN Query Language for speeding up this computational step.
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Abstract. This paper discusses the integration of the Dresden OCL Toolkit into
the Fujaba Tool Suite. The integration not only adds OCL support for class dia-
grams but also makes OCL usable in Fujaba’s model transformations. This makes
Fujaba’s model transformations more powerful, completely platform independent
and easier to read for developers who are already familiar with OCL. By using the
code generator of the Dresden Toolkit, we are able to generate executable Java
code from Fujaba’s model transformations including the OCL constraints.

1 Introduction

The Fujaba Tool Suite [1] is a CASE tool which supports Model Driven Development
(MDD) [2]. Within MDD model transformations play an important role. Fujaba offers
special interaction diagrams to specify model transformations. Within these diagrams
most of the transformations are specified graphically. Nevertheless, some expressions
have to be specified textually, like complicated constraints, return values, etc. Since Fu-
jaba generates Java source code from model transformations, these textual statements
have been specified using Java expression. Currently, no syntax-checking is done for
these expressions, so an erroneous expression results in a compile error after code gen-
eration. Newer work adds C++ code generation to Fujaba. Note, that if a developer
wants to use C++ code generation, the constraints have to be written in C++ syntax.

So, it would be helpful to have a platform independent constraint language, which
makes syntax checking possible within Fujaba’s model transformations, adds code com-
pletion and code generation for the different target languages Fujaba offers. This work
suggest to use the Object Constraint Language (OCL) [3] for this task. We have inte-
grated the Dresden OCL Toolkit [4] into the Fujaba Tool Suite. So, we use OCL as
constraint language for Fujaba’s model transformations.

Section 2 briefly describes how model transformations are specified using Fujaba,
Section 3 describes the integration of OCL into Fujaba’s model transformations, Sec-
tion 4 discusses code generation and Section 6 concludes.
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2 Story Diagrams – A Short Overview

The Fujaba Tool Suite [1] uses Unified Modelling Language (UML) [5] class diagrams
to model the structure of an application. A previous work [6] has already integrated the
Dresden OCL Toolkit [4] for use in Fujaba’s class diagrams. For behavior specification,
model transformation are specified by using graph transformations within Fujaba. This
is done by modelling specialized UML interaction diagrams for the method bodies, so
called story diagrams [7, 8]. From such diagrams Fujaba can then generate executable
Java source code.

Figure 1 show such a story diagram. The activity diagram models the control flow.
The graph transformations within the activities model the behavior. The first activity
of Figure 1 shows such a graph transformation. Here, starting from the objectthis ,
which is the object the methodnameExists() is called on, a child is search via
thechildren association. This child’sname attribute should equal the passedname
parameter. If such a child is found, it is stored in a local variable calledchild .

Fig. 1.Story diagram

Afterwards, the activity is left. If the graph transformation was applied, it is left
via thesuccess transition. So the method returnstrue . Otherwise, thefailure
transition is taken, thusfalse is returned.

Note, that in Fujaba’s story diagrams, there are several places, where Java source
code can be used, e.g. the return value for a stop activity can be any Java expression and
is directly copied into the source code during code generation.
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3 Integrating OCL into Story Diagrams

This section discusses the integration of OCL into Fujaba’s story diagrams. At first it
will give you a short overview of the possibilities to use OCL in story diagrams. Then
some special characteristics of Fujaba’s story diagrams, which must be considered to
use OCL in story diagrams, are presented. Finally a possible solution which considers
these special characteristics will be shown.

3.1 Where to Integrate

In this section, we will present a short overview of all possibilities to use OCL in Fu-
jaba’s story diagrams. On the left side of the Figures 2–6 one can see some examples
with the actual notation of Fujaba while on the right the same example is illustrated
using OCL:

Attribute expressions can be used to assign new attribute values to an attribute of an
object and to define some additional attribute conditions which must be fulfilled
by an object. In the example of Figure 2 the value of thename attribute of the
this -object is assigned to thename attribute of thechild -object by calling the
getName() method of thethis -object. On the right side of Figure 2 one can see
that thename attribute of thethis -object can be directly referenced using OCL.

Fig. 2.Attribute assertion and attribute constraints

Collaboration statements are used to execute methods, to define new variables or
to assign new values to variables. These operations can be combined using the
sequential, if- or while composition. In the following example (Figure 3) a col-
laboration statement is used to define the variablecount of type Integer. The
sizeOfChildren() method is an automatic generated method of Fujaba for
the to-n association children. It returns the number ofPerson instances which are
assigned to thethis -object as a child. Using OCL one can reference the children
association directly and can call thesize() method of OCL-Set to get the number
of children of thethis -object.

Additional constraints are boolean constraints which can be assigned to a story pat-
tern so that the story pattern is applicable if the constraint evaluates to true. In the
example of Figure 4 the additional constraint defines that thethis -object must
have exactly five children.
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Fig. 3.Collaboration statements

Fig. 4.Additional constraints

Boolean transition guards can be used to realize a if- or while-composition in the
activity diagram part of the story diagrams. In the following example the vari-
able found will be set to true if thechild -object was successfully bound in
the previous story pattern. As one can see on the right side of this example the
oclIsUndefined() method can be used to formulate the boolean condition
with OCL.

Fig. 5.Boolean if-condition

Method return value The last possible use of OCL in Fujaba’s story diagrams is rep-
resented in Figure 6. There one can see that you have the possibility to provide a
return clause for astop activityof a story diagram.
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Fig. 6.Stop activity

3.2 Resolving Scoping

To integrate OCL in Fujaba’s story diagrams we use the OCL parser of the Dresden
OCL Toolkit. It checks the syntax and the consistency of an OCL constraints in the
context of the containing story diagram. To perform a consistency check the parser
of the Dresden OCL Toolkit tries to find all variables which are referenced within an
OCL constraint in its story diagram. To do so, the parser has to know which variables
and objects are defined in the corresponding story diagram. So we have to generate the
context of the OCL constraints in a story diagram.

When generating the context of OCL constraints in Fujaba’s story diagrams we have
to consider some special characteristics of story diagrams:

– In story diagrams thethis -object and the method parameters are predefined bound
objects. Those can always be referenced in OCL constraints.

– A story diagram in general contains many execution paths. Every path visits differnt
story activities and so different variables and objects can be bound. It can e.g. occur
that one variable is not initialized on one special path leading to a story activity and
initialized on another one. That’s the reason why only these variables and objects
can be used in an OCL constraint of a story activity which are defined on every
paths leading to that story activity.

– An object of a story diagram is initialized with a valid value if the corresponding
story pattern is applicable. So the objects of an story pattern can only be referenced
by the OCL constraints of the next story activity if the story activity is connected
by a success or eachtime transition. An eachtime transition is used in combination
with a so called foreach activity. This special activity is not left after the first object
was found, but the specified transformations are executed on every valid object
allocation. In the example of Figure 1 we could have use a foreach activity to count
all children where thename attribute equals the passedname parameter.

In the following we present an algorithm which considers these characteristics and
can be used to generate the context of an OCL constraint in a story diagram. The con-
text, called environment, of an OCL constraint contains all variables that are visible for
the OCL expression. To obtain this context, an environment is assigned to every element
in the story diagram, beginning with the start activity. An environment encapsulates a
set of name–type bindings representing the variables accessible under this environment.
When a name lookup occurs, the environment first checks whether it contains a corre-
sponding binding itself. If this is not the case, the environment can delegate the lookup
to its parent environments (other environments linked to it via a parent association). If

OCLApps 2006 Workshop 144



all parent environments agree on the result of the lookup, this will be returned. If they
do not agree, the lookup fails. As we will see, parent–child relations can, thus, be used
to represent the control flow in a story diagram. Note that story diagrams allow to the
deletion of objects from the object graph. Therefore, after deletion of an object its name
will be no longer bound. To represent this, environments distinguish different types of
bindings; one of them is used to mark deleted objects.

In order to clarify the context generation algorithm an example story diagram is
represented in the next figure. There one can see that first an initial environment e1

Fig. 7.Generation of the OCL-Context

is assigned to the start activity of the story diagram and that the this-object and the
method parameter var1 are added to this environment. In the next step, the outgoing
transition of the start activity is traversed and the first activity is visited. In addition, the
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environment e2 is assigned to the activity as input environment. Since the variables this
and var1 of the environment e1 can also be used within the first activity, the parent/child
relationship between e1 and e2 is created. In the first activity the variable var2 is created
and it is added to the outgoing environment e3 of the activity.

In the next step the two outgoing transitions of the second activity are traversed and
the environments e4 and e5 are assigned to the corresponding story activities. It must
be considered, that on the path following the failure transition the story pattern of the
second activity was not applicable. Consequently, we cannot assume that the objects
of the second activity were successfully bound. Therefore these objects cannot be used
in following OCL constraints. That’s the reason why the parent/child relationship is
made between the environment e4 and the environment e2 and not to the environment
e3. Similarly, the variable var2 could successfully be bound when taking the success
transition and can be used in following OCL constraints. So the parent/child relationship
between the environment e3 and e5 is created. In the next steps the environment e6 and
e7 are created, which contain the visible variables, and the outgoing transitions are
traversed.

As result the environment e8 is assigned to the next story activity and the par-
ent/child relations between the environment e8 and the environments e6 and e7 are
created. At this point the second problem mentioned above must be considered. Since
the variable var4 is defined only on the left path, the environment e8 does not contain
this variable. The same problem applies to the variable var2 also. Because of the suc-
cess transition this variable can be used only in the right path and thus the variable var2
is also not a part of the environment e8.

The last step of the generation process is to generate the environments e9 and e10
which is assigned to the stop activity of the story diagram.

3.3 Fujaba and the Dresden OCL Toolkit

Fujaba4Eclipse[9] is a Eclipse Plugin that among other functions integrates Fujaba’s
story diagrams into eclipse to specify methods. On the basis of Fujaba4Eclipse the
integration of the Dresden OCL Toolkit[4] for Fujaba’s class diagrams has already been
accomplished in [6].

We are, presently, extending this integration to also cover story diagrams. Thus, in-
put, consistency and syntax checking of OCL constraints in story diagram should be
possible, as it is possible already for Fujaba’s class diagrams. We use the algorithm de-
scribed in Section 3.2 to generate the context of OCL constraints in a story diagram. The
generated context is used by the parser of the Dresden OCL Toolkit to check whether
referenced variables within an OCL constraint are defined in the corresponding story
diagram.

Figure 8 shows a screen shot of the tool. In the left lower part of this figure you can
see the OCL-Editor for Eclipse which allows you to create and edit OCL constraints
for a given story diagram. Additional you can use the OCL parser of the Dresden OCL
Toolkit to check syntax and consistency of the OCL constraints against the story dia-
gram. In the example shown in Figure 8 one can see, that an error message is shown in
the problems view of eclipse, since the variable var4 is not defined on the right path of
the example story diagram.
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Fig. 8.Generation of the OCL-Context

4 Generating Code

As already mentioned, Fujaba generates executable Java code from class diagrams and
model transformations. The code that would be generated for the left hand side of Fig-
ure 4 is shown below.

01 // bind child: Person
02 Iterator iter = this.iteratorOfChildren ();
03 while ( !(fujaba__Success) && iter.hasNext () )
04 {
05 try
06 {
07 child = (Person) iter.next ();
08 // check isomorphic binding
09 JavaSDM.ensure ( !(this.equals (child)) );
10 // constraint
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11 JavaSDM.ensure ( child.sizeOfChildren() == 5 );
12 fujaba__Success = true;
13 }
14 catch ( JavaSDMException e ) {}
15 }

To search through all children of thethis object, aIterator is created in line
02. The while loop from line 04 to line 15 is repeated till one child has been found,
that matches all conditions (fujaba Success == true ) or till no more child ex-
ists in the list. In this loop, in line 07 the currentchild object is fetched from the
list. Since thethis object, and thechild object are both of classPerson , it is
possible to make a person its own child. Our semantics forbids that (if not stated dif-
ferent), so this is checked in line 09. Note, that Fujaba provides the library method
JavaSDM.ensure(boolean) which simply does nothing, when passed true and
throws aJavaSDMException otherwise. So, ifthis equalschild , this would
end the checks for the current object and continue with the next one. Otherwise the
additional constraint is checked in line 11. Note, that the text from the constraint is di-
rectly copied into the code surrounded by anotherJavaSDM.ensure . If this test is
also passed,fujaba Success is set to true, to indicate that a valid child has been
found. The loop is terminated in that case.

If the additional constraint is now specified in OCL, as done in the right hand side
of Figure 4, the code generation has to be adapted. We are currently integrating the
code generation of the Dresden OCL Toolkit in the presented work. The modified code
generation would leave most of the code above untouched, but changes only the check
of the condition in line 11. The source code below shows the code which is generated.

01 //bind child: Person
02 Iterator iter = this.iteratorOfChildren ();
03 while ( !(fujaba__Success) && iter.hasNext () )
04 {
05 try
06 {
07 child = (Person) iter.next ();
08 // check isomorphic binding
09 JavaSDM.ensure ( !(this.equals (child)) );
10 // ******************* constraint ****************
11 OclAny self =
12 (OclAny) Ocl.getOclRepresentationFor(this);
13 OclBoolean constraintValid=
14 self.getFeatureAsCollection("children").
15 size().isEqualTo( new OclInteger(5) );
16 JavaSDM.ensure ( constraintValid.isTrue() );
17 // ******************* constraint ****************
18 fujaba__Success = true;
19 }
20 catch ( JavaSDMException e ) {}
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21 }

Within the Dresden OCL Toolkit the OCL Standard Library is implemented by some
Java classes, which are used by the Java code, created by the Java code generator of the
Dresden OCL Toolkit, to evaluate an OCL constraint. To evaluate the OCL constraint
of the right hand side of Figure 4 an instance of the classOCLAny is created as one
can see in line 11 of the code example shown above. This instance is used in line 13 to
get an instance of the classOCLCollection which represents the children associa-
tion end of thethis -object. Afterwards the number of the elements in this collection
is determined using thesize() method of theOCLCollection instance. This re-
sults in an instance of the classOCLInteger which isEqualTo() method is used
to evaluate whether the number of the collection elements equals 5. As result of the
isEqualTo() method call an instance of the classOCLBoolean is created which
isTrue() method returns the result of the comparison. So the result of this method
can be used as input of theJavaSDM.ensure() method call as one can see in line
15.

5 Related work

Many CASE tools offer OCL support for class diagrams. The Dresden OCL Toolkit
e.g. was also integrated in Together and ArgoUML. But those tools have no support for
model transformation and since no integration of OCL in other diagrams. The EMFT
project [10] supports OCL for constraints and queries. One can use OCL for constraints
on the static model and for specification of querying behavior. This way e.g. derived
attributes can be modeled. So EMFT uses OCL for some very basic behavior specifica-
tion. But it has no support for model transformations.

The QVT standard [11] by the OMG has some similar ideas. QVT defines a model
transformation language which uses OCL. QVT extends the OCL with imperative ex-
pressions to make it more powerful. In this ImperativeOCL things like attribute assign-
ments, link creation etc. can now be expressed. In our approach this imperative part
is modeled using story diagrams. Since now, complete tool support for QVT is still
missing.

6 Conclusions

The Fujaba Tool Suite is a CASE-Tool which supports the most important diagrams
of the Unified Modelling Language with code generation for Java. To also specify the
behavior of a system modelled with Fujaba one can use so called story diagrams.

As described in Section 2 story diagrams combine UML activity diagrams and col-
laboration diagrams for the specification of methods. Within story diagrams some ex-
pressions, like additional constraints, return values, etc are specified textually using Java
expressions. These expressions are inserted identically in the code generated by Fujaba.
If a developer wants to use another programming language than Java every constraint
within the story diagrams have to be changed separately. So it is useful to specify the
additional constraints using the Object Constraint Language.
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Therefore, we discussed the possibilities to use OCL in Fujaba’s story diagrams
in Section 3 and described some special characteristics which must be considered to
generate the context of OCL contraints within story diagrams. After that we explained
an algorithm to generate the OCL context considering the special characteristics.

In Section 4 we described the code generation for Fujaba’s story diagrams and dis-
cussed how the generated code of a story diagram could look like using OCL.

As already mentioned in Section 3, we use the Dresden OCL Toolkit to integrate
OCL in Fujaba’s story diagrams. This enables using OCL in various places in Fujaba’s
story diagrams, while maintaining the ability to generate code. Development of a pro-
totype implementation of the concepts discussed in this paper is nearing completion.
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Restrictions for OCL constraint
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Abstract. Efficient constraint handling is essential in UML, in meta-
modeling, and also in model transformation. OCL is a popular, textual
formal language that is used in most of the modeling frameworks to
express constraints. Our research focuses on the optimization of OCL
handling. Previous works have presented algorithms that can accelerate
the constraint validation by rewriting and decomposing the constraints
and caching the model queries. Although these algorithms can be used in
general, there are special cases, where additional restrictions apply. The
aim of this paper is to present these refined restrictions and the extended
optimization algorithms.

1 Introduction

Metamodeling techniques can describe the rules of Domain Specific Modeling
Languages (DSMLs), but these descriptions mainly consist of topological rules
only. The available model items, their attributes and the possible relations be-
tween the items can be defined, but these definitions have a tendency to be
incomplete, or imprecise. For example, there is a resource editor domain for mo-
bile phones. Here, it is useful to define the valid range for slider controls that
cannot be accomplished using metamodeling techniques. Another example is a
metamodel that defines a DSML with computer networks. A single computer
can have input and output connections, but these connections use the same ca-
ble with maximum n channels. Thus, the number of maximum available output
connections equals the total number of channels minus the current number of
input channels. Such constraints cannot be expressed by metamodel rules.

The real need for constraints applies also to graph rewriting-based model
transformation [1]. Here the Left Hand-Side (LHS) of the rewriting rules define
the pattern to find in the host graph. Beyond the topology of the visual models,
additional constraints must be specified. Model transformations constraining
the pattern matching are very popular, they are used for example in QVT [2].
Additionally, dealing with constraints means a solution to several unsolved model
transformation issue [1].

One of the most wide-spread approaches to constraint handling is the Ob-
ject Constraint Language (OCL) [3]. OCL is a flexible formal language. It was
originally created to extend the capabilities of UML [4], but due to its flexibil-
ity, it can also be used in metamodeling environments with minor extensions [5].
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Nowadays OCL is becoming essential both in metamodel-based model validation
and model transformations.

Visual Modeling and Transformation Systems (VMTS) [6] is an n-layer meta-
modeling and model transformation tool. VMTS uses OCL constraints in model
validation and also in the graph rewriting-based model transformation [1]. VMTS
contains an OCL 2.0 compliant constraint compiler that generates a binary ex-
ecutable for constraint validation [7]. The constraints contained both by the
rewriting rules and by metamodel diagrams are attached to the metamodel,
thus they can be handled with the same algorithms.

Previous papers [8] and [9] have presented three optimization algorithms.
These algorithms can reduce the navigation steps in the constraints (i) by re-
locating the constraints, (ii) separating clauses based on Boolean operands and
(iii) caching the result of the model queries applied during validation. The main
advantage of the algorithms is that they do not rely on system-specific features,
thus, they can easily be implemented in any modeling or model transformation
framework. The general correctness of the algorithms has also been proved.

While implementing and by further examining these algorithms, we have re-
fined their application conditions. We have found that the scope of usability of
the first algorithm is limited. Furthermore, the second algorithm can acceler-
ate the validation in certain cases only, according to the type of the Boolean
operand. The cases where the decomposition to clauses are meaningless, thus,
the advantage of the optimization that equals zero have to be excluded from the
algorithm. The primary aim of the paper is to present these restrictions and the
extended algorithms.

The paper is organized as follows: firstly, Section 2 elaborates the original
version of the two optimization algorithms. Secondly, Section 3 introduces the
limitations of the algorithms, while Section 4 presents the new, extended algo-
rithms. Finally, Section 5 summarizes the presented work.

2 Backgrounds and Related Work

In general, the evaluation of OCL constraints consists of two steps: (i) selecting
the object and its properties that we need to check against the constraint and (ii)
executing the validation method. Although the second step can use several OCL-
related optimization methods, our optimization algorithms focus on the first
step, bacause: (i) The efficiency of the validation depends on the realization of
the OCL library (types and expressions), thus, optimizing the validation process
is usually more implementation-specific; (ii) in general, the first step has more
serious computational complexity, since each navigation step means a query in
the underlying model. The original version of the algorithms were published in
[8] and in [9].

2.1 Relocation

One of the most efficient way to accelerate the constraint evaluation is to re-
duce the navigation steps in a constraint. This is the aim of the first algorithm,
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called RelocateConstraint (Alg. 1). The algorithm processes the propagated OCL
constraints, and tries to find the optimal context for the constraint. The main
foreach loop examines the navigation paths of the actual constraint and relo-
cates the constraint to the node at the smallest navigation cost. Here, relocation
means changing the context of the constraint without changing the result of the
evaluation.

Algorithm 1 RelocateConstraint algorithm
1: RelocateConstraint(Model M)
2: for all InvariantConstraint C in M do
3: minNumberOfSteps = CalculateSteps(CurrentNode in C)
4: optimalNode = CurrentNode of the C
5: for all Node N in C do
6: numberOfSteps = CalculateSteps(N)
7: if numberOfSteps < minNumberOfSteps then
8: minNumberOfSteps = numberOfSteps
9: optimalNode = N

10: if optimalNode 6= CurrentNode of C then
11: UpdateNavigations of C
12: Relocate C to optimalNode

2.2 Decomposition

Constraints are often built from sub-terms and linked with operators (self.age =
18 and self.name = ′Jay′), or require property values from different nodes
(self.age = self.teacher.age). Thus, using the RelocateConstraint algorithm,
it is not always possible to eliminate all navigation steps. Although these sub-
terms are not decomposable in general, they can be partitioned to clauses if they
are linked with Boolean operators. A clause can contain two expressions (OCL
expression, or other clauses) and one operation (AND/OR/XOR/IMPLIES) be-
tween them. By separating the clauses, we can reduce the number of the naviga-
tion steps contained by the OCL expressions and the complexity of the constraint
evaluation during the constraint validation process. It is simpler to evaluate the
logical operations between the members of a clause than to traverse the naviga-
tion paths contained by the constraints.

The ANALYZECLAUSES algorithm (Algorithm 2) works on the syntax tree
of the constraint. The algorithm is invoked for the outermost OCL expression of
each invariant, recursively searches the constraint for possible clause expressions
and creates the clauses. The algorithm uses the following rules: (i) A clause is
created for every logical expression, the two sides of the expression are added
to the clause as children. The children are recursively checked to decompose
nested Boolean relations. (ii) Parentheses are eliminated, the inner expressions
are checked. (iii) In other cases, if there is only one expression in the whole
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constraint, then a special clause is created, otherwise the RelocateConstraint
algorithm is used on the expression.

Algorithm 2 AnalyzeClauses algorithm
1: AnalyzeClauses(Model Exp)
2: if Exp is LogicalExpresssion then
3: Clause = CreateClause(Exp.RelationType)
4: Clause.AddExpression(AnalyzeClauses(Exp.Operand1))
5: Clause.AddExpression(AnalyzeClauses(Exp.Operand2))
6: return Clause
7: else
8: if Exp is ExpressionInParentheses then
9: return AnalyzeClauses(Exp.InnerExpression)

10: else
11: if Exp is OnlyExpressionInConstraint then
12: Clause = CreateClause(SpecialClause)
13: Clause.AddExpression(RelocateConstraint(Exp))
14: return Clause
15: else
16: return RelocateConstraint(Exp)

3 Contributions

In general, there are two key questions in connection with optimization algo-
rithms: (i) whether they result in the same output as the original algorithm for
every possible input and (ii) whether they are more efficient. The first question
is crucial, because having proper evaluation results is essential. These guidelines,
these two questions are taken into examination when constructing the limitations
for the optimization algorithms.

3.1 Correctness

Primarily, the correctness of the relocation algorithm is taken into examination.
An algorithm or a relocation is correct only if the output of the optimized and
original constraint is the same for every possible input. The aim of the limitations
is to eliminate the cases where the result of the original and the optimized
algorithms would differ. To achieve this, it is necessary to examine when and
how correct relocations can be applied. In the following propositions, we often
say — for the sake of simplicity — that a RelocationPath is correct, although we
mean that the relocation using the RelocationPath is correct.

Proposition 1. If the steps of RelocationPath are separately correct, then their
composition, the RelocationPath is also correct.
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Example 1. The original constraint is located in node A, the optimal node is D
(Fig. 1). Thus, the RelocationPath is drawn from A to D (dashed line). If neither
the relocation from node A to C (solid line), nor the relocation from node C to
D (dotted line) change the result of the constraint, namely they are correct, then
the proposition states that the relocation from A to D is also correct.

Fig. 1. The steps and the whole RelocationPath

Proof. Let C be the original constraint and P a complex RelocationPath found
by the search steps. P contains finite number of steps, since the host model
contains finite number of model items and no circular navigation paths are al-
lowed. Furthermore, let O be the original context; S the first step of P and O’
the destination node of S in P. According to the premise of the proposition the
correctness of S is proven, thus, relocating the constraint from O to O’ can be
accomplished. After applying this relocation, a new constraint, C’ can be con-
structed. Applying the relocation algorithm on C’ results a new RelocationPath,
P’ containing one less step, than the original one. Since P has a finite number
of steps, the algorithm always terminates.

Corollary 1. The steps in a path can be examined separately. If in a certain case
the correctness of the algorithm is proven to be correct for each single navigation
step in the RelocationPath, then it is also proven for the whole RelocationPath.
Thus, in general, if the correctness of each possible single navigation step is
proven, then the correctness of the whole relocation is proven. Therefore, it is
enough to examine the correctness of single relocation steps.

In the next propositions, the following abbreviations are used: C denotes the
original constraint, C ′ the new constraint, M0 is metamodel, M is model, O is
the original context, N is the new context. O and N are metamodel elements,
and their instantiations are O1, O2. . .On, and N1, N2. . .Nn.

Example 2. Fig. 2 shows an example metamodel, its instantiation, and the con-
straint relocation. The metamodel represents a domain that can model comput-
ers and display devices (here monitors only). A single computer can use multiple
monitors. The model defines a simple constraint attached to the node Computer,
this constraint is relocated by the optimization to the node Monitor.

Using the abbreviations, we can say the following: M0 is the metamodel
shown in Fig. 2/a, M is its instantiation (Fig. 2/b). O is Computer, N is Mon-
itor in M0. O has two instantiations, Computer1 (O1) and Computer2 (O2).
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Fig. 2. Example metamodel and model

Similarly, PrimaryMonitor is N1, SecondaryMonitor is N2, and finally, Monitor
is N3.

Proposition 2. Navigation edges that allow zero multiplicity (on either or both
sides) cannot be used in RelocationPath.

Proof. Let M be a model with O1, N1 and N2 defined (Fig. 3). Let N1 be
isolated (or at least not connected with O1).

Fig. 3. Null multiplicity - metamodel and model

Let C and thus C ′ contain an expression that is not valid in N1, but valid in
N2. The evaluation of C results true, since N1 is not checked, because it is not
connected with O1. However C ′ fails, thus, the relocation is not correct.

The multiplicity of relations in metamodels is defined by a lower, and an up-
per limit. The limits can contain an integer representing the number of partici-
pants exactly, or * allowing any number of objects. In the following propositions,
we categorize the multiplicities:
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– ZeroOrMore - the lower limit of the multiplicity is 0 (the upper limit is not
important)

– ExactlyOne - the lower and the upper limit is also 1
– MoreThanOne - the lower limit is not 0, while the upper limit is more, than

1

Proposition 3. A relation with multiplicity ExactlyOne on both sides can be
used for relocation. In this case the relocated expression differs from the original
version in the navigation steps (or navigation step sequences). The new con-
straint expression is transformed from the original definition using the following
rules:

Rule 1. If the expression is a navigation to the new context (N), then the
expression is transformed into self.

Rule 2. If the expression is an attribute query in the old context (O), then the
new expression is a navigation from N to O and an attribute query applied there
(e.g. self.Manufacturer is transformed to self.computer.Manufacturer).

Rule 3. If the expression is a navigation from the old context (O), then the
new expression is a navigation from N to O.

Rule 4. Other expressions in the constraint are not altered.

Example 3. Let the example metamodel cited above define that computers are
able to handle exactly one monitor, and monitors are always connected to exactly
one computer (Fig. 4). Furthermore, let the constraint C state that the monitor is
an LCD monitor (display.Type = ′LCD′). In this case relocating the constraint
will result C ′: Type = ′LCD′.

Fig. 4. ExactlyOne multiplicity on both sides - metamodel and model

Proof. An ExactlyOne multiplicity on both sides means that O and N objects
can refer to each other the same way (using the role name of the destination
node). The result of the navigation reference is always a single model item, not
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a set of model items and not an undefined value. This means that changing the
navigation steps can be accomplished.

The transformation rules are also correct if the rules above are satisfied:
Rule 1. The relocation has changed the context, thus, the navigation step

in the original context is not necessary any more.
Rule 2. and Rule 3. Since the original attribute reference, or the destination

node of the navigation is invalid in the new context, thus, the constraint has to
navigate back to the original context first, and applying the expression there.

Rule 4. Rule 1-3. covers all possible valid attribute and navigation expres-
sions, thus, no additional rules are required.

Proposition 4. If the multiplicity is ExactlyOne on the destination side, but
MoreThanOne on the source side (not allowing zero multiplicity), then the con-
straint expression can be always relocated. In this case the constraint is encap-
sulated by a new constructed forall expression. If the relocated constraint does
not contain any attribute reference to the original context node, or navigation
through it, then the forall expression can be avoided.

The original expression cannot be used after relocation, because of the mul-
tiplicity MoreThanOne, which retrieves a set of model items. The basic idea is
to create an iteration on the elements of the set; the iteration is not contained
in the original constraint.

Example 4. Let O contain a simple constraint referring to one of its attributes,
named IsAbstract. After the relocation, the constraint is located in N and the
reference self.IsAbstract is transformed to

self.O->forall(O | O.IsAbstract).

This forall expression is true only if the condition holds for every elements in
the set.

Example 5. The example model has been changed to meet the requirements of
the proposition (Fig. 5).

Let C be defined as self.Price < display.Price. If this constraint is re-
located, then it is transformed to

self.computer->forall(computer| computer.Price > self.Price)

expressing that each computer attached to the monitor has to accomplish the
condition. Note that the navigation from O to N in display.Price was reduced
to a single self reference similarly to the ExactlyOne-ExactlyOne case.

Proof. The presented method ensures that each model item on the original
source side is processed, and the constraint is checked for each model item.
Since the ZeroOrMore multiplicity is not allowed, the navigation is always pos-
sible. Inside the forall loop, the name of the destination node is the iterator
value. Thus, this solution simulates ExactlyOne multiplicity on both sides. The
relocated and the original version are equivalent.
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Fig. 5. MoreThanOne → ExactlyOne multiplicity - metamodel and model

Proposition 5. If the multiplicity is ExactlyOne on the source side, but More-
ThanOne on the destination side (not allowing optional multiplicity), then the
constraint expression can be relocated if and only if the original expression uses
forall, or not exists expression to obtain the referenced model items of the
new context. This means that only those relations can be used where the original
navigation selects all of the model items, or none of them (no partial selection,
or another operation is allowed).

Example 6. The constraint self.N->count() or self.N->select(N.IsUnique)
cannot be relocated, but the constraint self.N->forall(N.IsUnique) can.

Example 7. The example model shows the requirements of the proposition (Fig.
6). Note that due to the preconditions of the proposition, the references to Mon-
itor are always set operations in Computer. This means that, for example, the
expression self.display.Price>300 cannot be used, because display is a set,
not a single value.

Fig. 6. ExactlyOne → MoreThanOne multiplicity - metamodel and model
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Let M0 contain three constraints: C1, C2 and C3 using the following defini-
tions:

inv c1: self.Price > 650

inv c2: self.display->count() > 5

inv c3: self.display->forall(m:Monitor| m.Price<300)

The proposition requires constraints to use forall expressions to query the
attributes of the new context, or the navigation paths through the new context.
But this also means that any other expression can be applied (for example a
local attribute query, such as in c1 ). In this case the method of ExactlyOne-
ExactlyOne multiplication can be used, thus, C ′

1 becomes the following:

inv c1: self.computer.Price > 650.

Complex set operations cannot be relocated according to the proposition,
thus, C2 cannot be relocated either. This limitation does not apply to C3:

inv c3: self.Price<300.

Although the original and the relocated version of the constraint seems to differ,
they have the same meaning: all monitors must be cheaper than 300 USD.

Proof. Firstly, the limitation to set operations is proven. In case of the general
selection operations, such as exists, the selection criterion is true for some
of the items and false for the others. This can lead to two problems with the
constraint rewriting: (i) the constraint validation can generate false results where
the selection criteria in the original expression is true/false, and (ii) the partial
results arising in N cannot be processed (for example summarized) in O. Neither
of these problems can be solved, thus, an universal relocation in this case is not
possible.

Secondly, it needs to be proven that relocation is possible along forall, or
not exists expressions. Note that not exists can be expressed using forall
by negating the condition. The main difference between the previous (erroneous)
subcase and this one is that here — if the model is valid — the condition in the
select operation is true (or false) for each model item. Thus, the relocated con-
straint fails only, when the original constraint also fails. The relocation algorithm
transforms forall expressions to single references. The relocated constraint is
checked for each node of the new context, thus, the constraints are functionally
equivalent.

Proposition 6. If the multiplicity is MoreThanOne on both side (not allowing
zero multiplicity) (Fig. 7), then the constraint expression can be relocated if and
only if the original expression uses forall, or not exists expressions to
query the referenced model items of the new context node.

Proof. This case is a combination of the previous cases. A new forall expression
is constructed such that it contains the whole relocated constraint, then, inside
this newly constructed forall, the original forall and not exists expressions
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Fig. 7. MoreThanOne multiplicities - metamodel and model

are transformed to single navigation steps. The outer forall ensures that each
O object is checked for each N , while the inner expression holds the transformed
original constraint.

Proposition 7. If the constraint contains more than one attribute reference
expressions and these expressions do not depend on each other, then partial
relocation is feasible. Partial relocation means that some of the expressions are
executed in the new context, while others are executed in the original context. The
original context is reached using navigation. Partial relocation does not apply to
edges with zero multiplicity.

Proof. Since the proposition is true only for relations not allowing zero multiplic-
ity, the navigation between the original and the new context is always possible.
Both ExactlyOne and MoreThanOne relations can be traversed according to
the constructs presented earlier (either by single navigation steps, or forall
expressions). Thus, when the constraint is evaluated, navigating back to the
original context is always possible. In this way, the relocated and the original
functionality is the same.

Corollary 2. The task of finding possible destinations of relocation can be re-
duced to a simple path-finding problem from the original context to the new one,
where relations allowing zero multiplicity cannot be the part of the path. Note
that this path, if exists, is the RelocationPath mentioned earlier.

One of the main difference between the RelocateConstraint and the Analyze-
Clauses algorithm is that the first one modifies the constraint only by relocating
it, but the algorithm does not need special support from the validation frame-
work. In contrast, the second algorithm does not really modify the text of the
constraint, but it requires support for clause-handling during validation. There-
fore, AnalyzeClauses relies more on the framework, but depends less from the
constraint text.
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Proposition 8. The original version (Algorithm 2) of the constraint decompo-
sition algorithm (AnalyzeClauses) is always correct if the supporting functions
are correct.

Proof. The algorithm AnalyzeClauses consists of a condition and several method
calls in the condition branches. The conditions ensures that the correct execution
branch is selected in all cases. Thus, the only part of AnalyzeClauses that can
cause erroneous results is the clause-handling, which is an external function. If
this external function is implemented well, the decomposition is always correct.

3.2 Efficiency

RelocateConstraint can reduce the number of navigation steps in the constraint,
but since the optimization uses only the metamodel, not the models, it does not
know exactly how many model items are affected by a single navigation step. If
the model uses ExactlyOne multiplicities only, then the optimization is correct,
but the cost of navigation is not predictable if the model contains MoreThanOne
multiplicities. In this case the number of model items on the destination side can
vary, thus, for example, the algorithm cannot decide between two paths different
only in relation with MoreThanOne multiplicities. This problem can be handled
using heuristics, but a globally optimal method cannot be constructed.

The situation is completely different in case of AnalyzeClauses. Here the
performance gained from the optimization depends on how efficient the con-
struction of the clauses is. The basic idea behind the algorithm is that the re-
sult of the Boolean operations sometimes requires the evaluation of one of the
operands only. For example in an AND expression, such as self.Size>50 and
self.display.Size>80 it is enough to check the value of the first operand if
it evaluates to false. This is why the boolean operators are special, why the
AnalyzeClauses algorithm is based on them instead of other types of operations.

Since the operands cannot affect each other, they can be evaluated separately
according to [9]. In case of AND, OR and IMPLIES operations the value of one
operand can affect the results of the whole operation:

– If either operand is false, then the AND operation is always false.
– If either operand is true, then the OR operation is always true.
– If the first operand is false, then the IMPLIES operation is always true.
– If the presented condition for the given operand is not satisfied, then both

operands is evaluated.

Similar simplification is not available for XOR operations, because in this
case both operands need to be evaluated.

4 The new algorithms

The restrictions to the optimization algorithms were presented in the previous
section, now the last step is to construct new, extended algorithms according to
these limitations.
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The new RelocateConstraint is shown in Algorithm 3. It consists of two major
parts: (i) searching for the optimal node (and RelocationPath) (Algorithm 4) and
(ii) relocating the constraint if necessary (Algorithm 5).

Algorithm 3 The new RelocateConstraint algorithm
1: RelocateConstraint(Constraint, OriginalContext)
2: OptimalPath = SearchOptimalNode(OriginalContext, NULL)
3: if OptimalPath.LastElement 6= OriginalContext then
4: UpdateAndRelocate(Constraint,OptimalPath)

The first part of the RelocateConstraint algorithm is based on the SearchOpti-
malNode function. This function checks the relocation requirements while search-
ing (StepIsValid), thus invalidRelocationPath candidates are dropped as soon as
possible. SearchOptimalNode uses a recursive breadth-first-search strategy to
find every possible candidates. The external function CalculateSteps calculates
the number of model queries in the case when the new context is located in N .

Algorithm 4 The SearchOptimalNode algorithm
1: SearchOptimalNode(Node N , PathP )
2: minSteps = CalculateSteps(N)
3: optimumCandidate = Append(P , N)
4: for all CN in ConnectedNodes(N) do
5: if StepIsValid(CN) then
6: LocalOptimum = SearchOptimalNode(CN , Append(P , N))
7: LocalSteps = CalculateSteps(LocalOptimum.LastElement)
8: if LocalSteps < minSteps then
9: minSteps = LocalSteps

10: optimumCandidate = LocalOptimum
11: return optimumCandidate

The result of SearchOptimalNode is the RelocationPath. The last element
of the path is the new context itself. If the new context and the old context
are not the same, then the constraint is relocated and updated by the function
UpdateAndRelocate. The relocation is based on path steps, thus, the algorithm
updates the context declaration step-by-step. The multiplicity checking and the
constraint updating mechanisms are implemented in external functions to im-
prove the readability of the algorithm.
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Algorithm 5 The UpdateAndRelocate algorithm
1: UpdateAndRelocate(Constraint C, Node O, Path P )
2: for all Step in P do
3: if SourceMultiplicity(Step)= ExactlyOne and

DestMultiplicity(Step)= ExactlyOne then
4: ExactlyOneRewrite(C)
5: if SourceMultiplicity(Step) 6= MoreThanZero then
6: AddForeach C)
7: if DestMultiplicity(Step) 6= MoreThanZero then
8: RemoveForeach(C)
9: return optimumCandidate

In the case of AnalyzeClauses there is only one new limitation: XOR oper-
ations are excluded when creating the clauses. The algorithm is presented in
Algorithm 6.

Algorithm 6 AnalyzeClauses algorithm
1: AnalyzeClauses(Model Exp)
2: if (Exp is AndExpression) or (Exp is OrExpression) or

(Exp is ImpliesExpression) then
3: Clause = CreateClause(Exp.RelationType)
4: Clause.AddExpression(AnalyzeClauses(Exp.Operand1))
5: Clause.AddExpression(AnalyzeClauses(Exp.Operand2))
6: return Clause
7: else
8: if Exp is ExpressionInParentheses then
9: return AnalyzeClauses(Exp.InnerExpression)

10: else
11: if Exp is OnlyExpressionInConstraint then
12: Clause = CreateClause(SpecialClause)
13: Clause.AddExpression(RelocateConstraint(Exp))
14: return Clause
15: else
16: return RelocateConstraint(Exp)

5 Conclusions

Due to the importance of constraints in modeling and model transformation,
efficient validation methods are required. Previous work has presented three
algorithms, which can accelerate the validation. This paper has examined the
algorithms, especially the relocation algorithm RelocateConstraint. Based on the
results, several necessary limitations and modifications have been introduced to
the original algorithms. The statements have been illustrated by small examples
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and their correctness has also been proved. More complex examples — focusing
on the acceleration gained from the optimization — can be downloaded from [6].
According to the novel results, the algorithms have been updated.

As this paper has shown, proving the correctness of the algorithms precisely
is hard to manage. A mathematical formalism could help, but the current for-
malism of OCL is based on set theory, which is hard to use in examination of
dynamic behavior. Abstract State Machines offer a technique that has success-
fully been used in many similar domains as formalism. Such a formalism could
prove the correctness of the algorithms applying formal semantics. Therefore,
we are currently working on the formalism of the algorithms either using and
extending the old formalism, or creating a new, ASM-based formalism.

Although the steps of the three optimization algorithms have been made more
rigorous, processing the OCL constraints is not optimal. The decomposition and
the normalization of atomic expressions have reduced the navigation steps to
the minimum, and the caching algorithm has reduced the number of queries, but
further research is required to extend the scope of the optimization algorithms
and accelerate the process. The validation process can be optimized by rewriting
the constraints and avoiding time consuming expressions, such as AllInstances.
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Abstract We present an mda framework, developed in the functional
programming language sml, that tries to bridge the gap between formal
software development and the needs of industrial software development,
e.g., code generation. Overall, our toolchain provides support for software
modeling using uml/ocl and guides the user from type-checking and
model transformations to code generation and formal analysis of the
uml/ocl model. We conclude with a report on our experiences in using
a functional language for implementing mda tools.

1 Introduction

Model-Driven Engineering refers to the systematic use of models as primary
engineering artifacts throughout the development life-cycle of software systems.
The instance of Model-Driven Engineering based on the uml and defined by the
Object Management Group (omg) is called model-driven architecture (mda). In
uml, various model elements like classes or state machines can be annotated by
logical constraints using the Object Constraint Language (ocl); for this reason,
uml can be used as a formal specification language with diagrammatic syntax.

For Model-Driven Engineering in general and mda in particular, techni-
cal support ranging over several stages of the software development process—
requirements analysis, design, code generation—is vital. This holds to an even
larger extent if semantic information like formal specifications are processed.
Thus, a technical framework is needed that provides an infrastructure for model
elements annotated by ocl.

In this paper, we present such a framework, comprising a toolchain that
guides the development process from modeling in a case tool to code-generation
and formal verification. In particular, our framework consists of a type-checking
component allowing to represent ocl in a structured format which can be im-
ported into our model repository (su4sml). This model repository can serve as
a basis for model transformations. Moreover, su4sml is the basis for a template-
based code generator supporting code-generation for the uml core and state
machines, enriched by ocl specifications and access control policies specified us-
ing SecureUML. Further, this model can be directly transformed into a (formal)
model for the theorem proving environment hol-ocl [4].

As a distinguishing feature, su4sml is developed in the functional program-
ming language sml [11]. For this reason, implementers of model transformations
can profit from several techniques that have proven to be of major importance
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for symbolic computations occurring naturally in compiler construction or the-
orem proving: pattern matching allows for direct representations of rules to be
performed during transformation, higher-order functions allow for the compact
description of search- and replacement strategies, and having a strongly typed
language helps to detect many errors at compile time.

We also present an implementation of one particular extension of our frame-
work for uml/ocl: namely support for the uml-based language SecureUML [2].
SecureUML is designed to enrich the business logic of a system (represented
by a class diagram or a statechart) with a concrete access control model for
objects and operations. By a model transformation [3], class systems and oper-
ation specifications are transformed such that a combined model is generated,
incorporating security and functional aspects. During the transformation, sev-
eral proof obligations are generated, making explicit under which conditions the
business logic of a system is not interfered by its security model. With the help
of our framework, the combined model can be transformed to code, while the
proof obligations making this transformation “correct” (in the sense of “no bad
interference”) can be proven by hol-ocl. Thus, our framework can be seen as
a first step towards a uniform framework supporting both semantic and code-
generative aspects of uml/ocl specifications.

The Plan of the Paper. After a general overview of the framework, we present
its main components: In section 3, we describe the implementation of our model
repository, in section 4 we present a template-based code generator and in sec-
tion 5 we describe the interface to hol-ocl. Finally, we describe the SecureUML
instance and discuss our experiences and observations.

2 Our Framework: An Overview

In this section, we give an overview of our framework and present an exemplary
toolchain in which it can be used. As a prerequisite, we introduce the tools and
technologies our framework is based on.

2.1 Background

SecureUML. SecureUML [2] is a security modeling language based on rbac [12].
In particular, SecureUML supports notions of users, roles and permissions, as
well as assignments between them: Users can be assigned to roles, and roles
are assigned to specific permission. Users acquire permissions through the roles
they are assigned to. Moreover, users are organized into a hierarchy of groups,
and roles are organized into a role hierarchy. In addition to this rbac model,
permissions can be restricted by Authorization Constraints (expressed in ocl
formulae), which have to hold to allow access. SecureUML is generic in the no-
tion of protected actions that can be assigned to permissions. These are specified
in a SecureUML dialect.
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The Dresden OCL2 Toolkit. The software platform provided by the Dresden
ocl2 Toolkit (http://dresden-ocl.sf.net/), written in Java, provides mani-
fold support for ocl. Among other tools, a parser and type-checker for ocl is
included. The toolkit is designed for modularity and flexibility. Thus, the Dres-
den ocl2 Toolkit is a good basis for building new ocl-based tools, either by
integrating it into a case tool directly or by using it as a standalone tool lever-
aging the provided xmi import and export facilities. In our setting, we especially
benefit from the xmi export, which includes the typed-checked ocl constraints
as abstract syntax using an xml-based encoding.

HOL-OCL. hol-ocl [4] (http://www.brucker.ch/projects/hol-ocl/) is
an interactive proof environment for uml/ocl. Its mission is to give the term
“object-oriented specification” a formal semantic foundation and to provide ef-
fective means to formally reason over object-oriented models. On the theoretical
side, this is achieved by representing uml/ocl as a conservative, shallow em-
bedding into the hol instance of the interactive theorem prover Isabelle [8]
while following the standard [9] as closely as possible; in particular, we prove
that inheritance can be represented inside the typed λ-calculus with parametric
polymorphism. As a consequence of conservativity with respect to hol, we can
guarantee the consistency of the semantic model. On the technical side, this is
achieved by automated support for typed, extensible uml data models. More-
over, hol-ocl provides several derived calculi for uml/ocl that allow for formal
derivations establishing the validity of uml/ocl formulae. Some automated sup-
port for such proofs is also provided, albeit the achieved degree of automation
is not yet satisfactory.

2.2 The Toolchain
Our framework is completed by a toolchain (see Figure 1) that consists of a uml
case tool with an ocl type-checker for modeling software systems. The frame-
work provides a model repository, model analyzers and various code generators.

We use the uml case tool ArgoUML (http://argouml.tigris.org) and
combine it with the Dresden ocl2 Toolkit. The Dresden ocl Toolkit uses a
specialized metamodel combining the uml 1.5 and the ocl 2.0 metamodel. This
results in an upward compatible extension of the uml 1.5 metamodel: every uml
1.5 model is still a model of the combined metamodel. Models expressed in his
specialized metamodel can be exported using the xmi export.

We also developed a Java-based transformation tool, su2holocl, on top of the
Dresden ocl Toolkit which transforms a SecureUML model into a semantically
identical pure uml/ocl model. This model transformation is explained in more
detail elsewhere [3].

At time of writing, our sml-based framework comprises
1. an xmi import supporting the uml 1.4 and 1.5 meta-model (e.g., as used by

ArgoUML) and also a metamodel combining uml 1.5 and ocl 2.0 (as used
by the Dresden ocl2 Toolkit),
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Figure 1. mda Framework and Toolchain Overview

2. a model repository, su4sml, which supports the various metamodels we are
using, e.g., uml, ocl, SecureUML,

3. a generic, template-based code generator supporting SecureUML (including
the generation of access-control checks for the target languages Java and
C#), the uml core (e.g., class diagrams), state machines, and ocl,

4. model transformations that normalize the models in several normal forms;
this comprises the conversion of multiplicities into ocl constraints, etc., and

5. an interface to our theorem prover environment, hol-ocl, which allows to
do (formal) model analysis and verification of uml/ocl models.

The framework is implemented as a set of sml modules that are designed to be
easily extensible and also can be used independently.

3 The Model Repository: su4sml

When implementing an object-oriented model repository in a functional pro-
gramming language one has to solve several challenges: first one has to decide
how to represent the inherently graph-based structure of object-oriented models
into a tree-structure that is suitable in a functional programming language. Of
course, one can always simulate pointers, but then one loses convenient features
of functional programming languages, like safeness and strong typing.

For class models, we decided to employ the inherent tree structure given by
the “containment hierarchy.” For example, a class contains attributes, opera-
tions, or statemachines. We also decided to ignore associations as such. We only
represent their association ends, again as part of the participating classifiers.

Statemachines, however, do not present an obvious way of representation in a
tree structure. There we fall back to using pointers, for example from transitions
to source and target states, or from states to incoming and outgoing transitions.

In contrast, ocl expressions naturally translate into an abstract datatype, as
shown in Listing 1.1 and Listing 1.2. This abstract datatype is modeled closely
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1 s i g n a t u r e REP_OCL_TYPE = s i g

type Path = s t r i n g l i s t

datatype OclType = I n t e g e r | Rea l | S t r i n g | Boolean (∗ P r i m i t i v e Types ∗)
6 | OclAny | OclVoid

| Set of OclType | Sequence of OclType
| OrderedSet of OclType | Bag of OclType
| C o l l e c t i o n of OclType
| C l a s s i f i e r of Path (∗ use r−d e f i n e d c l a s s i f i e r s ∗)

11 | DummyT (∗ dummy type f o r untyped e x p r e s s i o n s ∗)
end

Listing 1.1. su4sml: Representing ocl Types

s i g n a t u r e REP_OCL_TERM = s i g
i n c l u d e REP_OCL_TYPE

3
datatype OclTerm =

L i t e r a l of s t r i n g ∗ OclType (∗ L i t e r a l w i th type ∗)
| C o l l e c t i o n L i t e r a l of Co l l e c t i o nP a r t l i s t ∗ OclType (∗ co n t en t w i th type ∗)
| I f of OclTerm ∗ OclType (∗ c o n d i t i o n ∗)

8 ∗ OclTerm ∗ OclType (∗ then ∗)
∗ OclTerm ∗ OclType (∗ e l s e ∗)
∗ OclType (∗ r e s u l t t ype ∗)

| A s s o c i a t i o nEndCa l l of OclTerm ∗ OclType (∗ s o u r c e ∗)
∗ Path (∗ a s s o c .−enc ∗)

13 ∗ OclType (∗ r e s u l t t ype ∗)
| A t t r i b u t e C a l l of OclTerm ∗ OclType (∗ s o u r c e ∗)

∗ Path (∗ a t t r i b u t e ∗)
∗ OclType (∗ r e s u l t t ype ∗)

| Op e r a t i o nCa l l of OclTerm ∗ OclType (∗ s o u r c e ∗)
18 ∗ Path (∗ o p e r a t i o n ∗)

∗ ( OclTerm ∗ OclType ) l i s t (∗ pa ramete r s ∗)
∗ OclType (∗ r e s u l t tupe ∗)

| Operat ionWithType of OclTerm ∗ OclType (∗ s o u r c e ∗)
∗ s t r i n g ∗ OclType (∗ type paramete r ∗)

23 ∗ OclType (∗ r e s u l t t ype ∗)
| V a r i a b l e of s t r i n g ∗ OclType (∗ name wi th type ∗)
| Let of s t r i n g ∗ OclType (∗ v a r i a b l e ∗)

∗ OclTerm ∗ OclType (∗ r h s ∗)
∗ OclTerm ∗ OclType (∗ i n ∗)

28 | I t e r a t e of ( s t r i n g ∗ OclType ) l i s t (∗ i t e r a t o r v a r i a b l e s ∗)
∗ s t r i n g ∗ OclType ∗ OclTerm (∗ r e s u l t v a r i a b l e ∗)
∗ OclTerm ∗ OclType (∗ s o u r c e ∗)
∗ OclTerm ∗ OclType (∗ i t e r a t o r body ∗)
∗ OclType (∗ r e s u l t t ype ∗)

33 | I t e r a t o r of s t r i n g (∗ name o f i t e r a t o r ∗)
∗ ( s t r i n g ∗ OclType ) l i s t (∗ i t e r a t o r v a r i a b l e s ∗)
∗ OclTerm ∗ OclType (∗ s o u r c e ∗)
∗ OclTerm ∗ OclType (∗ i t e r a t o r−body ∗)
∗ OclType (∗ r e s u l t t ype ∗)

38 and Co l l e c t i o nP a r t = Co l l e c t i o n I t em of OclTerm ∗ OclType (∗ e l ement wi th type ∗)
| Co l l e c t i o nRang e of OclTerm (∗ f i r s t ∗)

∗ OclTerm (∗ l a s t ∗)
∗ OclType (∗ type o f range ∗)

end

Listing 1.2. su4sml: Representing ocl Expressions
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s i g n a t u r e REP_CORE = s i g
type Scope

3 type V i s i b i l i t y
type op e r a t i o n = { name : s t r i n g ,

p r e c o n d i t i o n : ( s t r i n g op t i on ∗ OclTerm ) l i s t ,
p o s t c o n d i t i o n : ( s t r i n g op t i on ∗ OclTerm ) l i s t ,
arguments : ( s t r i n g ∗ OclType ) l i s t ,

8 r e s u l t : OclType ,
i sQue r y : bool ,
scope : Scope ,
v i s i b i l i t y : V i s i b i l i t y }

13 type a s s o c i a t i o n e n d = { name : s t r i n g ,
aend_type : OclType ,
m u l t i p l i c i t y : ( i n t ∗ i n t ) l i s t ,
o r d e r ed : bool ,
v i s i b i l i t y : V i s i b i l i t y ,

18 i n i t : OclTerm op t i on }

type a t t r i b u t e = { name : s t r i n g ,
a t t r_ t yp e : OclType ,
v i s i b i l i t y : V i s i b i l i t y ,

23 scope : Scope ,
s t e r e o t y p e s : s t r i n g l i s t ,
i n i t : OclTerm op t i on }

datatype C l a s s i f i e r = C l a s s of { name : Path ,
28 pa r en t : Path opt ion ,

a t t r i b u t e s : a t t r i b u t e l i s t ,
o p e r a t i o n s : o p e r a t i o n l i s t ,
a s s o c i a t i o n e n d s : a s s o c i a t i o n e n d l i s t ,
i n v a r i a n t : ( s t r i n g op t i on ∗ OclTerm ) l i s t ,

33 s t e r e o t y p e s : s t r i n g l i s t ,
i n t e r f a c e s : Path l i s t ,
a c t i v i t y_ g r a p h s : A c t i v i t yG r a ph l i s t }

| I n t e r f a c e of { . . . } (∗ s i m i l a r to C l a s s ∗)
| Enumerat ion of { . . . }

38 | P r im i t i v e of { . . . }
end

Listing 1.3. su4sml: Representing the uml Core

following the standard ocl 2.0 metamodel. Note however, that ocl expressions
include a lot of type information in this model. In essence, the type of each
subexpression appears twice: once as the type of the subexpression itself, and
once as the type expected (or inferred) as part of the enclosing expression. This
constructions allows us, for example, to insert explicit typecasts that are only
implicit in the original expression.

In addition to these datatype definitions, the repository structure defines a
couple of normalization functions, for example for converting association ends
into attributes with corresponding type, together with an invariant expressing
the cardinality constraint.

Summarizing, the top-level data structures (see Listing 1.1, Listing 1.2 and
Listing 1.3) of su4sml are inspired by the metamodels of ocl [9, Chapter 8]
and uml [10] and readers familiar with these metamodels should recognize the
similarities.
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@// Example t emp la t e f o r Java
@foreach c l a s s i f i e r _ l i s t

@ o p e n f i l e gene r a t ed / $ c l a s s i f i e r _ n ame$ . j a v a
package $ c l a s s i f i e r _ p a c k a g e $ ;

5
p u b l i c c l a s s $ c l a s s i f i e r _ n ame$
@ i f hasParent

e x t end s $ c l a s s i f i e r _ p a r e n t $
@end

10 {
@foreach a t t r i b u t e _ l i s t

p u b l i c $ a t t r i b u t e_ t y p e $ $at t r ibute_name$ ;
@end
@foreach o p e r a t i o n _ l i s t

15 p u b l i c $ op e r a t i o n_ r e s u l t_ t y p e $ $operat ion_name$ (
@foreach a r gumen t_ l i s t

$argument_type$ $argument_name$
@end )
{}

20 @end
}

@end

Listing 1.4. A Simplified Template File

4 A Template-Based Code Generator

We developed a Generic Template-driven Code Generator (gcg) on top of the
su4sml repository. Template-based means that for each code artifact to be gener-
ated there is a template file which contains a skeleton of what has to be generated
intertwined with instructions for the code-generator how to fill out the template.
The code generator consists of a generic core and a set of cartridges that can be
“plugged” into this core. The core part of gcg is independent both with respect
to the input as well as the output language, the cartridges are responsible for
interpreting the language-dependent instructions in the template files.

The template language has at the core just three syntactic elements: an
@if statement for branching on Boolean predicates, a @foreach statement for it-
erating over lists, and $variable$ interpolation. The template language is not
Turing-complete. For example, the predicates in @if statements come from a
fixed (finite) set that is defined by the cartridges that are plugged into the core.
Example predicates are attribute_isPublic or operation_isStatic. Similarly, the lists
to iterate over are also defined by the cartridges. Example lists are classifier_list,
attribute_list, or operation_list. These lists have an implicit notion of hierarchy.
The attribute_list, for example, evaluates to the list of attributes of the current
classifier that one iterates over in the enclosing @foreach statement. Finally, the
variables that can be interpolated are also defined by the cartridges. Typical
examples are operation_name or attribute_type, see Listing 1.4 for an example
template file.

While the generic core parses the template file, the actual evaluation of the
statements is delegated to the cartridges. For example, when the core executes
the statement @if operation_isStatic, it asks the cartridge for the current value of
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s i g n a t u r e GCG = s i g
v a l gene r a t e : Rep . Model → s t r i n g → un i t

end

5 f u n c t o r GCG_Core (C : CARTRIDGE ) : GCG = s t r u c t
(∗ misc . a u x i l i a r y f u n c t i o n s omi t ted ∗)

fun gene r a t e model t emp la t e
= l e t v a l env = C . i n i t E n v model

10 v a l t r e e = pa r s e t emp la t e
i n

( i n i tOu t ( ) ;
w r i t e env t r e e ;
c l o s e F i l e ( ) )

15 hand le GCG_Error ⇒ ( c l o s e F i l e ( ) ; r a i s e GCG_Error )
end

end

Listing 1.5. gcg: the generic code generator

the predicate operation_isStatic. Depending on the answer, the core executes the
following statements or not.

On the implementation level, the core is a functor which takes a cartridge as
an argument (see Listing 1.5). The functor GCG_Core only takes one cartridge
as an argument, whereas we want to be able to plug arbitrarily many cartridges
together (see Figure 2). We achieve this by letting each cartridge be a functor
itself, which takes another cartridge as an argument. In this way, we can build
up cartridge chains supporting increasing functionalities. If one cartridge does
not support a requested functionality, it passes the request on to the next car-
tridge, and the result back to the requester. To bootstrap this cartridge chain,
we start with a cartridge that is not a functor. This could for example be a
trivial cartridge that simply does nothing. For convenience, however, we imple-
mented a base cartridge that implements the most basic functionalities which
one would probably need in most languages anyways, for example, variables like
attribute_name of lists like operation_list. The design allows for cartridges to over-
ride these functionalities by implementing them themselves. This is sometimes
necessary for language-specific cartridges when the language requires certain
syntactic properties. We implemented cartridges for Java and C# in this way.

To get a Java code generator, for example, one has to plug the cartridges
together like follows:

s t r u c t u r e Java_Gcg = GCG_Core ( Java_Car t r i dge ( Base_Car t r i dge ) ) ;

The functor GCG_Core is applied over the cartridge resulting from the ap-
plication of the functor Java_Cartridge over the base cartridge. The resulting
structure Java_Gcg implements the signature gcg and therefore has a function
generate which generates Java code from a given uml-model and a given template.
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s i g n a t u r e REP_ENCODER = s i g
type mdr = { theo r y : theo ry ,

u n i v e r s e : typ ,
c l a s s i f i e r s : C l a s s i f i e r l i s t }

5 v a l a d d _ c l a s s i f i e r s : C l a s s i f i e r l i s t → mdr → mdr
end

Listing 1.6. The Top-level Interface of the Repository Encoder

5 A su4sml-based Datatype Package for HOL-OCL

In this section, we present one vital component of hol-ocl concerned with
the encoding of object-oriented data structures in hol, which is a tedious and
error-prone activity to be automated. In this section, we give an overview of the
su4sml-based datatype package we implemented to automate this process. In
the theorem prover community, a datatype package [7] is a module that allows
one to introduce new datatypes and automatically derive certain properties over
them. A (conservative) datatype package has two main tasks:
1. generate all required (conservative) constant definitions, and
2. prove as much (interesting) properties over the generated definitions as pos-

sible automatically behind the scenes.
Our datatype package uses the possibility to build sml programs performing
symbolic computations over formulae in a logically safe way over derived rules.

In the following, we give a brief overview what our package does ([4,5] de-
scribes more details). The datatype package is implemented on top of the su4sml
interface on one hand and on top of the Isabelle core on the other (see Listing 1.6
for details). During the encoding, our datatype packages extends the given the-
ory by a hol-ocl-representation of the given uml/ocl model. This is done in
an extensible way, i.e., classes can be added later on to an existing theory pre-
serving all proven properties ([5] presents for more details). The obvious tasks
of the datatype package are:
1. declare hol types for the classifiers of the model,
2. encode the core data model into hol, and
3. encode the ocl specification and combine it with the core data model.
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fun c a s t_ c l a s s_ i d c l a s s pa r en t thy = l e t
v a l pname = name_of pa r en t
v a l cname = name_of c l a s s
v a l thmname = " cast_ " ^( cname )^ " _id "

5 v a l goa l_ i = mkGoal_cterm
( Const ( i s _ c l a s s _ o f c l a s s , dummyT) $Free ( " ob j " ,dummyT) )
( Const ( " op =" ,dummyT) $ ( Const ( p a r e n t 2 c l a s s_o f c l a s s pname ,dummyT)

$ ( Const ( c l a s s 2 g e t_pa r e n t c l a s s pname ,dummyT) $Free ( " ob j " ,dummyT) ) )
$ ( Free ( " ob j " ,dummyT) ) )

10 v a l thm = prove_goalw_cterm thy [ ] g oa l_ i
(λ p ⇒ [ c u t_ fa c t s_ tac p 1 , (∗ p r o o f s c r i p t ∗)

asm_fu l l_s imp_tac
(HOL_ss adds imps

[ o_def ,
15 get_de f thy ( p a r e n t 2 c l a s s_o f c l a s s pname ) ,

ge t_de f thy ( c l a s s 2 g e t_pa r e n t
c l a s s pname ) ] ) 1 ,

s t a c ( get_thm thy (Name mk_get_parent ) ) 1 ,
asm_fu l l_s imp_tac (HOL_ss adds imps [

20 get_de f thy ( i s _ c l a s s _ o f c l a s s ) ,
get_thm thy (Name ( " i s_ "^pname^"_mk_" ^( cname ) ) ) ] ) 1 ,

s t a c ( get_thm thy (Name ( "get_mk_" ^( cname )^ " _id " ) ) ) 1 ,
ALLGOALS( s imp_tac (HOL_ss ) ) ] )

i n
25 ( f s t ( PureThy . add_thms [ ( ( thmname , thm ) , [ ] ) ] ( thy ) ) )

end

Listing 1.7. Proving Cast and Re-Cast (simplified)

In fact, the most important task is probably not that obvious: The package
has to generate formal proofs that the generated encoding of object-structures
is a faithful representation of object-orientation (e.g., in the sense of the uml
standard [10], or Java). These theorems have to be proven for each model during
its encoding phase. Among many other properties, our package proves that for
each pair of classes A and B where B is a generalizationof A the following fact:

self.oclIsType(B)
self.oclIsKind(A)

(1)

as well as the more complicated property:

self.oclIsDefined() self.oclIsType(B)

self.oclAsType(A).oclAsType(B).oclIsDefined()
and self.oclAsType(A).oclAsTypeB.oclIsType(B)

(2)

Listing 1.7 presents a simplified version of the sml function cast_class_id that
proves the property (2). The expression starting in line 5 generates a type-
checked instance of the current theorem to prove with respect to the current
class (and its parent). Readers familiar with lcf-style theorem provers will rec-
ognize the “proof script” in lines 10 to 23. Finally, the function registers the
proven theorem in Isabelle’s theorem database. Logical rules like (1) or (2) or
co-induction schemes given by class invariants constitute the object-oriented
datatype theory of a given class diagram and represent the basic weapon for
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proofs over them, in particular verifications of uml/ocl specifications. Stating
these rules could be achieved by adding axioms (i.e., unproven facts) during the
encoding process, which is definitively easier to implement. Instead, our datatype
package generates entirely conservative definitions and derives these rules from
them; this also includes the definition of recursive class invariants, which are in
itself not conservative ([4] describes this construction in detail).

This strategy, i.e., stating entirely conservative definitions and formally prov-
ing the datatype properties for them, ensures two very important properties:
1. our encoding fulfills the required properties, otherwise the proofs would fail,

and
2. doing all definitions conservatively together with proving all properties en-

sures the consistency of our model (provided that hol is consistent and
Isabelle/hol is a correct implementation).
One might ask what benefit an end-user will get from conservativity after

all. Its need becomes apparent when considering recursive object structures or
recursive class invariants. Stating recursive predicates as axiom results in logical
inconsistency in general. For example:

context A inv: not self.oclIsType(A)

This invariant requires for all instances of type A not to be of type A. Thus,
it is in fact possible to state a variant of Russell’s paradox which is known to
introduce logical inconsistency in naive set theory. Inconsistency means that
the ocl logic can derive any fact; this might be exploited by an automated
tactic accidentally. Logical inconsistency is different from an unsatisfiable class
invariant meaning “there is no instance.” In particular, in an inconsistent system,
each class invariant can be proven both satisfiable and unsatisfiable.

Our conservative construction requires proofs of side-conditions which will
fail in paradoxical situations as the one discussed above (c.f. [4] for details) while
admitting the “useful” forms of recursion in class invariants. To get an idea for
the amount of work needed, the import of the “Company” model (including the
ocl specification) presented in the ocl standard [9, Chapter 7] generates 1147
conservative definitions and proven theorems, the larger “Royals and Loyals”
model [13] model generates 2472 conservative definitions and proven theorems.
The load process usually proceeds in reasonable times.

Using hol-ocl (see Figure 3) one can formally prove certain properties of
uml/ocl specifications. For SecureUML specifications one can generate security-
related proof obligations that can be formally analyzed, the details how and
which proof obligations are generated is described elsewhere [3]. An example
for an important standard property of a class diagram is consistency (i.e., there
is at least one system state fulfilling all invariants, and there exist functions
for all operation specifications satisfying the pre- and postconditions for legal
states) of a model. Another important property is the refinement relation (e.g.,
forward-simulation [14]) between two class diagrams, stating that one model is a
refinement of the other. A further interesting formal technique allows for proving
that an implementation (i.e., a “method” in uml terminology) is compliant to
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Figure 3. A hol-ocl session Using the Isar Interface of Isabelle

a specification (i.e., a pair of pre- and postconditions). An in-depth discussion
of these issues is out of the scope of this paper; with respect to the compliance
problem, the reader might consult [5].

6 SecureUML Support

As we want to not only support standard uml/ocl models in our framework,
but also SecureUML models, we have to extend the framework accordingly. We
describe these extensions in the following sections.

6.1 SecureUML Support in the Model Repository

First, we have to extend the model repository to also contain model information
coming from a SecureUML dialect.

s i g n a t u r e REP_SECURE = s i g
s t r u c t u r e S e c u r i t y : SECURITY_LANGUAGE
type Model = C l a s s i f i e r l i s t ∗ S e c u r i t y . C o n f i g u r a t i o n
v a l readXMI : s t r i n g → Model

5 end

This means, a “secure” model not only contains a list of classifiers (like the unse-
cured model), but also a security “configuration.” The type of this configuration
is parametrized by the concrete security language.
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s i g n a t u r e SECURITY_LANGUAGE = s i g
s t r u c t u r e Des ign : DESIGN_LANGUAGE

type Con f i g u r a t i o n
5 eqtype Pe rm i s s i on

v a l g e tP e rm i s s i o n s : C o n f i g u r a t i o n → Pe rm i s s i on l i s t

(∗ misc . a u x i l i a r y f u n c t i o n s omi t ted ∗)
10

v a l pa r s e : C l a s s i f i e r l i s t → ( C l a s s i f i e r l i s t ∗ Con f i g u r a t i o n )
end

We currently have only one implementation of this signature, corresponding
to the SecureUML metamodel, i.e., the permissions are given in terms of rbac
with additional authorization constraints. This design allows for other security
languages, for example, a hypothetical PrivacyUML language. The function parse
is responsible for extracting the security model information from a uml/ocl
model, where it is usually given by a custom uml profile, i.e., stereotypes and
tagged values.

The security language is itself parametrized by a design language, i.e., by a
concrete SecureUML dialect.

s i g n a t u r e DESIGN_LANGUAGE = s i g
eqtype Resource
datatype Act ion = S imp l eAc t i on of s t r i n g ∗ Resource

| Compos i teAct ion of s t r i n g ∗ Resource
5

(∗ The r e s o u r c e h i e r a r c h y ∗)
v a l c on t a i n e d_ r e s ou r c e s : Resource → Resource l i s t

(∗ the a c t i o n h i e r a r c h y ∗)
10 v a l s u bo r d i n a t e d_a c t i o n s : Act i on → Act ion l i s t

(∗ misc . a u x i l i a r y f u n c t i o n s omi t ted ∗)

v a l pa r s e_ac t i o n : C l a s s i f i e r → a t t r i b u t e → Act ion
15 end

The dialect specifies the actual resources and actions that are possible on
these resources, together with the corresponding hierarchies over them. We im-
plemented this signature both for the ComponentUML as well as for the Con-
trollerUML dialect of SecureUML. Note the function parse_action, which is re-
sponsible for parsing the attributes of permission classes.

6.2 SecureUML Support in the Code Generator
After the repository has been extended, for code generation purposes we only
need to define a corresponding cartridge. Implementing a cartridge mainly con-
sists of deciding which “features” to support in the template language, i.e., which
Boolean predicates, which lists, and which variables. As parts of this strongly
depend on the SecureUML dialect, we implemented a SecureUML cartridge that
again is parametrized by a SecureUML dialect. The SecureUML cartridge only
knows about the global list of permissions, their assigned roles and constraints,
which is information that is independent from the used dialect. The dialect spe-
cific cartridges then, e.g., deal with the assignment of actions to permissions.
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6.3 SecureUML Support for HOL-OCL

At present, our datatype package for hol-ocl supports SecureUML only indi-
rectly using an external model transformation, su2holocl [3]. This model trans-
formation converts a given SecureUML model into a semantically equivalent pure
uml/ocl model. For the future, first-class SecureUML support for hol-ocl is
planned. The development of this support requires:

– the development of a machine-readable, formal semantics for SecureUML,
e.g., as an embedding into hol-ocl. Similar to the already existing theories
covering the uml core and ocl, we have to develop a set of theories covering
the SecureUML entities and their properties. For example, the development
of a generic theory summarizing role-based access control models.

– the extension of the existing datatype package with support for the new
SecureUML theories, i.e., the package must be extended to generate defi-
nitions for SecureUML entities and, if possible, the generation of security
related proof obligations, together with proof attempts.

7 Conclusion

We have presented a framework for mda comprising ocl support in model trans-
formations, code generation and verification, together with one application of
such a combined framework, namely SecureUML. In a way, our work can be
seen as an approach to extend mda with model-driven formal reasoning.

The code generator is a template-based generator which can be easily con-
figured to produce code for various parts of models, target languages and target
runtime-environments. The technique in itself is by no means new, but having it
integrated into our framework and having access to structured ocl will, in our
view, pave the way for new and up to now unexpected applications.

7.1 Related Work

Since code generation is at the heart of model-driven engineering, there is a
wealth of similar approaches, e.g., AndroMDA (http://www.andromda.org/),
which itself is based on Velocity (http://jakarta.apache.org/velocity/).
Besides the fact that we apply functional programming techniques, there are
two main differences: first, Velocity provides a rich template language with
(among others) support for arithmetical, relational and logical operators over
user-definable variables. Instead, our template language is intentionally very sim-
ple and restricted, but provides an @eval construct allowing for the execution of
arbitrary sml code. The second difference lies in our concept of cartridges. Since a
fixed, static template language is not flexible enough for generic code-generation,
a template engine has to provide some support for extensibility. Velocity sup-
ports this by customizing and unstructured merging of the “context” object(s).
In contrast, our concept of cartridges supports a notion of hierarchy and depen-
dency between cartridges, which is type-checked on the sml module level. Our
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cartridges also do not entail the complexity and overhead of AndroMDA car-
tridges, which include not only the template vocabulary, but also model-facades
for the uml profile, and the template files themselves. Keeping these separated
both simplifies the development of new cartridges and proves to be more flexible.

There are also some proof environments for ocl; since we focus on tool
aspects and integration into mda in this paper, we only mention the KeY Tool [1].
It offers a concrete verification method for a Java-like language (which hol-ocl
does not at present) at the dispense of compliance to the semantic foundations of
ocl—the underlying semantics is a two-valued dynamic logic with an axiomatic
representation of the data-models resulting from class diagrams.

With UMLsec [6] we share the conviction that security models should be in-
tegrated into the software engineering development process by using uml. How-
ever, although UMLsec provides a formal semantics, it does only provide rudi-
mentary tool support, both for code generation and for (formal) model analysis.

7.2 Lessons Learned

Using Functional Programming Languages. Using a functional program-
ming language for an object-oriented data model (e.g., the uml meta model) has
advantages and disadvantages: on the one hand, a direct compilation into sml
datatypes, i.e., mapping classes (with attributes) to constructors over records
(with corresponding fields), leads to a quite substantial duplication of code for
the inherited attributes and possibly in the pattern matching based functions
processing these data structures. This representation of data models can be gen-
erated automatically from class diagrams via code generators such as our own
(thus overcoming typical errors due to duplication). Nevertheless, pattern match-
ing over constructors has to be designed and prepared with care to be extensible.
For example, selector functions of inherited attributes like:

fun get_name ( C l a s s {name , . . . }) = name
| get_name ( I n t e r f a c e {name , . . . } ) = name
| get_name ( Enumerat ion {name , . . . } ) = name
| get_name ( P r im i t i v e {name , . . . } ) = name

are sometimes preferable to pattern matching constructs since they are more
stable under extensions; on the other hand, representing patterns only as selector
and test functions, is feasible, but tedious and in itself very lengthy and error-
prone. Thus, finding a suitable balance of re-usability and conciseness in each
situation is the key for success.

We have been very pleased by the degree of abstraction and re-usability that
has been achieved in the code generator by using the sml functor concept. To
our knowledge, this is the first time that it had been applied to the concept
of cartridges, which allows for a type-safe and aspect-oriented way to describe
the compilation process. For example, the sml-structure containing the code
generator for C# with SecureUML is constructed by the functor application:

1 s t r u c t u r e CSharpSecure_Gcg
= GCG_Core ( SecureUML_Cartr idge ( CSharp_Cart r idge ( Base_Car t r i dge ) ) ,

ComponentUML( Base_Car t r i dge ) ) ;

which just represents it as a combination of the various compilation aspects.
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Building a Toolchain. Our toolchain depends on a common xmi format for
exchanging uml/ocl models. This has been the key for re-using work of other
research groups in the field. However, in practice, each tool uses slightly different
variants of the underlying meta-model, and thus different xmi variants. Full
exchangeability of xmi files between different tools (and versions thereof) is still
more a dream than reality. On the other hand, by having an infrastructure
based on a general xml parser and pattern matching-based conversions between
an imported xmi and the internal su4sml model repository, it turned out to be
a fairly easy routine task to adapt to various xmi dialects. Such adaptions had
been necessary several times during the lifetime of our project and could be
realized usually in one day of programming work and turned out to be easier in
practice than, developing and maintaining appropriate xslt-transformations.
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Abstract. The metamodeling framework MOFLON combines MOF 2.0,
OCL 2.0 and graph transformations to generate sophisticated metamodel
implementations. In this paper we describe the role of OCL in MOFLON.
Furthermore, we present a set of constraints which corrects, completes
and improves MOF 2.0 for the application as graph schema language.

1 Introduction

Nowadays, model driven software development is mostly realized by the applica-
tion of the Unified Modeling Language (UML) [Obj05b]. Although UML satisfies
many popular needs, sometimes domain specific languages are required to meet
special concerns. Domain specific languages can be designed using the Meta Ob-
ject Facility (MOF) [Obj06]. In its latest version 2.0, MOF offers constructs for
the modeling of static structures, which in its original purpose should be used to
describe the abstract syntax of modeling languages. Such a model of a modeling
language (called metamodel) can be used to build an editor for the application
of the modeled language. The datamodel of the editor can be generated from
the language’s metamodel [Dir02].

The generated metamodel reflects the abstract syntax of the modeled lan-
guage which could only lead to a static datamodel. Additionally, the MOF com-
pliant metamodel can be enriched by constraints formulated in the Object Con-
straint Language (OCL) [Obj05a]. From such a combination of MOF and OCL,
metamodels with an additional constraint evaluation mechanism can be gener-
ated. The constraint evaluation offers a more precise verification of the static
semantics and can be used to build an analysis component on top of an editor’s
datamodel.

The MOFLON framework [AKRS06] extends this approach by the appli-
cation of story driven modeling [Zün01]. The combination of MOF, OCL and
graph transformation allows the generation of very sophisticated metamodels
which are far more than just a simple datamodel. Due to the specification of be-
havior by graph transformations, the generated metamodel can cover all actions
that are based on the datamodel. Thus, the additional environment of the gener-
ated metamodel, for instance an editor GUI, may consist of just a tight, straight
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forward implementation to instantiate the generated metamodel. Due to the fact
that any logic related code is generated from a copious specification, we achieve
a high degree of flexibility and maintainability. The combination of MOF, OCL
and graph transformations offers the possibility to generate metamodels, which
contain code to analyze metamodel instances as well as code to transform meta-
model instances. The combination of analysis and transformation capabilities
additionally provides the opportunity to specify transformations that correct
metamodel instances in case of a failed analysis (by so-called repair actions), or
in other words to transform the model if OCL constraints are violated.

Figure 1 gives an overview of the architecture of MOFLON. In the center of
MOFLON, there is a MOF 2.0 metamodel which was created by a bootstrapping
process. Beside MOF, OCL plays an important part in MOFLON. In the follow-
ing we will concentrate on the relevance of OCL inside the MOFLON framework.
Section 2 presents a scenario in which MOFLON and especially OCL as part
of MOFLON can be applied in a very useful manner. Section 3 introduces a
set of OCL constraints which we need to complete MOF 2.0 for the application
as graph schema language. Finally we end up with a conclusion and a short
overview about future work in section 4.
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Fig. 1. Architecture of MOFLON

2 Application of MOFLON and OCL

One major problem of the model-based software and system developement is
the surveilance of modeling guidelines which are indispensable in projects of a
bigger size. The mere identification and formulation of design guidelines is a
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problem which has to be handled manually without tool support. Opposed to
that, the surveilance of the adherence to the formulated guidelines could be au-
tomated in the general case. In fact, the automation of the surveilance is in many
cases mandatory just due the pure number and variety of the guidelines. Beside
the automated surveilance and the automated identification and localization of
modeling errors, the application of automated repair actions is a very desirable
task [SDG+06]. As an example, we will demonstrate how MOFLON and espe-
cially OCL as part of MOFLON can help to generate code for the automated
surveilance of design guidelines.

Figure 2 shows a very simple Matlab/Simulink model with a subsystem that
is connected to a sink and a source through signals. The ports of the subsystem
are named in adherence to a fictitious naming convention which demands that
names of in-ports end with the suffix in. First of all, the automatic surveilance
of this modeling guideline requires a metamodel of Matlab/Simulink. A very
simplified metamodel of Matlab/Simulink is depicted in Figure 3.

Fig. 2. Example of a design guideline in Matlab/Simulink

The metamodel covers only the elements which are necessary for the sur-
veilance of the mentioned design guideline. Blocks can be connected with each
other through Ports and Signals. A Signal connects exactly two ports, one in-
port and one out-port. All these elements are named elements. At this point,
OCL can be used in its original purpose to add precision by stating for instance
that a Port can either refer to a Signal as outSignal or inSignal. Such a specifi-
cation can only be used for code generation of static datamodels.

Additionally, MOFLON provides the feature to specify behavior using story
driven modeling. Figure 4 shows the specification of the method checkGuideline
which is intended to check if the mentioned design guideline is kept on a Sub-
system. The behavior of the method is visually specified by a combination of
activity diagrams and graph transformation rules. There is one graph transfor-
mation rule per activity (called story in this context). The transformation rule in
the first story of Figure 4 matches all signals which are connected to an in-port
of the subsystem the method is called on. Since only the ports which violate the
mentioned design guideline should be handled by the transformation, the match-
ing has to be controlled in such a way that only those ports are matched whose

OCLApps 2006 Workshop 184



Fig. 3. Simplified metamodel of Matlab/Simulink

name do not end with the demanded suffix. At this point, we would also like
to adopt OCL to be able to formulate constraints for the matching of attribute
values which are more powerful than just a simple evaluation of attribute values.
In general, OCL can also be used to determine the set of matched objects as a
textual alternativ to complex graphical notations.

Considering the example, the violation of the design guideline is detected by
an OCL constraint which checks whether the name of the port ends with the
demanded suffix. In cases where such a match is found, the control flow of the
activity diagram activates the second story in which an adequate repair action is
formulated. An adequate repair action for the mentioned guideline is to set the
name of the port to the name of its connected signal followed by the demanded
suffix. Again, this manipulation1 can be expressed by an OCL expression. The
long term aim is to generate fully functional code for OCL constraints in the
metamodel as well as for the OCL constraints in graph transformations. The
outlined scenario is work in progress. Currently, MOFLON is able to generate
JMI compliant metamodels enriched with code for the evaluation of invariants
and code for the execution of SDM transformations.

Beside the integration of OCL into the matching and manipulation of the
transformation rules and the application of OCL as constraint language for MOF,
there is a third and very basic aspect how OCL is involved into the MOFLON
approach. Since MOFLON applies MOF 2.0 as graph schema language, the static
semantics of MOF are essential. They are the precondition for a proper appli-
cation of OCL as mentioned before. Considering the graph transformation rules
in Figure 4, the attribute name is used in the context of the class Port. An
analysis which determines, if such a usage is possible has to be able to query all

1 The manipulation of the attribute is indicated by the font color (green).
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Fig. 4. OCL in graph transformations

inherited attributes of a class. The determination of inherited elements is part
of the static semantics of MOF 2.0. In fact, the determination is formulated by
an OCL constraint. Thus, the correct and complete static semantics are crucial
for the complete integration of OCL in MOFLON. Therefore, in the following,
this third aspect is described in detail.

3 Semantic completion of MOF 2.0 with OCL

As mentioned before in the context of Figure 1, MOF 2.0 is the central element of
MOFLON. MOF 2.0 acts as metamodeling language for the static semantics of
languages specified in MOFLON as well as schema language for the application
of graph transformations. As such, the correct and precise semantics of MOF
2.0 are essential.

MOF 2.0 as the metametamodel of OMG’s four-level metamodeling hierar-
chy is self describing. This means, that the static semantics of MOF 2.0 are
basically described by MOF 2.0 metamodels but also additionally enhanced by
OCL constraints and natural human language. The metamodels describing MOF
2.0 can be used to generate code for the basic features of MOF. Basic features
comprise fundamental correlations like for instance the fact that associations are
connected with classifiers through association ends. Such a correlation can be
expressed by the metamodeling capabilities of MOF itself. But advanced and
in many cases very important facts like the fact that only binary associations
are allowed respectively in other words the number of association ends of one
association has to be exactly two, can only be expressed with OCL.

The importance of OCL constraints can also be pointed out by considering
the example of inheritance. The metamodel of MOF 2.0 only states that a classi-
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fier can be generalized by a classifier. The fact that the generalization hierarchy
has to be free of cycles can only be stated with OCL. Without the evaluation
of OCL constraints, regardless of their implementation as hand written or fully
generated code, a MOF 2.0 editor would be able to create arbitrary (e.g. cyclic)
generalization dependencies. Although the importance of OCL constraints for
the correct and complete static semantics of MOF 2.0 is often neglected, it has
to attract careful attention for the purpose of applying MOF 2.0 as schema
language for graph transformations.

Since MOFLON is developed by applying a bootstrapping process, the im-
portance of a correct MOF 2.0 specification increases even more. We started our
bootstrapping process with a simplified MOF 2.0 metamodel and a JMI compli-
ant code generator (MOMoC [Bic04]). Based on the generated metamodel, we
built an graphical editor and used this editor to improve the simplified MOF 2.0
metamodel of the editor. But even with the complete metamodel the editor does
not prevent cyclic generalization dependencies, for instance. The bootstrapping
process can only lead to an editor which reflects the complete static semantics
of MOF 2.0 if the code generation also generates evaluation code for OCL con-
straints. Since, the metamodel consists of MOF and OCL, the bootstrapping can
only be finished if both parts are reflected in the generated code. This can only
be achieved if both parts are in a state which allows the application of a code
generator. Hence, we had to analyze the MOF 2.0 specification for specification
errors and impreciseness to be able to formulate a set of OCL constraints which
formalizes MOF 2.0 up to a degree that is required for the application of graph
transformations.

An application of a validation tool for syntax and type checking like done in
[BGG04] for the UML 2 Superstructure might act as a basis. But since we are
primarily interested in detecting impreciseness and specification leaks, an auto-
mated validation is not sufficient as imprecise semantics can be expressed even by
proper and accurate constraints. Thus, we focused on a careful manual analysis
to concentrate on semantical errors instead of detecting syntactical errors by the
application of an OCL validater. Syntactical errors will at least be detected when
we finish the bootstrapping process by the integration of generated evaluation
code.

The result of our analysis is a set of OCL constraints which corrects and
completes MOF 2.0 for the application as graph transformation language. The
complete set of constraints cannot be presented in this paper. It is completely
available at [Rea05]. In the following we provide information on the constraint
set by introducing the error categories with some exemplary errors and the orga-
nization of the constraint set. The presented errors should provide an impression
of the kind of errors that are part of the MOF 2.0 specification.

The presented examples refer to [Obj03] respectively [Obj04] where men-
tioned. In fact, both documents are not the latest available specifications, but
since the combination of the presented corrections and improvements with the
referred specification forms a complete and consistent specification a continuous
adaption to the actual OMG documents does not seem reasonable to us. Never-
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theless, a spot check of some selected errors leads to the result that some minor
issues are fixed but major errors still exist.

3.1 Syntactical errors

The first and most obvious category of errors is the category of syntactical errors.
Syntactical errors are more or less trivial to detect since they arise from a wrong
usage of OCL. An automatic analysis would have been able to find such errors
as well. In the following we will give some examples of typical syntactical errors
in the MOF specification, apart from mere typos.

The cause of many errors is the wrong usage of OCL methods like, for
instance, the application of the method includes with a collection passed as
parameter instead of a single object (see [Obj04], p. 79). Another represen-
tative error is demonstrated by the application of squared brackets to access
elements by their index: forAll(i|op.ownedParameter[i].type.conformsTo(...))
(see [Obj03], p. 149). Sometimes methods are used in a wrong context like the
concatenation of strings by applying the method union (which should be applied
to collections) instead of applying the method concat. Beside those obvious syn-
tactical errors there are methods which are specified but never used (bestVisi-
bility, see [Obj03], p. 93). Of course, this can hardly be considered as error, but
at least it might confuse the reader of the specification.

3.2 Semantical errors

The category of semantical errors covers errors that are caused by any other
reason than just the wrong application of OCL syntax. That may also comprise
automatically detectable errors like wrong navigation in the metamodel. The
navigation association.owningAssociation in the context of the class Property
(see [Obj04], p. 131) for instance, is not possible. In fact, each of both association
ends could be used to start navigation but a combination of both is not possible
since both address the same class.

Another annoying but quite common kind of errors are wrong derivation
rules. Some attributes of the metaclasses are derived by an OCL constraint.
Those derived attributes are usually quite important, like for instance the de-
rived set inheritedMember. It specifies all elements inherited from the general
classifiers. The derivation rule for inheritedMember uses the specified method
hasVisibilityOf which in turn also uses the attribute inheritedMember in its
specification (see [Obj04], p. 85).

In fact, such an error would also be detected by an analysis tool whereas
the following error is not that obvious and could only be detected by a human
analysis. The derived attribute importedMember determines the named elements
that are (transitively) imported from several namespaces into the importing
namespace. Both kinds of import (package import and element import) have a
visibility to determine whether the elements imported via a certain import will
be exported from the importing namespace or not. In other words, the visibility
of an import can be used to control the transitivity of the import. Thus, the
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derivation rule for importedMember has to take the visibilities of the involved
import relationships into account, which it does not (see [Obj03], p. 143).

There are also errors in form of specification leaks that arise from the complex
package structure. The method conformsTo of the metaclass Classifier for in-
stance is defined in the package Generalizations. The central package of the UML
Infrastructure respectively MOF is the package Constructs which reuses several
packages except the Generalizations package. Thus, the method conformsTo is
not available in MOF although it is used. Beside the constraints that are wrong,
the specification is also vitiated by bad namings and by missing constraints like
for instance a constraint that prevents a namespace from importing itself.

3.3 Customizations and Improvements

A chance for customization and improvement does not necessarily require an
error. On the one hand customizations and improvements contribute to a clear
and consistent specification by clarifying complex and confusing constraints. On
the other hand, additional constraints improve the completeness of the specifica-
tion by handling special cases as well as optional and implicit demands. In fact,
some actually correct constraints can be combined to a single constraint like for
instance the two invariants for the determination of a named element’s qualified
name (see [Obj03], p.78).

Beside such trivial improvements there are also improvements with an im-
portant impact on the complete specification like exemplarily described in the
following. As mentioned before, there are two kinds of import. First of all there is
the commonly known package import that adds all the elements of the imported
namespace with visibility set to public to the importing namespace. Second, there
is the element import that adds only a single element with visibility set to public
to the importing namespace. So obviously, the package import is just a shortcut
notation for element imports on each element of the imported namespace and as
such, both variants should be exchangeable (see [Obj03], p.145). But a problem
arises due to the transitivity of the imports since an element import can use
alias names for the imported element in the importing namespace. Thus, the
constraints which determine the elements of a namespace must be able to query
the alias name of an imported element. Without the loss of transitivity, this can
only be achieved by extending the metaclass ElementImport by an attribute to
determine previous element imports.

Indeed, a lot of modifications have to be made to take such extensive changes
into account but without doing so, the specification would neither be correct nor
consistent. Not all improvements contribute to the correctness of the specifica-
tion. We propose also constraints whose adherence is not necessary but desirable.
There are also situations that are implied by other situations. Such implications
can also be expressed via OCL constraints. Therefore, we had to introduce sev-
eral categories and levels of errors which are described in the following.
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3.4 Categorization

The complete set of constraints we propose for a correct and consistent specifica-
tion of MOF 2.0 can be found at [Rea05] in form of several tables. In the following
we describe the classifications we made. The classifications are all reflected in
the tables. All constraints are formulated in OCL 2.0.

First of all, the constraints are classified based on their error category. Ad-
ditionally it is indicated whether the constraint is an existing constraint of the
specification or an proposed extension. Table 1 summarizes the several cate-
gories.

Description Shortcut Number

Existing constraint is correct2 ok 1

Existing constraint ...3

... is syntactical wrong. SYN 2

... is semantical wrong or problematic. SEM 3

... can or has to be customized. CUS 4

Proposed constraint ...4

... solves syntactical error. SYN 5

... solves semantical errors or problems. SEM 6

... improves or customizes. CUS 7

... adds additional precision. +SEM 8

... adds an additional customization. +CUS 9

Table 1. Categorization of constraints regarding their kind of error.

As mentioned before, not every constraint has to be met for a correct meta-
model instance. For some constraints, the adherence of the metamodel instances
to the constraint is just desirable but not necessary. Therefore, we had to intro-
duce a second categorization which is orthogonal to the categorization introduced
first. We categorize the constraints into three different types of constraints. Table
2 introduces the three types of constraints.

Type of constraint Shortcut

Mandatory for valid metamodel instances. mand.

Optional for valid metamodel instances though useful opt.

Implicit constraint impl.

Table 2. Types of constraints regarding their role in the specification.

Constraints of type mand. have to be met for valid metamodel instances. If
one single constraint of type mand. is broken the complete metamodel instance
is invalid. Whereas constraints of type opt. do not contribute to the correctness
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of the metamodel instances at all. A metamodel instance can be valid, although
some or even all optional constraints are broken, as long as all mandatory con-
straints are met. But, the adherence to all optional constraints leads to useful
metamodel instances without senseless constructs like for instance a namespace
importing itself.

Beside these two quite obvious types, there is a third type i.e. the implicit
constraints. An implicit constraint does not contribute to the correctness of
metamodel instances as well. It indicates whether a metamodel instance con-
tains constructs that are not explicitly drawn in the diagram but are implied
by other constructs. For instance, considering the subsetting of association ends,
the uniqueness of association ends which determines if multi-valued association
ends may contain duplicates or not, is subject of implicit constraints. If one as-
sociation end subsets another association end which is unique, it is implied that
the subsetting association end is also unique. If it is mentioned in the diagram
that the subsetting association end may contain duplicates, it indeed never will
contain duplicates since the subsetted association end prevents such a situation
by its uniqueness. Such implied correlations can be detected by OCL constraints.

Considering an editor which is build on top of a metamodel that is enriched by
constraints of all three types, during evaluation, a violated mandatory constraint
would rise an error message, a violated optional constraint would rise a warning
message, whereas a violated implicit constraint would just cause an information
message. That is how the constraint set will be integrated into MOFLON.

Concept "Ownership" Concept "Multiplicity"

Scope "importedMember"

Scope "nestedPackage"

Concept "Operation" Concept "PackageMerge" Concept "Constraint"

Scope "Distinguishability"
Concept "Association"

Scope "Specialization"

Concept "Property"

Scope "General"

Scope "Subsetting"

Scope "Composition" Scope "Composition"

Scope "General"

Scope "Factory"

Concept "Specialization"

Scope "inheritedMember"

Scope "Redefinition"

Scope "General"

Scope "(Qualified) Name"

Scope "Import"

Scope "Visibility"

Concept "Namespace"

Fig. 5. Concepts and scopes of constraints

For a better structuring, the tables are separated according to their concept
and the scope they cover. The constraints are grouped into concepts like for
instance Association or Namespace. Those concepts do not map onto a pack-
age structure. They just group several constraints that contribute to the real-
ization of the concept they are grouped into independent from their context.
Constraints of the concept Association for instance are taken from the context
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Core::Constructs::Association as well as from Core::Constructs::Property. Con-
cepts are divided in several scopes to achieve a more flexible structure since some
scopes contribute to more than just one concept. Figure 5 shows the complete
set of concepts and scopes.

All in all, 90 constraints have been analyzed. As a result, 48 constraints (53%)
have been considered free of any errors and 42 constraints (47%) were erroneous.
Our constraint set provides 101 improvements in form of 86 OCL constraints.
One half (51) of the improvements refer to existing constraints. The other half
(50) improves the specification additionally. Fig. 6 shows the absolute numbers
of constraints distributed over the categories of Table 1. The y-axis indicates the
number of the category, the x-axis represents the number of occurrences in the
proposed constraint set.

Fig. 6. Occurrences of errors grouped by their category

4 Conclusion and Future Work

The presented set of OCL constraints is the result of an intensive analysis of
the semantics of MOF 2.0 as a whole. It is the result of a manual analysis since
we are primarily interested in a semantical consistent version of MOF 2.0 for
the application as graph schema language. We will use this set of constraints
to complete the bootstrapping process of MOFLON. Therefore, we had to in-
tegrate a OCL 2.0 parser and code generator. After an evaluation of available
and appropriate tools we decided to integrate the Dresden OCL toolkit [LO04].
Since the OCL code generator component is still work in progress we are only
able to generate evaluation code for a simple subset of the constraints. After
an adaptation of the constraints to the capabilities of the code generation we
will generate an analysis component for the MOFLON framework which checks
edited metamodels to their full compliance to MOF 2.0. The current integration
of the toolkit is based on the provided integration interfaces. The long term aim is
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to exchange the toolkit’s model repository (MDR) with a integrated metamodel
that is generated with MOFLON.
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Abstract: There are two different approaches to specify the behavior of the 
operations of an Information System. In the imperative approach, the operation 
effect is defined by means of specifying the set of actions (creation of objects 
and links, attribute updates…) to apply over the system state. With the 
declarative approach, the effect is defined by means of contracts stating the 
conditions that the system state must satisfy before (precondition) and after 
(postcondition) the operation execution. 

From a specification point of view, the declarative approach is preferable. The 
main issue regarding declarative specifications is their ambiguity. Commonly, 
there are many different system states that satisfy an operation postcondition. 
However, in general, only one of them is the one the designer had in mind 
when defining the operation, and thus, that state should be the only one 
considered valid at the end of the operation execution. In this paper, we identify 
some of the common ambiguities appearing in OCL postconditions and provide 
a default interpretation for each of them in order to improve the usefulness of 
declarative specifications. 

1. Introduction 

A conceptual schema (CS) is the representation of the general knowledge of a 
domain. In conceptual modeling, we call Information Base (IB) the representation of 
the state of the CS (the set of existing objects and links) in the Information System.  

The state of the IB changes due to the application of the modifying actions issued 
by the execution of the operations defined in the CS. An action is the fundamental 
unit of behavior specification [11]. Among the possible actions we have the creation 
of a new object or link, its deletion, the update of an attribute and so forth.  

The effect of the operations can be specified in two different ways, imperatively or 
declaratively [16]. In an imperative specification the designer explicitly defines the 
set of actions to be applied over the IB. In a declarative specification the designer 
defines a contract for each operation. The contract consists of a set of pre and 
postconditions. A precondition defines a set of conditions over the operation input 
and the IB that must hold when the operation is invoked. The postcondition states the 
set of conditions that must be satisfied by the IB at the end of the operation execution. 
We assume that pre and postconditions are specified in OCL. 
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From a specification point of view, the declarative approach is preferable since it 
allows a more abstract definition of the operation effect and defers until a later stage 
most of the implementation issues [16]. In this sense, the imperative definition of an 
operation can be regarded as a lower-level definition of the operation effect. 
Moreover, declarative specifications are more concise than their imperative 
counterparts. This favours the readability of the contract specifications. 

The main problem regarding declarative specifications is that they are 
underspecifications [16], i.e. in general there are several possible states of the IB that 
may verify the postcondition of an operation contract. This means that a declarative 
specification may have several equivalent implementations (i.e. imperative versions).  
We have a different version for each set of actions that, given a state of the IB 
verifying the precondition, evolve the IB to one of the possible states verifying the 
postcondition of the operation contract. This problem is not specific of OCL 
declarative specifications but common to other purely declarative languages used to 
specify operation contracts as JML, Eiffel or logic languages. However, it is 
especially relevant in OCL contracts because of the high expressiveness of the OCL. 

The definition of a postcondition precise enough to characterize a single state of 
the IB is cumbersome and error-prone [5],[15]. For instance, it would require to 
specify in the postcondition all objects and links not modified by the operation (frame 
problem [5]). There are other ambiguities too. Consider a postcondition as 
o.at1=o.at2, where o represents an arbitrary object and at1 and at2 two attributes. 
Given an initial state of the IB, states obtained after assigning to at1 the value of at2 
satisfy the postcondition. However, states where at2 is changed to hold the value of 
at1 or where the same value is assigned to both attributes satisfy the postcondition as 
well. Strictly speaking, all three interpretations are correct since all satisfy the 
postcondition. However, most probably, only the first one (where we assign the value 
of at2 over at1) represents the behaviour the designer meant when defining the 
postcondition.  

We believe it is really important designers are aware of the different ambiguities 
included in a postcondition and of the whole set of possible states that satisfy the 
postcondition due to such ambiguities.  Then, they may decide to extend/rephrase the 
postcondition in order to prevent some of the undesired states. This may imply to 
complement the postcondition with additional information regarding the parts of the 
system state that cannot be changed by the operation [4, 5], or even, to mix the 
declarative specification with imperative constructs [2]. 

In this paper we follow an alternative approach. For each ambiguous OCL 
expression that may appear in a postcondition we define its default interpretation. 
These default interpretations represent usual designers’ assumptions about how that 
expression should be tackled when implementing/validating the operation. As an 
example, a default interpretation for the X=Y ambiguous expression commented 
above is that X should take the value of Y. According to this interpretation, states 
where Y takes the value of X or where both take a different value, should be 
considered invalid. 

The detection of common types of ambiguities and the proposal of a default 
interpretation for each of them are the main contributions of this paper. We believe 
that our approach offers several benefits. It improves the quality of the applications 
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by means of detecting possible errors in the specification of the operation contracts 
and by ensuring that the application behaviour is better aligned with the designer 
intentions. Moreover, it opens the possibility of leveraging current MDA and MDD 
methods and tools by allowing code-generation from declarative specifications (once 
translated to an equivalent imperative version) in the final technology platform. Until 
now, an automatic translation was not feasible because of the high number of possible 
imperative versions for each declarative specification. The default interpretation 
reduces the number of possible alternatives (to just one, in the best case) and could be 
used to guide the code-generation process. As an additional benefit, the discussion 
presented in the paper may help to achieve a deeper understanding of the semantics of 
operation contracts and their ambiguity problems.  

The rest of the paper is structured as follows. Next section presents a set of 
ambiguous OCL expressions and provides their default interpretation. Section 3 
covers some inherently ambiguous postconditions. Section 4 compares our approach 
with related work and, finally, section 5 present some conclusions and further 
research. 

2. Ambiguities in operation contracts  

Given the contract of an operation op and an initial state s of an IB (where s verifies 
the precondition of op) there exist, in general, a set of final states sets’ that satisfy the 
postcondition of op. All implementations of op leading from s to a state s’ ∈ sets’ 
must be considered correct. Obviously, s’ must also be consistent with the integrity 
constraints defined in the CS, but, assuming a strict interpretation of operation 
contracts [12], the verification of those constraints does need to be part of the 
contract. 

Even though, strictly speaking, all states in sets’ are correct, only a small subset 
accs’ ⊂ sets’ could probably be accepted as such by the designer. The other states 
satisfy the postcondition but do not represent the expected behaviour of the operation 
intended by the designer. In most cases |accs’| = 1 (i.e. from the designer’s point of 
view there exists only a state s’ that satisfies the postcondition). 

The first aim of this section is to detect some common OCL expressions that, when 
appearing in a postcondition, increase the value of |sets’|, that is, the expressions that 
introduce an ambiguity problem in the operation contract. We also consider the frame 
problem, which, in fact, appears because expressions required to specify conditions 
over the state of parts of the IB are missing in the postcondition. 

Ideally, once the designer is aware of the ambiguities appearing in an operation op, 
he/she should define the postcondition of op precise enough to ensure that accs’ = 
sets’. However, this is not feasible in practice since then postconditions become much 
longer, cumbersome and error-prone [5],[15]. Therefore, the second aim of this 
section is to provide, for each ambiguity expression, a default interpretation that 
solves the ambiguity problem by selecting from sets’ those that most probably 
represent the intention of the designer at the moment of writing that part of the 
postcondition.  
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The default interpretations express common assumptions used during the 
specification of operation contracts. They have been developed after analyzing many 
examples of operation contracts of different books, papers and case studies and 
comparing them, when available, with the operation textual description.  

In what follows we present different ambiguity problems. We provide in the 
appendix a list of transformation rules we can apply over the original OCL 
expressions to extend the set of postconditions covered in this section. 

2.1 Ambiguity 1: “State of objects and links not referenced in the postcondition” 

In general, OCL expressions appearing in a postcondition only restrict the possible 
values of part of the elements of the IB (in particular, the ones referenced in the 
operation).  The values of the rest of objects and links in the IB are left undefined, 
and thus, any state that modifies them is acceptable as long as the state verifies the 
postcondition.  

 
Default interpretation: Nothing else changes.  
This interpretation represents the most common adopted solution to the frame 
problem. It states that objects not explicitly referenced in the postcondition should 
remain unchanged in the IB. This implies that they cannot be created, updated or 
deleted during the transition to the new state of the IB. Similarly, links of associations 
not traversed during the evaluation of the postcondition cannot be created nor deleted. 

Besides, for those objects that appear in the postcondition, only the properties 
(either attributes or association ends) mentioned in the postcondition definition may 
be updated.  

2.2 Ambiguity 2: “Equality expressions” 

By far, the most common operator in postconditions is the equality operator. Given an 
expression X.a=Y.b (where X and Y are two arbitrary OCL expressions and a and b 
two properties), there are three kinds of changes over the initial state resulting in a 
new state satisfying the expression. We can either assign the value of b to a, assign 
the value of a to b or assign to a and b an alternative value c. 

Note that if either operand of the equality comparison is a constant value or is 
defined with the @pre operator then just a possible final state exists. Since the value 
of that operand cannot be modified, the only possible change is to assign its value to 
the other operand. This applies also to other ambiguities described in this section. 
 
Default interpretation: The order of the operands in the equality expression reflects 
the desired change  
We believe that the common interpretation for an expression X.a=Y.b is that a must 
take the value of b. This should be the only final state considered valid at the end of 
the operation. If a designer was meant to define that b should take the value of a 
he/she would have surely written the expression as Y.b = X.a. In the same way, if the 
desired final state was that the one where the value of a and b was equal to c, most 
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probably, he/she would have included in the postcondition the expression X.a=c and 
X.b=c.  

2.3 Ambiguity 3: “if-then-else expressions”  

An if-then-else expression evaluates to false when the if condition is satisfied but the 
then condition is evaluates to false or, reversely, when the if condition evaluates to 
false but the else expression is not satisfied. Therefore, given an if-then-else 
expression included in a postcondition p, there are two groups of final states that 
satisfy p: 1 – States where the if and the then condition are satisfied or 2 – states 
where the if condition evaluates to false and the else condition evaluates to true.  

 
Default interpretation: Do not falsify the if clause.  
We believe the desired behaviour for if X then Y else Z expressions is to evaluate X 
and enforce Y or Z depending on the value of X. According to this interpretation, 
states obtained by means of falsifying X do not represent the designer’s intention. 
Implementations of postconditions that modify the X expression to ensure that X 
evaluates to false are not acceptable (even if, for some states of the IB, it could be 
easier falsifying X  to always avoid enforcing Y instead of enforcing Y or Z depending 
on the value of X).  

2.4 Ambiguity 4: “includes and includesAll expressions” 

Given an initial state s and a postcondition of type X->includesAll(Y), all final states 
where, at least, the objects of Y have been included in X satisfy the postcondition. 
However, states that, apart from the objects in Y, add other objects to X also satisfy 
the postcondition. Moreover, another possible group of final states that satisfy the 
expression are those where Y evaluates to an empty set, since by definition all sets 
include the empty set. 

For includes expressions we follow the same reasoning. The only difference is 
that, for those expressions, Y does not return a set of objects but a single instance.  
 
Default interpretation: Minimum number of insertions over the collection X and no 
changes over Y 
Following this assumption, the new state s’ should be obtained by means of adding to 
s the minimum number of links necessary to satisfy the operation postcondition. For 
expressions such as X->includes(Y) or X->includesAll(Y) (where X and Y are two 
arbitrary OCL expressions) a maximum of X@pre->size()+Y->size() links must be 
created.  States including additional insertions are not acceptable.  

States where Y is modified to ensure that it returns an empty result are neither 
acceptable. 

This interpretation may seem similar to the one defined to deal with the frame 
problem. The difference is that there we addressed the creation and deletion of links 
of associations not referenced in the postcondition, while this one tackles minimal 
modifications over elements that are referenced in the postcondition.  
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2.5 Ambiguity 5: “excludes and excludesAll expressions” 

Given an initial state s and a postcondition of type X->excludesAll(Y), all final states 
where, at least, the objects of Y have been removed from the collection of objects 
returned by X satisfy the postcondition. However, states that, apart from the objects in 
Y, remove other objects from X also satisfy the postcondition.  

Additionally, states where Y does not return any object also satisfy the 
postcondition since then, clearly, X also excludes all the objects in Y.  

For excludes expressions we follow the same reasoning. The only difference is that 
for those expressions Y does not return a set of objects but a single instance.  
 
Default interpretation: Minimum number of deletions over the collection X and no 
changes over Y 
According to this interpretation, the acceptable states are those where the new state s’ 
is obtained by means of adding to the initial state s the minimum number of links 
necessary to satisfy the operation postcondition and where Y has not been modified to 
ensure that it returns an empty set. 

For expressions like X->excludes(Y) or X->excludesAll(Y) a maximum of X@pre-
>size()−Y->size() may be deleted. 

2.6 Ambiguity 6: “forAll iterators” 

There are two possible approaches to ensure that an expression like X ->forAll(Y) 
(where X represents an arbitrary expression and Y a boolean expression) is satisfied in 
a new state of the IB. We can either ensure that, in the final state, all elements in X 
verify Y or to ensure that X results in an empty collection, since a forAll iterator over 
an empty collection always returns true.  
 
Default interpretation: Do not empty the collection expression 
The desired behaviour is to ensure that all elements in X verify the condition Y and 
not to force X to be empty. 

2.7 Ambiguity 7: “oclIsTypeOf and oclIsKindOf operators” 

The condition obj.oclIsTypeOf(C) requires type C to be one of the classifiers of obj. 
Therefore, new states where C is added to the list of classifiers of obj satisfy the 
condition, regardless of any other modifications to the list of classifiers of obj. States 
where additional classifiers have been added or some classifiers removed from obj 
also satisfy the condition.  

Similarly with obj.oclIsKindOf(C) expressions. The only difference is that, for 
these expressions, we only require that C or one of its subtypes is added to obj. 

On the contrary, conditions like not obj.oclIsTypeOf(C) establish that in the new 
state obj cannot be instance of C (and likewise with not obj.oclIsKindOf(C), where 
obj cannot be instance of C or instance of one of its subtypes). Therefore all states 
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verifying this condition are valid even if they add/remove other classifiers from the 
list of classifiers of obj. 
  
 
Default interpretation: Minimum number of specializations/generalizations
When defining this kind of expressions, we assume that the desired behaviour is just 
to express the minimum set of specializations/generalizations required to satisfy the 
postcondition. Therefore, new states where obj has been specialized also to other 
classifiers apart from C are not valid (unless required due to other expressions 
appearing in the postcondition). As an example, for expressions like 
obj.oclIsKindOf(C) only the classifier C or one of its subtypes may be added to obj 
during the transition to the new state. 

For not obj.oclIsTypeOf(C) expressions, no other classifiers (apart from C) should 
be removed from obj. Similarly, conditions like not obj.oclIsKindOf(C) require that 
obj is generalized to a direct supertype of C.  No other generalizations should be 
applied. 

3. Inherently ambiguous postconditions 

In some sense, all postconditions may be considered ambiguous since, in general, 
there are several states of the IB that verify a given postcondition. However, for most 
postconditions, the default interpretations presented in section 2 allow to 
disambiguate them by means of determining which state is the preferred among the 
possible ones.  

Nevertheless, some postconditions are inherently ambiguous (also called non-
deterministic [2]). We cannot define a default interpretation for them since, among all 
possible states satisfying the postcondition, there does not exists a state clearly more 
appropriate than the others. As an example assume a postcondition with an expression 
a>b. There is a whole family of states verifying the postcondition (all states where a 
is greater than b), all of them equally correct, even from the designer point of view or, 
otherwise, he/she would have expressed the relation between the values of a and b 
more precisely (for instance saying that a=b+c).  

We believe it is worth to identify these inherent ambiguous postconditions since 
most times the designer does not define them on purpose but by mistake. Table 3.1 
shows a list of expressions that cause a postcondition to become inherently 
ambiguous. The list is not exhaustive but contains the most representative ones. 

Table 3.1 List of ambiguous expressions 

Expression Ambiguity description 

post: B1 or … or Bn
At least a Bi condition should be true but it is not defined which 
one/s 

X<>Y, X>Y, X>=Y, 

X<Y, X<=Y 
The exact relation between the values of X and Y is not stated 
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X+Y=W+Z 

(likewise with -,*,/,…) 
The exact relation between the values of the different variables is 
not stated.  

X->exists(Y) An element of X must verify Y but it is not defined which one  

X->any(Y)=Z Any element of X verifying Y could be the one equal to Z 

X->union(Y)=Z 

(likewise with ∩,−,…) 

There are at least 2n different ways to distribute the elements of Z 
between X and Y (n=|Z|) to ensure that the expression is satisfied 

X.p->sum()=Y There exist many combinations of single values that once added  
may result in Y  

X.n1.n2…nn=Y We can either assign Y to the object/s obtained at the end of the 
navigation nn or to change an intermediate link to obtain at nn an 
object/s equal to Y  

Op1() = op2() The values returned by two operations must coincide. Depending 
on its body, there may be several alternative ways to satisfy this 
equality 

4. Related Work 

Ambiguity problems of declarative specifications have been poorly studied apart from 
the frame problem [5],[15] and a couple of basic assumptions regarding object (and 
collection) creations and removals [14]. The most usual strategy to deal with the 
ambiguity problems in declarative specifications forces the designer to explicitly state 
in the postconditions which elements of the IB change and which remain the same 
(this is the case of [5], [4] and formal languages as Z, VDM or Larch). More recent 
approaches, as [2], try to combine the OCL with imperative languages to permit 
designers specify more clearly the semantics of the contracts.  

However, none of them tries to automatically disambiguate declarative 
specifications without burdening the designer with the task of defining additional 
information in the postconditions. Besides, as we have commented before, the 
specification of completely precise postconditions is not feasible in practice. 
Nevertheless, such approaches could be useful to deal with the problematic 
postconditions of section 3. 

The support for declarative specifications in current CASE and MDA tool is rather 
limited. Most of them only deal with imperative specifications (see [10] as a 
representative example). There exist several OCL tools allowing the definition of 
operation contracts (see, among others, [3], [6], [8],[7]). However, during the code-
generation phase, the contracts are simply added as validation conditions. Contracts 
are transformed into if-then clauses that check at the beginning and at the end of the 
operation if the pre and postconditions are satisfied (and raise an exception 
otherwise). An exception is [1] that is able to check the correctness of an 
implementation with respect to its contract. None of them considers the ambiguity 
problems of the declarative specification, any state satisfying the postcondition is 
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considered valid without considering that, in fact, the designer would regard some of 
these valid states as invalid ones. 

5. Conclusions and further research  

In this paper we have detected several OCL expressions that, when included in a 
postcondition specification, introduce ambiguity problems. We define that a 
postcondition is ambiguous when it is an underspecification, i.e. when there are 
several states of the IB that satisfy it, even though, most probably, the designer would 
only consider as valid states a  (small) subset of them. 

Therefore, regardless how the designer decides to handle these ambiguity issues, 
we believe it is important he/she be aware of them since they may even indicate an 
error in the declarative specification (especially for the inherent ambiguities of 
section 3). In the declarative specifications we analyzed and according to the contract 
definition in natural language, many times the designers were unaware of the 
ambiguities present in their postconditions. 

Additionally, we propose an approach to automatically disambiguate the 
postconditions by means of providing a default interpretation for each kind of 
ambiguous expression. The default interpretation determines, from the possible states 
satisfying the ambiguous expression, the one/s that best represents the designer’s 
intention when specifying the postcondition.  

Our proposed interpretations require some strong assumptions about how the 
postconditions are specified, yet we believe the assumptions reflect the way designers 
tend to (unconsciously?) specify the postconditions. They have been validated against 
two case studies of real-life applications (a Car Rental System [9] and an e-
marketplace system [13]) as well as with other examples appearing in different books, 
papers and tutorials. Nevertheless,  we would like to have the opportunity to discuss 
them among the members of the OCL community in order to see whether they are 
accepted or alternatives ones should be proposed (or even if there is no agreement in 
the existence of such default semantics for postconditions).  Obviously, our approach 
cannot be applied when the proposed assumptions are not followed since then we 
may end up restricting some possible final states that should be considered valid. 

There are other directions in which we plan to continue our work. First, we plan to 
extend the set of ambiguous expressions we detect. To facilitate an empirical 
validation of our approach we are also interested in developing an animator tool that 
given an operation contract and a state of the IB, applies our default interpretations to 
the contract postcondition in order to compute the new state for the IB. Moreover, we 
want to explore the possibility of generating (semi) automatically the implementation 
of an operation starting from its declarative specification. This translation would be 
useful to leverage current MDA tools, which only support code-generation from 
imperative specifications. 
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Appendix  

This appendix provides a list of simple transformation rules between OCL 
expressions. These transformations help to extend the set of OCL expressions 
included in the ambiguity patterns of sections 2 and 3. We group the equivalences by 
the type of expressions they affect. The capital letters X, Y and Z represent arbitrary 
OCL expressions of the appropriate type. The letter o represents an arbitrary object. 

Table A.1 List of substitution rules 

Type Rules 
X implies Y   if X then Y else true (not X or Y) and (X or Z)   

                                      if X then Y else Z 
A xor B  (A or B) and (not A or not B) not (not A)  A 
not (A or B)  not A and not B not (A and B)  not A or not B 

Boolean  
types 

A or (B and C) (A or B) and (A or C)  
X->count(o)>0  X->includes(o)            X->count(o)=0  X->excludes(o)  

Y->forAll(y1| X->count(y1)>0)     
                                X->includesAll(Y)  

Y->forAll(y1| X->count (y1)=0)  
                                    X->excludesAll(Y)     

Collection 
Types 

X->size()=0  X-> isEmpty() X->size()>0  X->notEmpty()  

X->select(Y)->size()>0  X->exists(Y)  not X->exists(Y)  X->forAll(not Y) 

X->reject(Y)  X->select(not Y) X->one(Y)  X->select(Y)->size()=1 

X->select(Y)->size()=0  
                                   X->forAll(not Y) 

X->select(Y)->size()=X->size()  
                                             X->forAll(Y)  

X->select(Y)->forAll(Z)  
                         X->forAll(Y implies Z)  

X->select(Y)->exists(Z)   
                                   X->exists(Y and Z) 

Predef. 
iterators 
 

not X->forAll(Y)   X->exists(not Y)  
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Abstract. The Object Constraint Language (or variations of it) is increasingly 
being used as a text based navigation or expression language over Object-based 
modelling languages other than the original target of UML. The recent increase 
of Domain Specific Languages has in particular contributed to this process. As 
a consequence, it is useful to investigate the lengths to which an OCL like 
expression language can be made independent of the specifics of the underlying 
modelling language, concepts and implementation. This paper looks at the issue 
from the perspective of detaching the OCL specification from the standard 
library of types that is currently built into its definition. 

1 Introduction 
The Object Constraint Language (OCL) [3] was originally conceived and designed 

as a constraint language for use with the UML. Since then, its use has been extended 
to form a general expression and query language for use with MOF based modelling 
languages. Such languages need only to support a few basic concepts in order to 
facilitate the use of OCL for evaluating expressions over the language. 

Based on the OCL standard, our works with the Kent OCL toolkit [2] have shown 
that it is possible to construct a “Bridge” to multiple modelling languages and / or 
multiple implementations of those languages. – UML, MOF, ECORE, MDR, 
Java..etc. 

Our original bridge proposes a small set of interfaces that must be implemented in 
order to support the use of OCL with a new language. Some of these classes are 
required specifically to support the concepts in the OCL standard library, and thus the 
implementation is by necessity tied to that library. In addition, within the 
implementation of the OCL processor, the mapping from the OCL standard lib types 
to implementation types is fixed, e.g. an OCL String maps to a Java String. 

When moving to different implementations of a model, one often discovers that the 
mapping of OCL standard library types onto similar types in the model 
implementation is different for different implementation techniques. For example, 
there may be a user defined String class that the OCL string should be mapped to. In 
our experience, we have found that it would be most useful to be able to replace the 
standard types (and methods available on those types) with alternatives, depending on 
the implementation of the model. 

This would achieve three things: 
1. The mapping to model implementation of basic types is simplified 
2. It provides the ‘user’ the option to extend, alter, or replace elements of the 

standard library. 
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3. It simplifies the implementation of an OCL compiler/interpreter. 
The purpose of this paper is to examine the feasibility of defining an OCL-like 

language that would meet the requirement of being able to replace the standard 
library. 

The paper is organised as follows: Section 2 looks at the basic requirements of a 
textual navigation language for object graphs. Section 3 discusses issues about 
mapping syntax and literal values onto a (potentially) user defined standard library. 
Section 4 presents a simple meta-model we have been experimenting with. Section 5 
includes a discussion on the relationship between user models and the OCL-like 
language. 

2 Basic requirements 
Obviously we cannot, with OCL, provide a generic language for writing 

expressions over any language. However, if we make the not unreasonable 
assumption that the target languages will all be based on a notion of object-
orientation, then we can assert that expressions in the language must be capable of 
navigating a path through a graph of objects and links. The following subsections 
introduce the main components we believe are necessary in such a language. 

2.1 Navigation Paths 
There are two basic requirements for providing a language for navigating such a 

graph. 
1. A means to reference the stating point in a navigation path  
2. A means to traverse a link. 

A starting point is traditionally given by defining the ‘type’ of object that can be 
used as the starting point for the given expression. Further, there are traditionally two 
options for crossing a link to a new object, either via a property (attribute or 
association end in UML) or by an operation call.  In some cases, the link is pre-
defined as part of the initial graph (e.g. an association/link) or sometimes the link is 
dynamically constructed (e.g. as part of the execution of an operation or derived 
property). There is no relevant difference between qualified property and operation; 
the difference is really a syntactic one: 

• object.property or object.property[qualifier] 
• object.operation(argument) 

From a navigation point of view, both of these result in a new ‘node’ (object) in the 
navigation path and could be seen as equivalent. However, with a closer look there 
are some differences that require us to treat them separately: 

1. Due to various conventions, the implementation of operations and 
properties has tended to differ; e.g. the Java conventions of implementing 
properties with accessor and mutator methods, starting their name with 
‘get’ and ‘set’. 

2. There is a semantic difference between an operation and a qualified 
derived property! An operation can modify the state of a model (i.e. 
modify the objects and links in the graph) whereas a derived property 
does not; from an OCL perspective, OCL is not supposed to alter the 
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state, and can thus only call operations that do not alter the state (e.g. 
marked with ‘isQuery’ in UML). 

The second of these distinctions is not necessarily relevant if an extension of OCL 
is to be used as a textual means to describe behaviour, including state modification. 

Our preference on these issues is to provide two mechanisms for navigation, 
operations and qualified properties (there may be no qualifier arguments); thus 
facilitating a differentiation between property and operation if necessary. 

2.2 Iterator Expressions 
One of the significant features of OCL is the “iterator” expressions. These are akin 

to higher order functions from functional programming languages. They are essential 
for the navigation over collections of objects. In general, these iterator operations 
take an argument, which is of the form of an OCL expression, and apply the 
expression to each element of the collection in order to calculate the result of the 
operation. In OCL, these iterator operations are currently built into the language, i.e. 
they are part of the language definition rather than operation defined on an object. 
This unfortunately means that users cannot define new iterator operations. In order to 
facilitate such definitions, it is necessary to introduce the concept of an Expression as 
an object type, so that it can be passed as an argument. 

2.3 Alternative Paths 
With a text expression, it is often necessary to define a set of alternative navigation 

paths, the choice of which to take being determined at runtime. Typically this facility 
is offered with concepts such as an “if” statement and/or a “switch” or “select” 
statement. 

The OCL currently has the concept of an if statement; we see no reason not to 
extend this to the multiple path options offered by concepts such as the “switch” or 
“select” statements found in many programming languages. Such a concept could 
follow the same convention as the existing “if” statement in requiring a default option 
(the construct must always return a value), or assume that if a default option is not 
provided then an OCL “null” or “invalid”’ value is returned. 

This kind of multiple paths conditional statement is particularly useful when 
testing variables of an enumeration type, in addition to other situations, which using 
the current OCL must be formed using multiple nested “if … then … else … endif” 
statements. 

2.4 Sub Expressions 
The OCL concept of “let … in …” is essential to writing concise and readable 

complex expressions. They provide a means to define a number of sub-expressions 
that can be reused within the expression as a whole. This could be seen as syntactic 
sugar; however, its use can, in addition to improving readability, also improve the 
performance of evaluating the expression; hence we feel the concept should be 
included in the language definition. 
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3 Syntax and Literal Values 
It is necessary to define a binding between literal values and types within the 

model. Usually this is built in to the language. However, we believe it is feasible to 
provide definitions/mappings at compile time. 

An example mapping between literal values and types found in a Java 
implementation of a model could be given as shown in Table 1. This mapping would 
not, of course, provide the operations given by the standard OCL library. (The non-
terminal names come from the grammar specification of the language.) 

 
Literal non-terminal name Type 
stringLiteral java.lang.String 
integerLiteral java.lang.Integer 
realLiteral java.lang.Double 
booleanLiteral java.lang.Boolean 

Table 1 

An alternative mapping shown in Table 2, could provide the standard OCL 
operations, but requires the model to be implemented in Java using the named types. 
Literal non-terminal name Type 
stringLiteral my.ocl.String 
integerLiteral my.ocl.Integer 
realLiteral my.ocl.Real 
booleanLiteral my.ocl.Boolean 

Table 2 

Operator symbols are also an issue; whether they are prefix, infix or postfix, they 
must to be mapped to appropriate operations on a type. This could be provided in a 
simple fashion by binding the operator symbols to operations names as illustrated in 
Table 3. The problem with this would be with operators such as ‘-’, which has both a 
prefix and an infix meaning and hence would ideally be mapped to two different 
operation names – ‘minus’ and ‘negate’. 

 
Operator Symbol Operation Name 
+ plus 
- negate 
- minus 
* multiply 
/ divide 
and and 
or or 
% modulus 

Table 3 

A more complex approach could be taken by binding the operator symbol and the 
operand types to operations on particular types, as indicated in Table 4. This approach 
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requires the mappings to explicitly reference the types on which the operators are 
applicable. 

 
Types Operator Symbol Operation Name 
{..Integer, ..Integer} + plus 
{..Double, ..Double} + plus 
{..String, ..String} + concatenate 
{..Double, ..Double} - minus 
{..Integer, ..Integer} - minus 
{..Double } - negate 
{..Integer } - negate 
{..Boolean, ..Boolean } and and 

Table 4 

A third alternative would be to make a distinction in the mapping information 
between prefix, infix and postfix operators, but require the names of the implementing 
operation to be the same whatever type the operator is applied to. 

 
Type Operator Symbol Operation Name 
infix + plus 
infix - minus 
prefix - negate 
prefix not not 
infix and and 

Table 5 

The first option is nice and simple, but is too restrictive; the second option gives us 
extensive flexibility in mapping operators to operations, but in out opinion requires 
too much information to be specified. Our preference is for the third option, which 
gives sufficient flexibility without requiring the level of detail necessary with the 
second option. 

4 A Simple Navigation Language Meta-Model 
The meta-model for a language defined along these means could consist of two 

parts 
1. Navigation Part: for defining navigation paths and expressions. 
2. Bridge Part: for abstracting the connection between navigation paths and 

the object graph. 
The meta-model of an OCL-like language that we have been using to experiment 

with the ideas discussed in this paper is shown below in the two figures. 
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ExplicitExpression

VariableDeclaration
(from kmf3::kel::bridge)

PropertyCallExpression

OperationCallExpression

TupleLiteralExpressionPrimitiveLiteralExpression

ObjectLiteralExpression

Type
(from kmf3::kel::bridge)

ConditionalExpressionVariableReference NavigationExpressionLiteralExpresison

Expression

kmf::kel-Expression

freeVariable+

0..1
{qualifier name}

 
Figure 1 – Types of Expression 

VariableDeclaration

+name:String
+type:Type

OperationProperty

Type

kmf::kel:bridge

qualifier+

*
{ordered}

parameter+

*
{ordered}

argument+
*

{ordered}

0..1
{qualifier [name,parameter],read}

0..1 {qualifier [name,qualifier], read}

 
Figure 2 – Bridge Concepts 

5 On Models 
The OCL standard does not only provide a library of primitive and collection types 

and define a text based navigation language. It also alters the type hierarchy of the 
target execution model. That is to say, the OCL language makes an assertion that all 
types in the model extend types in the OCL standard library – e.g. OclAny and 
OclModelElement. 

These types contain useful operations such as testing for equality or checking the 
type of an object. The assumption in OCL is that these operations are not provided by 
the model, and thus a common super type, that does provide these operations, is 
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required. This probably arose initially due to OCL being “added” to UML as an 
afterthought. We would argue that it is an unusual policy. 

A more usual approach is to provide a common super type and ensure that every 
model type does extend it. For instance, common OO programming languages such as 
Java [4] and C# [1] have common super types of ‘java.lang.Object’ and 
‘’System.Object’; all classes defined in these languages automatically extend the 
common super type, it is not added as an afterthought by the expression part of the 
language. 

We propose that the same approach should be taken in the modelling world. All 
models must specify the type in the model that is the ‘common super type’ of the 
model; this type could be provided by a standard library, but may be replaced by an 
alternative. 

The OCL standard library thus becomes a ‘model’ just like any other. However, 
this model will probably be included (imported) by specific domain models, 
providing a standard set of primitive and collection types and a standard common 
super type. 

5.1 UML + OCL 
The current situation of UML + OCL can be mimicked using the techniques 

discussed above as follows: 
• The current OCL standard library is provided as a UML package and 

classes. 
• A specific Domain Model includes the OCL standard library and defines 

the OclModelElement class as the root type for the model. 
• The ‘new’ standard library will contain a type ‘Expression’. 
• Iterator operations are defined on the collection classes, taking parameters 

of type Expression. 

5.2 A New Standard Library 

..

Expression

.
Set, ...

Collection

String, ...

ModelElementPrimitive

Any

A Standard Library

 
Figure 3 – A possible Standard Library 
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• Expression: An expression type enables us to pass expressions as 
parameters to operations. 

• Primitive: A Primitive type is distinguished from other types as primitive 
objects can be constructed from string constants (e.g. by the OCL 
compiler). 

• ModelElement: Within UML, a Model Element object embodies some 
notion of containment (i.e. composite/part structure indicated with black 
diamonds) and its type is given as a class in the model. This provides a 
candidate for the “inheritance root” of Models. 

• Collection: A collection object does not require a notion of containment. 

6 Conclusion 
We have proposed an approach to “detaching” the OCL standard library from the 

navigation and expression part of the language. This moves the standard library (and 
types) to the same position as all other model elements, thus facilitating the extension 
or replacement of the standard types. 

Our initial experiments based on the Kent OCL library have shown that this 
approach to providing OCL support has some merit; in particular we have found it 
very useful to be able to extend and replace the standard types. 

An outcome of these experiments has been the production of a Java library that 
supports all the OCL iterator operations as operations on a collection classes; we have 
found that this library is very useful as a target for OCL code generation tasks, in 
addition to simply being a useful library for use within straightforward Java 
programmes. 

We are currently experimenting with “bridging” the OCL-based navigation 
language to alternative object-based DSLs, alternative implementations of UML/MOF 
and with alternative libraries of primitive and collection types. 
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Abstract We report on the results of a long-term project to formalize
the semantics of OCL 2.0 in Higher-order Logic (HOL). The ultimate goal
of the project is to provide a formalized, machine-checked semantic basis
for a theorem proving environment for OCL (as an example for an object-
oriented specification formalism) which is as faithful as possible to the
original informal semantics. We report on various (minor) inconsisten-
cies of the OCL semantics, discuss the more recent attempt to align the
OCL semantics with UML 2.0 and suggest several extensions which make,
in our view, OCL semantics more fit for future extensions towards pro-
gram verifications and specification refinement, which are, in our view,
necessary to make OCL more fit for future extensions.

1 Introduction

In research communities, UML/OCL has attracted interest for various reasons:
1. it is a formalism with a “programming language face,” which is perhaps

easier to adopt by software developers notoriously hostile to mathematical
notation,

2. it puts forward the idea of an object-oriented specification formalism, turning
objects and inheritance into the center of the modeling technique, and

3. it provides in many respects a “core language” for object-oriented modeling
which makes it a good target for research of object-oriented semantics.

Item 1 refers not only to syntax, but also to semantics: OCL semantics comprises
the notion of undefinedness to model exceptional computations abstractly; this
is deeply integrated into the logics and presents a particular challenge to deduc-
tive systems. Further, especially item 2 makes OCL rather different from logical
languages such as first-order logics (FOL), higher-order logics (HOL), set theory
and derived specification formalisms such as Z [29,3] or VDM, which, following a
long platonic tradition in logics, start with the notion of values and then model
(hierarchies of) relations over them. On the other hand, this remarkably different
perspective makes OCL semantics (and object-oriented specification as a whole)
difficult; numerous luke-warm attempts to integrate object-orientation into spec-
ification formalisms, such as VDM++ or Object-Z, report—among many useful
things—on this particular difficulty. Comparing OCL with the two related ap-
proaches JML and Spec#, the main difference is that OCL attempts to abstract
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from concrete object-oriented programming languages, while JML and Spec#
are designed as annotation-languages for them. This also holds for the UML Ac-
tion package, which provides a deliberately abstract programming notation for
“methods” associated to operations in class diagrams.

These three essentials motivated a long-term project to formalize the seman-
tics of OCL 2.0 using HOL, leading to the proof environment HOL-OCL built on
top of Isabelle/HOL [1,6]. The ultimate goal of the project is to provide cal-
culi and automated proof support for reasoning over OCL formulae based on
rules derived from this formalized semantics. This paves the way for proving the
consistency of specifications, the proof-obligations resulting from specification
refinements as well as the correctness of the transition to executable code. In
this paper, we will present a by-product of this line of research: namely various
formalization problems that we found or that we foresee when heading for an
integrated verification method ranging from specifications to programming code.
Extending earlier work [4], we report on a substantially larger range of problems
and put it into perspective to recent developments of the OCL semantics.

2 Methodology: “Strong” Formal Semantics

In this section, we describe the foundations, the relevant techniques and the
benefits of the methodology underlying HOL-OCL. This methodology boils down
to provide a “strong,” i.e., machine-checked and conservative, formalization of
the standard’s “Semantics” chapter [24, Appendix A]. The question may arise
why this original formalization is not adequate for our goals. There are two
reasons:
The fundamental reason results from the fact that [24, Appendix A] is based

on naive set theory and an informal notion of “model.” It assumes a universe
for values and objects and algebras over it without any concern of existence
and consistency. This paper-and-pencil semantics cannot be strongly for-
malized in this form, neither in an untyped set theory like Isabelle/ZF or a
typed set theory residing in Isabelle/HOL. Since OCL is a typed language at
the end, and since we wanted to have type-issues handled by the Isabelle
type-checker and not inside the logic representation, it seems more natural
to opt for a typed meta-language (like HOL).

The technical reason is a consequence of our design choice to represent the
types of OCL expressions one-to-one by HOL types (i.e., the map is injective)
such that only well-typed OCL formulae exist in the semantic representation
in HOL. Consequently, all well-formedness-related side-conditions are unnec-
essary in calculi. Together with the fact that the Isabelle/HOL library can
be re-used to a certain extent, this greatly improves the practicability of
our approach. Technically speaking, our representation is a so-called shallow
embedding without an explicit datatype for syntax and an explicit semantic
interpretation function I mapping syntactic terms to a semantic domain.
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In the following, we present our meta-language HOL and the underlying conser-
vative methodology in more detail. We outline the shallow representation and
show its equivalence to [24, Appendix A].

2.1 Higher-order Logic

Higher-order Logic (HOL) [8,2] is a classical logic with equality enriched by total
parametrically polymorphic higher-order functions. It is more expressive than
first-order logic, e.g., induction schemes can be expressed inside the logic. Prag-
matically, HOL can be viewed as a combination of a typed functional program-
ming language like SML or Haskell extended by logical quantifiers.

HOL is based on the typed λ-calculus—i.e., the terms of HOL are λ-expressions.
Types of terms may be built from type variables (like α, β, . . . , optionally anno-
tated by Haskell-like type classes as in α :: order or α :: bot) or type constructors
(like bool or nat). Type constructors may have arguments (as in α list or α set).
The type constructor for the function space ⇒ is written infix: α ⇒ β; multi-
ple applications like τ1 ⇒ (. . . ⇒ (τn ⇒ τn+1) . . .) have the alternative syntax
[τ1, . . . , τn] ⇒ τn+1. HOL is centered around the extensional logical equality
_ = _ with type [α, α] ⇒ bool, where bool is the fundamental logical type. We
use infix notation: instead of (_ = _) E1 E2 we write E1 = E2. The logical con-
nectives _∧_, _∨_, _ → _ of HOL have type [bool,bool] ⇒ bool, ¬_ has type
bool ⇒ bool. The quantifiers ∀_._ and ∃_._ have type [α ⇒ bool] ⇒ bool.
The quantifiers may range over types of higher order, i.e., functions or sets.

The type discipline rules out paradoxes such as Russel’s paradox in untyped
set theory. Sets of type α set can be defined isomorphic to functions of type
α ⇒ bool; the definition of the elementhood _ ∈ _, the set comprehension
{_._}, _ ∪_ and _ ∩_ is then standard.

The modules of larger logical systems built on top of HOL are Isabelle the-
ories. Among many other constructs, they contain type and constant declara-
tions as well as axioms. Since stating arbitrary axioms in a theory is extremely
error-prone and should be avoided, only very limited forms of axioms should be
admitted and the side-conditions (both syntactical and semantical) checked by
machine. These fixed blocks of declarations and axioms described by a syntactic
scheme are called conservative theory extensions since any extended theory is
consistent (“has models”) provided the original theory was. Most prominent in
the literature are constant definition and type definition. For example, a con-
stant definition consists of a declaration declaring constant c of type τ and the
(well-typed) axiom of the form: c = E with the side-condition that c has not
been previously declared, E does neither contain free variables nor c (no recur-
sion). A further side-condition forbids type variables in the types of constants
in E that do not occur in the type τ . As a whole, a constant definition can be
seen as an “abbreviation,” which makes the conservativity of the construction
plausible (see [10] for details). The idea of an “abbreviation” is also applied to
the conservative type definition of a type (α1, . . . , αn)T from a set {x | P (x)}.

The entire Isabelle/HOL library, including typed set theory, well-founded re-
cursion theory, number theory and theories for data-structures like pairs, type
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sums and lists is built on top of the HOL core-language by conservative definitions
and derived rules. This methodology is also applied to HOL-OCL.

2.2 Formal Semantics Preliminaries in HOL

In OCL, the notion of explicit undefinedness plays a fundamental role, both for
the logical and non-logical expressions:

Some expressions will, when evaluated, have an undefined value. For
instance, typecasting with oclAsType() to a type that the object does
not support or getting the ->first() element of an empty collection
will result in undefined. (OCL Specification [24], page 15)

Thus, concepts like definedness and strictness play a major role in the OCL. We
use a type class bot to specify the class of all types that contain the undefinedness
element ⊥. For all types in this class, we define a combinator strictify by:

strictify f x ≡ if x = ⊥ then⊥ else f x

with type (α :: bot ⇒ β :: bot) ⇒ α ⇒ β. The operator strictify yields a strict
version of an arbitrary function f .

Further, we use the type constructor τ⊥ that assigns to each type τ a type
lifted by ⊥. Per construction, each type τ⊥ is in fact in the type class bot. The
function x_y : α → α⊥ denotes the injection, the function p_q : α⊥ → α its
inverse for defined values.

On the expression level, lifting combinators defining the distribution of con-
texts or environments (see below) are defined as follows:

lift0 f ≡ λ τ. f of type α ⇒ Vτ (α) ,

lift1 f ≡ λ X τ. f(X τ) of type (α ⇒ β) ⇒ Vτ (α) ⇒ Vτ (β) , and
lift2 f ≡ λ X Y τ. f(X τ)(Y τ) of type ([α, β] ⇒ γ) ⇒ [Vτ (α), Vτ (β)] ⇒ Vτ (γ) .

where Vτ (α) is a synonym for τ ⇒ α. The types of these combinators reflect
their purpose: they “lift” operations from HOL to semantic functions that are
operations on contexts.

2.3 Textbook vs. Combinator Style Semantics of Operations
In HOL-OCL, we use a combinator-style presentation of the semantic functions
rather than a textbook-style presentation as used in the OCL standard, both for
reasons of conciseness as well as accessibility to advanced techniques of automatic
generation of library theorems [5]. In combinator style as used in the HOL-OCL
libraries, for example, the constant 1, the unary operation not _, and the binary
operation _ + _ are represented by the following constant definitions:

1 ≡ lift0(x1y)
not _ ≡ lift1(strictify(x_y ◦ (¬_) ◦ p_q)
_ + _ ≡ lift2(strictify(λ x. strictify(λ y. xpxq + pyqy)))
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where _◦_ denotes function composition. We use overloading here: the _+_ on
the left-hand side of the last definition has type [Vτ (int⊥), Vτ (int⊥)] ⇒ Vτ (int⊥)
(where Vτ (int⊥) is the HOL equivalent to the OCL type Integer), while the _+_
on the right-hand-side has type [int, int] ⇒ int. This definition directly translates
the idea that _ + _ in HOL-OCL is the strictified version of the “mathematical”
_ + _ lifted over contexts.

The question arises why this definition is equivalent to the formalized ver-
sion of the semantics given in the standard. The OCL 2.0 standard presents a
definition scheme for all strict basic operations by just one example. For the
+-operator on integers, [24, page A-11] presents this definition as:

I(+)(i1, i2) =

{
i1 + i2 if i1 6= ⊥ and i2 6= ⊥ ,

⊥ otherwise.

This semantic function for basic operations is integrated in the more general
semantic interpretation function for OCL expressions like

Let Env be the set of environments τ = (σ, β). The semantics of an
expression e ∈ Exprt is a function IJeK : Env → I(t) that is defined as
follows.
iv. IJw(e1, . . . en)Kτ = I(w)(τ)

(
IJe1K(τ), . . . , IJenK(τ)

)
(OCL Specification [24], page A-26, definition A.30)

Here, τ refers to the environment (in the sense of the standard), i.e., a pair
consisting of a map β assigning variable symbols to values and a pair σ of system
states.

There are two more semantic interpretation functions; one concerned with
path expressions (i.e., attribute and navigation expressions [24, Definitions A.21],
and one concerning the interpretation of pre and postconditions τ � P which is
used in two different variants.

To show the equivalence of the two formalization styles, we re-introduce a
kind of “explicit semantic function” IJEKτ into our shallow embedding as a
syntactic marker, i.e., by stating the identity:

IJxK ≡ x with type α ⇒ α .

For the addition over Integer, we prove the following theorem that explicitly
states that our defined operator is an instance of the informal definition scheme
in the standard:

IJX + Y Kτ =

{
xpIJXKτq + pIJY Kτqy if IJXKτ 6= ⊥ and IJY Kτ 6= ⊥,

⊥ otherwise .

The proof in HOL-OCL is simple and canonical: it consists of the unfolding of
all combinator definitions and the syntactic marker I. The combinators are just
abbreviations of re-occurring patterns in the textbook style definitions.

In the following, we summarize the differences between the OCL standards
textbook definitions and our combinator-style approach:
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1. The standard [24, chapter A] assumes an “untyped set of values and objects”
as semantic universe of discourse. Since we reuse the types from the HOL-
library to give Booleans, Integers and Reals a semantics, meta-expressions
like {true, false} ∪ {⊥} used in the standard are simply illegal in our inter-
pretation. This makes the injections x_y and projections p_q necessary.

2. The semantic functions in the standard are split into I(x), IJeKτ , IAttJeKτ
and τ � P . Since we aim at a shallow embedding (which ultimately sup-
presses the semantic interpretation function), we prefer to fuse all these
semantic functions into one.

3. The environment τ in the sense of the standard is a pair of a variable map
and a pair of pre and post state. The variable map is superfluous in a shallow
embedding (binding is treated by using higher-order abstract syntax), our
contexts τ just consist of the state pair.

Of course, this presentation here covers only one aspect of the compliance of the
HOL-OCL semantics to the standard for a tiny portion of the language; for an
in-depth discussion for the complete language, the reader is referred to [6].

2.4 The Benefits of a “Strong” Formal Semantics

Our strong formalization of [24, Appendix A] has the following benefits:
A Consistency Guarantee. Since all definitions in our formal semantics are

conservative and all rules are derived, the consistency of HOL-OCL is reduced
to the consistency of HOL for the entire language.

A Technical Basis for a Proof-Environment. Based on the derived rules,
control programs (i.e., tactics) implement automated reasoning over OCL
formulae; together with a compiler for class diagrams, this results in a gen-
eral proof environment called HOL-OCL. Its correctness is reduced to the
correctness a (well-known) HOL theorem proving system.

Proofs for Requirement Compliance. The OCL standard contains a collec-
tion of formal requirements in its mandatory part with no established link
to the informative part [24, Appendix A]. We provide formal proofs for the
compliance of our OCL semantics with these requirements (see [6] for details).

Formalization Experience. Since our semantics is machine-checked, we can
easily change definitions and check properties of them allowing for increased
knowledge of the language as a whole.

3 The Past

OMG standards are developed in an open process by the OMG (Object Manage-
ment Group) leading to a variety of (intermediate) “standardization” documents.
Especially for UML and OCL, which have a long history. OCL was introduced as
an OMG specification language as additional document [22] completing the UML
1.1 standard [23]. In later releases of the UML standards of the version 1.x series
the OCL standard was a chapter of the UML specification, e.g., [25, Chapt. 6].
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All the different versions of OCL 1.x are very close to each other, contain-
ing mainly an informal motivation of the indented use and semantics1 of OCL
together with a formal grammar of its concrete syntax. Understandably, these
past version of the standard lacked many desirable features, e.g., the use of
OCL was mainly limited to annotate class diagrams, no abstract syntax was in-
cluded. Moreover, reading the OCL 1.x standards leaves more questions open
than it answers. These shortcomings and open questions, like the handling of
undefinedness, or recursion, were discussed [28,21,14,9] in academia and this
discussions clearly fertilized the development towards OCL 2.0. Especially the
work of Richters [27] in developing a formal semantics served as formal under-
pinning of the OCL 2.0 development. It was a major break-through in the process
of defining a formal semantics for OCL . Many problems, like the handling of
undefinedness, were clarified during the OCL 2.0 standardization process, some
questions however, like the handling of recursion, are still unsolved.

4 The Present

4.1 The OCL 2.0 Standard

In this section, we give a brief overview of the chapters of the standard that are
related with the semantics of OCL 2.0: first, the OCL standard is divided into
normative parts and informative, i.e., not normative, parts. The semantics of
the standard appears in the following chapters of [24]:
Chapter 7 “OCL Language Description”: This informative chapter moti-

vates the use of OCL and introduces it informally, mostly by examples.
Chapter 10 “Semantics Described using UML”: This normative chapter

describes the “semantics” of OCL using the UML itself. Merely an under-
specified “evaluation” environment is presented.

Chapter 11 “The OCL Standard Library”: This normative chapter is, in
our opinion, the best source of the normative part of the standard describ-
ing the intended semantics of OCL. It describes the semantics of the OCL
expressions as requirements they must fulfill.

Appendix A “Semantics”: This informative appendix, based on [27] , de-
fines the syntax and semantics of OCL formally in a textbook style paper-
and-pencil notion.

We see the semantic foundations of the standard critical for several reasons:
1. The normative part of the standard does not contain a formal semantics of

the language.
2. The consistency and completeness of the formal semantics given in “Ap-

pendix A” is not checked formally.
3. There is no proof, neither formal nor informal, that the formal semantics

given in the informative “Appendix A” satisfies the requirements given in
the normative chapter 10.

1 A good overview of the different usages of the word “semantics” is given in [15].
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Nevertheless, we think the OCL standard [24] (“ptc/03-10-14”) is mature enough
to serve as a basis for a machine-checked semantics and formal tools support.
More recent versions, especially (“ptc/06-05-01”), are an ad-hoc attempt to
align OCL 2.0 to the UML 2.0 and represent a considerable step back with re-
spect to consistency and potential for formal semantics. Nevertheless, all issues
addressed in this paper are also valid for “ptc/06-05-01”.

In the remainder of this section, we will explain some selected problems;
our choice focuses on semantical problems which, among others, are caused by
inconsistencies or missing concepts in the standard document.

4.2 Implies

Recall that the OCL logic is based on a strong Kleene Logic. Consequently, most
operators of the logical type like _ and _ are explicitly stated exceptions from
the “operations are strict”-principle. In this section, we will discuss the implies
operation in more detail. Its semantic is defined in the standard as follows:
1. [24, Chapter 11] requires the following specification of implies:

context Boolean :: implies (b: Boolean ): Boolean
post: (not self) or (self and b)

2. [24, Appendix A] defines the b1 implies b2 by a truth table:
b1 � b2 false true ⊥

false true true true
true false true ⊥
⊥ ⊥ true‡ ⊥

While we were checking the consistency of the formal semantics [24, Chapter A]
with the normative requirements [24, Chapter 11], we detected an inconsistency:
calculating the truth table for the definitions of implies given in the normative
part one would expect ⊥ instead of true on the position marked with an ‡. This
inconsistency could be changed either by changing the truth tables [24, Chapter
A] or by changing the requirements [24, Chapter 11] to:

context Boolean :: implies (b: Boolean ): Boolean
post: (not self) or b

which represents the “classical definition” of implication.
Whereas different variants for implications for three-valued logics are consid-

ered in the literature [13,16], an analysis of the consequences for proof calculi
reveals some bad surprises. For example, consider the usual assumption rear-
rangement rules valid in the “classical definition”:

((X or Y ) implies Z) = (X implies Z) and(Y implies Z)
((X and Y ) implies Z) = (X implies (Y implies Z))

X implies (Y implies Z) = Y implies (X implies Z)

which do not hold for the standard’s definition of the implication. Although the
choice made in the normative part of the standards is feasible, in the light of
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these dramatic algebraic deficiencies, we qualify it as glitch from the deduction
point of view and suggest to apply the definition used in the appendix.

4.3 Smashed Datatypes

The OCL standard defines all operations as strict, i.e., the evaluation of an
operation is undefined if one of its argument is undefined. Nevertheless, there are
two important exceptions to this rule: the logical connectives and the collection
constructors. Whereas for the logical connectives this exception is stated both in
the normative part [24, Chapter 11] and in the informative part [24, Appendix A],
for the collection constructors this is only explained in the informative part [24,
Appendix A]. The normative part of the standard does not cover this issue.

In the literature, sets with strict constructors are called smashed. Such smashed
set types often occur in semantics for programming languages, e.g., SML. In a
language with semantic domains providing ⊥-elements, the question arises how
they are treated in type constructors like product, sum, list or sets. Two extremes
are known in the literature; for products, for example, we can have:

(⊥, X) 6= ⊥ {a,⊥, b} 6= ⊥ . . .

or:

(⊥, X) = ⊥ {a,⊥, b} = ⊥ . . .

The latter variant is called smashed product and smashed set. The normative
chapters make no clear decision here. We strongly opt for a smashed collection
semantics, based on two reasons:
1. OCL tends to define its constructs towards executablility and proximity to

object-oriented programming languages such as Java, and more important
2. OCL with non-smashed collection semantics leads to very complicated logical

calculi. Just consider the rule

self.OclIsDefined()

self->forAll(e | e.OclIsDefined())

which only holds for a smashed semantics. Without such rules, reasoning
over navigations, i.e., collections, always requires a proof of the definedness
of all elements of a navigation.

To study the effects of a non-smashed collection semantics on formal reasoning,
we provide a separate configuration of HOL-OCL, details can be found in [6].

4.4 Overloading and Late Binding

The concept of method-overloading is not yet fully supported by OCL. We be-
lieve, this is more or less due to some accidental circumstances:
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1. The UML standard [25, chapter 4.4.1] requires that operation names are
unique within the same namespace. In particular, subclasses may not over-
write inherited operations. Albeit, the UML standard allows one to (explic-
itly) overwrite methods, i.e., implementations of operations.

2. The OCL standard [24, chapter 7.3.41] restricts the use of the precondition
and postcondition declarations to operations or other behavioral features.
Sadly, all OCL tools we know of do not support the specification of precon-
ditions and postconditions for methods.

3. While the OCL standard speaks in several places of operation calls, it does
not give an hints how operation overloading should be resolved, neither
does it explain in detail concepts like operation (method) calls or opera-
tion (method) invocations.

Bringing these items together, one has to conclude that operation overloading,
and thus late-binding, is underspecified, or even not supported in OCL. Nev-
ertheless, we think that overwriting inherited operations or methods is a very
important feature of object-orientation and should be supported by the OCL:
since operation calls can occur in OCL constraints, their meaning depends on the
semantics of operation invocation. Thus we provide the theoretical foundations
for supporting late-binding (and thus overloading of operations) within HOL-
OCL [6], nevertheless a concrete syntax for specifying this has to be worked out.
As simple workarounds, one can ignore the well-formedness constraint of UML
for operations that requires operation names to be unique within one namespace.
This is what most case-tools do.

Since the UML definition expresses in several places a clear preference for
overloading operations, we suggest to extend the current OCL standard by a
late-binding semantics of method invocation. We are aware that checks for con-
servativity will impose restrictions on invocations here to be discussed in sub-
section 4.6.

4.5 Equalities

Historically, object-oriented systems are equipped with a variety of different
“equalities” [18]. Answering the question whether two objects are equal is not
so obvious. For example, are two objects equal only if their object identifiers are
equal (are they the same object�) or are two objects equal if their values are
equal? Whereas in traditional specification formalisms the equality is defined
over values, the most basic equality over objects is the reference equality or
identity equality, which is also the kind of equality that is usually provided as a
default, i.e., “built-in,” equality in object-oriented programming languages. Thus
there is a fundamental difference between values and objects.

This situation, i.e., which role do references play within OCL, is not clearly
stated in the OCL standard. ([6] gives a detailed discussion of this topic) and
we will only discuss in this paper the consequences of taking undefinedness, e.g.,
values and references can be undefined, into account. Further, the well-known
equivalence properties need to be generalized, e.g., symmetry (x = y ⇒ y = x)
is generalized to quasi-symmetry (x = y ⇒ y = x for x and y being defined).
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Naturally, we can apply the concept of strictness to an equality operator: an
equality operator is called strict equality if it evaluates to undefined whenever
one of its arguments is undefined, i.e., if the following properties hold:

(o .= ⊥) = ⊥ , (⊥ .= o) = ⊥ , and (⊥ .= ⊥) = ⊥ .

In contrast, an equality operator is called a strong equality if it satisfies the
property: (⊥ , ⊥) = T.

The OCL standard defines equality as the strict equality over values [24,
Sec. A.2.2], and since objects are values, and object identifiers are not distin-
guished from object values [24, Definition A.10] we chose the strict equality
_ .= _ as the default OCL equality within HOL-OCL. Nevertheless, several in-
teresting properties, like being quasi-reflexive, quasi-symmetric, quasi-transitive
and quasi-substitutive only hold for the strong equality (even potentially unde-
fined values can be substituted). Therefore, the strong equality is of outstanding
importance for deduction.

Also, consider for example the following operation specification:

context C::m(a: Integer ): Integer
post: result = 5 div a

What is the semantics of this operation given that the precondition does not
rule out a=0? If the standard strict equality is used this results in an inconsis-
tent specification. If the strong equality is used this operation simple returns
undefined when called with an argument of 0. Depending on the circumstances,
both may be reasonable. Thus we suggest to extend OCL with a strong equality
operation.

4.6 Recursion

The OCL standard vaguely requires that recursions should always be terminating
to rule out problems with divergent operation invocations:

The right-hand-side of this definition may refer to operations being de-
fined (i.e., the definition may be recursive) as long as the recursion is
not infinite. (OCL Specification [24], page paragraph 7.5.2, pp.16)

and also:

For a well-defined semantics, we need to make sure that there is no
infinite recursion resulting from an expansion of the operation call. A
strict solution that can be statically checked is to forbid any occurrences
[. . . ]. However, allowing recursive operation calls considerably adds to
the expressiveness of OCL. We therefore allow recursive invocations as
long as the recursion is finite. Unfortunately, this property is generally
undecidable. (OCL Specification [24], page A-31)
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Unfortunately, in a proof-environment we have to be substantially more spe-
cific than this. Furthermore, HOL-OCL is designed to live with the open-world
assumption, i.e., with the potential extensibility of object universes, as a de-
fault; further restrictions such as finalizations of class diagrams or a limitation
to Liskov’s Principle [20] may be added on top, but the system in itself does not
require them. This has the consequence that even in the following example:
context C::m(a1:T1 ,... , an:Tn): Integer

post: result = if a1.p()
then 1 + self.m(a1.q() ,... , an)
else 0 endif

the termination for the invocation self.m(a1.q(),...,an) is fundamentally
unknown (even if p and q are known and terminating): a potential overriding
may destroy the termination of this recursive scheme.

In form of a pre-translation process, operation specifications with a limited
form of recursive invocations can be converted into a format that satisfies the
constraints of a finite family of constant definitions. These limited forms can be
listed as follows:

– calls to superclass operations, i.e., (self.asType(A)).m(x1,...,xn), or
– direct recursive well-founded invocations, i.e.,

(self.asType(C)).m(x1,...,xn) where the user specifies a “measure” or
a well-founded ordering which the system checks to be respected in all calls.

The first can be statically resolved, the latter is based on the theory of well-
founded orders and the well-founded recursor “wfrec” in Isabelle/HOL, and so
to speak an application of the standard HOL methodology to OCL.

Alternatively, in case of a finalized class, i.e., a class that cannot be further
extended by inheritance, late-binding can be can by replaced by the case-switch:

if self ->IsType(A) then S else if . . . else S′′

Summing up, conservativity implies that only limited forms of recursive invoca-
tions are admissible. In an open world (no class finalization so far), only opera-
tion invocations on objects can be treated, whose type has been fixed, in a closed
world (the class hierarchy has been finalized), an invocation can be expanded to
a case-switch considering the dynamic type of self over calls.

5 The Future

Future extensions will aim for allowing smooth transitions from specification to
code (“methods” implementing “operations” in the terminology of the standard).
There are various aspects of this global challenge, which are in parts already
discussed in research communities as well as in the standardization process.

5.1 Library Extensions
In more recent draft-versions of the standard, bounded versions of Integers were
suggested. If the purpose of these types is to allow a transition to implementation
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languages, then we suggest to choose also a concrete machine arithmetic based
on a two’s complement model (as described in [11]; similar concrete definitions
for C++ are in preparation). These machine arithmetics are somewhat more
distant to mathematics (MaxInt + 1 = MinInt, all commutative ring properties
hold except a−a = 0, 0 ≤ abs(a) does not hold even for defined a, etc.) but close
to widely used implicit standards in microprocessor technology. Verification of
such transitions from mathematical integers to machine integers can be a real
concern in safety-critical applications. For a concrete proposal of a “strong”
formalization of the Java arithmetics, see [26].

It is conceivable to drop the standards limitation to finite collection types.
Infinite sets are clearly a very powerful and useful standard means which would
allow to explicitly use the infinite sets occurring implicitly in OCL (such as the set
of Integers), e.g., by quantifying over them. But there are also useful applications
for infinite sequences and bags: They pave the way for new forms of recursion.
A recursive method over an object-structure collecting the sequence of values of
an attribute does not necessarily have to terminate: semantics could be defined
via co-recursion. For code-generators, this means that lazy evaluation techniques
known from functional programming must be applied.

5.2 References and Referential Types

One way to view objects with attributes a1,. . . an of OCL types T1,. . . ,Tn are
tuples of type τ1 × . . . × τn where τi is the corresponding HOL type of Ti

2.
An object universe can therefore be constructed as the sum over all Cartesian
products representing objects. The state of a system is then a partial map from
object-id’s (oid’s) to the object universe.

We suggest one little change of this scheme: the oid should be encoded into the
Cartesian products as well, comparable to a “hidden attribute”: oid×τ1×. . .×τn,
and states should be restricted to contain only objects whose oid points to itself
in the state. This invariant is easy to implement by constructors in an object-
oriented programming language: just generate the fresh oid and store it in the
object. However, this slight change makes the logical equality _ , _ coincide
with the referential equality used in many programming languages—as long as
we are comparing objects within one state. This makes the formal model of
sets, for example, which implicitly uses this equality, much more realistic. This
extension of the object encoding scheme is called referential (object) universe
in [6].

Moreover, this extension also has advantages for programming languages used
for implementing methods (see IMP++ for example in [7], which also contains
a verification technique). For example, having a reference attribute in each ob-
ject greatly simplifies the semantic definition of a reference operator (like e.g.,
&x in C++, mapping the type of x to its reference type). Further, the assign-
ment operator assigning a reference to an attribute of type oid can then also
2 We ignore the complications resulting from extensible subtyping here; see [6] for

details
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be realized easily. Referential universes also give a possible interpretation of the
“null-objects” mentioned in the recent versions of the standard “ptc/06-05-01”.

5.3 Frame-Properties

The OCL does not guarantee that an operation only modifies the path-expressions
mentioned in the postcondition, i.e., it allows arbitrary relations from pre states
to post states. For most applications this is too general: there must be a way
to express that parts of the state do not change during a system transition, i.e.,
to specify the frame properties of system transition. Thus we suggest to extend
OCL to specify the frame properties explicitly:

(S:Set( OclAny ))-> modifiedOnly (): Boolean

where S is a set of objects (i.e., a set of OclAny objects). This also allows recursive
operations to collect the set of objects that are potentially changed by a recursive
function. Obviously, similar to @pre the use of ->modifiedOnly() is restricted
to postconditions.

The definition of the semantics for ->modifiedOnly() based on the referen-
tial universe (see previous section) is straight-forward:

X->modifiedOnly() ≡ λ(τ, τ ′). x∀ i /∈
(
oidOf 8 pX(τ, τ ′)q

)
. τ i = τ ′ iy

where oidOf is just the projection of an object to its oid. By the projection, the
object set X represents a set of references to values in the store. All objects with
oid’s not occurring in the set are assumed to be unchanged; for oid’s occurring
in the set, nothing is specified. Thus, requiring Set{}->modifiedOnly() in a
postcondition of an operation allows for stating explicitly that an operation is a
query in the sense of the OCL standard, i.e., the isQuery property is true.

In contrast to frame properties in JML [19], which allow for specifying at-
tributes to be assignable or not, our mechanism is a semantic and not a syntactic
one that just forbids assignments to certain paths. This solves the alias problem:
Set{self.a}->modifiedOnly() is just equivalent to Set{self}->modifiedOnly()
iff self.a and Set{self} denote the same object.

6 Conclusion

In our view, there is the need to complement the UML/OCL standardization
process by continuous efforts to find a formal semantics.

Ideally, this should be a machine-checked semantics like [6] that might become
part of the standard document. As can be seen by similar standardization pro-
cesses (as, for example, the ISO standardization process of the Z language [17]),
such a “beau ideal” semantics has the advantage to turn UML into a real for-
mal method with its potential for high-quality analysis and verification tools.
The latter paves the way for light-weight approaches such as [12] for large-scale
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industrial applications as well as more heavy-weight system verifications satis-
fying even EAL7 certification levels (“Formally Verified Design and Tested”) of
the Common Criteria international standard (ISO/IEC 15408).

It can be safely stated that in contrast to the wealth of informal papers on
OCL semantics, a machine-checked semantics results in a higher degree of com-
pleteness and perfection. Its main advantage is that it can be used to build an in-
tegrated semantics, covering data-oriented specification, behavioral specification
and programming-language like facets of the UML. Thus, different stakeholders
in the standardization process could provide an extension of their proposed UML
extension by an extension of the current version of the “beau ideal” semantics to
see if their proposed features are in fact consistent with the language. Building
such an integrated semantics by paper-and-pencil reasoning or by a design-by-
committee process is doomed to failure in the light of our experience.

On the other hand, each attempt to build a formal semantics also results in
a certain inflexibility—a lesson that can also be learned from the Z standardiza-
tion process. This holds to an even larger extent if the semantic representation
is machine-checked, requiring that at least representatives of the various stake-
holders have sufficient technical skills to handle the underlying theorem prover
technology. Similar to standardization efforts centered around a reference imple-
mentation, a slow-down of the process is inevitable the more features have been
added to the language.

Admittedly, starting the semantics formalization process too early can kill
the standardization process as a whole. Not starting it at all, or remaining in
a state where only partial approaches exist, will result in a huge inconsistent
piece of IT literature. Finding the right balance between informal requirements
capture and formalization efforts in the semantics and finding the right point
in time to make formal semantics more mandatory in the UML standardization
process will therefore be, in our view, crucial for the long-term success of the
UML in the future.
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Abstract. OCL is a standard specification language, which will probably be 
supported by most software modeling tools in the near future. Hence, it is 
important to OCL to have a solid formal foundation, for its syntax and its 
semantic definition. Currently, OCL is being formalized by metamodels 
expressed in MOF, complemented by well formedness rules written in the own 
OCL. This recursive definition not only brings about formal problems, but also 
puts obstacles in language understanding. On the other hand, the OCL 
semantics metamodel presents quality weaknesses due to the fact that certain 
object-oriented design rules (patterns) were not obeyed in their construction. 
The aim of the proposal presented in this article is to improve the definition for 
the OCL semantics metamodel by applying GoF patterns and the dynamic 
metamodeling technique. Such proposal avoids circularity in OCL definition, 
and increases its extensibility, legibility and accuracy. 

Keywords: OCL; formal semantics; dynamic meta modeling; design patterns. 

1 Introduction 

OCL (Object Constraint Language) [8] is a formal specification language, easy to 
read and write, accepted as a standard by the OMG (Object Management Group). 
OCL permits to define syntactic and semantic restrictions upon models expressed in 
graphic notations such as the UML [13], thus extending the expressive capacity of 
such notations. In this way, diagrams complemented by OCL expressions are more 
accurate and complete. 

Both UML and OCL are defined by MOF (Meta Object Facility) [6], which is a meta-
language maintained by OMG whose aim is to allow for metamodel creation.  
The OCL language has been formally defined through the following documents: 
� a MOF (meta) model that defines its abstract syntax. 
� a MOF (meta) model that describes its semantic domains. 
� a set of MOF classes that specify the OCL semantic (meaning), i.e. the 

connection between the syntactic constructions and the semantic domain. 
It is known that the object-oriented models, due to their proximity to reality, transmit 
an intuitive meaning, easy to be perceived by their readers; however, when the design 
of such models is not adequate, intuition disappears, and models become difficult to 
understand.  This unfavorable situation is observed in some parts of the OCL 2.0 
standard specification [8]. The reason why this occurs may be the non-application (or 
inadequate application) of some well-known design patterns. Although in the abstract 
syntax definition the result obtained is clear and accurate, in the semantic definition 
several questions arise that hamper language understanding. We believe that this lack 
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of “self- explaining” observed in [8] is due to an erroneous selection of the design 
patterns used in the design of the semantics metamodel. 

Working towards the solution to this problem, we propose to create a clearer and 
simpler alternative definition for the OCL semantics. For that purpose, GoF patterns 
[4] will be applied to the design presented in the standard specification document [8]. 
Our hypothesis is that pattern application will contribute to improve legibility, 
extensibility and accuracy of OCL definition.  

To provide an adequate context to the reading of this proposal, in Section 2 we 
present a summary of the current OCL semantics [8]. Then, in Section 3, we propose 
a new definition for the OCL semantics, based on the Visitor pattern application [4] 
upon the semantics metamodels; we also use the technique known as Dynamic Meta 
Modelling (DMM) [2] [5] to achieve an accurate  specification of the semantics, but 
keeping clarity, and communicating concepts in a more intuitive manner.  Finally, in 
Section 4, we present conclusions and future works. 

2  OCL Specification Overview 

OCL expression is defined in [8] as "an expression that can be evaluated in a given 
environment" and it states that “evaluation of the expression yields a value". Taking it 
into account, the ‘meaning’ (semantics) of an OCL expression can be defined as the 
value yielded by its evaluation in a given environment. In order to specify this 
semantics, [8] proposes the structure illustrated in figure 1. 

 

Figure 1:  Overview of packages in the UML-based semantics 

Figure 2 shows the overview of the AbstractSintax package, which defines the 
abstract syntax of OCL as a hierarchy of meta classes. In the other hand, Evaluations 
package defines the semantics of these expressions using also a hierarchy of meta 
classes where each one represents an evaluation of a particular kind of expression (see 
figure 3). The idea behind this representation is that each evaluation yields a result in 
a given environment, therefore, the semantics evaluation of an expression in a specific 
environment is given by associating each evaluation instance to an expression model 
(see figure 4). 

It is easy to see how Evaluations package replicates the hierarchy of the abstract 
syntax. We believe that this duplication is unnecessary and yields to disadvantages 
such as low legibility of the meta model and inefficiency in the development of 
automatics tools based on this semantics. We will expand this in the next section. 
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Figure 2: AbstractSyntax package overview 

 

Figure 3: Evaluations package overview 

 

Figure 4: Semantics Evaluation of an expression. 

3  Semantics evaluation through “Visitor” pattern and DMM 

In this section we define a meta class named OclEvaluator to give semantic meaning 
to syntax expressions by associating them with its corresponding value. In this way, 
OclEvaluator works as a bridge between AbstractSyntax and Values packages (see 
figure 5).   
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Figure 5: OCL meta model using the Visitor 

In order to evaluate an expression, the OclEvaluator uses an evaluation environment 
called EvalEnvironment following the classic strategy used in semantic definition of 
programming languages (examples of this approach can be found in [3] and [10]). An 
expressions evaluation depends on its evaluation environment as well as its syntax 
structure. 

The OclExpression structure is not likely to change, and several operations might be 
defined (e.g. refactoring operations, semantics evaluation, code generation operations, 
etc.). Consequently, we consider that it is more appropriate to avoid polluting the 
static structure with these operations and then to apply the Visitor pattern [4], in order 
to keep it simple and clear (See figure 6). 

 

Figure 6: Evaluation metamodel using the Visitor pattern. 

In addition, we believe that the best way to understand the semantics evaluation is by 
showing the evaluation process itself. By using only class diagrams to reflect the 
semantics evaluation, it is hard (or almost impossible) to reveal the latter process, 
because of the static nature inherent to these diagrams. Furthermore, to completely 
understand all the process it is necessary to pay attention to the constraints established 
on these diagrams. In [8], these constrains are written in OCL with two negatives 
outcomes: 

• The expressibility and simplicity obtained from the use of UML in the 
semantics metamodel over the math one is lost because of the necessity of be 
aware of the constraints to fully understand the semantic. 

• The constraints are written in OCL, so that the semantics of OCL is defined 
in terms of OCL itself! If someone didn’t understand OCL, they would 
neither understand these constraints. 

Consequently, with the aim of a simple, precise and clear explanation, in this section 
we use sequence diagrams to visualize the distinct steps throughout the semantics 
evaluation of expressions. This approach is known as Dynamic Meta Modelling 
(DMM) [2] [5], and has been used in the semantics specification of UML elements 
(such as State Machines and Collaborations), but its use in OCL specification has not 
been explored before. 

Performs the 
semantics evaluation 
of an OCL expression 
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3.1  Semantics of a LetExp 

The evaluation of a LetExp proposed in [8] is shown in figure 7. The diagram shows 
how the evaluation encapsulates the result value and the evaluation environment, 
although neither the evaluation method nor structural constraints are specified on this 
diagram. 

 

Figure 7: Standard UML based semantic evaluation of a LetExp. 

Therefore a simple analysis of the last diagram doesn’t give us too much information 
about the semantics of a LetExp; it only gives us information about the static structure 
of the elements implied in this evaluation. In order to fully understand the previous 
diagram, we must study its well formed rules [8]. 

As we previously established, these constraints have the disadvantage that they are 
written in OCL, which clearly becomes an obstacle for those who give their first steps 
in OCL. 

The appendix A of [7] presents the maths model of the OCL semantics (see figure 8). 
Taking it into account, we can translate this algorithm under the applicative order 
reduction into a sequence diagram (see figure 9). 
 

A context for evaluation is given by an environment � = (�, �) consisting of a system 
state � and a variable assignment �: Vart  � � (t). A system state � provides access to 
the set of currently existing objects, their attribute values, and association links between 
objects. A variable assignment � maps variable names to values. 
Let Env be the set of environments � = (�, �). The semantics of a LetExp is a function 
�[e]:Env � �(t) that is defined as follows. 

 
Figure 8: Maths semantics of LetExp 

As a first step of evaluation, we evaluate the init expression ( , signals 4 and 

5) to extend the evaluation environment with the latter evaluation ( , 
signals 6, 7 and 8). Then, we evaluate the in expression in the new environment, and 
the value returned by this is the result of the whole LetExp evaluation 
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( , signals 9, 10 and 11). Note that the internal 
environment modification were propagated outside the LetExp evaluation, we saved 
the environment at the beginning of the evaluation process to recover it when the 
evaluation is finished (signals 2 and 12). 
 

 
Figure 9: Sequence diagrama of a LetExp evaluation. 

3.2 Semantics of IterateExp 

The semantics evaluation of an IterateExp as is expressed in [8] is shown in figure 10. 
Once again we have the problem that the chart doesn’t express too much about the 
semantics evaluation process and we have to appeal to the well formedness rules 
established on this diagram [8]; without these constraints we would be unable to 
completely understand the semantic process of an IterateExp. 
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Figure 10: Standard UML based semantic evaluation of an IterateExp. 

Even worse, such constraints try to explain how IterateExp works but lacks of 
correctness due to the fact that the IterateExp is defined  in terms of a ForAllExp wich 
is itself defined in terms of  IterateExp, as follows: 

The environment of any sub evaluation is the same environment as the one from its 
previous sub evaluation, taking into account the bindings of the iterator variables, plus 
the result variable which is bound to the result value of the last sub evaluation. 

 

context IterateExpEval inv:   

let SS: Integer = source.value->size() 

in if iterators->size() = 1  

then Sequence{2..SS}->forAll(i:Integer | bodyEvals-
>at(i).environment = bodyEvals->at(i-1).environment-
>replace(NameValueBinding(iterators->at(1).varName, 
source.value->asSequence()->at(i)))-
>replace(NameValueBinding(result.varName,bodyEvals->at(i-
1).resultValue ))) 

else -- iterators->size() = 2 

Sequence{2..SS*SS}->forAll(i: Integer | bodyEvals-
>at(i).environment = bodyEvals->at(i-1).environment->replace( 
NameValueBinding( iterators->at(1).varName,source-
>asSequence()->at(i.div(SS) + 1)))->replace( 
NameValueBinding( iterators->at(2).varName,source.value-
>asSequence()->at(i.mod(SS))))->replace( 
NameValueBinding(result.varName,bodyEvals->at(i-
1).resultValue ))) 

endif 

Although an IterateExp is more complicated than a LetExp, without a previous OCL 
knowledge, it is almost impossible to understand these constraints, and with the 
proper knowledge of the language, the reading and comprehensiveness of these 
constraints is a hard task to do. 

As we have done whit the LetExp, we use the math semantics of the IterateExp as 
guidance for showing this process through a sequence diagram. A summary of the 
math semantics is shown in figure 11 (see Appendix A of [7] for the full version), 
while figure 12 and figure 13 display the semantics expressed via sequence diagrams. 
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Figure 11: Maths semantics of IterateExp 

 

Figura 12: IterateExp semantics as sequence diagram. 

IterateExp evaluation can be seen as follows: 

The first sub evaluation will start with an environment in which the result variable is 
bound to the init expression of the variable declaration in which it is defined 

( , signals 1 to 8 in figure 12); then we proceed to evaluate 
the body with all iterator variables bound to the different combinations of the source 

(figure 11). The iterators binding (  in 
) is done by CombinationGenerator (signals 
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13, 14 and 15 in figure 13), under a ‘depth first search’ strategy. This strategy 
determines the number of sub evaluations over the body (  
in ; signals 17 and 18 in  figure 13 ); as last 
step, these sub evaluations will update the result variable 
( ,signals 19, 20 and 21 in figure 13). 

 Once again we save the environment at the beginning of the evaluation process and, 
after recovered the value bound to the result variable (signals 22 and 23 in figure 12), 
we restore the initial environment. 

  

Figure 13: Body Evaluation of an IterateExp. 

With this approach, each meta-class belonging to the Domain package will be 
replaced with a sequence diagram which states the concrete semantics and evaluation 
process of the corresponding syntactic construction. 

4 Conclusion and Future Works 

OCL is an object property specification language, which is rigorous but simple and 
easy to use. Therefore, it becomes a very interesting option for the development of 
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code verification and derivation tools. To exploit all its potential, it is fundamental 
that OCL has a solid formal foundation for both its syntax and its semantic 
definitions. The OCL standard is formalized by metamodels expressed in MOF, 
complemented by well formedness rules written in the own OCL. This circular 
definition not only gives rise to formal problems [11], but also puts obstacles in 
language understandings. Additionally, we think that the use of (static) meta-classes 
to express the OCL semantics was a wrong choice, because of the dynamic nature of 
semantics evaluation which requires a dynamic (meta) modeling tool. 

In this article, we elaborate an alternative definition for the OCL semantics. This 
proposal re-uses the OCL syntax metamodel, re-designs the OCL semantics 
metamodel by applying the ‘Visitor’ design pattern, and finally defines the relation 
between syntax and semantics through UML collaboration diagrams adhering to the 
DMM approach. In this way, circularity on the OCL definition is avoided, and 
intuitive communication is increased. Besides, the OCL math semantics was used as a 
foundation and guidance for the semantics definition. Although math semantics could 
be tedious and hard to understand, and demands users with more academic 
background, we showed that it could be translated into sequence diagrams offering a 
more readable and simple semantics metamodel. 

On the other hand, the adequate performance of the tools supporting OCL [12] [1] 
strongly depends on the quality of language definition. To count on a well-defined 
syntax and semantics will result in benefits for such tools. Also, it is almost 
straightforward to translate this semantics into a programming language such as Java, 
because of the proximity between sequence diagrams and programming languages. 

Finally, the application of the visitor pattern makes it easier the creation of new 
functionality over the OCL syntax structure and its integration into the CASE tool to 
get a powerful one. For example, concerning model transformations, it is possible to 
define OCL constraints transformations by adding a new “ visitor” for the OCL syntax 
hierarchy.  In this sense, we are working on the redefinition of the ePlatero evaluator 
[9] following the proposal presented in this article in order to analyze the potential 
advantages regarding the different indicators, such as reliability, efficiency, 
modifiability, etc. 
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Abstract. Examples of OCL use often do not exceed a few lines. Larger
examples are rare, because the concrete syntax of OCL is verbose and
based exclusively on ASCII encoding. This makes it easy to edit OCL
in any environment, but hard to layout in a readable manner. A minor
issue like presentation affects use in a major way. This paper proposes
three shorthand notations, or syntactic sugars, for laying out OCL in
the Latex, HTML, and Unicode encoding systems. To avoid splitting
the available OCL source code base any further, flavours are convertible
via the base syntax. To allow benefit across the community, the repre-
sentations are OCL version-independent. To support recognisability, the
representations are visually very similar. To simplify reuse, definitions
are based on POSIX regular expressions and Unicode.

1 Introduction

While OCL today offers an substantial number of tools, its adoption as an indus-
try standard is still limited. Usage issues due to language semantics and tooling,
like the lack of modularisation, non-deterministic evaluation, the missing and in-
sufficiently formalized transitive closure operation and collection flattening have
been addressed successfully in the past[2,?] and seem to consolidate. OCL’s con-
crete syntax still seems to be an impediment:

Working with a UN-CEFACT group on the metamodel for the business lan-
guage UMM[8], which is formalized as a UML profile, I had to introduce the
workgroup to the use of OCL. It turned out that even simple examples quickly
filled the whiteboard. Points of emphasis were hard to make, due to the expansive
syntax. Thus I resorted to short symbols, borrowed from math, logic or impro-
vised in the process, but made clear that these were not standard compliant.
After collecting the workshop notes, I found that most participants had adopted
the shortened ad-hoc syntax and that those that had used it, had generally tried
out more and different formalisation solutions, and hence come up with better
ones on average, then those that had used the standard syntax.

After this experience, I applied the shorthand to the OCL contained in my
work of creating a UML Profile for small-scale enterprise integration, to save
print space. Section 4 shows two Well-formedness Rules from the UML 1.4.2
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standard. I then showed parts of the work to some colleagues who had previously
criticised OCL as ‘to bulky’ and ‘not mathematical’, to find increased acceptance,
purely because of a syntactic sugar.

Trying to apply this encouraging result, some underlying challenges and re-
quirements surfaced. Foremost, OCL is not a single language, which conforms
to a single grammar or meta-model, but a collection of languages with an over-
lapping concrete syntax. The published grammar in the UML 1.4.2 standard for
example cannot be directly converted into an LALR1 parser[12], which prompts
several dialects. The OCL 2.0 standard, although a great improvement, only
contains a non-normative concrete syntax section. Consequently, the use of a
parser to analyse source code is not very promising. Most OCL tools however
adhere to keyword and syntax conventions laid down in OCL 1.6 and to the
standard library of collection functions shown there. This proposal thus uses
OCL token patterns, rather than full parser analysis. This allows its applica-
tion even to unstructured or broken OCL code, which broadens applicability
and robustness of the approach. A technically and semantically viable form to
specify such ‘approximate matches’ is the use of regular expressions (REs). REs
are an established means to parse constructs from a token stream and have been
formalized, standardized and implemented to the degree of commoditisation.

The overall approach involves three steps: Determining what to abbreviate,
choosing a set of glyphs or symbols as abbreviations, which is both intuitive and
available within the different technical systems used to display and print OCL,
and determining how to find matching constructs. The paper is structured as
follows. The next section introduces the abbreviation syntax, treating both the
keyword selection and glyph system. Section 3 describes the portable technical
specification using REs, and section 5 investigates related approaches. Section 6
presents an outlook.

2 Abbreviating OCL

An abbreviation is a mapping from the range of OCL texts using keywords to
the domain of OCL texts using symbols. In section 2.1, we choose a common
symbol set for the domain and discuss some typeface conventions. The subse-
quent sections 2.2 to 2.7 discuss the range of abbreviations for structural parts,
collections, enumerations types, simple and collection operations, followed, each
arguing for the choice of symbol used. As a guideline symbols are introduced for
OCL constructs that are mandatory, like the structural parts, or used frequently,
like the zero-arity collection operations. Some operations are given shorter tex-
tual names. Each section finishes with a summary table.
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2.1 Glyph System, Font and Typography

OCL source code intended for reading currently appears in two contexts: As
specification text in documents and as part of (UML) models. The notation
must cater to these contexts. Academics tend to use the Latex typesetting com-
piler to author specification documents; in the industrial context Microsoft Word
dominates. In addition, specifications are occasionally rendered as HTML doc-
uments. Modelling tools these days are either based on Java or directly on the
Windows operating system. We thus have to define abbreviations for two glyph
systems: Latex and Unicode1.

To present OCL more like a formula and less like a program, the notation
uses a proportional serif font, like ‘Times’, to typeset all text. This saves space
compared with a fixed-width typewriter font. However, serif fonts often do not
provide math symbols, so switching of fonts may be necessary. In Microsoft
Word for example, the ‘Times New Roman’ font supplies ASCII glyphs and a
few symbols, while the ‘MS PMincho’ font supplies the complete Unicode 1.4
Mathematical Operators[5] glyph range from hexadecimal 2200-22FF.

The summary tables in the following section give the literal OCL token that is
to be replaced, the Unicode abbreviation, symbol number and font, and the Latex
code and package, if required. To allow a large degree of portability, the Latex
symbols are derived from the mapping of ISO 8879:1986 entities to Latex by
Vidar Bronken Gundersen, Rune Mathisen[14]. The leftmost column shows the
required latex package or mode. The following sections suggest certain frequently
used parts of OCL for abbreviation.

2.2 Structural Parts

OCL source code breaks into packages, which contain context statements holding
invariants, definitions or pre- and post-conditions. This structure is abbreviated
as follows: Open and closed boxes define the boundaries of a package. The closed
box symbol further alludes to the symbol for the end of a mathematical proof.
The copyright symbol represents a context. The Greek lowercase lambda repre-
sents the ‘let’ abstraction, as in lambda calculus. Global definitions (‘def’) are
shown as a plus in a box, as they add derived features to the context. The three
state restricting stereotypes – invariant, and pre- and post- condition – use a
graphic metaphor of a program flow from top to bottom: A rhombus symbol
represents an invariant. The symbol alludes to the fact that invariants have to
hold before and after a change in the system. The rhombus widens, as invariant
conditions are broken and narrows again, as they are restored. Pre- and Post-
conditions appear as guards before (above) and after (below) the body of the
method, contained in the box. The ‘self’-reference of the instance is shown as an
arrow reverting to its origin. The summary can be found in Table 1.
1 Unicode is usable in HTML 4.01, Microsoft Word, the Windows operating system

and the Java Virtual Machine.
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Syntax
Unicode Latex
abbrev. Code Font Code Package

package � 25A1 T \square amssymb

endpackage 25A0 T \block Isoent

context © 00A9 T \copyright -

inv ♦ 25CA T \diamond mathmode

let λ 03BB T \lambda mathmode

def � 229E M \boxplus amssymb

pre 2552 T \boxDr Isoent

post 2558 T \boxUr Isoent

self � 21BB M \circlearrowright amssymb

Table 1. Structural Parts

2.3 Collections

Definition constraints increase the power of OCL through modularisation. This
also leads to the usual challenges encountered in object-oriented programming
languages [6]. Although the definition of type signatures is optional in OCL,
explicit types are an invaluable aid in discovering errors and their use should be
encouraged. To this end the lengthy syntax for collection types is abbreviated
using three types of braces, common for sets in mathematics, lists in functional
programming languages and bags in the Zed[3] notation. The same notation can
also be used to express construction of a collection within OCL body text. The
summary is found in Table 2.

Syntax
Unicode Latex
abbrev. Code Font Code Package

Set(X) {X} 007B / 007D T \{ / \} mathmode

Sequence(X) [X] 005B / 005D T [ ] mathmode

Bag(X) 〈X〉 3008 / 3009 M \langle / \rangle mathmode

Table 2. Collections

2.4 Enumerations

Metamodels, like that of the UML, contain enumerations, which often have long
names to provide clarity, like VisibilityKind or ChangeableKind. The OCL syn-
tax requires that an enumeration value be declared with the full type and value
identifier. With long names, this takes up a lot of space. In fact, within the UML
standard’s own OCL well-formedness rules the type-name is generally left out.
We adopt this simplification and use a typewriter font to mark the enumeration
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value as something extraneous to the model. This convention is obviously re-
stricted to models, in which the labels representing the enumeration values are
unique. Otherwise a mechanism is needed, which, if provided with the context,
returns the intended value to the replacement mechanism.

2.5 Simple Object Operations

Many simple operators have equivalent mathematical symbols, such as the basic
Boolean operators, absolute value function and string concatenation.

Syntax
Unicode Latex
abbrev. Code Font Code package

<> 6= 2260 T \not= mathmode

and
V

22C0 M \wedge mathmode

or
W

22C1 M \vee mathmode

not ¬ 00AC T \lnot mathmode

implies ⇒ 21D2 M \Rightarrow mathmode

.abs(x) |x| 007C T \vert x \vert mathmode

.concat(x) &(x) 0026 T \&(x)

Table 3. Simple Object Operations

2.6 Collection Operations

Different types of arrows distinguish collection operations without parameters
from those with parameters. Zero-arity operations are represented by a hook
arrow, and leave out the following brace; all other operations are shown with a
regular arrow with parameters inside the brace. To shorten the Latex notation
further, the operation name is shown atop, rather than behind, the arrow in
those notations.

Syntax
Unicode Latex
abbrev. Code Font Code package

->x() ←↩x 21A9 M \atop{x}{\hookleftarrow} mathmode

->x(y) →x(y) 2192 T \atop{x}{\rightarrow}(y) mathmode

Table 4. Simple Object Operations
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Collection Operation Names The following operations from the areas of set
theory and predicate logic, functional programming and list manipulation, and
relational-calculus are used frequently in the definition of well-formedness rules.

The operations for set-theory use customary mathematical symbols. Only
the abbreviation for symmetricDifference is a composition. The two last opera-
tions -‘excluding’ and ‘including’ - use an exclamation mark to indicate that the
collection on which the operation is invoked is ‘changed’.

Syntax
Unicode Latex
abbrev. Code Font Code package

union
S

22C3 M \cup mathmode

intersection
T

22C2 M \cap mathmode

symmetricDifference
S
−

T
mathmode

isEmpty ∅ 2205 M \emptyset mathmode

includes ∈ 2208 M \in mathmode

excludes /∈ 2209 M \not\in mathmode

forAll ∀ 2200 M \forall mathmode

exists ∃ 2203 M \exists mathmode

excluding ⊂! 2282 M \subset mathmode

including ⊃! 2283 M \supset mathmode

Table 5. Collection Operation Names

The ‘select’, ’collect’ and ‘iterate’ operations are equivalents of basic opera-
tions from the field of functional programming. The operation ‘select’ also ap-
pears in the Relational calculus, where it is abbreviated as the lowercase Greek
letter sigma. This convention is also used here.

Syntax
Unicode Latex
abbrev. Code Font Code package

select σ 03C3 T \sigma Mathmode

collect map T Mathmode

iterate fold T

Table 6. Collection Operation Types

The ‘count’, ‘one’, ‘isUnique’ and ‘sum’ operations often occur in contexts
were cardinalities need to be enforced, like in database modelling. The question
mark used for the first three is meant to indicate that these are query operations,
which either query a variable (infix use) or a Boolean property (postfix use).
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Syntax
Unicode Latex
abbrev. Code Font Code package

count |?| 007C T \vert ? \vert mathmode

one |1|? 007C T \vert 1 \vert ? mathmode

isUnique key?

sum
P

2211 T \sum mathmode

Table 7. Database and cardinality operations

Sequence operations are common when building constraints on access struc-
tures and in functional programming. The ‘any’ function is renamed, as it intro-
duces non-determinism, which probably deserves greater recognition.

Syntax
Unicode Latex
abbrev. Code Font Code package

append / 22B2 M \triangleleft mathmode

prepend . 22B3 M \triangleright mathmode

subsequence sub T mathmode

at # T # mathmode

any rnd! T

Table 8. Sequence and list operations

2.7 Types, Casts and States

Multiple inheritance and def ined additional attributes and operations often re-
quire the use of type operators in OCL programs. Unfortunately, the type op-
erators are relatively unwieldy, making it harder to write type-safe operations.
We abbreviate the type and kind concepts with Greek lowercase letters Tau and
Kappa, followed by a question mark for a predicate and an exclamation mark
for a cast. Similarly, the state and creation predicates are shown as a Greek
lowercase sigma (end of sentence variant) and nu. These are shown in Table 9.

3 Mapping Mechanism and Strategy

In order for the approach to work, the keywords and syntactic constructs out-
lined in the previous section cannot be used as variable names, as REs are not
aware of the context of occurrence. As all abbreviation patterns are disjunct,
the mappings are bijective. Thus, the concrete syntax notation can be used as a
pivot to translate, for example, Latex representation to HTML representation.
Each mapping is set up as a set of RE search-and-replace pairs.
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Syntax
Unicode Latex
abbrev. Code Font Code package

oclIsKindOf(X) κ? 03BA T \kappa ?(X) mathmode

oclIsTypeOf(X) τ? 03C4 T \tau ?(X) mathmode

oclAsType(X) τ ! 03A4 T \tau !(X) mathmode

oclInState(X) ς? 03C3 T \varsigma ?(X) mathmode

oclIsNew() ν? 03BD T \nu? mathmode

Table 9. Types, Casts and States

3.1 Unicode

Translation between concrete syntax and Unicode does not have any issues.
Since both glyph systems do not allow font information, the abbreviation of
enumerations cannot be performed.

3.2 HTML

HTML 4.01 is used as the translation target standard. Translation from con-
crete syntax to HTML uses the numeric codes for Unicode entities. To express
enumerations, the HTML ‘code’ tag is used. The advantage of this tag is that it
is less presentation oriented, and hence less likely to be affected by presentation
mechanisms like Cascading Style Sheets. The abbreviation of enumerations must
be specifically fashioned for each meta-model. The HTML syntax does not use
the Math-ML standard. Math-ML is intended for the exchange and presenta-
tion of mathematical equations, while OCL is a computer language. The HTML
syntax also does not use textual entities, although they could be mapped in an
additional step.

For the mapping from concrete syntax, the text is first converted to HTML
without any change, then, the regular expression are applied. In order to work on
the encoded text, the regular expression also have to be encoded to use HTML
conventions. For all textual matches, the result is identical. The only clashes
with the HTML syntax arise for the equality (‘<>’) and collection operation
tokens (‘->’), which use the entities &lt; and &gt; instead.

For the mapping to concrete syntax, the process is reversed. First, the ab-
breviations are expanded to regular HTML, than HTML is converted back to
concrete syntax.

3.3 Latex

Latex 2e and the ISO entity package with its transitive dependencies are the basis
for the Latex mapping. All glyphs used in the abbreviations described above are
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available in math mode. Thus, the OCL source code is translated to be included
in a ‘displaymath’ environment. This allows simplified later editing of documents,
because symbols do not have to be escaped. Further, it enables simple line num-
bering, using the ‘equation’ environment. Latex command syntax does not clash
with OCL syntax, as the backslash character is not allowed in any identifiers;
It is in the ‘inhibitedChar’ character set of the OCL 1.6 grammar[11]. Like in
the case of Unicode, the translation from concrete syntax is straightforward. It
can be reversed easily, after any additional latex formatting, like additional line
breaks, has been removed.

3.4 Implementation

The translation is implemented as a Java class, which is based on the Java Reg-
ular expression facility, which provides an implementation based on the POSIX
standard. The Microsoft .Net runtime also provides a regular expression engine.
The translation tables described above are laid down in comma separated value
files based on the ASCII character set. Unicode characters are abbreviated us-
ing the character escape mechanism. The Java class is provided with an input
stream, encoding and direction, and provides an output stream. The class only
applies the regular expression specified. If special processing steps are required,
as is the case with HTML, the class is wrapped up with an additional layer,
which provides the processing. In this implementation, a utility class from the
Java version of the W3C HTMLTidy project is used to perform the encoding.

4 Examples and Savings

As stated in the introduction, the examples below were taken from the UML
1.4.2 standard. Obviously, the quality of the notation cannot be assessed by a
simple count of original and reformatted glyphs. In our experience, page space
required to fit all of the UML’s WFRs was reduced about a quarter, while legi-
bility seemed improved. This observation is obviously subjective. Especially the
question, whether and when the advantage of brevity offsets the additional learn-
ing cost for the notation in novice users, probably cannot be decided without a
larger work-efficiency study based on sound methods of organisational or didactic
psychology.

On the examples below, it is worth noting, that in the layout of the UML
standard, the WFRs take up 9 and 10 lines respectively. To allow a fairer compar-
ison, the original source was reformatted not to break the page margin. Access
space in the pretty printed version was used to convey logical structure of the
statement.

4.5.3.10 Component [3] A Component may only have as residents DataTypes, Interfaces,

Classes, Associations, Dependencies, Constraints, Signals, DataValues, and Objects.
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�.allResidentElements
∀→( re | re.κ?(DataType) ∨ re.κ?(Interface) ∨ re.κ?(Class) ∨

re.κ?(Association) ∨ re.κ?(Dependency) ∨ re.κ?(Constraint) ∨ re.κ?(Signal) ∨
re.κ?(DataValue) ∨ re.κ?(Object))

self.allResidentElements->forAll( re |

re.oclIsKindOf(DataType) or re.oclIsKindOf(Interface) or

re.oclIsKindOf(Class) or re.oclIsKindOf(Association) or

re.oclIsKindOf(Dependency) or re.oclIsKindOf(Constraint) or

re.oclIsKindOf(Signal) or re.oclIsKindOf(DataValue) or

re.oclIsKindOf(Object) )

4.10.3.4 Collaboration [1] All Classifiers and Associations of the ClassifierRoles and Associa-
tionRoles in the Collaboration must be included in the namespace owning the Collaboration.

�.allContents
∀→( e |

(e.κ?(ClassifierRole)⇒ �.namespace.allContents
∈→( e.τ !(ClassifierRole).base))∧

(e.κ? (AssociationRole)⇒ �.namespace.allContents
∈→( e.τ !(AssociationRole).base)))

self.allContents->forAll(e|(e.oclIsKindOf(ClassifierRole) implies

self.namespace.allContents->includes(e.oclAsType(ClassifierRole).base))

and (e.oclIsKindOf(AssociationRole) implies self.namespace.allContents

->includes (e.oclAsType(AssociationRole).base)))

5 Related Approaches

The Object-Z community uses a similar mechanism for dealing with different represen-
tations within the set of the Common Zed Tools (CZT)[10]. Here, a standard Unicode
representation is used as the pivotal representation of the Zed and Object-Z languages
to produce other renderings. However, that approach depends on a complete parse of
the source code. Also, Unicode encoded Zed sources are quite rare and latex representa-
tion is not easily convertible into it. The B language also offers a similar facility within
the jBTools suite[13], which allows conversion to HTML. However, in this suite, the
full complexity of the B language is restricted on input from concrete syntax in order
to allow conversion to an XML intermediate format known as B-XML. This is due to
the fact that the aim of the suite is to provide further services beyond presentation,
like type checkers and provers.

6 Summary and Outlook

In this paper we have shown how a flexible mechanism to abbreviate OCL concrete syn-
tax of different versions can be defined, used to transfer code between main areas of use
and flexibly implemented. Beyond this, the RE replacement approach could further be
used to remedy some shortcomings within the standard and fix tool incompatibilities.

In this context it acts much like a macro-processor would, transforming an con-
crete syntax with abbreviations into an expanded form. Three examples for such a
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scenario would be a templating mechanism for transitive closures, the avoidance of
non-deterministic behaviour caused by the ‘any’ and ‘asSequence’ operations and fix-
ing parser incompatibilities. We will focus on the last two examples here.

6.1 Non-deterministic Behaviour

As OCL is an expression language, and makes intensive use of iterators, optimisation
options for its execution strongly depend on determinism of sub-expressions. Although
expressive in theory[2], the ‘any’, ‘asSequence’ and ‘iterate’ operations violate execu-
tion determinism. ‘any’ yields a (potentially different) element of a collection on each
execution. For this reason, the operation has been renamed ‘random’ in the above
listing. With a macro mechanism as explained in the preceding section, it would be
possible to replace the any operation with a deterministic variant specified (def ined)
in OCL. As a result, there would not be ambiguities in the computational semantics.
The ‘asSequence’ operation returns the content of a collection as a sequence. Order
is non-deterministic. Any order-dependent operations based on the resulting list may
hence yield different results. Here, the replacement mechanism could require the use of
a sorted operation, whose comparison predicate definition has to be provided by the
author. The predicate could be written to accept the most general type ‘OclAny’, and
then list case choices for each class for which a comparison is implemented. Finally, the
‘iterate’ operation is defined on collections, which leads to the same problem as indi-
cated for the ‘asSequence’ operation. With replacement, uses of iterate could generally
be restricted to be prefixed with a cast to a list, using the safe version of ‘asSequence’
previously outlined.

6.2 Parser incompatibilities

OCLE of Babes-Bolyai University [4], the Dresden OCL Toolkit[9] and the Kent Mod-
elling Framework [1] are three major tool suites for OCL. Except for the Dresden
Toolkit, all of them use textual notation to interchange OCL and all use parsers with
slightly different grammars. The differences between those notations are often minor.
For example, OCLE uses an optional ‘model’ construct to denote the underlying model
in a file, while the Dresden toolkit insists that a specification should start with a
‘package’ statement. KMF does not expect any structural parts, but works with OCL
Expressions only. Such minor inconsistencies could be resolved with the same infras-
tructure used above to achieve the abbreviation markup.
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Pröll, editors, EC-Web, volume 3182 of Lecture Notes in Computer Science, pages
174–185. Springer, 2004.

9. Heinrich Hussmann, Birgit Demuth, and Frank Finger. Modular architecture for a
toolset supporting OCL. In Andy Evans, Stuart Kent, and Bran Selic, editors, Proc.
3rd International Conference on the Unified Modeling Language (UML), volume
1939 of LNCS, pages 278–293. Springer-Verlag, 2000.

10. Petra Malik and Mark Utting. CZT: A framework for Z tools. In ZB, pages 65–84,
2005.

11. Object Management Group (OMG). Unified Modeling Language Specification, Ver-
sion 1.4, September 2001. http://cgi.omg.org/docs/formal/01-09-67.pdf.

12. Bernhard Rumpe. <<java>>OCL based on new presentation of the OCL-syntax.
In Tony Clark and Jos Warmer, editors, Object Modeling with the OCL, volume
2263 of Lecture Notes in Computer Science, pages 189–212. Springer, 2002.

13. Bruno Tatibouet. The jBTools b-suite for JEdit, 12 2003.
14. Rune Mathisen Vidar Bronken Gundersen. ISO character entities and their LATEX

equivalents, 12 2001.

OCLApps 2006 Workshop 251

http://cgi.omg.org/docs/formal/01-09-67.pdf


  

Author Index 
 
Akehurst, D.H.    205 
Altenhofen, Michael   126 
Amelunxen, C.   182 
  
Bauerdick, Hanna     96 
Berkenkötter, Kirsten   38 
Brucker, Achim D.    111, 166, 213 
Büttner, Fabian    96  
 
Cabot, Jordi     194 
Charaf, Hassan    151 
Chiaradía, Juan Martin    229 
Chimiak-Opok, Joanna   53 
 
Devedzic, Vladan    81  
Doser, Jürgen     166, 213 
 
Gasevic, Dragan    81  
Geiger, Leif     140 
Giurca, Adrian     81 
 
Heldal, Rogardt      13 
Hettel, Thomas    126 
Howells, W.G.J.    205 
 
Johannisson, Kristofer   13 
 
Koehler, Jana    111  
Kolovos, Dimitrios S.   26  
Kusterer, Stefan    126 
 
Lenz, Chris     53 
Levendovszki, Tihamer   151  
 
McDonald-Maier, K.D.   205 
Mezei, Gergely     151 
Milanovic, Milan    81 
  
Paige, Richard F.     26 
Polack, Fiona A.C.    26 
Pons, Claudia    229 
 
Schürr, A.     182 
Stölzel, Mirko     140  
Süß, Jörn Guy    240 
 
Takemura, Tsukasa    68 
Tamai, Tetsuo    68  
 

Wagner, Gerd  81 
Wahler, Michael  111 
Wolff, Burkhart  166, 213 
 
Zschaler, Steffen  140 
 
 

OCLApps 2006 Workshop 252


