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Abstract. OCL 2.0 specifies a standard library of predefined types and
associated operations. A model-level representation of the library is re-
quired to reference its elements within the abstract syntax model created
by an OCL parser. Existing OCL engines build this model in the imple-
mentation code which severely limits reusability, flexibility and main-
tainability. To address these problems, we show how a common pivot
model with explicit support for template types can help to externalize
the definition of the standard library and integrate it with instances of
arbitrary domain-specific modeling languages. We exemplify the feasibil-
ity of our approach with a prototypical implementation for the Dresden
OCL2 Toolkit and present a tailored EMF editor for modeling the OCL
types and operations. We limit our discussion to the model level, i.e.,
we do not consider an implementation of the standard library for an
execution engine.

1 Introduction

The Object Constraint Language (OCL) [1] specifies a standard library of types
and associated operations. This includes primitive types such as Integer or
String, collection types like Set or Bag as well as a number of special types
which are important for the OCL type system (OclAny, OclVoid, and OclType).
Among the predefined operations on these types are arithmetic, boolean and set-
theoretic operations. All types in the standard library are instances of abstract
syntax classes. These are located one level above the type definitions in the four-
layered meta hierarchy of the OMG MOF architecture [2]. Since OCL allows
querying of both metamodels and models [3, p. 97], the standard types exist
either on the M2 or the M1 layer.

Now, when building the abstract syntax model from a textual OCL expres-
sion, an OCL parser needs to have access to the elements of the standard library.
This is necessary, for instance, to properly locate operations defined for the im-
plicit supertype OclAny or to create user-defined collection and tuple types. Ex-
isting OCL engines, such as the current release of the Dresden OCL2 Toolkit [4]



or the Kent OCL Library [5], usually build an internal representation of the
standard library programmatically, e.g, using the API of a model repository.

Hiding the structure of the standard library inside the implementation code
of the engine triggers a number of problems. Firstly, the reusability of the library
definition is severely impaired, because it is tied to a particular implementation
language and platform. Thus, porting the OCL engine to another programming
language requires an entire rewrite of the code that creates the library. Further,
the model of the standard library cannot conveniently be validated, altered,
extended, or modularized. This is disadvantageous if the underlying execution
platform (i.e., an interpreter or code generator) does not support some of the
standard library types and operations. In this case, adapting the library def-
inition on the model level by removing the corresponding elements would be
helpful. In essence, the flexibility of the “in-code” approach is relatively low.
Lastly, the implementation of the OCL engine tends to become fairly complex
leading to decreased maintainability. For instance, the Dresden OCL2 Toolkit in
its current release contains a helper class with more than 400 lines of code alone
to manage the model of the standard library.

As an answer to these problems, we propose the novel approach of creating
the OCL standard library as an instance of a so-called pivot model, which can
be viewed as a “universal language covering a certain domain” [6]. For example,
Milanovic et al. [7] employ the REWERSE Rule Markup Language (R2ML) as
a “pivotal metamodel” to map between OWL/SWRL and UML/OCL. In this
paper, we define a pivot model as an intermediate metamodel used for aligning
the metamodels of arbitrary domain-specific modeling languages (DSL) with
that of OCL. By directly supporting generics in this metamodel, modeling all of
the template types and operations in the OCL standard library becomes possi-
ble. We have implemented this approach using the Eclipse Modeling Framework
(EMF) [8] which allowed us to build a highly functional editor for the pivot
model and employ EMF’s default XMI serialization capabilities. Providing the
predefined OCL types within an OCL engine therefore reduces to a simple model
file import. Concrete collection types can be created from the corresponding tem-
plates by binding their type parameters with the required element type.

The remainder of this paper is structured as follows: In Sect. 2, we briefly
review the challenges for a model-level integration of the OCL standard library
in the light of two existing OCL engines. We continue by describing the design
of a suitable pivotal metamodel addressing these issues in Sect. 3. In Sect. 4, we
present a practical evaluation of our approach. We highlight the visual editor
used for modeling the standard library and describe an illustrative example. A
brief account of related work is provided in Sect. 5. Finally, Sect. 6 concludes on
our work and shows up further research.

2 Background

Based on observations from two well-known implementations of the OCL stan-
dard, namely the Dresden OCL2 Toolkit and the Kent OCL Library, we can



identify two major challenges for a model-level integration of the standard li-
brary in an OCL engine. In brief, these are:

1. Operations and parameters in the standard library instantiate the corre-
sponding metaclasses from the UML metamodel [9]. When OCL is inte-
grated with domain-specific modeling languages developed within so-called
language workbenches [10] or via UML profiles, we cannot rely on a common
format for the library any more.

2. The standard library contains template types and operations that are pa-
rameterized with a type parameter. Most modeling languages do not support
a declarative definition of these generic elements.

In the following, we will discuss these two issues in greater detail.

2.1 OCL for Domain-Specific Modeling Languages

In recent years, the importance of domain-specific languages (DSLs) for describ-
ing systems has increased and a convergence with model-driven approaches such
as the OMG MDA initiative [11] can be witnessed [12]. As a result, the original
scope of OCL being an add-on to UML [13] has widened to support constraints
and queries over object-based modeling languages in general [14].

An obvious solution to these new challenges is the introduction of a piv-
otal metamodel that abstracts over the metamodels of arbitrary domain-specific
languages and provides exactly those features required for an integration with
OCL. Both of our reference OCL engines work this way. The Dresden OCL2
Toolkit in its current version employs a so-called Common Model [15] to adapt
the metamodels of UML 1.5 as well as MOF 1.4, while the Kent OCL Library
supports UML 1.4, Ecore (the metamodel used by EMF), and Java via a central
Bridge model [16].

Unfortunately, both solutions fail to decouple the model of the OCL standard
library from the adapted metamodel. In the Dresden OCL2 Toolkit, the prede-
fined library operations and their parameters are instances of the corresponding
UML or MOF metaclasses, while in the Kent OCL Library they instantiate
metamodel-specific adapter classes. Both approaches demand a programmatic
creation of the standard library types and operations. Consequently, to model
the standard library externally, we need to find a way to instantiate these ele-
ments independently from any adapted metamodel.

2.2 Generics in the OCL Standard Library

The predefined collection types in the standard library are actually template
types with the type parameter T [1, p. 144]. As an example, consider the sum oper-
ation of the OCL Collection type whose return parameter is typed with the el-
ement type of the collection. We say that a concrete type Collection(Integer)
is created from the template Collection(T) by substituting, or binding, T with



the type Integer. Since element types may be nested, there is an infinite num-
ber of collection types which have to be dynamically created when parsing a
particular OCL expression.

However, not only types can have type parameters. Consider the product
operation of Collection(T) which returns the cartesian product of two collec-
tions: product(c2:Collection(T2)):Set(Tuple(first:T,second:T2)). Note
that the concrete signature of this operation (in particular, its return type) not
only depends on the binding of the type parameter T, but also on the type
of the argument c2. This is an example of a so-called generic operation [17].
Further note that the return type of the product operation is itself a template
type, namely Set(T), whose type parameter T is bound with the generic type
Tuple(first:F, second:S). The actual type of the type parameters F and S is
determined at runtime, based on the binding for T and T2, respectively. In this
case, we call T and T2 type arguments for the generic tuple type.

Finally, some of the predefined operations in the library have return types
that depend on the object they are invoked on. Examples are OclAny::asSet
(returning a singleton set containing the object) and OclAny::allInstances
(returning the set of all instances of a type). Both operations have Set(T) as
their return type, but the concrete binding for T cannot be determined until the
source type of the operation call is known.

To remove the definition of the standard library from the implementation
code and specify it declaratively, a mechanism to model generic types and oper-
ations is required. Moreover, the engine needs to support the binding of generic
elements at runtime to dynamically create concrete types while parsing an OCL
expression.

3 The Design of a Pivot Model with Generics Support

We are currently reengineering the Dresden OCL2 Toolkit to increase its reusabil-
ity and flexibility and to provide the foundations for future research into the in-
tegration of OCL with arbitrary domain-specific languages. To this end, we have
redesigned and reimplemented large parts of the toolkit’s infrastructure [18].
The new architecture features a more flexible model repository adaptation mech-
anism. It is based on a pivot model that results from a careful analysis of previous
approaches (cf. Sect. 2.1) and the Core::Basic package of UML 2.0. So far, we
have integrated both EMF and the Netbeans Metadata Repository [19] and im-
plemented bindings for Ecore, MOF and UML. The main elements of the new
pivot model are shown in Fig. 1.

A comprehensive discussion of the new architecture is outside the scope of this
paper. However, for a better understanding of the following paragraphs we would
like to draw attention to one noteworthy feature that sets it apart from existing
OCL implementations: A layered architecture now eliminates any dependencies
from the pivot model to the OCL metamodel. Thus, the support for model-level
generics, which we will describe below, is only an enabling technology for model-
ing the template types in the OCL standard library. All necessary functionality
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Fig. 1. The main elements of the pivot model

is already contained in the implementation of the pivot model metaclasses and
can easily be leveraged for alternative model querying languages.

Figure 2 summarizes how the pivot model introduces template types and
operations as first-class model entities. The design is loosely based on the generics
support in EMF 2.3 [20] which closely mirrors the generic capabilities of Java
5 [17]. The key idea is to introduce a new abstraction called GenericElement
which classifies elements that may contain one or several TypeParameters.
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Fig. 2. Generics in the pivot model

The type parameters of a generic element may be bound with a concrete type,
which means that all occurrences of the parameter in the definition of the generic
element are replaced with this type (Fig. 3). In the case of a Type instance, this
will affect all properties and operations (including their parameters) declared for
this type.
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Fig. 3. Binding the type parameters of generic elements

In line with other metamodels, the pivot model generalizes properties, oper-
ations and parameters with an abstract metaclass TypedElement that declares
a reference to a type. Now, as illustrated in Fig. 4, we allow typed elements to
alternatively reference a GenericType. Generic types exist in two flavours (cf.
Fig. 2). A ParameterGenericType simply references a TypeParameter, as in
the case of the return parameter of the sum operation mentioned in Sect. 2.2. A
ComplexGenericType, on the other hand, references another Type with unbound
type parameters as well as a number of TypeArguments that will replace the
type parameters during binding. In the example of the product operation, the
return parameter contains a complex generic type referencing the unbound type
Tuple(first:F,second:S) and defining two type arguments T and T2. This ex-
ample shows nicely that type arguments, being typed elements themselves, can
have a generic type as well. Through this design, an unlimited nesting of generic
types becomes possible.
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Fig. 4. Typed elements and generic types

It turns out that supporting generic types for typed elements does not suf-
fice yet. Consider the OCL collection type Sequence(T). This template type
extends Collection(T). Intuitively, binding type parameter T of Sequence(T)
with a concrete type, say String, should result in Sequence(String) extend-
ing Collection(String). Yet, the design developed so far does not cover this
special case. The key observation here is that the two type parameters T are not
the same. In fact, it is perfectly legal to label the type parameter of the sequence
type with S instead of T. Correctly binding both subtype Sequence(S) and su-
pertype Collection(T) requires S to be a TypeArgument of Collection(T).
This intuition leads to the introduction of a new association between Type and
GenericType denoting the generic supertypes of a type (Fig. 5). Then, binding a
type will cause all generic supertypes to be bound as well. If all type parameters
of a generic super type are bound (i.e., it is not generic any more), it can be
safely added to the regular superType reference list (cf. Fig. 1).

On a side note, it is worth highlighting that in contrast to EMF, our pivot
model does not know the notion of a raw type, i.e., a “fallback” type that is as-
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Fig. 5. Generic supertype

sumed to exist for any type parameter in an unbound generic type. This directly
stems from the fact that we aimed to avoid any dependencies from the pivot
model to the OCL metamodel. Otherwise, OclAny as the root of the OCL type
system would have been a logical choice. To guarantee proper type conformance
checking, we have suitably extended the implementation of the OCL collection
metaclasses instead.

4 Practical Evaluation

The previous section presented the design of a pivot model with explicit support
for generics. Now, we can proceed with showing its application. We have realized
the new infrastructure of the Dresden OCL2 Toolkit as a set of Eclipse plug-ins.
To create implementation classes for the pivot model elements, we employed the
metamodeling and code generation facilities of the Eclipse Modeling Framework.
This yielded the following advantages:

1. Except for some behavioral features that have to be implemented manually,
the pivot model implementation generated by EMF is already fully functional
and can be instantiated. Contrary to previous approaches, we do not depend
on an integration with a particular DSL to create an instance of the OCL
standard library. By realizing the same interfaces, our standard library model
is compatible with any metamodel binding that is created for the pivot
model.

2. The XMI serialization capabilities of EMF enable us to effectively save and
load the standard library which improves reusability.

3. EMF can generate a highly customizable tree editor for a metamodel. In the
next section, we show how a heavily adapted version of the default pivot
model editor allows the user to conveniently view, edit and alter the model
of the standard library.

4.1 Visually modeling the OCL standard library

Figure 6 shows the model of the standard library in the adapted pivot model ed-
itor. This model, which contains all types and operations defined in the OCL 2.0
specification, is part of the new toolkit infrastructure. Users may, however, re-
place the default library with a modified version when integrating a new domain-
specific language with the engine. For instance, if a DSL does not know the
concept of an ordered set, the OrderedSet type can be safely removed from the
library model. This ensures that all valid abstract syntax models created by a
parser will indeed execute on the domain-specific target platform.



Fig. 6. The model of the OCL standard library



The look and feel of the pivot model editor resembles that of the EMF Ecore
editor. However, we have simplified the modeling of generics to hide complex-
ity from the user. When creating typed elements (properties, operations, and
parameters), declared type parameters of the containing generic element show
up in the list of possible types. The editor automatically creates the necessary
ParameterGenericType instance in this case. If a template type is selected (e.g.,
for the c2 parameter of the product operation), a complex generic type and cor-
responding type arguments are added. Similarly, the editor allows to specify the
type arguments when extending generic supertypes.

The root of the model is an instance of a special facade interface called
OclLibrary. Its definition is outlined in Fig. 7. The OclLibrary interface pro-
vides the necessary means for an OCL parser to retrieve the predefined standard
library types when building the abstract syntax model from an OCL expression.
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Fig. 7. The facade interface for the OCL standard library types

4.2 Binding template types during OCL parsing

In the following, we demonstrate the feasibility of our approach with a simple
example that involves the binding of generic OCL collection types while parsing
an OCL expression. Figure 8 depicts the model we will base the example scenario
on.

Now, consider the following OCL expression which specifies the derived at-
tribute totalBalance in class Person. Note that the second invocation of the
dot operator (accessing the property balance of all elements in the accounts
reference list) represents an implicit collect iterator.



name : String
/totalBalance : int

Person

id : String
balance : int

Account
owner

1

      accounts

 

 

                                                                      0..* {ordered}

  

Fig. 8. The example model

context Person :: totalBalance : int
derive : self. accounts .balance ->sum ()

Parsing this expression triggers the following template type bindings: First,
the type of the property call expression referring to accounts is evaluated to be
OrderedSet(Account). This directly stems from the multiplicity specification
and declared type of the property. The actual binding of the OrderedSet tem-
plate with the element type Account is facilitated within the getOrderedSetType
operation of the OclLibrary facade. As shown in Sect. 3, this solely requires a
call to the bindTypeParameter operation implemented in the Type metaclass of
the pivot model.

Similarly, the type of the collect iterator expression, which returns the list of
individual balance values, results from binding Sequence(T) with Integer. The
engine automatically maps the domain-specific int type to the corresponding
OCL standard library type. As a result, the return type of the sum operation
becomes Integer. To sum up this discussion, Fig. 9 shows the abstract syn-
tax model of the example expression as it is visualized in the DSL-agnostic
model browser that is part of the new toolkit infrastructure. Notice that not
only the Sequence template has been bound, but also its generic supertype
Collection(T).

Fig. 9. The abstract syntax model of the example expression

It is worth highlighting here that the method presented in this paper solely
addresses the static structure of the OCL standard library. To realize the dy-
namic semantics and actually execute the expression in Fig. 9, we still rely on
an instance-level (M0) implementation of the predefined types and operations.



To this end, we have redesigned the existing Java library of the Dresden OCL2
Toolkit to support a flexible integration of arbitrary DSLs via a set of factory in-
terfaces. Currently, an OCL interpreter based on the new infrastructure is being
developed to complement the components on the model level.

5 Related Work

To the best of our knowledge, there is no published work that deals with the
model-level integration of the OCL standard library as described in this pa-
per. Akehurst et al. [14] hint at this possibility, but simply suggest to import
a UML package containing the standard library types. Therefore, they do not
address the problems outlined in Sect. 2. However, they propose a mechanism
to detach the implementation of the standard library types and operations on
the instance level. The ideas from this work may complement our approach and
further simplify the integration of different domain-specific languages.

Another technique that aims at aligning OCL with custom domain-specific
languages on the instance level has been presented in [21]. Unfortunately, the
authors employ a custom expression language that is akin but not equal to
OCL [22]. Furthermore, they build on top of a model management framework
and execution engine which does not support a model-level integration of the
standard library.

Lastly, the latest release of the Eclipse MDT OCL project [23] features a
highly innovative way of integrating OCL with different modeling languages. In-
stead of a pivot model, a generic environment interface defines type parameters
for all metamodeling concepts required by OCL. Unfortunately, this otherwise
elegant approach necessitates a concrete specialization of the entire OCL meta-
model as well as the OCL standard library for each custom DSL binding. The
predefined operations of the standard types have to be created within the im-
plementation code yielding the disadvantages highlighted in Sect. 1.

6 Conclusions and Future Work

In this paper, we have presented a novel technique for integrating the OCL stan-
dard library on the model level. Contrary to previous approaches, we support a
declarative rather than a programmatic definition of the predefined types and
operations thereby improving reusability, flexibility, and maintainability. In ad-
dition, our method eases the integration of different domain-specific languages
with OCL, because the pivot model provides an intermediate abstraction layer
for a variety of metamodels. Therefore, instantiating elements of the library
model is independent of a particular DSL binding and solely requires a suitable
implementation of the pivot model interfaces. We have demonstrated the feasi-
bility and usefulness of our approach through an example that was realized using
newly developed components of the Dresden OCL2 Toolkit.



We are currently working on porting the tools of the Dresden OCL2 Toolkit
to the new infrastructure. Our aim is to leverage the increased flexibility pro-
vided by our approach for other OCL-based languages defined by the OMG.
Examples are the Query/View/Transformation (QVT) [24] language and the
upcoming Production Rule Representation (PRR) [25] standard. This may open
up interesting perspectives for areas as diverse as model transformation and
business rule execution.

Finally, our solution still faces some limitations that are worthwhile to ad-
dress. For instance, our pivot model currently lacks the expressive power to model
the dynamic semantics of iterator expressions for the OCL collection types. In
fact, detaching the definition of iterators requires a different approach altogether
since the corresponding well-formedness rules for the abstract syntax are cur-
rently heavily intertwined with the concrete syntax. Similarly, we have not yet
found a satisfying answer to the problem of binding generic operations whose
return type depends on contextual information (e.g., allInstances and asSet
in OclAny or flatten in the collection types). Even though we are able to model
the signature of these operations, we still have to check for them explicitly in
the code. Thus, the implementation of the OCL abstract syntax elements (M2)
still contains a few details of the standard library structure (M1).

Acknowledgment: The authors would like to thank Florian Heidenreich, Chris-
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to the Dresden OCL2 Toolkit.
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