
A Declarative Executable Language based on OCL for
Specifying the Behavior of Platform-Independent

Models

Pierre Kelsen, Elke Pulvermueller, and Christian Glodt

University of Luxembourg
Faculty of Sciences, Technology and Communication

Luxembourg

Abstract. Model-driven architecture aims at describing a system using a platform-
independent model in sufficient detail so that the full implementation of the sys-
tem can be generated from this model and a platform model. This implies that the
platform-independent model must describe the static structure as well as the dy-
namic behavior of the system. We propose a declarative language for describing
the behavior of platform-independent models based on a hybrid notation that uses
graphical elements as well as textual elements in the form of OCL code snippets.
Compared to existing approaches based on action languages it is situated at a
higher level of abstraction and, through a clean separation of modifier operations
and query operations, simplifies the comprehension of the behavioral aspects of
the platform-independent system.

Keywords: model-driven architecture, platform-independent model, action lan-
guage

1 Introduction

The vision of model-driven architecture - and more generally of model-driven software
development - is to enable automatic system generation from models, i.e. to produce
software which is automatically constructed by software based on abstract models. Gen-
eration is an industrially applied practice nowadays. It eliminates some tedious tasks
giving time for the more challenging aspects of the software development process (e.g.
the requirements and domain modeling).
Basic approaches underpinning model-driven development may be classified as follows:

– Generation for a limited and/or very specific domain (e.g., embedded systems).
These approaches are closely related to product-line development [2]. The domain
determines the realization details and generation refers to the configuration of pre-
defined system units.

– Generation of skeletons from higher-level models (often UML models). The skele-
tons have to be augmented by source code. In general, this is performed manually.

– Generation based on semantic model enrichment. Instead of augmenting the gener-
ated output with realization details, this approach adds additional semantics to the



top-level models. OMG’s action language semantics [16, 1] and the various nota-
tional realizations on top of this standard (e.g., ASL [17], SMALL [13]) count as
the most prominent representatives for abstract languages used to describe model
details.

In this paper we focus on the semantic model enrichment approach because it holds the
promise of full code generation and is applicable to a wide variety of systems. This ap-
proach concerns mainly the description of the behavior of a system since UML provides
sufficient facilities for structural modeling. Although UML provides some means of ex-
pressing the dynamic aspects of a system, these are either incomplete (e.g., sequence
diagrams) or apply only to certain types of systems (e.g., systems with a finite number
of states) thus restricting their use for full code generation.
One way of supplementing dynamic information is via an Action Language based on
Action Semantics [1]. Action languages follow an imperative style: they are reminiscent
(although more abstract than) traditional programming languages such as Java or C++.
Furthermore, while the action semantics have been standardized by the OMG, the actual
concrete syntax is not part of the standardization. This brings about the prospect of a
plethora of action languages being used for describing systems, further complicating
the task of understanding and sharing the underlying models.
An alternative approach advocated in [10] is to use OCL for expressing the dynamic be-
havior via pre- and post-conditions of operations at the platform-independent level. Un-
fortunately the body of the corresponding operation needs to be written in the platform-
specific model (using a traditional programming language) to specify the dynamic be-
havior. Thus this approach does not allow the full specification of the dynamics at the
level of the platform-independent model.
In an attempt to overcome some of these shortcomings we have developed a small
behavioral modeling language, named EP [8, 9]. This language is based on two main
types of elements: events and properties. Additional related elements and OCL code
snippets augment these basic elements in order to provide an executable specification
of the system.
The EP language is able to overcome some of the obstacles of the approaches outlined
above:

1. The language is situated at a higher level of abstraction than action languages: much
of the dynamics of an operation can be expressed using a graphical notation. The
code snippets that are left are OCL expressions describing functions without side
effects. Because it cleanly separates modifier operations from query operations the
EP language is more declarative than action languages.

2. Unlike OCL-based approaches that specify only pre- and post-conditions, an exe-
cutable description of the dynamic behavior of the system can be expressed in the
EP language, thus enabling full code generation.

The remainder of this paper is structured as follows. In the next section we describe the
EP language. Section 3 considers the implications of using OCL and section 4 discusses
related work. In the final section we present concluding remarks.



2 The EP language

2.1 An Example: FlightFinder

To illustrate the declarative language, we will make use of an application called
FlightFinder that will be used as a running example. This application would typically
be part of a larger system for performing flight reservations. The application allows the
user to enter the data for his specific travel request, that is, which city he flies from and
which city he flies to, the departure and return dates as well as the number of passengers
(adults/children). The user can query the system for all flights that match the entered
data. These flights will be presented in a list on a separate screen. The system also
allows an administrator to add new airports and new flights.
Even though this example is quite simple it serves well to illustrate the main concepts
by not overburdening the description of the underlying diagrams.
2.2 Structural Modeling

Although our main focus is on behavioral modeling, we need to concern ourselves
also with structural modeling since structural elements will be reused in the behavioral
model. For the structural modeling we make use of standard UML class diagrams with
the following modifications:

– We list as operations only query operations, i.e., operations that do not modify state.
– We add a fourth compartment named ”events” . We may think of events as modify-

ing operations whose semantics will be detailed in the behavioral model. We note
here that adding named compartments is a facility provided by UML.

– we define initial values of a property using an OCL ”init” constraint - essentially
an OCL expression that determines the initial value of the property

– we define the body of a query operation using an OCL ”body” constraint that de-
scribes, using an OCL expression, what a query operation returns.

These modifications can be expressed more formally using an UML profile (omitted).
Figure 1 shows the static structure of the FlightFinder application: it comprises 8 classes
partitioned into three packages - the main (unnamed) package containing the main busi-
ness classes, the ui package containing classes representing the user interface (three
screens) and the system package containing a single class Date. Note that we have left
out the OCL init and body constraints (which could be attached as notes to the corre-
sponding properties and query operations) in order not to overburden the diagram.

2.3 Behavioral Modeling

For behavioral modeling we depart from UML by introducing a new executable lan-
guage for modeling the behavior of a system: this language expresses the dynamic be-
havior of the system by using events and properties (from which we derive the name –
EP – of the language) from the class diagram as first-class entities. We shall define the
EP language by giving its abstract and concrete syntax as well as its static and dynamic
semantics.



Fig. 1. Class diagram of the FlightFinder application



Fig. 2. Behavioral Metamodel

Abstract Syntax In figure 2 we describe the abstract syntax of the language via its
UML metamodel. From hereon we shall use the name EP-model to denote an instance
of this metamodel.
The main entities are events, properties and functions. An event can have parameters,
each parameter having a name and a type. An event link connects an event to a child
event via a link property and is labeled with a link property which is either a property
or a parameterless query operation (denoted by the QueryProperty class in the meta-
model). Each event link carries one parameter mapping per parameter of the child event.
The parameter mapping is an OCL code snippet (represented by a Function object) that
expresses the value of the parameter of the child event in terms of the parameters of the
parent event and in terms of query operations and properties of the model containing
the parent event. An event can modify the state of the system by impacting a property
in its class: the impact link carries an OCL code snippet that expresses the new value of
the targeted property.

Concrete Syntax In addition to the abstract syntax expressed by the metamodel we also
need to define the concrete syntax of EP-models. We use the following conventions:

– We represent events as boxes with the event name (prefixed by ”E”) at the top and
the parameters (name and type) listed below.

– We represent the event link by an arrow from the parent event to the child event
labeled by the link property (the property that the link uses) .



– We attach to the event link a note listing the parameter mappings: this is a list of
items of the form <parametername>:<code-snippet> where the code snippet is an
OCL expression.

– We denote a property by a box containing the name of the property and its type
(prefixed by ”P”).

– We denote an impact link using an arrow with an attached note containing the code
snippet.

In figures 3 and 4 we show partial views of the EP-model of the FlightFinder system:
figure 3 includes those events reachable from the searchFlight event while figure 4
shows the events reachable from the addFlight event. We present these partial views
because the full model would be difficult to read.

Fig. 3. View of the EP-model for the addFlight event

Static semantics The static semantics of an EP-model state the rules that determine
whether an EP-model is well-formed. We describe the rules using natural language:

1. Each event link must carry a parameter mapping for each parameter of the target
event and each such parameter mapping is an OCL expression returning a value
whose type corresponds to the type of the target parameter.

2. The graph induced by the event links on the set of events reachable from a given
event is a directed tree rooted at this event, i.e., each node other than the root event
has in-degree 1 in this graph and the root has in-degree 0.
This rule is necessary to ensure that the triggering of an event will not lead to the
same event being triggered twice, possibly with different parameter values. It also
ensures that the graph induced on the events by the event links is acyclic. If we
think of events as modifiers (operations that modify state) and of event links as
representing modifier invocations, then this rule prevents an event from leading to
an endless loop of modifier invocations.



Fig. 4. View of the EP-model for the searchFlight event

Dynamic semantics For the dynamic semantics we have to define the meaning of a
well-formed EP-model. At run-time the system state comprises a set of instances, es-
sentially the object graph complying with the class diagram describing the static struc-
ture of the system. We describe the dynamic semantics by defining what happens to
the system state when an event is triggered on an instance. Let the old state denote the
system state just before an event is triggered and let the new state stand for the system
state right after an event has occurred. The value of a query operation on an instance
is determined by computing the value of the OCL expression on the old state. When
an event is triggered, all properties impacted by this event are set to the values of the
OCL expressions attached to the impact links. For each event link leaving this event we
evaluate the link property (with respect to the old state) to determine the target instance
referred to by this link property. We also evaluate the value of each parameter of the
child event by evaluating the OCL expressions in the corresponding parameter map-
pings. We then recursively trigger the event on the target instance with the computed
arguments.
We illustrate the dynamic semantics using the example of the searchFlights event from
figure 4 . Suppose that the searchFlights event is triggered on an instance of Home-
Screen with arguments departingFrom (code for departure airport) and goingTo (code
for arrival airport). The event link from searchFlights to homeScreenSearchFlights im-
plies that the homeScreenSearchFlights event will then be triggered on the Main in-
stance that refers using its adminScreen property to this instance. The value of the ar-
guments of that event are calculated using the OCL expressions attached to the event
link: in this case the arguments from searchFlights are simply passed on unchanged.
The event links from homeScreenSearchFlights to setVisible and setResults in the Re-
sultScreen model indicate that these two events are now triggered (in arbitrary order) on
the ResultScreen instance referred to by the resultScreen property of the Main instance.



The setVisible event is triggered with argument true (see code snippet); this event im-
pacts the visible property by setting it to the value of the visible parameter, that is, to
true (see code snippet on the impact link). The setResults event is triggered with an ar-
gument given as a set of result flights (indicated by the type - Set(Flight) - of the results
parameter). The value of this argument is given by invoking the searchFlights operation
on the FlightStore instance referred to by the Main instance via its flightStore property
(see class diagram).

3 Use of OCL

In this section we discuss the use of OCL within the context of our behavioral modeling
language.
Let us first summarize where OCL is used in our modeling approach:

1. At the class diagram level OCL constraints are used to express the initial values of
properties and the body of query operations.

2. at the level of the EP-model, OCL expressions are attached to event links and to
impact links.

At the structural level we have separated query and modifier operations. While query
operations are defined in the structural model via OCL expressions, the definition of the
modifier operations (the ”events”) is relegated to the EP-model. In the EP-model OCL
expressions are used for defining parameter mappings on event links and new property
values on impact links. The benefits of clearly separating query from modifier opera-
tions are well recognized [14, 3]. Indeed freely mixing calls to modifier operations and
query functions, as is currently done in action languages, makes it difficult to under-
stand the effect an operation has on the system state and thus negatively affects the
effort needed to comprehend a system.
In a sense we are using OCL as a functional programming language that includes object
navigation facilities. The original intention for OCL is to express constraints on UML
models. We believe its use as a ”programming language” is justified in this context
by the fact that the code snippets are combined with UML models and EP-models:
traditional functional programming languages are not easily adapted for this purpose.
Furthermore the abstract nature of OCL, i.e., the fact that it is quite independent of any
platform makes it a good candidate for annotating elements of a platform-independent
model. Since OCL expressions are side-effect free and modifier operations are clearly
separated from the query operations, this behavioral description of the system should
be easier to understand in the same way that a functional program is often easier to
understand than an object-oriented one.
One drawback of using OCL is the lack of certain features that are taken for granted in
more traditional programming languages. We give only two concrete examples: there
are no built-in type Date or Time and there is no operation on the String type that tests
whether another string is a substring of a string. If we want to use OCL for realistic
examples we need to extend it so that we can express the behavior of a large system.
More seriously OCL 2.0 does not seem to be Turing-complete in the sense that OCL
expressions only represent primitive recursive functions [12]. As pointed out in [18] the



expressiveness of OCL can be increased by adding recursive operation invocations. We
allow this by permitting the OCL expression for a query property with parameters to
refer to itself. As explained in [18], however, this results in a Turing-complete expres-
sion language, at the cost of not being able to guarantee termination of an expression
evaluation.

4 Related Work

We discuss some existing approaches for behavioral modeling of platform-independent
models. The main approach advocated by the OMG group for model-driven architec-
ture are action languages that conform to the Action Semantics. The Action Semantics
describes the abstract syntax and semantics of action languages but does not propose
a concrete syntax. Examples of concrete action languages are the Action Specification
Language (ASL) [17, 11], the BridgePoint Action Language (AL) [7], the Kabira Ac-
tion Semantics (Kabira AS) [6], and the action language subset of the Specification and
Description Language (SDL), an international standard widely used in the telecommu-
nication industry [19]. The multitude of different action languages is a first problem we
encounter when using action languages.
A more fundamental problem is the intermixing of non-modifying actions and modify-
ing actions. Indeed according to the Action Semantics an action can compute values,
navigate and read properties and call query operations but it can also write properties
and call modifying operations. In this sense a program written in an action language is
similar to one written in a traditional imperative or object-oriented style. This intermin-
gling of modifying and non-modifying actions contributes much to software complex-
ity; a clear separation is a definite argument in favor of our approach. The following
code snippet is written in the ASL action language and expresses the setting of the
results and the visible properties in the ResultScreen:

rs2:setVisible[TRUE] on resultScreen
{theSet} = fs1:searchFlights[leavingFrom,goingTo] on flightStore
rs1:setResults[{theSet}] on resultScreen

This example illustrates the mixing of calls to query operations (searchFlights ) with
invocations of modifier operations (setResults and setVisible). It also shows that the
sequential execution is fixed in the action language by the order in which the actions
were written down. This is an undesirable feature of imperative languages that is not
present in our declarative approach.
We remark that there were attempts to align action languages with the OCL by em-
bedding OCL expressions into new syntax constructs for actions [5]. That result can be
seen as an instance of the more general problem of behavioral modeling with OCL, a
problem to which we provide a more declarative solution in the present paper.
Action languages are also used at higher levels of abstraction - such as in Kermeta [15] -
itself inspired from the UML action language Xion [15]. In Kermeta an action language
is used to define the behavior of MOF models. The action language itself is imperative
and object-oriented and thus suffers from the same shortcomings as traditional UML-
based action languages.



5 Conclusion

In this paper we have presented a declarative language for behavioral modeling of
platform-independent models. Existing approaches are mainly based on textual action
languages that are imperative in style. The main advantage of our approach is a clear
separation of modifier operations and query operations that facilitates the comprehen-
sion of the behavior of a platform-independent system.
Unlike traditional action languages our behavioral description language is composed
of graphical as well as textual elements, the latter being composed of code snippets
representing side-effect free OCL expressions. In this paper we have shown that OCL
is well-suited in this context since it is platform-independent and is Turing-complete,
provided we allow recursive query calls in expressions. Further work is needed to:

– investigate extensions of OCL for behavioral modeling of realistic systems (in com-
bination with a declarative language such as EP); these extensions will at the least
require additional OCL types and operations that are currently lacking

– provide tool support for modeling platform-independent models with the goal of
fully automatic code generation. We have developed a first prototype supporting ab-
stract modeling; it is based on the DEMOS tool [4] that supports platform-specific
executable modeling

– analyze the scalability of our approach to large software systems; the availability
of a suitable tool is a precondition for this investigation

– investigate the application of our behavioral modeling approach to systems in which
different aspects are expressed using different domain-specific languages

References

1. Alcatel, I-Logix, Kennedy-Carter, Inc. Kabira Technologies, Inc. Project Technology, Ratio-
nal Software Corporation, and Telelogic AB. Action semantics for the UML. In Document
ad/2001-03-01. OMG, 2000.

2. K. Czarnecki and U.W. Eisenecker. Generative Programming - Methods, Tools, and Appli-
cations. Addison-Wesley, 2000.

3. E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-
Wesley, 2004.

4. Christian Glodt and Pierre Kelsen. Demos: a tool for declarative executable modeling of
object-based systems. In OOPSLA Companion, pages 716–717, 2006.

5. Stefan Haustein and Jörg Pleumann. OCL as expression language in an action semantics
surface language. In Octavian Patrascoiu, editor, Workshop on OCL and Model Driven En-
gineering, UML 2004 Conference, pages 99–113. University of Kent, 2004.

6. Kabira Technologies Inc. Kabira Action Semantics. http://www.kabira.com.
7. Project Technology Inc. BridgePoint Action Language (AL). http://www.projtech.com.
8. Pierre Kelsen. A simple static model for understanding the dynamic behavior of programs.

In 12th IEEE International Workshop on Program Comprehension (IWPC’04), pages 46–51,
2004.

9. Pierre Kelsen. A declarative executable model for object-based systems based on func-
tional decomposition. In ICSOFT (1), pages 63–71, 2006. full version availble at
http://lassy.uni.lu/demos/documentation/TR LASSY 06 06.pdf.



10. Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven Ar-
chitecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2003.

11. Kennedy Carter Ltd. Action Specification Language (ASL). http://www.kc.com.
12. Luis Mandel and Marı́a Victoria Cengarle. On the expressive power of OCL. In Proc. FM’99

– Formal Methods, World Congress on Formal Methods in the Development of Computing
Systems, Toulouse, France, volume 1708 of Lecture Notes in Computer Science, pages 854–
874. spv, 1999.

13. Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA Distilled: Principles of
Model-Driven Architecture. Addison-Wesley, Boston, 2004.

14. Bertrand Meyer. Object-oriented software construction (2nd ed.). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1997.

15. Pierre-Alain Muller, Philippe Studer, Frédéric Fondement, and Jean Bézivin. Platform in-
dependent Web application modeling and development with Netsilon. Software and System
Modeling, 4(4):424 – 442, 2005.

16. OMG. OMG Unified Modeling Language Specification (Action Semantics)., January 2002.
17. C. Raistrick, P. Francis, and J. Wright. Model Driven Architecture with Executable UML.

Cambridge University Press, 2004.
18. Mark Richters. A Precise Approach to Validating UML Models and OCL Constraints. PhD

thesis, Universität Bremen, Logos Verlag, Berlin, BISS Monographs, No. 14, 2002.
19. International Telecommunication Union. Specification and description language

(SDL),Technical Report Z.100, ITU-T, 1999.


