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The Object Constraint Language (OCL) was originally designed as an ‘add-on’ to the Unified 
Modelling Language (UML) in order to facilitate writing textual constraints complementing the 
graphical specifications. Since its original standardisation many extensions have been added to the 
language and many more have been proposed. The original structure of the OCL definition has not 
been formed, however, with a view of extensibility. Still, OCL can be redesigned in such a manner 
that it becomes easy to extend the language. In this paper we present a modular redefinition of 
OCL and illustrate how it supports extension. This new approach to the design of OCL enables you 
to consistently extend or customise OCL to your own needs. 

1 Introduction 
When developing the Unified Modelling Language (UML), its designers understood early on that 

visual models are not sufficiently expressive for all modelling needs. Therefore, they paired UML with 
the Object Constraint Language (OCL)—a textual constraint language closely linked with the concepts 
of UML, but providing the power of first-order predicate logic, and beyond. OCL was well accepted at 
least in the research community and a number of tools supporting parsing and analysing OCL as well 
as for generating code for various target systems have been developed. Because of its intuitive syntax 
and reasonable tool support, OCL came to be used in various other contexts. For example, OCL has 
been used in CQML [1] a language for modelling non-functional properties of component-based 
systems, and in the new QVT standard [20] as a means of describing model transformations. In the 
process, OCL has changed from a simple constraint language to a rather powerful query language. 
Many extensions to the original OCL have been proposed, for example for modelling temporal or 
geographical properties [7, 10, 22, 23]; quite a few of them have been incorporated in new versions of 
the OCL standard. 

However, the design of OCL, from its beginnings to its current shape, has not taken into account this 
requirement for modification. Hence, although the language definition has grown in size, it has not 
improved in modularity. This is bad, because it dramatically reduces understandability of the language. 
Indeed, the current standard contains a number of inconsistencies as anybody attempting to provide 
tool support will have noticed. OCL’s lack of modularity is bad for another reason: It makes it very 
difficult to systematically introduce extensions to the language. However, many such extensions are 
still being proposed. Two main sources for such proposals are:  

1. Whenever OCL is being integrated with other languages (for example, for modelling non-
functional properties or for describing model transformations), new concepts need to be 
integrated. This includes concepts at both the type and the concept level. 

2. Although OCL supports first-order predicate logic and some concepts beyond that, it is still 
missing important logical concepts. Most importantly, OCL currently provides no support 
for temporal-logic specifications. 

In this paper, we discuss a modular redesign of OCL. This redesign has two goals: 1) to modularise 
OCL so that it becomes easy to systematically extend it as required, and 2) to modularise OCL so that it 
becomes easy to customise OCL to specific project requirements or didactic objectives by removing 
features from the language. The customisability thus achieved will, in addition, simplify integrating 
OCL with languages other than UML.  

A modular redesign of a language such as OCL must cover the language’s concrete and abstract 
syntax, and its semantics as indicated in Fig. 1.  The figure gives an overview of the different parts of 
what we call modular language design. It shows two language modules (a concept to be defined later) 
consisting of a partial grammar, a partial metamodel and a partial semantic domain, all related by 
corresponding transformations. When a language module extends another language module, really all 
its parts need to extend the respective parts of the extended language module. In this paper, we will 
focus on the syntactical aspects of modular language designs, aspects of semantics will be an issue for 
future work. 



In current approaches, when a new language feature is to be added to a language like OCL, a 
completely new language must often be developed from scratch. This situation needs to be changed 
towards a more engineering-oriented approach to language design. This necessity has also been 
acknowledged by Klint et al. who name this field “Grammarware Engineering” [12]. The work 
presented in this paper is, thus, a contribution to grammarware engineering. 

The remainder of this paper is organised as follows. Section 2 introduces the background to the 
technology, illustrating the current state of parsing technology and the current OCL standard. This is 
followed by Sect. 3, where the primary ideas regarding a modularised extension to OCL are presented. 
The extension mechanism is subsequently evaluated in Sect. 4 by applying it to one non-standard 
extension proposal from the OCL literature. The paper concludes by discussing an implementation of 
the approach and possible future work associated with the technology. 
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Fig. 1 A general view of modular language design 

2 Background 
In this section, we give a short overview of the background of this work. In particular, the first sub-

section discusses the current state of the art of parsing technology, while the second sub-section gives a 
short overview of the current OCL standard. 

2.1 Current state of parsing technology 
The compiling process for textual languages defined by a metamodel can be split into a number of 

different stages: 
1. Scanning – Takes the input sequence of characters and produces a sequence of tokens. 
2. Parsing – Takes the sequence of tokens and adds structure according to a grammar producing 

a parse tree. The parse tree nodes represent the syntax elements interpreted by the grammar. 
3. Abstraction – Converts the parse tree into an abstract syntax tree. Nodes in this tree are closer 

to the abstract concepts of the language than to the syntactical elements.  
4. Binding – relates named elements in the abstract representation of an expression to their 

definition 
Scanner and parser are typically generated from a grammar of the language. Most often, this is a 

context-free grammar [16], which is used to generate a top-down parser and scanner. Some parser 
generators will create bottom-up parsers, which can deal with more complex languages, but are also 
more complex, and often slower, themselves. The textual form of the language processed by scanner 
and parsers is referred to as the concrete syntax of the language. The result of scanning and parsing a 
piece of concrete syntax is a so-called concrete syntax tree; that is a tree-shaped internal representation 
based directly on the grammar of the concrete syntax. 
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For many post-processing tasks, dealing directly with the concrete syntax tree is inconvenient. 
Therefore, an additional abstraction step is performed, transforming the concrete syntax tree into an 
abstract syntax tree by removing nodes only relevant in the process of parsing. For example, nodes 
corresponding to additional non-terminals used to express precedence between operators in the 
grammar can be removed once the parse tree has been derived correctly. Also, nodes corresponding to 
terminal symbols for keywords can be removed if the same information can be derived from the type of 
the syntax tree node.  

In addition, in modern language tools, an additional binding step resolves any references between 
different parts of a text (for example, between variable declarations and variable usage). This results in 
a directed-graph representation of the text. The structure of such a graph is normally determined by a 
so-called abstract syntax metamodel, the actual graph is then considered to be an instance of this 
abstract syntax. We sometimes refer to such a graph as an abstract syntax graph or ASG for short. 

The transformation from concrete to abstract syntax still often needs to be implemented manually. 
However, some techniques exist that allow some or all of this to be generated. For example, many 
parser generators (e.g., [8, 21]) allow additional code or annotations to be used in a grammar to express 
how concrete syntax trees can be transformed into abstract syntax trees. Also, generators based on 
attribute grammars [11] allow the creation of ASGs to be declaratively expressed in the grammar. 

Modern parser generators provide limited support for modularising language specifications. For 
example, the ANTLR parser generator [21] provides a concept for grammar inheritance. This allows 
grammars to inherit productions from other grammars and to extend and modify these definitions as 
appropriate. The JavaCC parser generator [8] has a notion of lexer states allowing the lexical analysis 
of different sub-languages to be combined easily. At the abstract-syntax level, mechanisms exist for 
combining different abstract syntaxes into one. For example, the UML Infrastructure specification [19] 
provides a package merge mechanism that allows to combine two metamodels into one. Still, however, 
most language definitions are built in a monolithic form. We believe the main reason for this to be that 
the existing approaches are not well connected. It is our goal with this paper, to advance the state of the 
art in this direction by describing one possible combination of technologies for modularising a 
complete language description. 

2.2 The current OCL standard 
The Object Constraint Language (OCL) is defined by a standard of the Object Management Group 

(OMG) [18]. This standard gives a monolithic definition of the OCL consisting of its concrete syntax, 
its abstract syntax, a model of OCL-specific types, a so-called standard library defining standard 
operations available on instances of OCL-specific types, a semantics, and means of connecting OCL 
expressions to Unified Modelling Language (UML) models. The standard is currently available in 
version 2.0, in which it relates to UML version 2.0. 

The current OCL standard is, as mentioned, monolithically constructed. In particular, in the concrete 
syntax, but also in the abstract syntax and the semantics definition, many different concerns are 
tangled. This makes it very difficult to understand the language specification, check it for consistency, 
or extend it. Indeed, many inconsistencies can be found in the current standard. 

Still, many extensions to OCL keep being proposed. For example, [7, 10, 23] propose different 
forms of temporal-logic extensions to OCL. It is, however, unclear how these extensions could be 
integrated into OCL in a consistent and systematic manner. At the same time, the language contains 
features—for example, the OclMessage construct to formulate constraints over messages sent by an 
operation—that are only useful for a part of the users of OCL and whose precise meaning is debated in 
the OCL community. For such constructs, it would be helpful to have a means of consistently removing 
them from the language if they are not required. We could also use some sort of style guide, restricting 
how the language should be used. However, in this case, those unused elements would still be in the 
language definition, contributing to the complexity of the language and to the difficulty of learning the 
language. 

The OCL standard also defines a set of primitive and collection types to be used in OCL 
expressions. The mapping between these types and the corresponding types in a UML model or in a 
DSL is not entirely clear from the standard. In particular, these types define a (sometimes very narrow) 
set of operations that must be mapped on the corresponding operations in the corresponding types. 
These sets of operations defined in the standard may, furthermore, not be sufficient for writing precise 
and useful constraints. For this reason, it would be useful to be able to exchange the standard library 
types in OCL.  



3 Redesigning the Standard 

 
Fig. 2 OCL Language Modules1

Our suggested modules for a more modular redefinition of OCL are illustrated in Fig. 2. The root, 
core, module defines the fundamental part of OCL, which is the facility for navigation across object 
networks. The addition of the logic, numbers, primitives, collections and tuples modules provide the 
language with constant values, standard library types, and operators over those types. In the notation 
employed above, the inheritance arrow has its usual meaning. That is, for example, primitives depends 
on and extends the definitions in logic and numbers. The types module provides the facility for 
referencing literal types from an attached user model. These modules are brought together in a module 
called expressions, which would be the module most commonly extended by the numerous other 
languages that built on and around OCL. The invariant, operation, property, and state_machines 
modules provide the language components required for the standard OCL contexts in which 
expressions are usually given. Finally, the module std, brings together the other modules to provide a 
language that is equivalent to the current OCL standard. 

We define a language module to be a module combining a grammar (i.e., a concrete syntax 
definition), (potentially) a metamodel (i.e., an abstract syntax definition), and some transformation 
rules that map syntax tree elements onto objects from the metamodel (language model). We do not 
prescribe that a language module must contain a metamodel, as for some languages or some modules it 
may be that the metamodel is better specified independently, for example, as metamodel elements may 
be reused in multiple modules. 

A language module LA can specialise other language modules L0 to Ln. In this case, the language 
described by LA is the language described by L0 to Ln including the new definitions from LA itself. The 
grammar of LA is defined as a specialisation of the grammars from L0 to Ln using some form of 
grammar inheritance. The metamodel is derived from the metamodel of L0 to Ln and LA. The set of 
transformation rules is the union of the transformation-rule sets from all language modules. 

The concrete techniques we use for presenting the individual parts of language modules in this paper 
are as follows: 

• Grammar: The grammars for our language module are written using an OO extension to EBNF 
that facilitates modularisation, inheritance, reuse and redefinition of rules. We do not give a 
definition of the extensions, but we consider them to be intuitive given an understanding of 
EBNF. 

                                                           
1 The module code can be downloaded from http://www.ee.kent.ac.uk/~dha/OCLModularisingTheLanguage. The 

parser technology required to interpret the language modules can be obtained from the first author upon request 
by e-mail. 
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• Metamodel: The metamodel for OCL is introduced in segments as it is used by each language 
module. The metamodel elements are defined in the traditional manner, using class diagrams. 
The segments are intended to be composed by package merge. 

• Abstraction/Binding: We define and implement the abstraction and binding steps of 
compilation using the MDD notion of transformations. This enables us to define sets of rules in 
each module that handle the mappings from syntax tree to OCL metamodel elements. There is 
not space in this paper to give the full specification of the rules we use; instead we show an 
overview of the rules and how they are related. The relationship between rules is an important 
mechanism in our technique for composing language modules. 

3.1 ocl::core – Navigation 
The fundamental or core aspect of OCL is the facility for navigation across object networks. The 

most obvious navigation is the use of properties (attributes and associationEnds in UML 1.X). 
Additionally, both qualified properties and method calls are also a form of navigation, starting from 
one object (or collection) and resulting in another. 

 Grammar 
A simple grammar that supports the specification of such navigations is defined in Listing 1. This 

grammar defines the core navigation syntax for OCL, consisting of a starting name, followed by zero 
or more navigations over properties, qualified properties, or operation calls. 

package ocl; 

grammar core { 

  expr = navExpr | rootExpr ; 

  rootExpr = variable ; 

  navExpr = propertyCall | operationCall ; 

  variable = NAME ; 
  propertyCall = expr '.' NAME [ '[' exprList ']' ] ; 
  operationCall =  expr '.' NAME '(' [exprList] ')' ; 

  exprList = (expr / ',')* ; 

  NAME = "[a-zA-Z_][0-9a-zA-Z_]*" ; 

} 

Listing 1 OCL Core Grammar 

 Metamodel 
The core elements of the OCL metamodel are illustrated in Fig. 3 and Fig. 4. In the standard 

definition, the OCL metamodel relies on certain definitions from the UML metamodel. Such reliance 
makes the assumption that OCL is going to be used to write expressions over UML models. However, 
as has been made apparent by many of the “miss-uses” of OCL [1, 3, 7, 10, 20, 23], the community at 
large may wish to use OCL over alternative metamodels. We thus define, separately to the UML 
metamodel, a set of “interface” types that must be supported by a metamodel, if OCL is to be used with 
it. This notion has been suggested in other works such as [5, 15]. 

The types Property and Operation are the metamodel representations of properties and operations 
defined within a UML user model. A VariableDeclaration is a representation of a typed name in the 
current context (environment), e.g. ‘self’, a parameter, or a name from a ‘let’ statement. 



 
Fig. 3 Interface to metamodel 

 

 
Fig. 4 Core Metamodel 
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Fig. 5 Transformation Rules for ocl::core module 

The transformation rules for the core module are illustrated in Fig. 5. These diagrams use our own 
notation, showing transformation rules as elongated hexagons. There are two types of relationship 
between rules illustrated: 

• Generalisation: This relationship indicates a sub-typing relationship between rules, if a 
specification indicates use of a super-rule, then the actual rule used will be one of the sub-rules. 
The actual rule used is selected based on the domain object to be transformed and the 
constraints specified in each sub-rule. The rule system we used for implementing our modules 
actually allows super-rules to be reused by sub-rules. However, here, we make no use of this 
feature. 

• Dependency: This indicates that the target rule (of the dependency) is used by the source rule to 
further transform some sub-part of the domain object being transformed by the source rule. For 
example, using the QVT notions, a rule specified in a ‘where’ clause. 

The root rule maps an element of the syntax tree (TreeNode – TN) into an OclExpression. This rule 
is an abstract rule which facilitates extension in other modules. The realisation provided in the core 
module handles basic navigation expressions, the root of a navigation being a variable expression. In 
the core module there are three options for navigation, a property call, a qualified property call and an 
operation call. Rules for handling the abstraction and binding of each of these navigation types are 
provided. Note that there are two hierarchies of rules, one for managing alternative fundamental OCL 
expressions and the other for handling the alternative kinds of navigation expression. 

The notation of Fig. 5 illustrates an overview of the transformations rules, indicating the relationship 
and connectivity between the different rules. Each rule can be specified in detail using a transformation 
language such as the QVT, or other QVT-like language. For example, details for the rule 
TN2VariableExp could be expressed as follows, using the QVT-based Kent Model Transformation 
Language [3]: 

rule TN2VariableExp extends TN2OclExpression 
src : TreeNode [ children.first.data = n ] when { src.name == 'variable' } 
tgt : VariableExp [ decl = VariableDeclaration{ name = n } ] 

We do not provide full details of the transformation rules in this paper, rather we indicate the 
approach. To implement the transformations, any one of the many transformation tools that are being 
developed could be used. Some detail on our tooling and implementation is given in a later section. 
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3.2 The Standard Library 
The standard library in OCL consists of both the primitive types, Boolean, Integer, Real and String, 

and the Collection types, Bag, Set, Sequence, OrderedSet. In the standard, these types are closely tied 
in with the language itself. This is undesirable for at least two reasons: 

1) The operations defined for standard types in the standard are insufficient for most useful 
expressions. The best example is the standard String type of OCL, which provides no means of 
inspecting the contents of a String other than comparing it—in its entirety—to some other 
String. 

2) DSLs often define their own notions of these primitive types. When OCL is combined with a 
DSL different from UML it should be possible to reuse the DSL’s primitive types within OCL 
expressions. 

To solve these current problems, each of the primitive types—and thus the complete standard library—
should be defined as a class in the user model as per any other class in the model. There are, however, 
two problems associated with removing these types from the standard definition: 

1) The grammar defines the syntax for constant values that need to be mapped to instantiations of 
the standard library types. 

2) Some of the methods defined on these classes are explicitly tied to concrete syntax elements in 
the OCL grammar. For example, consider the ‘plus’ method defined on an Integer type, this is 
not usually called using the core navigation syntax, rather the mathematical infix notation is 
used along with the ‘+’ operator symbol 

To achieve our aim of separating the standard library from the core definition of OCL, and to allow 
it to be ‘replaceable’ we need to define a customisable mechanism that links elements from the 
concrete syntax grammar to types supplied in the model and a mechanism for associating certain 
patterns of grammar elements to certain methods on a class. 

We provide a definition that enables the “standard library” to be treated in the same manner as any 
other user model. And in such a manner, that with a little extra work, it can be replaced with an 
alternative ‘user model’-level library. 

 Metamodel 
Although we can treat the actual types in the standard library as ‘user model’ elements, it is still 

necessary for the OCL metamodel to understand the concepts of literal expressions, and facilitate the 
linkage of literal expression to the user model types. The OCL metamodel must therefore include 
elements for representing the notion of literal values. Fig. 6 indicates the metamodel elements for 
representing primitive and collection literal values.  The OclExpression metamodel element has been 
inherited from the core language module (see Fig. 2). It is an abstract concept representing arbitrary 
OCL expressions. 

 
Fig. 6 OCL Metamodel - Literals 

We do not have space in the paper to provide all the definitions of every language module. To 
illustrate the approach we show and discus the module for numbers.  

 ocl::numbers – Grammar 
The grammar for numbers introduces literal numbers as alternative kind of root expression and 

extends the navigation options to allow for prefix and infix operator expressions. In addition we add 
parenthesis grouping for basic expressions as this is needed now that we have the operator expressions. 
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The ‘<’ symbol in the grammar rule for infix expressions defines (an operator) precedence between 
the different options.2

package ocl; 

grammar numbers extends core { 

  expr = core.expr 
       | '(' expr ')' ; 

  rootExpr = core.rootExpr | number ; 

  navExpr = core.navExpr  
          | infixExpr 
          | prefixExpr 
          ; 

  infixExpr = expr '/' expr 
            < expr '*' expr 
            < expr '+' expr 
            < expr '-' expr 
            ; 

  prefixExpr = '+' expr 
             | '-' expr 
             ; 

  number = INTEGER | REAL ; 

  INTEGER = "[0-9]+"; 

  REAL = "[0-9]+[.][0-9]+"; 

} 

Listing 2 OCL Numbers Grammar 

 ocl::numbers – Abstraction / Binding 
The binding process for the numbers module requires that we link the ‘type’ of a literal expression 

to a type in the user model that can be use to express the literal value. In addition we need to provide a 
mapping from the operators used in the grammar definition onto operations in the appropriate type. 

 
Terminal Type 
INTEGER ocl::stdLib::Integer 
REAL ocl::stdLib::Real 

Table 1 Mapping primitive literal tokens to types from the standard library 

Operator Type ArgTypes Operation 
/ ocl::stdLib::Integer {ocl::stdLib::Integer} Integer.divide() 
* ocl::stdLib::Integer {ocl::stdLib::Integer} Integer.multiply() 
+ ocl::stdLib::Integer {ocl::stdLib::Integer} Integer.plus() 
- ocl::stdLib::Integer {ocl::stdLib::Integer} Integer.minus() 
/ ocl::stdLib::Real {ocl::stdLib::Real} Real.divide() 
* ocl::stdLib::Real {ocl::stdLib::Real} Real.multiply() 
+ ocl::stdLib::Real {ocl::stdLib::Real} Real.plus() 
- ocl::stdLib::Real {ocl::stdLib::Real} Real.minus() 
+ ocl::stdLib::Real {} Real.self() 
- ocl::stdLib::Real {} Real.negate() 

Table 2 Mapping operators to operations on standard-library types 

To achieve this we provide two tables as input to the abstraction/binding rules. One that maps literal 
terminal names onto user model classes, and another that maps (operator, type, argumentType) tuples 
onto operations from a model type. Our definition of the numbers module thus requires the two tables 
Table 1 and Table 2. We assume that the user model includes a package named ocl::stdLib that 
includes primitive types such as Integer, Real, String and Boolean. 

                                                           
2 Note that initial ideas along the lines of this paper have been presented in [4]. The numbers grammar is very 

close to the grammar shown there. 



To make use of this information we define transformation rules that extend the core abstract rules. 
The numbers grammar introduces three new kinds of expression: literal numbers, infix operations, and 
prefix operations. The infix and prefix operations are special kinds of navigation, thus rules for the 
abstraction and binding of these syntax nodes can be implemented as extensions to the navigation rule. 
Fig. 7 illustrates the additional rules and shows how they relate to the core rules. 

core::TN2OclExpression

 
Fig. 7 Transformation Rules for ocl::numbers module 

3.3 Deriving the standard language 
Once all the language modules have been defined, as indicated above for selected examples, they 

need to be combined to derive the OCL of the current standard. As shown in the module listing in Fig. 
2, we create a new language module std inheriting (directly or indirectly) from all the modules 
comprising the standard OCL. This ensures that the standard language contains all features provided by 
these modules.  

This mechanism also provides for customisations of the language. If a particular feature is not 
required for some usage of OCL, a new language can be defined by specialising only those modules 
that are required. Because dependencies between modules have been made explicit through using 
specialisation relations between language modules, they will be respected automatically. 

4 Integrating a Temporal Logic Extension 
In [10] Flake et al propose a temporal logic extension to OCL. They are not the only authors to 

propose such an extension, [7, 23] also propose an alternative temporal-logic extensions. To illustrate 
the ease with which our new approach to defining OCL can be extended, we take the extension 
proposed by Flake et al and re-specify it using the techniques proposed in this paper. 

The extension of Flake et al extends the notion of ‘@pre’ navigation to include other temporal 
operations in addition to ‘pre’. Such operations (e.g. ‘post’) can also take arguments that provide time 
bounds to the operator. Additionally, they add a new literal expression for traces; that is, sequences of 
states. To this end, they also need to extend the definition of Sequence to include a new operation: 

 includesSequence(seq:Sequence(T)): Boolean. 
The current OCL standard does not allow such extensions easily. Flake et al invest considerable 

effort to describe their extension as formally as possible (which is not true for all extension proposals, 
alas), but still it would not be possible to integrate it directly into existing tooling. In this section, we 
are going to show how this extension can be formulated as a language module directly compatible with 
the overall approach of defining OCL as presented in this paper. 

4.1 Realising the extension in our framework 
To specify and implement this extension using our framework we need to: 
• firstly, decide which of the base language modules to extend 
• secondly, provide extensions to the grammar, metamodel and transformation rules 
• and finally, provide a configuration of language modules that incorporates the new module 

core::TN2NavSubType 

TNInfix2OperationCallExp 

TNNumber2PrimitiveLiteralExp 

TNPrefix2OperationCallExp 



The new temporal operator is an extension to the basic expression language of OCL, hence we could 
extend the ocl::expressions module. However the extension is intended to facilitate the specification of 
temporal invariants, thus we extend the ocl::invariants module in order to incorporate a suitable context 
for writing temporal expressions. This is illustrated in Fig. 8. 

 

ocl::invariant

 
ocl::temporal

Fig. 8 OCL-T Language Module 

 Grammar 
An extended grammar that supports the specification of temporal navigations is defined in Listing 3. 

This grammar extends the basic navigation expression with the syntax for a temporal navigation.3

package ocl; 

grammar temporal extends invariant { 

  navExpr = invariant.navExpr 
          | temporalNavigation 
          ; 

  temporalNavigation = expr ‘@’ NAME '(' exprList ')' ; 

} 

Listing 3 OCL Temporal Grammar 

 Metamodel 
The metamodel extension for temporal concepts is illustrated in Fig. 9. This extension simply 

provides a new kind of navigation (or operation) call expression that can be semantically interpreted 
appropriately. In addition, it provides abstract syntax for trace literals. Notice that in contrast to [10], 
we do not have to use stereotypes and tagged values, but can construct a complete metamodel. This has 
some advantages. In particular, it allows us to create concepts that are not derived from concepts 
already existing in the standard language. In general, creating full metamodels is more powerful than 
using stereotypes and tagged values. 

 

 

ocl::temporal 

Fig. 9 Temporal OCL Metamodel extensions 

 Abstraction / Binding 
The transformation-rule based approach to specifying the mappings from syntax tree to metamodel 

means that we can simply provide a new sub-rule type for the abstract rule that handles the different 
kinds of navigation. In addition, we need to provide a rule for translating trace literals. The 
transformation rules extension is illustrated in Fig. 10. 

 

                                                           
3 We do not show the concrete syntax for trace literals, as it has not been discussed in [10] either. 
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Fig. 10 Transformation Rules for ocl::temporal module 

 New Operation for Sequence 
The extension additionally introduces a new operation for Sequence. This can be very easily 

provided by exchanging the Sequence type of the standard library by a new sub-type providing this 
additional operation. In Sect. 3.2 we have discussed how we decouple the standard library from the 
definition of the language. Here, we provide a new interpretation for sequences by using these 
mechanisms. 

5 Tooling and Future Work 
To evaluate our approach of modularising OCL, we have built a prototypical implementation of 

parsing, abstraction, and binding for OCL language modules. This current implementation uses 
bespoke bottom-up parsing technology for generating modular parsers for the language modules. It can 
be obtained upon request by email from the first author. The exemplar grammars shown above can be 
used directly with these parser generators. Abstraction and binding has been implemented as a 
transformation from the abstract syntax tree to a metamodel instance using SiTra [2] transformation 
rules. We have experimented with various implementations for specialising abstraction and binding, 
but have eventually arrived at the solution presented here because it is the simplest. The OCL and 
UML metamodels have been represented as KMF model repositories [13]. 

Basing our prototypic implementation on the bespoke parser generators allowed us to experiment 
quickly and efficiently with different modularisations of OCL as well as with different approaches to 
specialising abstraction and binding. However, some of the technology used in this experiment is quite 
non-standard. In particular, it uses bottom-up parsing with some additional features, makes no explicit 
distinction between token definitions and grammar rules, and has its own notion of grammar 
inheritance. Now that the module layout and rule-inheritance technology has stabilised, it will be 
interesting to see how these ideas can be implemented based on more standard technology. We are, 
therefore, planning to re-implement the Dresden OCL2 Toolkit [9] and the Kent OCL Library [17] in a 
modular fashion, but based on their respective technology. We would also like to encourage other 
providers of OCL parsing technology to adjust their tools accordingly. Eventually, this may even lead 
to a reformulation of the OCL 2 standard in a modular fashion. 

As mentioned above, we have experimented with different ways of structuring the modules and with 
different ways of specialising abstraction and binding. Although we have come to a simple solution in 
this paper, some of the ideas we came across still deserve some further thought. For example, we have 
been thinking about an even more generic approach to the core OCL definition. In this approach, every 
OCL expression would be a navigation expression and every navigation expression would follow one 
of two patterns: 

navExpr = basicNavExpr 

        | prefixNavExpr 

        ; 

basicNavExpr = expr [ nameSpaceID ] NAME [ parameters ] ; 

prefixNavExpr = NAME expr [ parameters ] ; 

Listing 4 A different approach to defining navigation expressions 

TN2TemporalCallExp 

TN2TraceLiteralExp 



The first pattern captures the more common navigation expressions using the ., ->, or @ name 
spaces. Additionally, it also captures infix operators such as and, or, and (with a somewhat widened 
definition of NAME) + or -. Infix operators can be supported by using an empty name space identifier 
(nameSpaceID). The second type of navigation expression captures prefix expressions and the more 
convoluted if __ then __ else __ endif expression. All these navigation expressions have in 
common that there is a source expression (expr in the grammar) and a navigation modified by some 
name space identifier (nameSpaceID for basicNavExpr, for prefixNavExpr the system internally 
uses a constant ‘prefixNameSpace’ to identify the name space). What name spaces are supported, 
and what navigation targets (identified by the NAME and, optionally, the parameters) are available, 
depends on the type of the source expression. Instead of providing generic transformation rules for 
abstraction and binding, language modules would then register specific navigation name spaces for 
specific types defining the available navigations and their translations for each type. The respective 
benefits and drawbacks of these different methods still need to be studied. One major benefit would be 
a unification of operation calls and operator use into the schema of navigation expressions. An issue to 
be solved is how to express precedence between operators. 

So far, in this paper, we have only discussed a modularisation of OCL with respect to concrete and 
abstract syntax and the translation between the two. As already indicated in Fig. 1 we also need to 
modularise semantics. There are two approaches to semantics in the OCL standard: 1) the normative 
semantics based on a metamodel of values and an explicit mapping between expressions and values 
expressed using OCL constraints, again, and 2) a mathematical semantics based on naïve set theory. 
For both cases, we will also need to develop modularised versions of the semantic domain as well as 
modularised approaches for the relation between abstract syntax and semantic domain. In the first case, 
this should be quite straight-forward and very similar to the technologies used in this paper for the 
abstract syntax and the mapping from concrete syntax to abstract syntax. Modularisation at the level of 
semantics will be an important task for future research. 

6 Conclusion 
This paper has shown a working modular and extensible specification of the syntax of the Object 

Constraint Language (OCL). The extensibility of this specification has been validated by providing the 
definitions of a temporal-logic extension of OCL, in addition to using the extension mechanisms within 
the definition of the standard OCL itself. The paper reuses existing parsing technology from the 
University of Kent and could probably be reimplemented based on other parsing technology. Hence, 
the main contributions are the synchronisation of parsing and instantiation of abstract syntax in a 
modular language definition, and the concrete language modules defined for OCL. 

This approach to defining the OCL can reduce the learning effort of newcomers to the language. 
This is possible because one can start with a reduced subset of OCL and include additional language 
modules as required and as understanding of the core concepts evolves. 

Furthermore, our modular definition of OCL and the extensibility mechanism incorporated provide a 
clean approach to unifying the multiple OCL extensions that are proposed within the modelling 
community. In recent years, many extensions to OCL have been proposed, and OCL is reused as the 
basis for new languages. Examples are the QVT [20] and other transformation languages [14], CQML 
[1] for specifying non-functional properties, OCL-based template languages [6], and many more. 

Because of these benefits, we propose that in the future such extensions and reuse of OCL should be 
defined in the manner presented in this paper. 
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