
Specifying Executable 
Platform-Independent Models 
using OCL

Pierre Kelsen, Elke Pulvermueller 
and Christian Glodt



The Problem

• Vision of Model-Driven Architecture
– Full code generation from models
– Models become real assets

• Requires precise and complete 
description of a system using models
– Structure and behavior of the system need 

to be described
– How?



The Structure

• Static structure of the system can be 
conveniently described using UML
– UML is a standard (current version 2.0)
– Although full specification is large and 

complex, we only need to use a small part
– Use class diagrams for describing the 

static structure 



Class Diagrams

• In class diagram 
– Define initial values of properties 

using OCL “init” constraint
– List as operations only query 

operations; body defined using 
OCL “body” constraints

– Add compartment with events -> 
modifier operations (formal 
definition using UML profile)



The Behavior

• Could also use UML for behavior
• However: UML behavioral diagrams describe 

behavior only partially
• Option 1:

– Augment UML behavioral diagrams with action 
language based on UML Action Semantics 
Drawback: action languages are imperative in 
style: clash with declarative style of diagrams



The Behavior (2)

• Option 2:
– Define semantics of operation using OCL 

pre- and post-conditions
Drawback: precise but not executable; not 

suitable for full code generation
• Option 3: 

– Describe behavior using another 
MOF-based metamodel



The EP-Language

• Recall that events in class diagram 
represent modifier operations

• Event can impact (modify) a property 
and can have child events

• Event may have parameters
• Parameters of child event expressed in 

terms of parameters of parent event



The EP-Language (2)

• When an Event impacts a Property, we 
associate a function that computes the new 
value with the impacts link

• With each parameter of an event and each 
incoming link from a parent event, associate 
a function that computes the value of the 
parameter

• These functions are side-effect free and are 
expressed as OCL-expressions



An Example

• Event tree in Flight Reservation System

OCL

OCL



The EP Metamodel

• Metamodel of the EP-language

OCL

OCL



Why OCL?

• We need a language with the following 
properties
– Describes side-effect free functions (-> EP 

metamodel)
– Platform-independent (to describe PIMs)
– Allows object navigation 
– Turing-complete

• OCL satisfies all these requirements



Tool Support
• Advantage of OCL: wide-spread tool 

support, e.g., in Eclipse
• Democles tool



What’s missing?

• OCL not originally intended as a 
“programming language”

• Missing features
– Missing built-in types, e.g., Date
– Built-in types are lacking basic operations 

(even needed for constraints), e.g., 
• is a String a substring of another String
• convert String to Integer

– Object creation



Conclusion

• OCL can be used for precise behavioral 
modeling

• Expresses side-effect free functions 
within EP-models

• OCL needs to be extended to describe 
realistic systems



Questions

• Questions?


	Slide Number 1
	The Problem
	The Structure
	Class Diagrams
	The Behavior
	The Behavior (2)
	The EP-Language
	The EP-Language (2)
	An Example
	The EP Metamodel
	Why OCL?
	Tool Support
	What’s missing?
	Conclusion
	Questions

