~

Together

User’s Guide

VERSION 5.5

Copyright ©2001 TogetherSoft Corporation
All Rights Reserved

Trademarks

Together®is a registered trademark of TogethetSoft Corporation.
LiveSource™, BigPlay™, MindMeld™, Pixie™, and RaftMaker™ are trademarks of TogetherSoft Corporation.

Acknowledgements
HP UX™ is a trademark of Hewlett-Packard Company

Java™, JavaBeans™, Enterprise JavaBeans™ and Solaris™ are trademarks of Sun Microsystems
Rational Rose™ is a trademark of Rational Software Inc.
True64® UNIX ™ is a registered trademark of Compaq Computer Corporation

UML™ is a trademark of Object Management Group, Inc.
Weblogic™ is a trademark of BEA Systems, Inc.

WebSphere™ is a trademark of IBM Corporation
Windows, Windows N'T, and Windows 98 are trademarks or registered trademarks of Microsoft Corporation.

All other trademarks or servicemarks referenced herein are property of their respective owners.

Table of Contents

About TogetherSoft and Together...........coeoiieiiiiiieiieecee e 15
TogetherSoft COTPOTAtIONc..eeeciiieeiieeciee ettt e e e eeveeeeareeens 15
Together ControlCENLET..........cecuiiiiieiieeiieiie ettt et 15

Together's DOCUMERIALION.......ueeeeerevueereossssorsessssasssosssssssosssssssssssssssssssssssssessssssssssssssssssssss 16

AVaILable fOIMALSooueiiiiiiiiieieceee e 16

Help documentation VOIUMES...........eeeiuiieiiiiieiiieeciieeiee et e 16

Other dOCUMENTALIONcuvetieiiiiiieiieie ettt 17

| e A e] 721 4 15T B SRSRRPR 17

Copyright and Trademark NOTICE.........cccvieriieriieriieiieeiieeie et 18

L R € P 20
ADOUL thiS VOIUIME ..ottt et st 20
Part 1. INtroAUCIOTY TOPICS uueeeeeeeveeeovssunviosssanriossssnrisssssssssosssssssssssssssasssssssssssssssssssssssssess 21
Introducing TOGEtReruuicueiiiviiiiciiissnrinisnrinssnnissssnissssnessssnessssiosssssssssssssssssssssessnns 21

INtroducing TOZELhET......cccuviieiie et e e 21
Exclusive "Platform plus Building Blocks" Architecture............ccccceveevierienennnee 21
More about Together ControlCenter.............cocuveeriieeiieeeiieeciee et 24

FEature FLY-OVeTc.cooiuiiiieiieeeetee ettt ettt s 25
FEAtUIEC OVETVIEWSiiiiiiiiieiie ettt 25
Where to get the latest info on features...........cceeeveeiieiieniiciienececeeeeeeee, 25

Extended FEaturesoooiiiiiiiiiiiie e 26

Together QUICK TOUT c.uuciuiinieiiienineniinnstenitensensssessncsssesssnssssesssassssessssssssssssassssasssns 27

Together QUICK TOUTcccuiiiiiieeee e e e 27
MaAIN WINAOW.....eiiiiiiiiiiiieiert ettt sttt sttt e sbeenee 27

ST 5140 0] 1<) TSRS 30
DITECLOTY TaAD ...ttt st ettt et et sae e e nees 30
IMOAEL EAD......coiiii et 31
FaVOTIEES 1A ..ottt st 32
OVETVIEW 1D ..ttt e 32
MOAUIES tAD ...ttt 33
COMPONENES tAD......ieiiiiieiiiieeiie ettt et e et e e eeeeaeeeeaeeessaeesseeesseeesnseaens 33
DIAGrams taDccoieiiiiiiiieiiecie ettt nees 33
TIPS ANA TTICKS ..eiiiiiiieiie ettt e e eae e et e e e ra e e eraeesreeesnneaens 34

EdItOr PANE ...ttt et et 35
EdItor fRAtUTES ...c..eiiiiiiiieeee e 36
IS ettt ettt et ettt ettt e et et e e bt e e ab e e bt e enbeeteeenbeenbeeenbeennees 36

DIAGIam PANEeeeiviieeiieeciie ettt e et e et e et e e e e be e e enaeeeabeeeneeas 37
Diagram Elements TOOIDATLcccoeiiiiiiiiiieiieciceece e 37
Diagram properties and SPeedmentUcc.eeecveeerieeeiiieniiieeeieeeieeereesvee e e 38

IMESSALE PANEeeeneiieeiiie ettt et e et e st e e st e e sibee et ee et ee st e e enbteesabeeesabeeennbeeeaneas 39
IMLESSAZES PAZEC .eeevvvvveeeenerreeeeiitteeeeeiteeeeettteeeesseeeeeasstteeseasseeeesansseeesassaeesssssneesanns 39
RUN/DEDUZ PAZE ...ttt ettt ettt et et e e e e 40

Properties INSPECTOTSiieuiiieiiieciie ettt e e eeeae e e e e ereeeeevee s 41

OVErVIEW Of INSPECTOTS ...ttt ettt ettt ettt et saee e nnees 41

Inspector dynamic tabSet.........c.eeecuiieriiieiiie e e e 42
DOCKabIE INSPECLOT.....cuviieiiieiieeiiieiee ettt et ettt ebe et e e eneees 45
Main WINAOW TiPS...ieeciieeiiiieeiiieeiie ettt e et e e eee s ee e saeeesaaeeesseeenneeas 45
Configuring Together 46
Configuring TOZEtRETcc.viieiiieeieeee e e e 46
Overview of the multi-level configuration architecture...........ccceeeveervercvienneenen. 46
Creating a Shared Multi-User Configurationccccceeeeveeeeiieniiieenieeeriee e 47
Shared configuration for a server-based installation............ccccecevieneiiiniencnnene. 48
Sharing configuration among workstation installations...........c.cccceeeveeeeieeennennee. 48
Adding new levels to the predefined ONescccceecveevieriiiiienieeiceieee e, 50
Guide to the Options Pagescccvieeviiiieiiiiecieeeie et e 52
Using the Options dialog@.........cccieriieiiiiiiieiieeie ettt s 57
Invoking the Options dialog.........ccceevcviieiiiieiiiecciie e 57
Using Advanced MOc.coeuiiriiieiieiieeie ettt 58
UsIng the Options €AItOTS......ccuuiiiuieiiiieeiiie e e eciteeeieeesieeesreeesveeeeaeessaeeessneens 59
TIPS ANA tTICKS ..ttt ettt e e enees 60
Frequently Asked Questions on Common Configuration Tasks.............cccceeeruveennnee. 61
Command line operations and MACK0S........ccceevuerersnnecssnrecssnrecsnsees 64
Command 1INE PATAMELETS.eeervieeriieeriieeiieeeiteeeieeeeteeeereeesreeesereeessseeensseesnnees 64
Basic command-line SYNtaXccceecuieriiiiiieniieniieiiesteeieeniee e eseee e bee e eneees 64
Using the Windows 1auncherccccveiiiioiiiiiiiiicceccecee e 64
Invoking the Together main classccoecuieriieiiienieniicecee e 65
Command-1INe EXaAMPIES........c.eeeecuieeriieeriieeiee et eee et eree e e e reeesnaee e 65
Parameters for Together.exe launcher.............oocooviiiiiiniiniic e 69
SYSLEIN MACTOSvteeeeiitieeeeiieeeeeritee e ettt e e et eeeestaeeeeesabteeeeansseeeeannsaeeesanssneesssssseeeannes 71
TEMPIALE MACTOSveiieiieiieeiieetiecie ettt ettt et te st e et e e b e e sseesabeeseesnseenseas 74
Keyboard ShOTtCULS.cceiiiiiiie e et s 75
IMAIN MBIIUL ...ttt st a ettt et st sae e 75
Diagram ShOTECULScccuiiiiiiiiiie ettt e eee e e e saeeeaaeeennee e 76
ZOOMN SNOTTCULS ...ttt et st ettt et seeenbe e 77
Compile and Run/Debug ShOTTCULScccviieiiiiiiiiieeeiieeeee et 78
Editor SHOTECULS ...c.eeiiiiiiiiieieeec e s 78
FIlE CROOSET ...ttt ettt 79
VErsion CONMIOL......couiiiiiiiiiiiieeieeee ettt 79
Navigation SHOTECULS.eiiiiiiiiiieciie ettt e e e eenees 79
Projects and Project Management........cueeerveecssenccssnnicsssnessssssssssnesssssessssssssssssssnsssses 80
PTOJECE DASICSuviieiiiieiiie ettt e e e et e e et e et e e etaeeenaeeenbaeennneees 80
PrOJECt CONTENL.eiiiieiiieiiecie ettt ettt ettt e s be e b e enneeneees 80
Creating and OPENING @ PTOJECT....ccurirrcuieeriieeriieeeteeeriteeeteeeeeeesreeesereeesaseeesseesneeas 81
Opening eXiStING PIOJECTS....cueeruiirriieriieeiierieeteeree et esieeereesteeebeesteesbeesseesnseeseas 81
B[o) (0] [T TSRS 81
Creating @ NEW PIOJECT.....ccuiiruieeieeiieeieeteeetee et ertte et esteeseteebeessreebeenseeesseesseesnseas 82
Project Managementc.oeeevuiieiiieeiiie et e e e e ennees 87

Setting UP 1arge ProJECTS....ccuiiciierieeiieie ettt ettt ettt sae b e saaeens 87

Integrating a project with Version Controlccoceeveriiniiiinieniiicnieneeeeen 88

Information IMPOrt-EXPOrtiiiiinviiicnisnnnicnissniecssssnnnecsssssscsssssssessssssssssssssssssssns 89
IMPOrt-EXPOrt OPEIrationseevviiiiieiieeiieeiiesiie ettt et e et et e saee s e 89
Rational ROSE IMPOTTcccueiiiiiiiiiiieciee ettt 89
Database IMpPOrt-EXPOTrtcc.eeiiiiiiiiiieeiieiecie et 90
Generating and uSINg IDL.........ooooiiiiiiiiiiieeecee et 91
XMI IMPOTE-EXPOTT ...ttt sine e 92
DTD ImMPOrt-EXPOTt...cccceiiieeeiiiieeeeiiie ettt ee ettt e eeee e e eessraeeessnneneeeenns 93
Exporting model information............cceevvieriieiieeniienie et 94
Generating DDL......ooooiiiiece et 94
Generating IDLLcooiiiiiiiiiieie ettt e 94
Version COoNtrol.....ieiiiniiiiseiiiseeinsieissnecssnecsssescsssescsssesssssssssssssssssessssssssssssssss 95
Multi-user Team SUPPOTLooiuiieiieiieeiieee ettt ettt 95
Multi-user Version Control SYSteMcccvieriiiieiiieeiiie e ens 95
Hierarchical Configuration OptionS..........ccceerieeriienieeiieeniienieeiee e e siee e eees 97
Using Together with a Version Control Systemcccccveviiiirciieinieeeniieeieeeen 98
Overview of version Control SUPPOTT.........cecuierieiiiierieeiiieniieeieeiie e eve e 98
Getting started with the Version Controlcceeevieeeiiieeniiieeciie e 98
Configuring Together for version controlcccceeviiiciieniieniieiiecie e 99
Configuring system-specific version control optionscccceeeevveeeveeeeveeennnn. 100
Enabling version control for projectsccocverieriieriienieeiierie e 103
Other version control INfOrmation............ccceeeueiiiiiiiiinienieee e 104
Interacting with version COntrolccoooiieiiiiriiiiienieeeece e 105
Product-specific VCS NOLESeeveieiiieiiieeiie ettt 106
PVCS command 1INe tOOLSccueriiriiiiiiiiinieienierteeeeeeeee e 106

PV CS DIMENSIONS.....ceeutieiiiiiieeiie ettt ettt ettt et et eb e st eenbeesaeeens 107
VIEW MAaNAZEMENLocuiiiiieiieiiieeiieeiie ettt ettt ettt e e ae e bt e sebeeteesabeesseessneenseens 110
View management fEAtUIEScevuiieriieeiiieeiieeeee ettt 110
Working with View Management.............ccccueeeiieriiieiiienieiieenieeie et eeeeiee e 112
View management MEChaNISIMScccuieeiiieriiieeniieerteeesiieeeieeeereeeseveeeeeeeeneees 112
Role-Based WOTKSPACEcovieiiiiiieiieciieeiieee ettt 114
Changing the configured r0le...........covviieiiiieiiieeeeeee e 115
Part 2. Working with FEALUTESuuueeeneeesueecvenseensuenseesssessssesssessssessssssssessssssssesssasens 116
Modeling With TOZetReruuiiieivvveriiiiisnricnsssnricssssnniesssssssessssssssssssssssssssssssssssssssss 116
Introduction to MOAEIING.........cccvieiiiiiiieiiieeie et ens 116
UML and Together DIagramsc.ccccvieeiiieeiiieeiiieeeieeeeeeeeeeeereeesveeesneesneee e 118
Working with Diagrams 119
Creating Diagrams N PrOJECtS......cuuieiiiieiiieciiecieece e e 119
Using the Main Menu or t0OIDAr...........cccuieiiiiiiienieiiieieeie et 119
Using EXplorer Speedmenus..........cceeccuiieiiieeiiieeiiee et 120
Using the Hyperlinking featureccooovieiiieiiiinieciieieeiecee e 120
CloNINg AIAGIAMSeccvvieeiiieeiiieeiieeeieeeeiee e teeeeveeesreeeseaeeesabeeesaeessaeessaeesnneeas 120
Renaming diagrams..........c.oeeouieiiiiiiiieniie ettt 120

Configuring diagram OPtIONSeeeeuveeriieeririeeriieeeieeesieeesteeesseeessaeeessseeessneens 120

Drawing diagram €lementS.cccuieruierieeiieeieeiieeie et eete et e seeeeteeseesbeeseeesaneens 121

USING the G ...veiiiiieciiicceeeee ettt e e e e s aaeeenae s 121
Placing NOAES........eieiieeiiieiie ettt ettt ettt et e st e st e etaeenbeessaesnsaens 122
Drawing relationship 1NKScccviiiiiiiiiiieiieceeceee e 123
TIPS ANA tTICKS .ottt et ettt 125
Manipulating Diagram EIEmentsccccvieiiiieiiiieiiieeeeeiee e 127
Moving elements and drag-drop COPYING........cccueevreriierieesiienieeiienieeieesie e 127
Full drag-and-drop SUPPOTL.........eeecuiiieiiiieeiie ettt 127
Copying and "cloning" elements..........c.c.eevuieriiiiienieeiienie et 127
Resizing node elements..........cccuiiieiiieiiieccee et 128
Changing Nk rOULING.........coiiiiiiiiiiie et 128
Standalone Design EICmMEnts.......cc.ccecuiiiiiiieeiiieeiie et 129
Creating SDE'Sooiiiiieieee ettt et 129
Integrating SDE into @ dia@ram...........ccceevcvieeiiiieeiiieeeiieeciee e e 129
USING SDE'S ..ttt ettt ettt et et e et e sabeesbeeesbeensaesanaens 129
Managing diagram layOut............cccueiiiiiiiiieeciieeciee e 130
Using the automated layout featuresccoeeeeeiienieniieiiecie e 130
Creating your own manual’ 1ayout..........cccceeeeiiiiiiiiiiiieeieeeee e 130
Diagram layOut TIPS ...ceoueeeruieeieeiieeie ettt ettt et eabeen 130
Searching on DIAZIamScccuieeiiieeiiiecie ettt e eee e e e e e seaeeeeaees 131
Update Dependencies........c.cecuueeiieriieiiieiieeieeieeeiieeieeeveebeeseeeseesiaeebeeseaesaseens 132
Opening diagrams for €dItiNg...........cccvvireriieeiiieeie et e e 133
IS ettt ettt ettt ettt et et e b et e e teeeab e e bt e enbeeseeenteenneeenne 133
CloSINg OPen dIAZIAMSc.vveeeiiieeiieeeieeeeieeeeieeeeree e e e eseaeeeareestaeesneaeesssaeesnneeas 133
EdIting PrOPEITIES ..cc.veeeuiietieeiieeiieeie ettt ettt stae et e seaeeteesaeeesseeseneenseens 134
Property €AILOTS ...cccuviieiiieeiiie ettt e es 134
Tips for Editing PrOpertiescocveeiieriieiiienieciiecie et 135
Editing Properties IN-place..........ccccuiiiiiiieiiieeiiieeciee e 136
Hyperlinking dia@rams..........c.eecuieriieiienie ettt re e s ens 137
Why use hyperlinking?.........coooviioiiiiiiie et 138
How to create hyperlinks..........oovieiiiiiiiiiiiiieciiee e 138
Viewing hyperlinksooocviiiiiiiiii e 140
Browsing hyperlinked reSOUICEScc.eevuieiiieiiieniieiieie et 140
Removing hyperlinksc.c.coocuiiiiiiiiiiieccceeeee e 140
ANNOLAtING AIAZTAMSeiivieiieiiieiie ettt ettt eiee et estaeebeesaaeesbeessneenseens 141
USINEZ INOTES ..eeeeiieeiiieeiiie ettt e ettt e te et e et eestee e taeeetaeessaeeeesseeeesseesasseeesseeenneeas 141
Inspector Documentation tabs...........cccuierieiiieniieeiieie e 141
Saving and Copying Diagram Images..........ccceeevuveeriiiieniieeniie e 142
Copy - Paste within TOZether..........ccccoeviiiiiiiiiiiiieeee e 142
COPY IMAZE ..vvveeeieieeeieeeeieeeeiteeeteeeeteeesteeessaeeesssaeessseeessseessseeesseessseessseesssens 142
SAVE TMAZE ...vveevieeiiieiie ettt ettt ettt e et e sibe e teesabeebeessbeenbeenaeeenseennnas 142
Printing Diagrams and Source Codecceeviiieiiiieiiieeieeeee et 143
Setting Print OPtioNScccvieiieeiieiieeie ettt ae e sae s e sseeeeees 143
How to print dia@rams...........ceocviiiiiiieeiiie ettt ee e e e e seaeeeaaeeeneeas 143
HOW 10 PIINE EEXE .eiiiiieiiieiieeie ettt ettt ettt e e e ssaeeaeeens 143

TIPS AN tTICKS ..vvieiiiieiie ettt et e e e e e e e eaaeas 144

TTOUDIESNOOLINGvieiiiiiieieciee et 144

Using auto-layout fOr printing..........cccceeieiiiiniiiiniiiieeie e 144
Printing generated dOCUMENTAtION.cccuieriieiieiieeiieie ettt 144
UML DIQGIAMIS c.ueerieesssnnricssssasresssssssesssssssssssssssssesss 145
Creating UML Diagrams.........cc.cooieeiiieniieeiieiie et eieesteeeeesiteeseeseeeeseesaeeenne 145
LSSl O TIC D F- T ' LT 146
Creating and drawing Use Case diagrams............cceecueevveerieeriienieenieenieeieeeeeens 146
Key elements and Propertiescocuveerveeeiiieriiieeiieeeieeervee e eeeeeveeesvee e 146
Working with Use Case diagrams.............ccccueevueerieeiiienieeiienieeieeiie e 147
TIPS AN TTICKS ..eieiiiieiiie ettt e et e e e e e eenee s 148
CIaSS DIAGIAIMS......euiieiieeiieeiiecie ettt ettt ettt et e et e e seaeesbeesbeesnbeesseeenseenaeeenne 149
Content of Class diagrams...........cceeeeueeeriiieeniee e et ereeeeaee e s 149
Key elements and Propertiesocueeueerierieeniieeieeieeeieeieeeeeeiee e esieeseneeaeens 150
Working with Class diagramscccveeriiieeriieeiiee e 153
Creating and editing members and properties...........cceecueerueerieeerierieeneenieeieennens 156
Compartment CONTIOLSccuuieeiieieiee ettt ee e e e e e sre e e b e e sareeeeaeeesaeeenees 157
Sequence and Collaboration diagramsceeecveeriieriieriienieerieeeie e 158
Creating and drawing Collaboration and Sequence diagramsc.cccccveennee. 158
Converting to a different interaction diagramccceeeeveriieneineneeneerieneenne. 159
Key elements and Propertiescccuveerieeeiiieeiiieeieeeeieeeevee e eeeeeveeesaee e 159
Working with Sequence and Collaboration diagrams...........cccccvceevierieneeniennene 162
TIPS AN TTICKS ..eieiiiieiie ettt e e e et e e eaaee s 163
Generating Sequence DIagramscccueeriieriieiiienie ettt 164
Generating Sequence Diagrams Using the EXpert........ccocccvvvvvviniiiiniieccieeenen. 164
Using Sequence automation to analyze patternsccoceeeveerveeiiieniieniieenieeneenns 164
Generating implementation SOUICE COAEcccurrrriirrriieriieeeiieeeieeerreeeeree e 166
Statechart DIAGIAIMSc.cccuiiiiiiiiieiie ettt et e saee e 169
COMTENT ..ttt ettt e sttt e st e st e e st e e s es 169
Key elements and Propertiesccueeueerieriieriienieeniie e eiee e eeee e eeeeseaeeeeens 169
Working with Statechart diagrams............cceeevuieeiiiieiiieeieece e 170
TIPS AN TTICKSvieuiieiiieiieeie ettt et et 172
ACHVIEY DIAZTAIMNS ...veieivieeiiie ettt et e et e e st eesteeesasaeessaeeessaeesseeesseeanes 173
COMNLENL ...ttt ettt et sttt et e e e 173
Key elements and Propertiescovueeerveeeiieeeiiieeieeeeieeeeree e eeeeereeeeaeeeseeeas 174
TIPS ANA TTICKSvieuiieiiieiieeie et ettt e 176
Component DIAGIamS.eeecuieieiiieeiiieeeiieeeieeeereeeereeesreeereeeeaeesaeeeeraeesnseeeennes 177
CONLENL ...ttt ettt et ettt et st e e 177
Key elements and Propertiescccuveerieeeiieeeiieeeieeeeieeeeveeereeeeeeeveeesaee e 177
TIPS AN TTICKS ...evieuiiiiiieiieeie ettt 178
Deployment DIagrams........c.eeeccueeeeiieiiiieeiieeeiieeesteeeieeesteeessaeessaeeeseseeessseeensseeenns 179
CONLENL ...ttt ettt ettt et e e 179
Key elements and Propertiescccueeerveeeiiieeiieeeiieeeieeervee e eieeeereeesvee e 179
TIPS AN TTICKSvieuiieiiieiieeie ettt et et 180
Together DIiagrams......cceeecneeeciseeensseenissnecissnecsssnecssseessssnesssssesssssesssssssssssssssssssssssssns 181
Business Process diagrams...........occueeuierieiiiieniieiiesieeieesiieeieesiveeteesiee e esenesnneens 181

{070} 11151 01 AUUUTTT TSRO UPPPRRRORPRI 181

IN O ALIONN ¢t enmememnmnennn 182

Robustness Analysis DIagrami...........cccveeiiieeiiieeiiie et 183
COMNLENL ...ttt ettt et st ettt e e 183
Key elements and Propertiescccuvreriieeiiieeiieeeieeeeieeeevee e eeeeeveeesree e 184

Entity Relationship diagramsccoevieiiioiiiiniieiieeie e 185
INOLALION ...ttt et b e et e it e et e it e st e e bt e eabeenbeesaneans 185
Logical and Physical Diagram VIEW...........cccueecuieriieiiienieeiiesieeieeeie e sae e 185
COMEENES. ..ttt ettt ettt ettt e st e e st e e s e e sanee s 186

EJB Assembler Diagram: Visual Assembling EJBs for Deployment..................... 188
COMTENT ..ttt ettt ettt e st st e s e e s s 188
Working with EJB Assembler diagramsccoceevieriieniieniiieiieeieeeeeie e 194
Tips for Assembler diagramsccccveeeviieeiieeeiie e 199
How to Create an EJB Application Step by Step......cccoevvevierieiiiienieeieecieeiee 200

Web Application Diagram: Visual Assembling of Web Applications for Deployment

... 201
Properties of the Web Application diagram............cccccvveeviienciienciecriee e, 202
Working with Web Application diagramscccocceeevieerieeciienieeieenie e 203

Enterprise Application Diagram : Visual Assembling of Enterprise Applications for

DEPIOYMENL ...ttt ettt et tae et e sta e et e aaeenbeesnbeenneen 207
Creating and drawing Enterprise Application diagramscccccceevevveerrveennenn. 207
Working with Enterprise Application Diagrams...........cccceeveeveevenienennieneennenne. 208
Taglib DIagramccocviiiiiiieeiie et s 209
COMNLENL ...ttt ettt et ettt st e e 209
LS (07015 4 (S S RR 209
Working with the TagLib diagram.............ccceeviieniiiiiiinieniieie e 210

XML MOAEIINE c.cuvvrreersrnriessssanricssssassecsssssssssssssssesssess 211

XML Structure DIagrams.........ccueevuieruierieeiiienieeieenieesieesieeereesseesaeeseessnesseessneens 211
COMTENT ..ttt ettt e st e st e st e s e e s s 211
Creating XML Structure DIagram............cccceeevueerieriieniienieeiienieeeeesiee e eens 212
Changing XML Diagram FOrmat...........cccccceeeiiiiiiiiniiieeieeeeiee e 212
Step by Step How to Create XML Structure Diagram..........cccceeveevevieniinennne 213
Working with DTD-specific COMPONENLSc.eeeevveeriieeiiieeieeeiee e 216
DTD IMpPOrt-EXPOTt....cc.ceieiiiiiiiieeiiieeiieeeiee ettt ettt s iree s e s 217
XSD IMPOTt-EXPOTT..ccceeiiriieeiiiiieeeiiieeeeeee et e e e e e e e naaeee s 217

DTD INterChange........cccuieiuieiiieiieeieeieecte ettt ettt et sae et siaeebe e eesbeessaeenseens 218

XML EQIOT 1.ttt ettt sttt ettt et sseebe e esaeenees 219
Key features of the XML €ditorcccoeriiiiieiiieniieieeeie et 219
Location of DTD fIlesccc.ooiiiiiiiiiieiee e 220
DTD configuration file..........cceeiieiiieiiieiieiie e 221
USING XML EQITOT ...ooiviiieiiieciieeee ettt e 227
Launching XML editor from Java codeccceeeiieiiiiniieiiienieeiieieeieeie e 229

Enterprise SW Development FEAtureseeeeinieecsseecssnencsseecsseecssseecsssnecsancens 230

Various Language SUPPOTt.......ccueiiieiierieiiieieeie ettt et ens 230

Languages SUPPOTT....cccuueiieieiiiee ettt ettt e e ettt e e e et e e e seraeeeennsaeeeesnnsaeeeennes 231
SCI IMPIeMENALIONccuvieiiieiiieiieeiieriie ettt e e enes 231

RE-USE SUPPOTT..cceiiiiieeiiee ettt e e e e e eae e e e e naaeee s 231

PrOPerties SUPPOTL.....eeiuiieiieeiieiie ettt ettt et ettt et et esateebeesaaeesaesnaeens 231

Language-specifiC INSPECIOT.......uiiiiieeiiieeiieecieeeetee ettt e e e es 232
Using Together With C.......ooiiiiiiiiieeeee et 234
Important Notes fOr C++ SUPPOTTcecuvieeeiiieeiieeeie et 234
Project Managementccocueeiuiieiieriie ettt et en 234
CONTIGUIALION ISSUCSvvieeviieeiieeeiieeeieeesiteeeeaeeesereeessreeesaeeesseesseeessseeesseeesseens 238
DefDOCCOMMENESevieniiiiieriieteeiteeit ettt ettt sttt ettt sbe e eaeeees 241
INSTAIIATION ..t e 241
USSR .ttt ettt ettt ettt ettt ettt e et e et e e et e et e e et e et e e eabeeeateeenaeas 241
Access through APL.........ooouiiiiiiice e e e 241
Generate dOCUMENtAtION ISSUEScevveruieriieiiriienieeie ittt ettt 242
EdItiNg couecveiuieiiiinniniininseicsenninsuissnisesssisssnssessanssess 243
USING the EdItOrocuviiiiiiiieie ettt ettt et ens 243
Standard fEATUIESccueiiuiiiie et 243
Extended fEatUIESovueeiiiiiiieieeteee e e 244
Configuring the EdItOrc.oieiiiiiiiieceeee et 245
DefiNing SNIPPELSvieeiieiieiie ettt ettt ettt et et ee et e e sseeebeesaeeesbeensaeenseens 247
USING COAE SENSEC.....eeiiiieiiiieeiiieeiieecieeestee et eerte e et e e seeeeebeeessbeeesaseeessaeesnseeeennes 248
Browse SYMDOLooiiiiiiiiiieieeeeee e 249
BreaKPOintS.c.vvieeiieeciieecie ettt e e e e e e e e eneeeeanes 250
Setting Breakpointsc.oocuieriieiienie ettt 250
Setting and navigating Bookmarksccccceieiiiiniiieniiee e, 251
SPIIE PANC ...ttt ettt ettt ettt te et e et e e b e e saeenbaeeaee e 254
(010101 (o ¢ 5 (11 TP USSR 255
Editor tips and trICKScccvieiieiiieieeiieciee ettt ettt et 257
Opening files for €ditiNgcccveeeeiieeriieeieece e e 257
Showing - hiding the Editor pane...........ccccceevieiiieiieniieieieeeee e 257
USINg 'Preserve Tab'.......ooovvii ittt 257
Using the Editor with an open project..........ccoecieriieiienieeiieniecieee e 257
Using the Editor with N0 open projectcccvvevvieeeieeeiieeeiie e 258
Using JSP and HTML EditOrcc.ceiiiiiiiiiiieiieeieeeeeee et 259
Opening files for €ditiNgcccvveeeiieeiiieeieeee e 259
Specific view of HTML/JSP Editorccccoeviiiiiieniiieiieieeieeeee e 259
StrUCtUIEd BrOWSETeiiutieiiiiiieieeeee e e 259
Code sense 1N JSP EdItOr......ccueiuiiiiiiiiieieiieieeiceceeee e 260
Viewing HTML fIl€S......coooiiiiiiii et 260
Tag Library HeIPer........coooviiiiiiiieiieie ettt e 260
Compile-MaKe-RUN.....cciiirivniiiniisnnicsissnnicssssnnnscsssssssesss 261
Using Compile and Make from Togethercccoeoiveiieriieiieniiiieeeeeeeeiee 261
Using the default Java compiler (SDK)ooovviieiiiieiieeieecee e 261
Using another Java compiler..........cooviiiiiiiiiiiiiieieeieee e 262
USINg @ CH+ COMPILET ...oeeeiieeiiiecie ettt e ee e e e s 263
COMPILET OULPUL....c.eeieiieeiieiiecie ettt et ettt e et e snaeenseeeee 264
Run/Debug Configurationcccueeeuieeiiieeiiie e e e 265
Arguments and Parameters.cccuierieeiiieiieeiieie e 265

Makefile GENETration.........ccccuiieiiieeciee et ettt e e et e e e e e e e e eereeenaeas 267

DEDUGGING ...cccuveriiinrininrininiesssnnessssncsssiesssnesssssssssssssssssosss 268

Using the Integrated Debuggercccvveviiiiiiiiicieeeeeeeeee e 268
DebUgEEr fRATUIESeeiiieiiieiie ettt et sttt ens 268
Starting a Debugger SESSIONccuviieiiieeiiieeiie et eree et aee e svee e 268
DebUg@Er Tabcceiiiieiiee e e 268
Controlling program €XECULIONcccueeeiuveeeiiieeeiieenieeeeieeeeteeereeeeveeeareeeneeas 269

BreakPOINtS.ceeiieiiieiieeie ettt ettt ettt et te b e sbeereenaaeens 270
Setting breakpPOIntsS........cccuiiieiiieeiie e 270
Controlling breakpointS..........cccueerieiiiienieeieeie et 270
Modifying breakpoint ProPerties........cccueercveercureeriieeriieerreeeeeeeneeeeveeesreeesaeeas 271
Examining data values at breakpointcceeveeciieriiiiiienieeieeeeee e 271

Attaching tO @ TEMOLE PIOCESS ...vveerurrreriieeitieeetreeeieeesieeerereeeseeeesseeesseeessseeensseesnnes 272

Evaluating and Modifying Variablescccccceeriiiiiiniiiiiiiiiieececeeee 273
Displaying structured CONtEXL........ccuvieruiieriiieriieeriieeiee et eeree e eevee e 273
Evaluating QrTayS......c.cccuierieeiiieiieeieesiie ettt ettt eiee et iee st e ebeeebeeseaesnsaens 273
Evaluating and modifying 0bJectS..........cevvuiieriiieiiieeieeeieeee e 274

WatChing EXPIESSIONSccuieriiiiiieiiieiieriieeieeeieetteste et e siae e st e seaeeteesiaeenseesenesnseens 275
USING WALCHESeiiiiiiiiiie ettt e e e e st e e s aee e enveeesnseeenaeas 275
Change Display Ran@e...........cccueeviiiiiienieiiieie ettt 275
Chan@e ValUes.........uieeiiiiiiieecieeeiee ettt ee e ree et e et e v e e eaae e ssaeeeaaeeenneeas 276
Change display formatcccoeviiiiieiiieiece e 276
Using Threads and Frames...........cccovveeiieeiiieciiicciieeceeeeeee e 276

RE-USE SUPPOTTL ..cuueeiiniiiiniiiinricssnninssntcssssncssssnesssnessssissssssssssssossssssssssssssssssssssssssssses 277

Working with Code Templatescccuieeiiiiiiiieciee e e 277
Template PrOPerties.covviiiierieeiieie ettt ettt et 277
Browsing the available Templatesccceeeciiiriieeiiieeeece e 278
Editing Code temMPlatesc.eeeuieiiiiiiieeieeiieeie ettt 280

Custom Code TeMPIALEScccuveieiiieeiiieeiieeeee et 281
Creating custom code temMPlates...........eecuieriieriiinieiiieiieeie et 281
Groups Of tEMPIALESveeeeriieeiieeciee e e e e e e e e areeeaeees 282
Displaying custom template NAMES...........ccceeeriieriieiiienieeiieree et 282
User-defined MACTOSooiuiiiiiiiiiiiie ettt 282

Creating Templates from Diagram Elements............cocceevvevieninieninnenienciieneee, 284

PATEITIS ..ot 285
ADOUL PALLETIIS ..ottt ettt ettt et et e et e st e et esabeeseesaseenbeeesseensaesnsaens 285
USING PAtIEINIS ...veieiviieiiiie ettt et e et e e e e eareeennaeas 286
Developing and deploying your OWn patterns...........ccueecveerueeeveesieenveerieenneenneens 288

JAVA BEANS ... e 289
Creating a Java Bean from a Class.........ccoeieriiiiiiiiieiieie e 289
Recognizing Bean Propertiescccvevvieiiiieeiiieeieeceeecee et 289
Bound and Constrained EVENTS..........ccerieriirrierieniieiienienieeie st 289

Documentation Generationcceeeecieeensseecsssnncssnncsssescsssesssssecssssnessssessssssssssssens 290

Generating Project Documentationceeveeeieeriieniieniienie e 290
Documentation Generation COMMANASeevueerieeriienieeniienieeiee e eiee s 290

Overview of GENDOC CONCEPLSouviruiieiieiiiieiieeiie ettt ettt enne 291

ZONES ANA ATECAS .o e e e e e e e e e e et eeaeeeeeeereeee e aaeeeeeeeennannnan 291

TemPlate StIUCTUIE.....ccuiiiiieiiieiiecie ettt et et eee 291

SECLION LYPES uvveeeerieeiiieeiieeeteeesieeesteeesteeestaeessaeeeseeeeseeessseeessseeessseeesssessnsseenns 292
COMLIOLS 1.ttt ettt sb et sb et es 293
MEta MOAEL ...ttt 294
Using the Documentation Template DeSignerccecveeieenieeieeniienieeieesieeieans 295
IMAATI TNICIIUL .ttt ettt e b e et e bt e et e e beeeabeesbaesnteens 295
TemPlate SETHNESccoviieiieiiieieeee et et et 295
Template ClEMENLS.ccuviieiiieeiie et 296
TIPS ANA TTICKSvieuiiiiiieiieeie e ettt e 300
How To Create Custom Documentation Template...........ccceeecveeeviiencieenieeeeieenee, 301
Page Header (first ZONE)ccueeeiieiiiiiiieiieeie ettt 301
Report Header (SECONd ZONE)ccccuvieeiiieiiieeiiecieecee e 301
Element Iteration (third ZONe)cocviieiiieeiiiieeiee e 301
Creating Multi-Frame HTML Documentation.............cccccveeevieerieeenieeseieeeeeeennes 309
Multi-Frame Documentation BasiCsccceeviieriiiniienieniieie e 309
FrameSet Templateccooveiiiiiieieeee e e e 310
Sample Multi-Frame Documentation Template...........ccccevevieneriienienenienennns 312
Creating Hypertext Links (advanced)cccoceeeeviiiiriiieiiiieeieeeee e 318
DocGen and DocDesigner Referencecccoceevieeiiieniiiiiienieeiieiecie e 322
DG Internal Variablescc.ooiiiiiiiiiiieieeeee e 322
DG functions in formulae eXpreSsions..........coccvvereeeiiierieeiieenieeieeiie e eniee e 325
Launching DocGen from the command line...........cccccveeeviieeiiieniieece e 337
Automated DOC GENETALION.......cc.eiiiriiriiiieriieieeteste ettt 338
QUALILY ASSUTANICE ..uuuverrecrissarrecsssnrecsssssssssssssassesss 340
Metrics aNd AUGIESevueeriiiiiiieieeeee ettt 340
How to perform metrics analysiscccveeviieeiieeeiiieerieeeiee e 340
How to perform audit analysisccceevieriiieiieniiieiieeie e 340
QA OULPUL ...ttt e e et e e e et e e e st eeessnsaeeeeenssbeeeennsseeasanns 341
AUtOMALIC COTTECTION ...ttt ettt ettt et 344
Creating and Using Saved Metric/Audit Setscceevveeveieeriieeeiieeeiee e, 345
Additional Information SOUICESccueeevieriieiiieriieeiierie ettt 346
RETACTOTING ..ottt ettt e e e e eaaeeeneees 347
EXract OPETAtiON ...ccuvieiieeiiieiieeieeiie ettt ettt ettt e saaeebeesabeebeessaeeseessneenseens 347
RENAMINGvviieiii ettt e e e e e eaaeeenaees 348
Language-Specific Metrics and AUItSc.oecveerieeiiierieeiiienieeie e 349
Metrics and Audits Support for CH......oooviieiiiieieeeeeeeeee e 349
Metrics Adapted fOr VBO.........ocoviiiiiiiieieeeee e 350
Metrics supported fOr CH......oooiiiiiiieeiieeeeecee e e 351
Metrics Adapted for VBNETcc.coviiiiiiiiiiiiieie et 352
AUdits RETETENCEeiiiiiiiiiiiiie e 353
Section ACEV through AUVKcccoiiiiiiiieeeee e 353
Section BLAD through DVIOSE.........cooiiiiiieee et 364
Section EBWB through EOOBAcccoooiiiiiiiiiieieeeee e 373
Section GOWSNT through NOECccoooiiiiiiieeece e 377
Section OCMD through TMSSCooiiiiiiieiieie e 385

Section UAAD through UVDoooiiiiiieeeeeeeeeee et 394

IMELTICS RETETEIICE ..ottt ettt et et e e e e e e eeeeeeeeeeeeeeeeeeeeeeeeeees 403

QA Audit/Metrics Command Mode............cocouviiiiiiiiiieeciiee e 418
D S T AN 01 o) o) o AR OO 420
UsINg JUNIE INEEZTALION ..eouvveieiiieeeiiieeeieeeeiee et e e veeeiee et e e eeeereeeenveeeaseeenneas 420
ConfiGUIING XPTESE ..uvieiiieiiieiieiieee ettt ettt et see e e ssae b e e eaee e 421
J2EE Support. Rapid Development of Distributed and eCommerce Applications
424
J2EE SUPPOTT...ctteniieieetiee ettt ettt ettt e bt et e et ete et e saeenseeneeeneenees 424
Overview of e-Commerce development Features...........cccceeeveevienieeiieencennnnne. 424
J2EE SUPPOTT...ceiiiieiieiieetieie ettt ettt ettt ettt e ae e e e st e nseenseeneenee 424
J2EE MOdUle IMPOTt.....coeiiiiiieiiieiieeieerite ettt ettt ettt aeesaeenaeens 428
Creating, Developing and Debugging Distributed Applicationscccceeuveennee. 429
Creating, Developing and Debugging ServIets..........ccocvevvieriiiiiieniieieeieeieeieene 429
Debugging @ SETVIt........ccccuiiiiiiieiieeee e e 430
Creating, Developing and Debugging AppIetscccocveeiieiienieeiiienieeieeieeeeen 431
Debugging an APPIEtooocviieeiiecieeeeeee e 431
Creating, Developing and Debugg@ing JSPSccccoveviieniiiiiieiieciccee e 433
DebuggINg JSPS......uviiiiiieieeee et 434
How To Debug JSPs in the Web Application Diagram...........cocceeevvierveeieeneennnnne 435
Developing EIBSooo ittt e e 437
Overview Of EJB fRatUIEscovuiriiiiiiiiieiiiieneeeeee e 437
How Together simplifies EJB development............cccccveeviieniiieniieeieeeieeeen 437
Configuring Together for EJB development...........c.ccoocveviieiieniecciienieeiieene 439
Creating EJBs in Together Projectsccceeeieeeiiiieciiecieecee e 442
Creating a project using existing EJB code...........ccccvevieniiiiiiniiiiieieeee 442
Creating "one-click" EJBS......c.cooiiiiiiiiee et 442
Configuring EJBs using EJB INSPECOLScceeiiieriieiiieiieeiieieeeeeeiee e 444
Sharing Home/Remote INteTfaces.........ccevuieeriiieniieeiiiecie et 447
Verification and Correction 0f EJB'Scccooiiiiiiiiiiiieniccececceee 448
Deploying Enterprise JavaBeans..........ccccocvuveeiiiiieiiieeiieceiee e 449
OVEIVICW ...ttt ettt sttt ettt ettt et e st e sbe et st sbeebeestenbeenees 449
Visual Assembling and Deployment ToOIS..........ccceevvieerieeeiiieeieecee e, 450
Requirements for deploymentcccoevieiiiiiieniiieieie e 450
Using the J2EE Deployment EXpert.........cccoeviiieiiiieiiieeieeeiee e 451
Step by Step How To Create a One-Click EJB and a Client Creating a Session Bean
... 453
Creating an EJB........coooiiiii et 453
Creating @ CHENT ...c..vieeiiieciieeeiie ettt e e e e e e aaeesnaeeennaeas 453
How to Deploy the Bean to IBM WebSphere 3.5........cccoeiiieiieiiiiiieicceeieee 454
Opening the PrOJeCt.......uiiiiiiieiii ettt 454
Deploying an EJB........ccooiiiiiiiieee ettt 454
Compiling and Running the Clientc.cccoveeeiiieeiiieeieeeeeeeeee e 455
Sample Project for BEA WebLOZIC SETVET.......cccuveviieiiieiieeieeieeeeeeee e 455
Setting project properties and eNVIFONMENLc..ceceveeerveeerieeeieeenireeeereeenneeens 455
Deploying EJBs to BEA WebL0OgIC SeTVercccovviiiiiieiiienieeiieieeieeie e 457

Deploying Hello World EJB sample to BEA WebLogic 6.0 Server................... 457

Compiling and running the sample clientccccocevieviniinieninieneceeeee, 459

Debugging the sample bean and client............ccccoeevieeiiieniieeciieceeee e, 459
Deploying from an EJB Assembler diagram............cccceecveevieeiiienieniieniienieeinens 460
How to Create a Simple JSP Client..........cccveeviiieiiieeiieceeeeee e 461
Setting values on the JSP client page........ccceoveeieeniieiiieiieeieeeese e 461
Testing the deployed EJB using the JSP client.........ccccooevveviiiiiciiciieeieee, 464
Step By Step How To Create a Servlet and Deploy it to WebLogic 5.1 467
Creating @ SEIVICT......cccuiiieieecee ettt e 467
Compiling and running the Servletcccoeviiiiiiiiieiiinii e 467
Step By Step How To Create a Servlet and Deploy it to WebSphere 3.5............... 468
Creating @ SETVICL........c.iiiiiiiieiece ettt et 468
Compiling and running the Servletcccoeviiieiiiieiiieee e, 468
Step By Step How To Deploy CMP Entity Bean from IBM WebSphere 3.5 Samples
t0 BEA WEDLOZIC 5.1 .uiiiiiiiieieee ettt 470
Creating CMP Entity Bean..........cccoevieviiiiiieniiciieceeeee e 470
Creating Databaseccecviiieiiieiiie ettt e 471
Deploying the Bean to BEA WebLogic Server 5.1coccoeviiiiiiiiiiniieieieeee 471
Creating the CHENTcooiiiieiieeee e 472
Step By Step How To Deploy Session Bean from IBM WebSphere 3.5 Samples to
BEA WeEbLOZIC 5.1 .ot et 473
Creating and Deploying a Session Beanccccoecveviieniiieiiienieeiienieeieeeee 473
Creating @ CHENL.......cccviiiiiieciee et ere e e e e e e eaaeeenaeas 474
Create a project and edit CMP bean..........ccccoeevieviiiiienieniieiieceeee e 475
Deploying the Bean..........cccuiieiiiieiiiiciiecee et 477
Step By Step How To Deploy Session Bean from BEA WebLogic 5.1 Samples to
IBM WEDSPREIE 3.5, .ottt e e 479
Creating a project and editing Session bean and Client...........c.ccccevvereriennnne. 479
Deploying the Bean.........cccviieiiiiiiiiieececee et 481
Compiling and running the client...........ccoecieiiiiiiiiiieiee e 482
Step By Step e-commerce: How To Create Web Application Diagram and Deploy it
t0 AN APPLICALION SEIVET.....eeiiiiiieiiieiieeie et ete et teste et e etee e bt e seaeebeesteessbeensaesnseens 483
CreatiNg PrOJECT. ... viieiieeiie ettt e et e e e e eaaeeennaeas 483
Preview of the Example in TOMCALccceeviieiiieniiiiieieeieeee e 484
Deploying the created application...........cccueeecuiieiiiieeriieeieece e 485
Running the appliCationccceeeciieiiieiiiiiieeiieee e 485
Step By Step e-commerce: How To Create and Use MessageDriven Bean........... 486
Creating a MessageDriven Beancccoviieiiiiiiiiienieniecieeeeeeee e 486
Deploying the MessageDriven Bean.........ccccoccveeviiieciieeiieeeie e 487
Creating the CHENToooiiiiieiieie ettt 487
How to Use Taglibs in a Web Applicationcceeeceieeiveeniieeiieeieeeee e 491
Creating @ tag lIDIaArYcc.voviieiieie ettt e 491
Creating a Web Application diagram............ccceeeevieereiieeniiieeniie e 491
Deploying Web Application to BEA Weblogic Application Server 6.0............. 492
How to Debug EJB's in IBM WebSphere 3.5......ccoiiviiiieiieeieeeeeee e 493
Installing JPDA for IBM WebSphere 3.5oooiiiiiiiieeeeeceeeeee e 493

J2EE StEP DY StEP uvveeeiiieeiie ettt ettt et et 496

Extensibility and Advanced Customization..........ccoeeeneecseecsseecsenssnensaecssaecssnscsnees 504

Together Open APooo i 504
EXtension MOAUIES.........cceiiiiiiiiiieiieeeeeeee e 506
Types OFf MOAUIES......ccuuiieiieeieeceeee e e 506
Interfaces implemented by the Modulescooceeviiniieiieniiiiieeeeee e 506
Viewing and running Modules..........cccvieriiiiiiiieiiie e 507
Basic Guidelines for Developing Modulesccceeiieniieiienieeciieieeieeie e 508
NamMiNg CONVENTIONSueeeiuiieeiiiieeiieeeiieeeiieeeteeesreeesaeeessseeessseeessseesssseessseeessnes 508
Documenting the Modulecccoocvieiiiiiiiiiieciiee e 509
Deploying the MOdULecooviiiiiiieiie e 510
MOodUIES FAQooieiieeeeeeeeeeee ettt e e e 511
Module development "hands-0n"............cccoueeriiieiiieerieeee e 514
Source code for the module.............coeiiiriiiiiiiiniiee 514
Declaring @ ModUle..........occuiiiiiiiiiieeeeeeece e 515
Compiling and storing the module.............ccoeeieiiiiiiiniiieieeeeeee e 521
Evaluating the ReSUILS..........ccovuiiiiiiiiiiiiecie et 521
TTOUDIESNOOLINGviiiiieiiieiieceee e et e 522
Customizing System and Ulcuiiciiiinniiiiniinseicnsnennsnecssnecssencsssescsssescssssscsnes 524
Advanced CUSTOMIZATIONc..evueirtieieriierieiie ettt st 524
Customizing View Management's Show options (filtering).........cccceeveeveveercneeennne. 525
Changing the display text of @ Show Optionccceeecvieiieiiiienienieeieeeeee 525
Removing a Show option in the Options dialogcccccvveeviieeciieicieeeiieeen 525
Adding a Show option in the Options dialog..........ccceevvieriieiieniiiiierieeeee 526
Customizing Properties' INSPECLOTSveevuiieeiiiieeiieeeiie ettt 527
Overview of the Inspector model...........ccoooiiiiiiiiiiiiieieeee e 527
Adding custom pages and fields to the InSpector..........ccccveeeeiieeciiicieecieeee, 527
Configuring the New Diagram Dialog.........cccceviiiiiiiniiiiniiiiieieeicecee e 531
N 812D SR UPPRRSPSR 531
Defining Custom Diagram TYPESc.cecvveeouieriieniienieeiiieriie et eniee et esiee e eseeeseaeens 533
Basic procedure for defining custom diagram types.......ccccceeeveeeeieenieeenveennnenn. 533
Defining element types for the custom diagramccceevereeninieneenenienene. 534
Step 2: Defining toolbar 1CONS........cccvvieeiiieeiieeeiie et eiee e evee e 534
Defining VIEWMAPS.eeiiieiieeiiieiieiie ettt ettt et sete et e sitesbeessaeebeessaesnseens 536
Example configuration file............cceeeiiieiiiieiiieeeeceeeeeee e 537
WED SEIVICES uueiieiiiueinrrcsuiinseenstenstecssiissnesssessssssssnsssaesssessssssssessssssssesssassssssssasssessanses 539
WED SEIVICES ...ttt ettt et sttt bee s ens 539
Creating @ Web SETVICE......cccuiiiuiiiiieiie ettt ettt ettt enne 539
Deployment Using the Web Service EXpertcccceeeciieeeiieeiiieeieecee e, 541

Index 545

About TogetherSoft and Together

Together

Version 5.5

Thantk you for choosing Together®- the exclusive Platform plus Building Blocks software development
infrastructure solution for the 21st century.

About TogetherSoft and Together

If this is your first contact with Together® products or TogetherSoft Corporation, this
section provides a brief "10,000-foot flyover" to help you get acquainted.

TogetherSoft Corporation
- Dedicated to improving the ways people work together™

TogetherSoft Corporation is the adaptive business-process automation™ company.
TogetherSoft's software and services enable enterprises to develop better assets faster by
providing proven and predictable ways to manage change, mitigate risk, and deliver frequent,
tangible, team-driven results.

Together ControlCenter

TogetherSoft's flagship offering, Together® ControlCenter™, delivers adaptive business-
process automation for teams building software solutions. Together ControlCenter brings
your e-solutions team together, allowing business users, developers, and operations to
collaborate using a common language, diagrams, and software. Together ControlCenter
enhances productivity and process management in critical areas: automating mundane
business processes (e.g. adaptive documentation generation); automating tedious and error-
prone business processes (e.g. work required to adapt and deploy an application on an
application server); and automating expert-level insights with guidance on how to adapt and
apply those insights correctly (e.g. patent-pending expert-level pattern technology).

For more information, see Introducing Together.

_15 -

Available formats

Together's Documentation

Available formats

Together provides a choice of electronic Help documentation formats.

JavaHelp(m) Installed with all products. Provides Table of Contents, Index, and Full-
text Search. Requires the Sun JRE and JavaHelp runtime (both installed
with Together).*

Adobe Acrobat Available for download at www.togethercommunity.com. Requires Adobe
(PDF) Acrobat Reader, available free at www.adobe.com. Same content as

Together Help documentation for those who want to print hard copy.
(No internal hyperlinking.)

Together's Help is also available on the Web. To access it, either go to Together home page

at www.togethercsoft.com, or select Help | On the Web of the main menu and click on an

appropriate item from the drop-down list:

www.togethersoft.com - main Together home page

www.togethersoft.com/support - Technical Support info

http:/ /www.togethersoft.com/order - Customer Service

http:/ /www.togethercommunity.com/ - Together Community site

http:/ /www.togethercommunity.com/docs/ - Application Help

http:/ /www.togethercommunity.com/ contriblist.pl?display=module - Download Building Block

(download the free Together Community Edition 5.0)

Togethet's Help is also available online at www.togethercommunity.com/docs/. Updates and

corrections are posted to this URL between released.
* (Note: URLs for Web resources are provided as text only, as JavaHelp does not currently support hyperlinking to external targets.)

Help documentation volumes

Help documentation is arranged in three volumes, each with a particular scope.

Getting Started with Together is a startup guide intended primarily for reviewers,
evaluators, and other new Together users who are installing and setting up the product for
the first time. This volume also includes copies of the relevant license agreements.

User's Guide covers general introductory issues and provides in-depth explanations about
how to accomplish your work using Together. Besides, it includes technical, system, UI, and
other reference information related to Togethet's architecture, User Interface, and API.
Context help, or F'1 help, delivers the context-sensitive help information for config options
and dialogs. When a dialog is open, press F1 or click He/p button on the dialog to view the
appropriate Help topic.

Besides the main helpset, Together provides separate documentation for the modules that
implement some integration or interoperability with the third-party software products.

~16 -

Other documentation

Other documentation

Help documentation is your main source of information, but it is not the only
documentation provided. In addition to Help, you will find:

Readme file: Resides in same directory as the installer program (before you install Together
from CD) and in the root directory of your Together installation. It contains pre-installation
information and tips, and/or late-breaking information not yet incorporated into
documentation.

What's New: The file whats new.html is written to the root directory of your
installation and contains information about new features and enhancements for the current
release. There's also a version history file in the same location if you're interested.

API Documentation: JavaDoc(tm) technical reference for the Together Open API To
access the main index file, open $TOGETHER HOMES/doc/api/index.html

Comments in files: Files in the installation contain comments that you will find useful in
the specific context. These include:

- Source files for modules

- Example projects (source and diagrams)

- All the configuration properties files (./config/*.config, *.properties)

- Example batch and command files (*.bat, *.cmd, *,sh) for launching Together.

Let's get started

People generally tell us that Together is quite easy to set up and begin using. We try to put
the basics right up front, making them as easy to find and as intuitive to use as possible. But
don't be deceived by the apparent simplicity. There is tremendous capability built into
Together, powerful functionality just off to one side waiting until you're ready to unleash it.

17 -

Copyright and Trademark Notice

Copyright and Trademark Notice

TogetherSoft Copyright & Trademark

Together® and its documentation, modules, samples, and source code are Copyright ©2000, 2001
TogetherSoft Corporation. All rights reserved.

Together is a registered trademark of TogetherSoft Corporation.

Together ControlCenter, Together Solo, and LiveSource are trademarks of TogetherSoft Corporation.

Third-party Trademark Acknowledgments:

HP UX is a trademark of Hewlett-Packard Company

Java, Java2, Java2 Enterprise Edition, |2EE, JavaBeans , Enterprise Java Beans, E]B, JSP, and Solaris are trademarks of
Sun Microsystems, Inc.

Rational Rose and Rational Unified Process are trademarks of Rational Software Corporation

SPARC is a registered trademark of SPARC International, Ine.

Tru64 is a trademark of Compagq Computer Corporation

UML, Unified Modeling Language, and CORBA are trademarks of Object Management Group, Ine.

Windows, Windows NT, Windows 2000, Windows98, Windows95 are trademarfks or registered trademartks of Microsoft
Corporation

Other trademarks referenced berein are the property of their respective owners.
Other Acknowledgments

The "Coad Modeling Components" that ship with Together are based upon the components described in the
book: Java Modeling in Color with UML: Enterprise Components and Process, by Peter Coad, Eric Lefebvre,
and Jeff De Luca, Prentice Hall, 1999, ISBN 013011510X, and are included with the kind permission of the
publisher.

Portions of the Together documentation are derived from concepts and terminology published in The Unified
Modeling Language User Guide by Booch, Rumbaugh, and Jacobson. Addison-Wesley, 1998. ISBN 0-201-
57168-4.

Other portions of documentation may include material that is Copyright ©1998-99 Object Management
Group, Inc. (OMG), and is reproduced by permission.

Portions of on-screen descriptions of Metrics and Audits derived from documentation published online by Sun
Microsystems at http://java.sun.com/docs/codeconv/.

Together includes software, which is Copyright ©1989, 1991 Free Software Foundation, Inc. All Rights
Reserved. That software is subject to the terms of the GNU General Public License available at www.gnu.org.
You must accept the terms of that agreement to use that software. See copyright statement and disclaimer
below.

Together includes Transformational Patterns as developed in the TROOP (EP 27291, Transformation of
Object Oriented design using design Patterns) project funded by the European Commission.

Together includes software, which is Copyright ©1996;1997 Original Reusable Objects, Inc. All Rights
Reserved. That software is subject to the terms of the Original Reusable Objects OROMatcher License
available at www.savatrese.org/oro. You must accept the terms of that agreement to use that software.
Together includes softwate developed by the Apache Softwatre Foundation (http://www.apache.org/), which is
Copytight ©1999 The Apache Software Foundation. All rights reserved. See copyright statement and
disclaimer below.

Sun J2EE Patterns

The Sun J2EE Patterns Catalog from Sun's Java CenterSM consulting organization is listed in its entirety within
this product and will be implemented in future product releases.

The Sun J2EE Patterns are used with permission from the book "Core J2EE Patterns" by Deepak Alur, John
Crupi, and Danny Malks, published by Sun Microsystems Press/Prentice Hall. Copytight 2001 Sun
Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303. All rights reserved. SUN PROVIDES EACH
J2EE PATTERN "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY,

_18 -

Copyright and Trademark Notice

FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

GNU Copyright Statement and Disclaimer for bundled CVS version control and gnuMake
software

The following information is provided in compliance with the GNU Public License Agreement:

The CVS version control and gnuMake software bundled with some Together editions is Copyright © 1989-
1999 Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

See also: GNU General Public License Agreement
Apache Copyright Statement and Disclaimer for bundled Apache Tomcat server

The following information is provided in compliance with The Apache Software License, Version 1.1
Copyright ©1999 The Apache Software Foundation. All rights reserved.

THIS SOFTWARE IS PROVIDED ""AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache Software
Foundation. For more information on the Apache Software Foundation, please see http://www.apache.org.

~19 -

About this volume

User's Guide

About this volume

The User's Guide provides in-depth coverage of Together's features and generally explains
how to do different things with the product.

Part 1 of the User's Guide contains introductory information on the architectural concept
and overview of Together's features. The other sections deal with the issues that need to be
approached first, before embarking to work with Together. Quick Tour chapter takes you
through the main elements of the user interface. Chapter Configuring Together contains
information on the common customization issues and the use of the Options dialog.
Chapter Command Line Operations and macros provides reference information on
command line parameters, various macros, and keyboard shortcuts. You can also find basic
materials on Projects and Project Management, Information Import (relevant when setting
up a project), integration with a Version Control system, and View Management.

Part 2 of the User's Guide describes working with Together, adhering to the development
lifecycle and major feature categories. Thus, the volume includes chapters that cover various
modeling issues, usage of diagrams, software and e-commerce development features. Special
chapter is devoted to the currently supported languages. Extensibility and Advanced
Customization section covers the most subtle issues of the system and advanced Ul
customization, and enhancing Together by means of the Building Blocks. Web Services
chapter provides information about creation and deployment of the web services.

-20 -

Introducing Together

Part 1. Introductory Topics

Introducing Together

Introducing Together

The Together product line consists of two products:

Together ControlCenter is for building enterprise-level software. Together ControlCenter
is the Model-Build-Deploy (MBD) Platform... comprehensive and complete encompassing
model-E] B-pattern-edit-compile-debug-version-doc-metric/ andit-provision-assenble-deploy-run.

Together Solo is for building software on a smaller scale, without the need for Together
ControlCenter's exclusives features. Together Solo spans wodel-pattern-edit-compile-debug-version-
doc. Together Solo includes comprehensive UML-diagram editors (with auto-layout and
snap-to-grid for class diagrams), syntax-aware customizable programming editor, GoF
patterns, and simultaneous round-trip engineering for Java, plus C++ and IDL.

Get the full story on features at the TogetherSoft website:
www.togethersoft.com/together/.

Exclusive "Platform plus Building Blocks" Architecture

The "hidden secret" behind TogetherSoft™ technology is that, instead of acquiring different
products from different companies, gluing code together, and shoving the result into the
marketplace (yes, some companies actually do such things!), TogetherSoft builds its products
from the ground up using The TogetherSoft Platform plus Building Blocks to deliver a
comprehensive, team-enabling, enterprise software development environment that fits
naturally and comfortably into your company infrastructure.

The TogetherSoft Platform

The Platform is the "heart and soul" of Together that delivers the key core services:

Diagram engine: supports creation and editing of all the major UML diagrams, along with
several other commonly used diagrams like Entity Relationship (for data modeling) and
Business Process, plus some innovative and highly useful new diagram types such as our
exclusive EJB Assembler, Web Application, Enterprise Application, and XML Structure
diagrams. The Diagram engine provides full control over diagram editing, storage
representation, and documentation. Speaking of storage representation: it's done with simple
ASCII text so your diagram files are easily kept under source control just like source code.
And if all this isn't enough, using Together's open Java™ API, it's possible to define new,
custom diagram types of your own which the Diagram engine will automatically support.
Simultaneous round-trip engines: special parsers designed for immediate synchronization
between design diagrams and implementation code.

Simultaneous round-trip engineering means that your UML classes are always synchronized
to the source code that implements them. Change something in a Class diagram and the
relevant source code updates immediately. Change the code and the visual model updates to
stay in sync. There's no intermediate repository, no batch code generation, and no risk of
losing code.

-21 -

Introducing Together

Launch-Catch-Navigate engine: delivers better integration across various source-code
products. For example, you can launch the compiler, catch any errors, and navigate from
each error message to the corresponding diagram element, line of source code, and property
editor tab. Speaking of compilers, Together is pre-configured to work with Sun's Java2™
SKD, invoking its compiler with a simple right-click operation. If you want to use another
Java compiler, or if you work with C++, you can easily configure Together so that it
launches the compiler of your choice ... ;again, with just a speedmenu click.

Version control integration: Together is not a version control system (VCS). Rather, the
Platform's architecture is designed to tightly integrate with your preferred versioning
product. The version control integration system supports check-in, check out, and other
versioning functions... via CVS (included with Together and ready-configured) or the SCC
interface (supported by every major Windows version control system).

Multiple OS compatibility: It's worth mentioning here that Together is implemented in
Java™., It was one of the first true Java apps to deliver breadth, power, and performance that
rival native code. Theoretically, Together will run on any OS for which there is a Java Virtual
Machine. However, different JVMs exhibit different bugs, among other things, so rather
than claim that Together runs on everything, TogetherSoft listens to it's customers and
concentrates on testing and supporting those operating systems that customers tell us are the
most important. As of this writing the list of supported operating platforms includes:

- Microsoft Windows® (N'T, 2000, 9x)

- Sun Solaris™

- LINUX

- Hewlett-Packard HP UX

- Compaq Tru64
With Together, the Platform is only the beginning. To it, TogetherSoft adds Building Blocks...;
"pluggable" units of functionality...; and then bundles the Platform with different levels of
Building Blocks into products. Let's see how that works.

22 _

Building Blocks

TogetherSoft takes the Platform, adds
some Building Blocks, and the result
is Together Solo - a good choice for
smaller scale development that
doesn't encompass EJBs and Web
components.

Even more Building Blocks get added
in producing TogetherSoft's flagship
and premium product, Together
ControlCenter. Best of all, this
architecture is highly extensible. You
can develop your own custom
Building Blocks and plug them into
the Platform in the same way we do
with Together's core features and
TogetherSoft extensions!

But what's probably more interesting
for you is the fact that what we can do

to create our products, yox can do too.

You can create your own Building
Blocks to extend, enhance, and
customize Together, and plug them
right into the Platform using the
Together Open APIL

The Together Open API

Certer”

HAS IT ALL!

[BEA. 1BM, iPlanet, Bosland,

Gemstone, Silverstream. loma,
Secant app server plug-ins

web app arzemble & deploy

JSP cieate, edit, debug

[JDEC-10-EJB, EJB-lo-JDBC

EJB make. JAR, deploy. run

EJE Generate & Configure

Diztribated, mulli-threaded
Java Debugger

EM| Inteschange

Hose lmpaort

Heport D esigrer

Metrics & Audit

Buz, Process & Data Modelng

Companion product integration

Sequence diagiam round-tip

Report gen

Web-ready doc gen

All UML diagrams

Pattemns [including GoF)

Robust Spynlax-savwvy Edios

Class diagram
PLATFDRM

Introducing Together

(Together

Has the basics

Together comes with a comprehensive, multi-tier open Java API that provides almost
unlimited extensibility. Your Java programmers can develop their own custom Building
Blocks that plug right in to the Platform just like many of Together’s own features. Develop
custom documentation formats that extract information from the model (stored as source,
of coursel) to meet company or government standards. Create custom support for your
preferred application server or JDBC database. Tightly integrate with your own company’s,
or a third party’s software. The list of possibilities goes on and on!

_03

Introducing Together

More about Together ControlCenter

Together ControlCenter, delivers adaptive business-process automation for teams building
software solutions. Together ControlCenter brings your e-solutions team together, allowing

business users, developers, and operations
people to collaborate using a common
language, diagrams, and software.
Together ControlCenter enhances
productivity and process management in
critical areas:

Automating mundane business
processes: adaptive documentation
generation, for example. Automating

tedious and error-prone business processes:

work required to adapt and deploy an
application on an application server, for
example.

Automating expert-level insights with
guidance on how to adapt and apply those
insights correctly using. patent-pending
expert-level pattern technology.

What next?

LiveSource w
Java . C++ DL

VB 6 VB.NET C#

THE

MODEL DEPLOY

PLATFORM

1. EJB provision-assemble-deploy to 16 app-server products

2. The entire environment works with source code; always in- sync,
always up-to-date

3. Track requirements with model properties, or use the building
block available for DOORS

4. Building block available for JUnit.

To get started with some key Together features, see Feature Fly-over and Extended

Features.

_04 -

Feature Fly-Over

Feature Fly-Over

This topic presents a run-down of features supported by Together, linked to the appropriate
chapters in the help system.

Feature overviews

Modeling and design features

Simultaneous Round-trip Engineering
Hyperlinking to artifacts & information
UML diagrams and support plus special purpose diagrams
Diagram Printing
Information import-export

IDL and DDL Support

Data modeling

Rational Rose Import

Other information Import-Export

Enterprise development

View Management

Multi-level, Flexible Documentation Generation
Multi-user Team Support

Robust programming editor

Distributed, multi-threaded Java debugger

Re-use support (patterns and templates)

Quality Assurance (Metrics and Audits) for Java projects
Testing

eCommerce rapid development
eCommerce/EJB development and deployment support
Extensibility and customization

Customization capabilities
Advanced customization
Together Open API

Where to get the latest info on features

The features listed were current at the time of this release of Help. Note that not all features
are present in every Together product. For comprehensive, up-to-date information on what
features are available, and what products have them, visit: www.togethetsoft.com/together/

_05 -

Extended Features

Extended Features

A wide variety of building blocks, plugins and bundled products extend Together's
functionality beyond the fundamental features outlined in the introduction. These can be
tentatively divided into three groups:
1. Building blocks created via API realize certain specifications and technologies.
These are: XML modeling, QA features, search for usages, doc generation, etc.
2. Integration modules are designed to integrate Together with third-party products
and support data interchange with them. These are: HP E-Speak, Doors, PowerTier,
Versant, JProbe, etc. You can find documentation for these modules in the Building
Blocks Help on the Help menu.
3. Bundled software allows to use Together in conjunction with various freeware and
commercial products. The most vital tools for enterprise software development are
integrated with Together and delivered as whole products in the STGHS /bundled
folder.
The building blocks display on the Modules tab of the Explorer. The treeview contains three
nodes: Early Access, Samples and System.
Modules declared as Early Access are not fully developed and/or undocumented. However,
they are still accessible from the Modules tab. The Samples node contains sample modules
delivered with the source code. Systezz contains completely developed and documented
modules.
You are welcome to extend Together even more with the building blocks of your own. To
learn how to develop your own modules, refer to the Extensibility and Advanced
Customization chapter of the User's Guide.

_06 -

Together Quick Tour

Together Quick Tour

Togethet's user interface is easy to learn and use. The topics in Quick Tour describe the
principal components of the user interface and the main functions of each one. The links
below will take you to additional information about the major Ul elements.

Note that the appearance of the main window varies according to your currently configured
role. For more information, see Role Based Workspace.

Main Window

Together's main window gives you centralized access to all your work in progress. You can
open multiple diagrams or files and work on them concurrently in the same window. Each
open diagram or file displays in its own tab page in the appropriate pane. The Main Window
is comprised of three main regions or panes.

{ Together 5 -- CazhS5ales =] E3
File Edit Ohject Search “iew Select Options Tools Help
|B@l§|@@|xmﬁmlﬁrfﬂa| Il e
BE Tk @ | ’g (EE =defalt= rngﬂ OpenFirst rSE problem_domain rff' Use Ca3e|
= | El\ B % ‘S <<momeithkngk- N =M FR Gl
= BF CashSales - o Caihzals Dl CamnsalDutal
- data_marspement = || e wewen D1il| -uomen
: =SOLE OPEN:Iit=1 prodnctP rodnctDesc 4
= problem_domain | =eEclosEDiez Ll R B
28 o| e RaTEGmbR-DDG P =T T, I
24 collaboration ga | Seconmmontsgnecmal T | eakTomIg A g Decimal - +
5= =8 0| ancasksaksequence IRg Aol | D00 l| oerigamIEniig bookas +
"[l.. Generated From Code 2| -PewmertligDecimal T Hedcip)wod 4
. Persistert Save |l AL ‘*“"E;::'I'D‘;.S‘“E—"E‘“' S 3
H, Total of Sale > 3 550 prodectDes cof rdnctDers: 4
= P o ISR . Ll H—
Properlies of problem_domain ﬂ P X +HmaeCe =3k pame emtAQOp - v v e [R R .t
7 L] »
COMIDL | CORBA IDL | z | | |
Requiremerts Custom Properties N payLent = paymentiut; —
Propetties rHyperIink rDescriptinn rHTMLdoc El A5 compute change due :
Mame | Walle | i Biglecimal total = calcTotali():]
ciagram type A Bighecimal change - paymenthuc.subtract(ti
; o -
name problem_domain &) | | >
Press Ctrl+Enter to finish editing and closs Inspectar %:? LCashSale.java
oo O |2 Classes rﬁﬂ hlonitars |/D|:n Wiatches |/- Evaluate | Dﬁé user_irrterface.CashSalesAppj
— L3 W #£l Consale ru_ Breakpoints rg Skip classes rfli:. Frame |/‘§§ Threads |
E L"'zr; ?i Java HUtSth(THj Client VM warning: Setting of propertl—
=
. 4]] [}
L@ Mezzanes L Builder Lbfg RuniDebug |
=3 | private final static int S4LE_OPER | Pragress ||| Inzert Lr: 143 Cal: 25
=

Explorer pane enables navigation of your system, provides overview and detail views of
your project, and provides easy access to system and extension modules, and reusable
components. Use the speedmenu to access properties, version control, compile and make
tools, QA analyses and more.

Note: Property Inspectors are attached to individual elements. Inspectors are accessed from
speedmenus of elements and diagrams.

_027 -

Together Quick Tour

Diagram pane is for drawing models visually
Editor pane is for viewing and editing diagram elements' source code, module source code,
or text files. You can customize a number of options for this pane on the Text Editor page
of the Options dialog.
Message pane dynamically displays several tabs that provide information (system messages)
or enable you to perform a specific task (debug code or navigate to problem spots).
Message page displays a queue of messages from the system. Non-critical error messages
display here rather than interrupting work flow with modal dialogs. This pane is
hidden by default. Use the speedmenu to save or copy messages, navigate to problem
spots described by a message line, or clear the message queue.
Debugger page displays when the integrated debugger is invoked. Use the speedmenu to
navigate to the bug described by a debugger message line.

Click on any of the above links to go to the Getting Started topic for the specific pane.
Main Menu

Of particular interest on the main menu are the following:

Object: The Object menu replicates the speedmenu of a currently selected object such as a
class or diagram. It is only available when an object having a speedmenu is selected, and the
menu content changes dynamically to reflect the speedmenu of the selection.

Search: find and/or replace text strings in source files, diagrams, and across multiple files in
your project.

View: You can use the View menu to hide and show any of the panes quickly and easily.
You can also maximize any of the panes. Pane toggles are replicated on the Main Toolbar.
Note the keyboard shortcuts displayed on the menu.

Select: Provides a quick easy way to select the different panes or select among open
diagrams. Check out the keyboard shortcuts on this menu.

Options: Use this menu to customize your Together configuration. You can set
configuration options to apply at different levels: installation-wide, project-specific, or
diagram specific.

Tools: This menu provides access to several system modules (also accessible from the
Modules tab of the Exploret) such as documentation generation and Rose Import/Export.
Special features such as information import/export, compile-make-run for integrated tools,
and change synchronization for task-switched tools are also found here.

Main Toolbar

This toolbar replicates a number of commonly needed commands from the Main menu. Of
particular interest are the following:
Pane toggles: These buttons duplicate the View menu commands that show, hide, or
maximize the different main window panes.
Diagram View Management: Launches the Options dialog at the diagram
configuration level. There you can set view management options to show or hide
different types of diagram content. (For information about Together's multi-level
configuration architecture, see Configuring Together: Multi-level Architecture
Overview).

_08 -

Together Quick Tour

Debug project: Launch the integrated debugger (not available in all products).

The main toolbar can be undocked from the main window by dragging the "handle" at the
left edge. Dock the undocked toolbar by clicking the close button in the toolbar's frame.

Status bar

The status bar cells, left-to-right are:
Messages pane: Hide or show the Message pane

Diagram View Management: launches Options dialog with only View Management
options visible. The settings are those in force for the current diagram. You can view and
change these options to control what is displayed in the Diagram pane. Changes apply only
to the diagram.

General info: this cell shows information about elements in diagrams as you mouse-over
them.

Progress: Bar shows progress of internal processes that you invoke at different times while
working in Together.

Editor info: the remaining cells display information related to the Editor pane:

Changed file indicator
Insert/Overwrite mode

Current line number

Current character column position

Resizable frames

Some of the Together dialogs and frames are resizable. This is marked with a hatching in the
lower right corner ﬁ

_09 -

The Explorer

The Explorer pane has multiple tabs that provide
different views of your project's content and enable
access to the related files such as modules, and
other information in your Together installation. You
can...

-View the physical and logical structure of your
project.

- Navigate within the project, and also in your
physical directory system.

- View project resources such as source files, classes
and members, diagrams, and modules. Open
diagrams and files for editing.

- View and run Together system and feature
building blocks and any custom ones you develop.
You can show or hide the Explorer using the View
menu or Main Toolbar. The tabs, from left to right
are: Directory, Model, Overview, Components,

The Explorer

(O = [e

< | T1 | Bir

= BH CashSales
Datatanagement
= B Problembotmsin
B3 ProblemDomain
B, Sale Activity
H, CazhSale caloTH
1, Total of Sale
'3'@ Sale State Diagram
9P Make A Sale
CashTale
CashEaleDetsi
B MakeCashSale
InzuffPaymentException
ProductDese:
ProductPrice
zerinterface
=default=
(7 Pos System
B MakeCazhzale

R E H O EEE

Modules.
Directory tab

The Directory tab presents views of the contents of your physical system and enables
you to navigate both inside and outside of a project's physical structure. You can find and
open text type files in the Editor pane independently of your current project, or when no
project is open. You can navigate to and open a project file. When a project is open, you can
also open a diagram file.
The actual physical files that Together supports for the Editor pane (source code and text
files) display the Edit File icon & Together project files display the I icon. Other files that
reside on your physical system but cannot be opened in the Editor pane show a "generic
file" icon: L.
When you launch Together, the Directory tab displays your available drives/directories and
the following additional directories from your Together installation:
Samples - contains example projects
User Projects - an empty directory where you can place your first experimental
projects, or real projects for quicker access from the Directory tab. In the latter case,
you should create the Together project under the myprojects directory.
Templates - contains numerous templates of classes, members and links for the
supported languages (Java, C++ and IDL).
When you open a project, a Current Project node is added to the Directory tab enabling you to
see the physical files that comprise your project.

- 30 -

The Explorer

Model tab

The Model tab =l displays when you open a Together project and shows a logical view of
the elements that comprise the model encompassed by the project.

The Model tab shows what root-level packages comprise your project, and enables you to
logically navigate the contents to see what subpackages, diagrams, and diagram elements
exist in each one. As you browse the project contents, you can open diagrams for editing
using the speedmenu. The Model tab's view is not strictly hierarchical in the same sense as a
file system explorer because the project's root-level packages can physically reside anywhere
on your system. The Model tab displays secondary root packages in relation to the primary root -
- L.e., the package containing the Together project file.

For example, you might create a project file in the directory C: \Project1l, and specify
d: \mysources as secondary root directory for the project. In this case, mysources
displays as a package node under the primary root node (Projectl). From that point, the
contents of mysources displays hierarchically.

Drag and drop is supported in the Model tab.

Model tab toolbar

As shown in the opening figure, the Model tab displays a small toolbar. The icons on this bar
control the presentation of information in the treeview. They toggle their respective
functionality on and off. From left to right:

Expandable diagram nodes: Controls whether or not you can expand nodes representing
diagrams to show diagram content. Toggled ¢ff by default.

Sort nodes: Controls whether or not nodes in the treeview are sorted alphabetically.
Toggled on by default.

Packages first: Controls whether or not packages display first in the treeview before other
content. Toggled o7 by default.

Understanding shortcuts

First of all, understand that Model tab treeview nodes are just representations of your
project's content... mainly diagrams, classes, interfaces (Java), and members.

Sub-nodes in the Model tab can sometimes display shortcut symbols. If a sub-node
represents something that is represented in, but not contained by the parent node, then a
shortcut displays. For example, if a Class diagram displays classes that reside outside the
Class diagram's package, these classes show up with shortcuts in both the treeview and the
diagram as shown in the figure below.

g% [l

& Ta | Br |88 <otk | 55 serterioce. | B Probienbormain|

= BP CashSales ==frii-detail== ==m
Datahtanagement j‘pmummmm.mmsawmu Protikem
ProblemDomain ul z
=] Uzerlrterface

B BB Usetlnterface
E Ca
5 CashSaleDetail
CashZalesipp
POSFrame
POSFrame_aAhoutBox
E ProductDesc

E ProductPrice

1. 0* B
1 -

==dascripton==
fﬁ\'ﬂhlmDorth‘Mlchesc

;

FHHEEEEMH

Classes from a different package display as shortcuts

_31-

The Explorer

If a sub-node represents something that is contained in or by the element that the parent
node represents in the treeview, no shortcut displays. So in the above figure, CashSaleDetail
has a shortcut because it doesn't live in the Userlnterface package, which the diagram
depicts. But POSFrame has no shortcut because it is native to the UserInterface package.

Class diagrams can show classes and interfaces from packages that reside on the Classpath
and/or other search paths as defined in File | Project Properties. Such content is also
referenced and therefore displays a shortcut symbol both on the Model tab and in the
diagram where it is shown.

Note: You will not usually see shortcuts in the Model tab when the control Expandable Diagram Nodes is
toggled gff on the Model Tab Toolbar.

Favorites tab

You can optionally add the Favorites tab to the Explorer. To add it, choose Options |
Default, expand the General node, check the Show Favorites option and click OK. The setting
will take effect immediately. You can opt to display the names as either fully qualified or
short, by setting the Show fully qualified names flag under the Show Favorites option.

Favorites in Together works much like the feature of the same name in Microsoft Windows.
You can use the Favorites speedmenu to add subnodes that link to the elements in the
project that you need to access most frequently. You can then use the Favorites tree for easy
navigation to these elements without having to find their actual location in the Model tab.
Though useful for any project, it is particularly so when the project is quite large, as it saves
you time navigating through a huge hierarchy just to get to the parts you are working on.

To add an element to Favorites:

1. On the Model tab, find and select the element to be added to Favorites.

2. Right-click the element and choose .Add to Favorites from the speedmenu.

You open elements in Favorites in the same way you would open them from their "real"
location on the Model tab.

To remove an element from Favorites:

1. Select the element in the Favorites tree.

2. Right-click and choose Rezzove from Favorites from the speedmenu.

Overview tab

The Overview tab K enables you to visually navigate the diagram currently selected in the
Diagram pane and to quickly adjust the zoom level. The tab displays a "thumbnail sketch" of
the entire diagram, and a shadow over the region currently visible in the Diagram pane. The
Diagram pane scrolls proportionally with any movement of the shadow.
- To move around the diagram, drag the shadow to scroll the Diagram pane to the
region of the diagram you want to view.
- To adjust zoom level, resize the shadow by grabbing the lower right corner
diagonally to increase or decrease the Zoom level in the Diagram pane.

=R EEN N O 5 ® [=1E

Overview tab: drag shadow to scroll, drag corner to zoom in-out.

_32

The Explorer

Modules tab

Together is highly extensible. Using Java and the Together API you can develop your own
modular building blocks to handle custom metrics or documentation, generate custom outputs
based on model information... almost anything. In fact, many of Togethet's own features are
implemented as modular building blocks. These appear in the Syszerz folder of the Modules
tab.

The Modules tab provides quick access to system, sample, and any added-in building blocks
(supplied with Together, or developed or added yourself). You can view the available
building blocks by navigating through the Modules tab folders. You can run any compiled or
source files from the speedmenu of individual nodes. If you develop your own modular
building blocks or acquire third-party building-block extensions, you can install them so they
display in and run from this tab.

The following table shows how building blocks are represented in the Modules tab.

[T})ava source file for module. Can be compiled from "Run" if a compiler is
configured.

[T) Compiled Java module

[T] TCL script. "Run" executes the script in interpreted mode.

For more information, see Developing modular building blocks.

Components tab

This tab enables you to access and reuse component models. By default you'll find "Coad
Modeling Components"... over 60 enterprise component models iz color that you can reuse
or modify.

The Components tab visually represents the

STOGETHER HOMES$/modules/components directory of your installation. You can
add your own components to the Components tab by placing them in one or more
directories that you create under the components directory.

You can copy classes (or entire packages) from the packages shown on the Components tab
to your Class diagrams. This creates new source files and/or packages in your project. You
can also copy classes (or entire packages) from the packages shown on the Components tab
to any package in your project. These appear on the Model tab in the appropriate package
but do not appear in any Class diagrams until you open the diagram and the source files are
reverse engineered.

For information on copying between Explorer tabs and diagrams, see the Tips section
below.

The Components tab is displayed if the appropriate flag is checked in the File | Project
Properties dialog.

Diagrams tab
The Diagrams tab i appears if Show Diagrams tab is checked on the General page of the
Options dialog. This tab displays the treeview of all types of diagrams available in Together.

All diagrams in the current project show up in the appropriate nodes. You can access each
diagram from its speedmenu.

-33_

The Explorer

Tips and Tricks
Tabs display

The following tabs are always present in the Explorer:

.
Directory

B Modules
The following tabs appear only when you open a project:

EModel
E Overview

E Components (only when you include components directory in project)
—4& Diagrams
Navigation

Double-click on diagrams on the Model tab to open them for editing.

When you open a diagram in the Diagram pane, you can select a key element such as class,
member, or use case (depending on the diagram type) in the Model tab, and this element is
simultaneously selected in the diagram. The diagram scrolls if necessary to display your
selection. This is a handy way to navigate in large diagrams when you want to locate a
specific class, member, or other element.

Clicking on a class or member on the Model tab loads its source code on the tab of the
Editor pane regardless of whether or not its associated diagram is open in the Diagram pane.

Speedmenus

Check for a speedmenu on the various node types on different tabs. The speedmenus enable
such actions as opening, clipboard operations, and version control directly from the
Explorer. Explorer nodes for classes, use cases, and other main diagram elements have the
same speedmenu as the element in the diagram. You can perform the same operation from
either place with identical effect.

Express project access

If you create project directories under the myprojects directory in your Together
installation, they display under the myprojects folder of the Directory tab. You can quickly
navigate to them and open them from there. You can customize the default location for
projects on the General tab of the Default Options dialog.

Using the Explorer for Copy / Paste

You can copy and paste classes or packages, diagrams, and elements of diagrams using the
Explorer. Items that can be copied have a Copy command on their speedmenus. You can
copy between Component and Model tabs, or from the Explorer to an open diagram. You
can also clone diagrams, elements, and class members. Cloning creates an exact copy of the
cloned item in the same package or Node element, and gives it a default name, which you
can edit.

_34 -

Editor pane

To copy between Excplorer tabs:

1. Select the Explorer tab containing the source, for example Component tab.

2. Select the item you want to copy (Explorer does not currently support multiple selection).
3. Choose copy from the item's speedmenu.

4. Select the Explorer tab containing the destination, for example, Model tab.

5. Select the destination package and choose Paste from its speedmenu.

To copy between Excplorer and a diagram:

1. Select the Explorer tab containing the source.

2. Select the item you want to copy (Explorer does not currently support multiple selection).
3. Choose copy from the item's speedmenu.

4. Right-click on the diagram background and choose Paste from its speedmenu.

To clone something from the Explorer:

1. Navigate to the source item in the treeview.

2. Right-click on it and choose Clone from the speedmenu.

Note: You can also clone Node elements in the diagram pane using their speedmenus.

Find Location

On the Directory, Model, Modules, Diagrams
and Components tabs, you can navigate to the W E S A r@ |

desired location without actually scrolling the &, B | Bt

treeview. With the appropriate tab active, type Search for: 'En’

the name of the desired folder. As you enter the E] database
characters, the highlight moves to the sampleproject

B8 <default=

e EJB Aszembler

= (&) Enterprize Application |
There is no need to type in complete names of = 2 EJB Assembler
nodes. As soon as the required node is reached, -

type a delimiter (slash, backslash or dot) to automatically complete the name and expand the
node, and go on typing the name of the required nested node. Keep in mind that the entry is
case sensitive, and using the wrong case will produce no result.

appropriate node of the treeview.

See also
Main window
Creating and opening a project

Editor pane

The Editor pane is located immediately beneath the Diagram pane on the right-hand side of
the screen. Together features a robust, configurable programmers editor that rivals the best
stand-alone editors with features like code-completion, bookmarks, symbol browsing, pane
splitting, color and indentation schemes, and keyboard customization. If you prefer to use an
external source code editor or IDE, no problem. You can configure Together to launch your
favorite development tools.

The Editor highlights reserved words in the target programming language of the current
project (or the default language supported by your Together product if no project is open).
Presently syntax highlight is supported for Java, C++ and HTML.

-35-

Editor pane

Editor features

The Editor pane can hold multiple pages, each one with its own tab (similar to the Diagram
pane). Each tab displays the filename of the file opened in it. When you first start Together,
the editor displays a new #ntitled document.

When you select a diagram that has source code, the source opens and replaces the wntitled
tab.

You can open any text-based file in the Editor using File | Open on the Main menu. Files
you open this way display in separate tabbed pages. Alternatively, you can navigate to the
desired file in the Explorer, and choose Edit or Edit in New Tab on its speedmenu.

The Editor can tell the difference between source code and other text files. If the file is a
source code file for the target programming language of the current project (or the default
language supported by your Together product if no project is open), the Editor highlights
reserved words.

The Editor pane has a speedmenu with commonly-needed commands. Configuration of the
speedmenu depends on whether the Editor pane is used with an open project, or without it.
From the Editor's speedmenu, you can configure the Editor settings (Text Editor options),
control breakpoints and bookmarks, perform clipboard operations, and invoke external
tools.

public BigDecinal makeCash3ale (Bighecinal paymentint) throws InsuffPaymentException o
payuent = paymenCAnt: o
/4 compute change due
BigDecinal toval = calcTotal():
BigDecinal change = paymencine, subrractitotal)
(/ If change iz negative, insufficient payment made!

[l

S

MueherFormat ¢f = NumberFormat. geclurrencyInatance ()

String wag = mew StringBuffer ("Paynent of ").append(ct.fornatipaymentimt]).
append{cE. format{total]). toString ()

throw new InsuflPaymentExceprtion{nsy):

This iz a plain text £ile. The Together Editor can tell that it is not a source
code Cile, =0 it doe2 not do syncax highlighting on words like

1v]

public

class

chrow

new

String

ttc.l

i
B | | »

The Editor Pane: source code with breakpoint set, and plain text

Tips

- The Editor pane has its own speedmenu for commonly used operations.

- You can easily hide or show this pane using the View menu or the Main toolbar.

- You can also open files by selecting them on the Directory tab of the Explorer and
choosing Edit or Edit in New Tab from the node's speedmenu.

See also

Using the Editor

- 36 -

Diagram pane

Diagram pane

When using Together for visual modeling, the Diagram pane is your focal point. This pane is
hidden, replaced by the Editor pane, until you open a project and a diagram. If the saved
desktop feature is enabled in your configuration (Options | Default | General | Desktop
Options), any diagrams open in your previous project session open automatically. Otherwise
you need to open diagrams yourself by double-clicking on them in the Explorer.

A tab is added to the Diagram pane each time you open or create a diagram. The tab displays
an icon for the UML diagram type, and the name of the diagram. If the tabs for all the
diagrams you open won't fit in the horizontal space available, a new row is created. You can
switch between open diagrams by clicking on the tab of the one you want to see.

You can hide or show the Diagram pane using the Main toolbar or the View menu. To
increase the size of the workspace you can hide the Editor pane and/or the Explorer pane.

Diagram Elements Toolbar

The Diagram Elements Toolbar displays at the left side of the Diagram pane. You use it to
place or draw icons representing the structural and behavioral elements and interactions of
your model on the background of the Diagram pane.

The Diagram Elements Toolbar is static but its composition varies dynamically depending
on the type of diagram currently selected in the Diagram pane. Principal elements defined by
the UML for the current diagram type are displayed along with any Together-specific
enhancements (class by Pattern in Class diagram, for example). Use the mouse-over tool-tips
to identify the toolbar icons. Noze and Noze Iink elements are common to all diagram types.

:J.»— lcon indicates dlagmm type __ ____d_____._;;Upmed dmgrams
IE (EE proklen_domsin r%, Sale Activity r*l].. Taotal of SaETO@ Sale State biagram |
% [:'j ==moment-interval== Cee l:'j ==mi-cetail== HRE EE
; CashSale I CashSaleDetail A
i _SALE MNEW:int=0 S -UoMint=0 i B
-SALE _OPEN:int=1 © | -product: ProductDesc e - T
=E] _SALE_CLOSED:int=2 : i1i *i : E.:* i1i i
2 +TAX RATE double=0.06 :' : "'E' ‘| +CashSaleDetairneod Prod iethe il G| iy
P -dizcount Amourt: BigDecimal s oeo- - +calcTotal):E b
-aniCashSaleSequencerPluginPaint © © | 1| +verifyfvails el B
g -payment: BigDecimal S| +ddeductGtyd [G Properties it
P -statuzint=SALE_NEW B ey A Shorcud . cubShitea fH
/' P ey .
=mn -y Dim: 1D HEAT otyirt Zoom
| e productDesg Shivwe Hicden_. ITI
3 +CashSale(] R Loyt » HF
E +makeCashSale(paymentAmtBighy - - - - -0 o0 00 0 0 Lpdais F§ 1
+calcSubtotal(): BigDecimal ; Lipdiabe Packags Depandsniss ¥ IcH
+calcDiscourt Amount () BigDecimalf | Mote: these classes & Biogram Cptions m
i +ralcTax():BigDecimal Ei AMALYEIS level class m
< +calcTotal() BigDecimal . | =eparstely and saved =
%:? +recalcTotal(: BigDecimal * | Right - click, chooze * Delete Delete Itz
+yerifySyailability]):baolean S e Cloes CiisF4 -
%jf +completed) void T
+clearyalues() void
%Df; +aavel)void SN e }'i' : :
+HlistCashSales() Yector - = = =<prab o o |
.| +calcTotalCashSales) BigDecimal it MI\ e e T e
] 5 C
N
Diagram toolbar Grid (Options dialog: Diagram page: Show grid) Diagram speedmenu

The Diagram pane showing Diagram Elements toolbar for a Class diagram

_37.-

Diagram pane

Diagram properties and speedmenu

Diagrams themselves are objects that have properties. You can view a diagram's properties
in the diagram properties Inspector. Click on the diagram workspace (this deselects any
selected diagram elements) and choose Properties on the speedmenu.

The diagram's speedmenu contains a number of commands that operate within the context
of the diagram. You can access such functions as adding elements, Zoom, Auto-layout, un-
hiding elements, clipboard operations, and Quality Assurance. You can also access diagram-
specific configuration options and, when properly configured, version control and external
tools.

Related topics

Creating diagrams in projects

Opening diagrams for editing

- 38 -

Message pane

Message pane

This pane dynamically displays several pages that provide information (system messages) or
enable you to perform a specific task (debug code or navigate to problem spots).

Messages page displays a queue of messages from the system. Non-critical error
messages display here rather than interrupting work flow with modal dialogs. This
pane is hidden by default. Use the speedmenu to save or copy messages, navigate to
problem spots described by a message line, or clear the message queue.

Run/ Debug page displays when the integrated debugger is invoked, or displays runtime
information when classes are run from within Together. Use the speedmenu to
navigate to the bug described by a debugger message line.

Builder page displays build information when you make a project.

You can show or hide this pane from the View menu, Main toolbar, or keyboard shortcut.
When the Message pane is hidden, an icon in the first cell of the status bar indicates the
presence of messages in message queue. You can clear the queue by opening the Message
pane (if hidden) and removing either single messages or all messages (choose Remove or
Remove All, respectively, in the Message pane's speedmenu).

Using the speedmenu, it is also possible to sort the existing messages by time in ascending or
descending order, and to store the contents of the message pane in a text file. By default,
Together suggests $TGH% /out/ as the target folder.

The capacity of the Message pane is configurable via the Op#ions dialog. Choose General node
and enter the desired value in the field Messages maxcinum count. The default amount of
messages is 200. When the limiting value is reached, each next message pushes out the first
message in the list.

When the Message pane is hidden, it is still possible to get notification about the new
messages. The icon in the lower left corner of the Message pane allows to open or close the
pane and see whether the new messages have appeared.
Icon Message pane state

Message pane closed; no new messages

Message pane closed; new message appeared

Message pane open

Messages page
Non-critical error messages display in the Messages page rather than in modal dialogs. For
example, if you draw a link to an invalid receptor, the link isn't created, a message is written

to the end of the queue, and the message icon displays on the status bar. If something you
do appears not to work, check Messages.

Messages that Together intercepts from external tools such as version control or a compiler
also display in the Message pane. Compiler error messages are of particular interest because
you can double click on an error message in the Message pane and navigate directly to the
code that caused the error.

-39

Message pane

You can double-click on messages displaying the [icon to open them in your registered
text editor application. You can use the Message pane's speedmenu to copy messages to the
clipboard or save them to a file.

Run/Debug page

This page appears when you start the debugger, or run the application. It displays the
Debugger tabset that enables selection of different debug processes (console, threads,
classes, etc.). It also contains the Debugger toolbar that enables you to start, stop, trace into,
step ovet, etc. as you work with the Debugger.

Tip: Leave the Message pane open until you have gained some experience using Together.

_40 -

Properties Inspectors

Properties Inspectors

Diagram and element properties are accessible in property Inspectors displayed with the
Properties command on the element or diagram speedmenu, or from the main menu Object |
Properties. Property Inspectors are generally multi-tabbed, and their content is dynamic,
depending on the selection.
To display properties:
1. Select the element or diagram in the Diagram pane or in the Explorer.
2. Do one of the following:

- right-click and choose Properties,

- use one of the keyboard shortcuts (A/+Enter , or Alt+double click),

- click on Properties icon on the toolbar, or
- select Object | Properties from the main menu

Overview of Inspectors

Inspectors generally (but not always) have multiple tabs that enable you to...
- View and/or edit properties of the selected diagram or element.
- Create and navigate hyperlinks between...
diagrams (existing or created "on the fly")
diagram elements and other diagrams (existing or created "on the fly")
diagrams (or elements) and files or URLs
- Enter and edit comments in source code; add comments to non source-generating diagram
elements.
- Add JavaDoc comments for the selected element such as @author, @version, etc.
- Enter and edit Requirements information.
- Edit properties specific to the selected element.

The properties' editors in the Inspector are different, depending on the value types. Where

multiple values are enabled, the fields are marked with an asterisk &

Some fields have the file/path chooser @ button, that invokes selection dialog. Button |3
invokes a dialog that displays the list of current property values and enables adding or

- . . F
removing them. To add or modify textual values use editor button .

The button @ is used in the view adjustment fields. Pressing this button invokes a dialog
where you can choose foreground and background colors.

Once entered, a value can be cancelled or deleted. ESC cancels entry in text fields only
unless Enter is pressed to complete. If a value is already entered, you can use Undo/Redo
icons on the main toolbar, or CTRL+Z. This is valid for text fields, comboboxes and
checkboxes. To delete a value from a text field or a combobox just select it in the inspector
and press Delete.

_41 -

Inspector dynamic tabset

The composition of the Inspector's
tabset changes dynamically
depending on what you have
selected in other parts of the user
interface. This section describes the
basic function of each Inspector tab
along with the scenarios related to
its visibility.

View and edit properties in dynamic properties
Inspectors. Class inspector shown.

Properties tab

This tab shows the properties of the
currently selected element in the
active diagram, or the diagram itself.
You can view and modify values of
properties.

Some properties (izzplements of a
class, for example) can have multiple
values. When more than one value is
specified, the values are comma-

Properties Inspectors

Properties of Cash5alesApp
Javadoc |/HTI'-.-1Ld|:u: rRequirements rElean|

Propetties rHyperlink rView |/ Description

flame | Walle

Mame CashZalesApp

package

steredtype |ui--:|:|mp|:unent

«

glias
file
puklic

final

RN

abistract
extends
implements °:-JE<-

invariants

persistent [

Apply EJB pattern

| none -

Press Ciri+Enter to finish editing and close Inspector

B

&

delimited. The fields that enable multiple values are marked with an asterisk.

Each property has a control field that you use for supplying property values. The type of

control displayed depends on the type of property.

For more information on properties and property editors, see Editing properties in the

Inspector.

Hyperlinks tab

The Hyperlinks tab enables you to create hyperlinks to different types of artifacts and
browse directly to them. You can create hyperlinks from the current diagram as a whole, or

from a selected diagram element to:

A new diagram (created on the fly)
An existing diagram or diagram element anywhere in the project
A URL on your company's intranet or on the Internet

You create, view, remove, and browse hyperlinks with the Hyperlink tab speedmenu. For
more information, see Hyperlinking Diagrams.

View tab

This tab, when displayed, enables you to set the foreground and background colors of the

selected element.

When you start working with Together diagrams the foreground and background colors are

the default Windows colors.

_4D -

Properties Inspectors

=R
If you want to change the background color of some selected node, press ﬂ button in

backgronnd field. Select background color dialog appears:

Select Background Color 1 -ﬁ
(S | 8]

Fecent:

~Preswiswm

| Initial Color |

Current Color

| Default Color |

| Set Defaut | ok || cencal |

You can choose background color from the standard Swing scale of colors using Swatches

tab, or define customer color using RGB (Red-Green-Blue) tab.
All history of chosen colors is represented in Recent matrix.

If you select RGB tab, you can choose the background color moving sliders:

Select Background Color . |

] 85 17a 255
—Preview
| Initial Calor |
Current Colar
| Default Calor |

| set Detaut | ok || canca |

o

If you want to restore the default color, press Sez Default or D hot key.
You can also change the default color in config file.

_43 -

Properties Inspectors

Description tab

For diagram elements that are round-trip engineered, the Description tab displays source
code comments when you select the element. For example, if you select an Interface, source
code comments in the relevant source file display in the Description tab where you can edit
them.

For diagram elements that aren't round-trip engineered (a Use Case for example) you can
enter comments for the element that are stored with the diagram file.

Caveat

Avoid using */' characters in the tags. These characters ate treated incorrectly, and the
information in diagrams may be lost.

JavaDoc tab

Inspectors for source generating elements display the JavaDoc tab. You can enter a
description and specify values for JavaDoc tags applicable to the selected element. The
values you enter are used when you generate JavaDoc using the Documentation Generation
feature.

Filling in the javadoc fields automatically generates appropriate tags in the javadoc tags in the
source code. @author and @see tags allow multiple values. In this case a separate tag is
generated for each value in the inspector field. Checking the flag @deprecated creates

. i .
an empty tag; use editor button to enter specific comments.
You can find guidelines for javadoc comments at

www.java.sun.com/products/jdk/javadoc/writingdoccomments.html

Requirements tab

You can track various requirements properties including type, priority, and difficulty for
diagrams and individual elements . You can specify a requirements document for the
diagram or elements. Note that a hyperlink to the document is not created when you specify
the requirements document. Use the Hyperlinks tab to create such links.

Bean /C++ properties tab
This tab adds to the inspector when Recognize Java Beans /| C++ properties options ate selected
in the View Management page of the Options dialog. For classes, it displays JavaBean/E]B
properties and events on the following lower tabs:

General tab: general JavaBean attributes

Properties tab: Bean properties like getter, setter, bound, constrained, etc.

Events: Bean event sets

Operation tab

The Operation tab is hidden until you set a value for a diagram element property Operation
(for example, a Message in a Sequence diagram for example). The value of this property is an
operation. The Operation tab displays the properties of the linked Operation. Once a value
is set for the property, the Operation tab displays whenever the element (e.g. Message) is
selected in the diagram.

DDL

DDL tab is hidden unless you check persistent checkbox in the Properties tab of the
inspector. This tab provides entries for the database table name and primary key.

_44 -

Main Window Tips

Custom properties

This tab appears in the inspector when Custom properties module is activated. For more
details refer to Customizing Properties' Inspector.

Dockable inspector

Properties inspector displays as a separate tabbed frame, but if you so wish you can tack the
inspector to the Explorer pane. To do so, press thumb-tack icon in the lower left corner of
the inspector frame, or press Shift-Enter. The contents of the inspector dynamically changes
as you select elements in the Diagram pane.

To undoc the inspector, press thumb-tack in the upper right corner, use Shift-Enter hotkey,
or just drag out the title bar of the inspector.

Alt+Enter hot key completes changes in the inspector fields and moves focus from the
docked inspector to the previously selected pane.

See also

Editing Properties in the Inspector

Customizing properties inspector

Main Window Tips

Speedmenu: Most components of the Together user interface have speedmenus (also
known as "context" or "right-click" menus). If you're not sure how to do something, check
these menus for appropriate commands.
Icon: Commonly-needed Main menu commands have parallel icons on the Main toolbar
and display the same icon that appears on the toolbar.
Show/Hide Panes: Use the View menu or Main Toolbar to show/hide panes. Note the
keyboard shortcuts for these too.
View: You can create diagram-only or code-only views by hiding the pane you don't need.
Use the View menu or pane toggles on the Main Toolbar. Create wide views by hiding the
Explorer pane.
Resize panes: There are movable separators between the major panes. Use them to resize
an individual pane or window region.
Use Explorer: When you have a diagram open in the diagram pane, you can use the
Explorer to select specific elements (Classes or Use Cases for example).
Use the Model tab for an Explorer-style view of the main diagram elements. Click on
the element you want to select in the diagram and the diagram will display it selected.
Use the Overview tab for a thumbnail view of the current diagram. Drag the shadow
to move the view; resize the shadow to adjust the zoom level.
If something is missing in a diagram that you think should be there, check
View Management Options (Options | Default | View Management). These
options may be set to hide some diagram elements. The status bar displays an icon
when one or more of the Show options is set to filter something out from view.
Show Hidden dialog (Diagram speedmenu). This will show you any elements hidden
with the Hide speedmenu command.
Opening files: You can open files from the Directory pane or the Editor pane using their
speedmenus.

_45 -

Configuring Together

Configuring Together
Configuring Together

Together is extensively customizable. There are many configuration options you can set to
change the way different subsystems work, or to handle data in the ways that fit with your
own requirements. For example, corporate managers or team leaders may wish to modify
round-trip engineering blueprints or create custom documentation templates so that code
generation and generated documentation conform to the corporate standards or
conventions. Analysts or designers may want View Management options set to hide
implementation details; engineers may want their code formatted a certain way. All these
customizations and many more are quite easy to do.

This topic presents an overview of the configuration architecture and categories of
configurable options. The other topics in this section explain how the configuration interface
works and how to do the most common configuration management tasks.

Overview of the multi-level configuration architecture

Configuration settings are applied at multiple /evels. The pre-configured default levels are:

Default: configuration settings are always in effect installation-wide unless overridden at a
more local level.

Project: settings apply to a specific project overriding the same settings at the default level.
Diagram: settings apply to a specific diagram overriding the same settings at the project
and /ot defanlt level.

Configuration options can be marked "final" at any level, meaning that they cannot be
overridden at another "lower" level. When Together is run as a server-based application, the
configuration is centralized and shared by all users. An administrator or manager can
customize the configuration so that some customizations apply globally across the enterprise
(defanlt level-marked final) and/or globally for a team (project level - marked final). This enables
unobtrusive enforcement of conventions, guidelines, and standards for code construction,
formatting, diagram content, and more.

For example, Version Control and Source Code options might be set at the defauit level, and
Diagram and Print options at the pryject level, marking them final in both cases to prevent
users on a shared installation from overriding them.

Modifying the levels

It is possible to modify the definitions of the pre-defined configuration levels and to add
additional levels (see Modifying the default config levels for more information).

Where to go next

- For information on setting options at different levels, see Using the Options dialog.

- For an overview of the categories of customization options and how to access them, see
Guide to the Options pages.

- For a list of frequently-needed customizations and how to do them, see Common
Configuration Tasks.

- C++ users: be sure to see Configurations for C++.

_46 -

Creating a Shared Multi-User Configuration

Creating a Shared Multi-User Configuration

The multi-tier approach to configuration properties enables a project or system
administrator to provide a set of configuration properties (code-generation rules for
example) for all users of the installation. By marking some configuration options as final at
the Default (installation-wide) level or project level, an administrator can prevent users from
overriding the configuration settings. Options not marked fina/leave individual users free to
use their own settings. There are two basic scenarios for shared configurations:

Together runs on a server, all users access the server installation's global configuration settings
which merge with individual settings at runtime:

i)

Q/ canfig Jmms

Together runs on individual workstations and users share a centralized set of global
configuration properties which merge with individual settings at runtime:

. Narh Q\v// Config ‘

Drive

Runtimea
Config

|
I
2 III u3 lll

I
Td
v il
-5
Jcclnfig

]

o=

J config Jcmﬂg

_47 -

Creating a Shared Multi-User Configuration

Shared configuration for a server-based installation

To set up a server-based configuration for a shared installation:
1. The administrator or manager (ADMIN) should run Together on the server console and
edit the configuration options as described in the following configuration topics, marking as
final those options that individual users may not override :

Multi-level architecture overview

Using the Options dialog

Guide to the Options pages
2. If additional one or more configuration levels are desired, create them as described below
in Adding new levels.
3. Next, the ADMIN should make a copy of the . /config directory (and the properties
directories of any added configuration levels) for each user of the shared installation. This
copy can reside on the user's local drive or on the network in a separate folder intended for
an individual user.
4. Finally, the ADMIN should create a start-up batch or command file for each user that
launches the shared Together application from the command line. This file should be
installed to the uset's computer.
To get server-based installation with developer-specific configuration settings, see Modifying
the default configuration levels below.
For information on launching Together from the command line, see Reference: Command
Line Parameters.

Sharing configuration among workstation installations

It is also possible for multiple users with their own copies of Together running on separate
workstations to access a shared multi-level configuration. In this case, the configuration
properties customized by an administrator or manager reside in a centrally accessible
location on the network. Individual users launch Together from a batch or command file
specifying the path to the central configuration using the -config.path command-line switch.
To set up a multi-workstation shared confignration for a shared installation:

1. Install Together to the ADMIN's workstation. Make a back-up copy of the original config
directory of the Together installation.

2. ADMIN runs Together on the ADMIN workstation.

3. If additional configuration levels are desired, ADMIN should create these as described in
Adding new levels below.

4. Open the Options dialog, click Levels, and edit any or all configuration options. Mark
individual options as final at the desired level for those options that you don't want to allow
individual users to override from a "lower" level.

5. Next, ADMIN should copy the modified . /config directory (plus any additional
directories created for added config levels) to a shared network location (e.g.

<server>/tg shared_config) thatis accessible to all Together users who should use this
configuration.

_48 -

Creating a Shared Multi-User Configuration

Creating the start-up pointer file

When the entire configuration is to be centrally shared, it's necessary to create pointer file to
define the centralized location and override Together's hard-coded configuration locations.
Once it is created and the correct location(s) defined, you need to reference the pointer file
in the -~-config.path switch when you start Together from the command line (or a batch
or command file). The easiest way to create the pointer file is to let Together generate a copy
of its on defaults.

To generate a defanlt pointer file:

1. Run the Together launcher for your OS and pass -

debug.config.saveDefaultPath=<path to files in the command line. For example:
Together.exe -
debug.config.saveDefaultPath=c:\Together5\1lib\pointer.config

2. Together starts up and writes the specified file to disk. You can then close Together.
The file name is just a suggestion. You can name it anything that doesn't conflict with
Togethet's property file names. You can store the pointer file anywhere but it's probably
most convenient to keep it in the . /1ib directory of each local installation. Immediately
after you generate it, the pointer.config file will contain the following lines:
config.level.$internal.group = basic
config.level.$internal.0 = $TOGETHER_LIB$/internal.config
config.level.$internal.1 = $TOGETHER _LIB$/path.config
config.level.$default.group = session
config.level.$default.0 = $TOGETHER CONFIG$/*.config
config.level.$default.write = STOGETHER CONFIG$/changes.config
config.level.$commandLine.group = basic
config.level.$project.group = project
config.level.$workspace.group = project
config.level.$workspace.0 = $PROJECT_DIR$/*.config
config.level.$workspace.write = $PROJECT_DIR$/$PROJECT _NAMES.tws

The highlighted lines are the ones you need to edit to point to your shared configuration.
Note that paths must reference mapped drives
(\appserver\tg_shared_config*.config will not work, for example). Thus, if your
shared configuration is on appserver, and that is locally mapped to drive s:, then the edited
lines would look like this (Windows style paths shown):

config.level.$default.0 = s:\tg_shared_config*.config
config.level.$default.write = s:\tg_shared_config\changes.config

Launching via the command line and pointer file

Finally, ADMIN should create for each user, or instruct each user to create on their
workstation, a start-up batch or command file that launches Together locally from the
command line using the ~config.path switch to specify the path to the pointer file. In
Windows, the command would look something like this:
c:\Together\bin\Together.exe -config.path=c:\Together\lib\pointer.config
For more information on launching Together from the command line, see Command Line
Parameters.

_49 -

Creating a Shared Multi-User Configuration

Adding new levels to the predefined ones

It is possible to add up to three additional configuration levels to the pre-defined ones (i.e.
Default, Project, and Diagram). For example, a Corporate level could be added to enforce certain
configuration settings across the enterprise. As a simple example: you could define the File
prologue option in Source Code options so that all generated source code files contain the
corporate copyright. Marking this fina/ at the Corporate level prevents changes from lower
levels. New levels can only be inserted above the installation-wide Default level in Options
Dialog order.

To add configuration levels, you must do two things:

1. Copy the contents of the STOGETHER HOMES /config directory to some other
location to create a separate set of configuration properties for the new level. This could be a
shared network location (as described in the previous section) or a local directory in your
Together installation (e.g. config/corporate).

2. Create a file path.configfile in the . /11ib directory and point it to the directory you
set up for the new level(s). Together searches this file and loads additional configuration
levels from the location(s) specified. If the location in 1 above is shared, be sure to do this
second step on all the local machines that need to share the configuration.

Adding new properties directories to a shared location

If you are creating the new level(s) for a configuration that will be shared from a central

location, you must create a set of configuration properties files for each new configuration
level. To do this:

1. Copy the . /config directory of your Together installation to the shared location and
rename it tg_shared config (or some other meaningful name).

2. For each configuration level you plan to add, copy the . /config directory of your
Together installation to a new subdirectory of tg shared config.Rename each new
subdirectory with the name of the level it represents. For example,

tg shared config/corporate.

TIP: You may find it easier to create the subdirectory(ies) under your local config directory, test that you
have defined the new level(s) correctly, and then copy the config structure to the shared location and modify
the levels from there.

Adding new properties directories to a local installation

If you are creating the new level(s) for a configuration on a local installation, you have to
copy the . /config directory of your Together installation to some other location and
rename it with the name of the level it represents. For example, . /config/corporate

For example, to create a Corporate configuration level, you first copy everything in the config
directory to some other directory... let's say
STOGETHER HOMES$/config/corporate

Creating the path.config file

Use a text editor to create the file STOGETHER HOMES/lib/path.config (check to
see that someone else hasn't already created it).

If you are setting up a shared configuration, you'll need to place a copy of this file in the
Together installation of all users.

- 50 -

Creating a Shared Multi-User Configuration

Add the following lines to the file:

=== path.config ===

optionsEditor.level.$corporate.name = Corporate
optionsEditor.level.$corporate.visible = true
config.level.Scorporate.name = Corporate
config.level.Scorporate.visible = true

config.level.$corporate.0 = <path to this levels

=== path.config ===

Replace <path to this leve/> with the path to the properties files for the level you are defining;
for example $TOGETHER CONFIG/corporate/*.config) .

TIP: Note that config.level.<level name>.<number> = <path> defines the source
for config files. For shared locations, use the full path. For local paths, specify the full path if outside
your Together installation; within that structure you can substitute an appropriate Together System
Macro ($TOGETHER LIBS$, S$TOGETHER CONFIGS, S$TOGETHER HOMES for example)
part of the path specification.

If you are adding more than one level, you must add some additional lines for each one. For

example, to add a Division level:

optionsEditor.level.$division.name = Division
optionsEditor.level.$division.visible = true
config.level.$division.name = Division
config.level.$division.visible = true

config.level.$division.1l = STOGETHER CONFIGS$/division/*.config

Viewing the added configuration level(s)

To verify that you have correctly added a new level, run Together, choose Options dialog on
the main menu and click the Levels button. (If you created the new levels in a shared location,
you'll need to launch Together from the command line specifying the path to the
configuration.)

In the case of our Corporate example, you should see the new Corporate level in the drop-down
list of available levels.

In this way you can configure local installations to include company-wide configuration.
Company-wide levels will be configured through path.config, and installation-wide
Defanlt level will become user-specific.

Modifying the default configuration levels

To get server installation with user-specific configuration, the entire configuration order
should be redefined. Together has command line parameter -config.path=<path to
file which defines all levelss. This option overrides hardcoded levels
configuration.

To get the hardcoded settings written to a file, pass -
debug.config.saveDefaultPath=<path to files in the command line. You will get a
file, which can be used in the config.path option to set the default behavior. This file can be
modified to add new levels.

To make level visible in the Options dialog, you should add to config (e.g. misc.config)

some more lines:
optionsEditor.level.$Scorporate.name = Corporate
optionsEditor.level.$corporate.visible = true
optionsEditor.level.$department.name = Department
optionsEditor.level.$department.visible = true
[...] .name is optional. If absent, the internal name will be shown ("corporate").
[...].visible is necessary, because the level is not visible by default.

_51-

Guide to the Options Pages

Guide to the Options Pages

This topic summarizes the pages of the Options dialog and the types of customizations you
can do on each page. Help texts for the pages and the individual options display directly in
the Options dialog.

Default options E2

s Genetal Chooze options setting and finalization level | defautt - |

ap- Diagram

4 Viewy Management Matme | alue | Lewvel | Final |

&b Source Code Role after restart | Developer - | | defaut w | [|2
@,

i Print IUse system background colar | []

db- Text Editor Confirm change to Look & Feel | [w) defaut W W

ap Generste HTML Enable mouse whesl support | [#] defaut = |][5

gp- RuniDebug
Database Enable Drag and Crop] default w]
Wehzervices Copy diagram image intothe ... | [¥] default -]

ap- Toolzs

& EJB Save files when switching a... | [default]

=p- Builder Synchronize files when retur.. | [defaut]

=P Version Contral _) domatically save deskton [l defant W | [bl

Dezcription
When checked, Together will uze the background color currently confizured in your operating
systemn. This option will be applied on restart.

Levels == | Ck I ‘ Cancel ‘ | Apply | | Help |

The full Options dialog for Defanlt confignration level

Keep in mind that you can set the options on each page at any one of three pre-defined
configuration levels. Be sure you know what level you are working on before you change any
option settings. For more information see Using the Options dialog.

General
The General options enable you to customize a number of behaviors and appearances in the
user interface. In this tab you can:

- Control background color and font properties

- Define user's role after restart

- Auto-synchronize files when returning from other apps (e.g. an editor or IDE)

- Enable or disable the Saved Desktop feature that remembers your desktop settings
between sessions.

- Specify files and folders in the project structure to ignore during round-trip
engineering (folders with version control data for example).

- Control the display of delete confirmations.

- Control the default location, initial diagram type, and referenced libraries for new
projects.

- Control whether the Message pane opens on errors.

- Enable or disable e-mail exception reports to the Together development team.

- Control whether Together will search archives for diagram files

52

Guide to the Options Pages

Diagram

The Diagram options allow to control a number of default behaviors and appearances that
apply only to diagrams. In Diagram options you can:

- Control the default link routing method

- Control the alignment, layout, justification, and initial maximum width of classes etc.
in diagrams

- Change the font used in diagrams

- Specify how association links are drawn and how and whether they are represented
in classes (and therefore, indirectly, in source code).

- Specify whether to generate metafile images of diagrams when saving diagrams.

- Control display of the print grid in diagram pane.

View Management

View Management options let you control what your want to see and when. Specity how
different kinds of elements display in the diagrams, or even whether they show up at all.
With the View Management page you can:

- Control the general level of detail shown in diagrams.

- Control whether members in Classes display with UML or Java format (products
with Java language support).

- Show or hide subpackage contents in diagrams.

- Control how Java Bean classes/C++ properties display in Class diagrams.

- Show or hide referenced classes in diagrams.

- Control the display of dependencies. Note: Showing dependencies slows down the
performance.

- Show object class names and message numbers in Sequence diagrams.

- Control display of messages in Sequence diagrams.

- Control banned destinations

- Specify maximum call stack depth for Sequence diagrams generated from operations.
- Show or hide aggregations of diagram elements (including 2 user-defined) and EJB
elements.

Source Code

In this page you can control a number of default behaviors and appearances that apply to the
formatting of source code during forward and reverse engineering operations. In Source
Code options you can:

- Specify the relative position of Attribute declarations and Operation declarations
within Class declarations (i.e. Attributes first or Operations first).

- Control how link-attributes are handled when destination is deleted.

- Specify exactly how source code is formatted (indents, line breaks, spacing, etc.); also
specify when code is reformatted.

- Specify the type of line separator for your OS.

- Specify language specific code formatting, optimization, and name referencing, and
import statement options for the programming language(s) supported under your
Together license.

- Specify version-specific IDL formatting options such as indenting and format of
comments.

-53._

Guide to the Options Pages

- Specify exactly how source code and comments are formatted (in-line breaks, space
preservation, separators, etc.) Includes JavaDoc comment formatting options for
comments.

- Customize source file prologue and epilogue text (the "Generated by" text at the
head of source code files) for Java, C++, and IDL

QA

In this node you can specify the paths to the sets of audits and metrics, and define the
applicable scope of Quality Assurance.

Print

In this page you can set a number of defaults that apply to printing diagrams, files and
generated documentation. In Print options you can:

- Set default paper size or define a custom one (e.g. for printing on a plotter).

- Set page orientation and margin sizes.

- Set 2 number of other print options such as print zoom level, page border/footer
etc.

Text Editor

In this page you can control a number of default behaviors and appearances that apply to the
display of text in the Editor pane. In Text Editor options you can:

- Define the number of spaces inserted in text with the Tab key.

- Define the font size.

- Define the text color and style for code comments.

- Define the text style for programming language reserved words.

- Define the orientation of the cursor.

- Customize the keyboard shortcuts for the Editor.

- Customize the way the Editor works with specific kinds of files in a number of
programming languages.

- Choose your favorite External Editor.

Note that source code formatting is not customized on this page. Use the Source Code page.
Generate HTML

In this page you can control the inclusion/exclusion of various content in the output of the
standard HTML documentation generation facility (Tools | Generate HTML). In Generate
HTML options you can:
- Include or exclude author and version tags in generated output.
- Specify all JavaDoc settings.
- Specify which visibility levels of classes to include in generated HTML output.
Tip: You can set these options "on the fly" as you begin the doc-gen process.
From the Generate HTML dialog, click Options to display the Options dialog
with only the Generate HTML tab visible. If you change any settings, they are
used for the current doc-gen operation only and then discarded. Your Options
settings for your configuration are not changed.

_54 -

Guide to the Options Pages

Run/Debug page

In this page you can customize your runner/debugger. In Run/Debug page you can:
- Define root directory of JDK for running and debugging applications from
Together.

Note: The default compiler is the Sun SDK, which is specified in the field "JDK Home". By
default it points to TGH/jdk. If JDK is not a part of installation, users should specify another
foldet. Otherwise compile/make/run commands will not wortk.

- Define location of the sources and current working directory
- Specify the project's Run Configurations

- Specify settings for Debugger

- Specity settings for JSP

Database

The Database options enable you to customize a number of common database properties.
Here you can define:

- Timeout that Together will be waiting for connection with DBMS.

- Control whether Together will replace tables after generating DDL.

- Specify whether to use quoting symbols for identifiers in the resulting DDL..

WebServices

This node is destined for the list of available application servers, which can be used to
register the web services.

Tools

Togethet's file-based architecture makes it possible to work in conjunction with other file-
based development tools... compilers, debuggers, IDEs, editors, etc. This node contains the
external tool definitions for your configuration. The External Editor tool definitions are
already pre-defined for you.

Unlike previous versions, JavaVM is not specified any more in the Tools options.

Shell definitions for several other tools are included in the dialog, which you can use to set
up interaction with an IDE and other tools. You can edit various fields to point these
definitions to appropriate tools on your system.

These user-defined tools plus those above should be adequate for almost all needs. If you
find you need more tools definitions, it is possible to add more options to the Tools page.
This is an Advanced customization that involves editing the tool . config file.

Menu commands for launching or interacting with the various tools are displayed on
appropriate menus in the menu system.

You can issue Compile/Make command from the project, package and class menu in the
project explorer, from a package and class in the physical class diagram, from the current file
in the editor, and by a button in the builder pane.

EJB

The EJB page options allow to edit properties for Enterprise Java Beans. In this page you
can:

- Select Application Server.
- Edit E]B suffixes that are used for EJB recognition.

-55-

Guide to the Options Pages

Builder

In the Builder node you can:
- Choose performing compilation prior to run/debug.
- Reflect compiling process in the Status bar.
- Control the format of compiler output.
- Choose target folder for the generated makefile.
- Set compiler options.
- Specify maximum permissible number of compilation errors.

Version Control

This node is where you enable version control and specify version control integration. Here
you can:

- Enable or disable version control.

- Specify default interactions such as getting files on project open.

- Specify what type version control integration to use (CVS or SCC).

- Set properties for CVS LAN and CVS Client-Server.
By default, everything is set up to integrate with CVS (which is installed with Together). If
you use a SCC-compliant version system you can choose 'SCC' in the Use option.

Note: To use a SCC version control system, Togezher must be running under Windows
(N'T/98/95) and Coroutine classes must be installed (normally auto-installed and configured by the
Together installer for Windows.)

Options for Activatable modules

Some additional nodes add to the Options tree when appropriate modules are activated,
such as Ant Runner or XPTest.

See also

Using the Options Dialog
Common Configuration Tasks

- 56 -

Using the Options dialog

Using the Options dialog

The Options dialog is Together's main configuration control center. You can use the dialog
in normal or Advanced mode. Normal mode enables setting options for a single
configuration level. Advanced mode surfaces the multi-level configuration feature and enables you
to set options at different levels without re-invoking the dialog (see Using Advanced Mode
below). The title of the Options dialog and content can vary depending on how you invoke
it. For convenience, some menu commands display the dialog with only a subset of the
available options. (See Invoking the Options dialog below).

The Options dialog presents several tabbed pages of configuration options that organize the
options into categories. For an overview of the categories and the types of configuration
tasks you can do on each page, see Guide to the Options pages.

Invoking the Options dialog

The Options menu enables you to invoke the full Options dialog for each of the
configuration levels. It also has commands that present a subset of all available configuration
options at a specified configuration level.

The following table shows the Options menu commands and function of each:

Command Action

Default Invokes the Options dialog and presents configuration settings at the default level.
Command is always enabled.

Project Invokes the Options dialog and presents configuration settings at the project level.
Command is only enabled when a project is open.

Diagram Invokes the Options dialog and presents the configuration settings available at
the diagram level. Command is only enabled when a diagram is open and the
Diagram pane is the active pane.

Default Tool Integration Invokes the Options dialog and presents only the Tools page at the defanlt level.
Command is always enabled.

Diagram View Management [(Invokes the Options dialog and presents only the View Management page at the
diagram level. Command is only enabled when a diagram is open and the Diagram
pane is the active pane.

Diagram Print Options Invokes the Options dialog and presents only the Print page at the diagram level.
Command is only enabled when a diagram is open and the Diagram pane is the
active pane.

Text Editor Options Invokes the Options dialog and presents only the Text Editor page at the default

level. This command is always enabled.

Activatable Modules ‘This command presents a submenu of feature and integration Building Block
modules that you can activate and deactivate by checking or unchecking. Keep in
mind the more modules you activate, the longer Together takes to load. Some
modules may impact performance as well.

Reload Reloads the underlying configuration properties files. You only need to call
reload if you do file-level customization of one or more of the properties files
while Together is running,.

_57.

Using the Options dialog

Using Advanced mode

The Levels button of the Options dialog toggles Advanced Mode. In this mode, the drop-
down list of finalization levels appears at the upper-right corner of the dialog, and the Leve/
and Final columns add to the options pages. The Level column is an indicator/selector
showing the currently defined configuration levels. The currently selected level is displayed.

Default options E2

s Genetal Chooze options setting and finalization level | defautt - |

ap- Diagram

gb Yiewy Management Mame | Walue | Lewvel | Final |

4k Source Code Role after restart | Developer - | | defautt - | I =
A,

i Print IUse system background colar | []

db- Text Editor Confirm change to Look & Feel | [w) defaut W W

i genga:f HTML Enable mouse wheel support | [¥] defaut w |] |

un/Debug

Database Enable Drag and Crop] default w]
Wehzervices Copy diagram image intothe ... | [¥] default -]

ap Tools

& EJB Save files when switching a... | [default]

=p- Builder Synchronize files when retur.. | [defaut]

=P Version Contral _) domatically save deskton [l defant W | [bl

Dezcription

When checked, Together will uze the background color currently confizured in your operating

systemn. This option will be applied on restart.
Levels == | Ck I ‘ Cancel ‘ | Apply | | Help |

2

The Options dialog in Advanced Mode at Default level
Level (in the page) indicates the level at which each configuration option is currently set.
Assuming the default level definitions:

default = Option is set at the Defanlt level

project = Option is set at the Pryject level

diagram = Option is set at the Diagram level
Final indicates that the option cannot be overridden at a level more local than the one
indicated on the Level column.
Advanced mode enables you to set options at multiple configuration levels without re-
invoking the Options dialog. You can change any settings that are not marked fina/ at a
"higher" (i.e. more global) level. In a local installation, you normally have complete control
over your configuration and the settings at all levels. In a shared installation, you can change
only those settings not marked as final by the system administrator in the shared
configuration.

- 58 -

Using the Options dialog

Setting options for multiple configuration levels

To access both the Default and Project levels:

1. Open a project

2. From the Options menu, choose Project to display the Options dialog.

3. Click Levels>> to display the levels. Only Defanlt and Project appear.

4. Set options at the Default level first, checking Final for all options that you do not allow to
be overridden.

5. Set options at the Project level next, checking Final for all options that you do not allow to
be overridden.

0. Click Apply to save changes as you work. Click OK to save changes and close the dialog.

To access all three levels:

1. Follow the steps 1-5 above.

2. Open the diagram(s) for which you want to set diagram-level configuration options. You
can optionally open them one at a time, or several at once.

3. Select an open diagram in the Diagram pane and choose Diagram Options from the
diagram speedmenu to launch the Options dialog.

4. Click Levels>>. The Diagram level is selected in the level selector/indicator.

5. Set Diagram level options as desired and click OK to close the Options dialog.

0. Repeat above for other diagrams as desired.

Using the Options editors

The Options dialog features new options editors displayed in a tree-like structure that
logically groups the options. In cases where an option is a group of sub-options, the node
expands to show all available sub-options. Different options have different editors
depending on the type of its value. If the options are multi-valued, the values are comma -
delimited. The illustrations below explains the basics of this interface.

Option values
= Genersl =) Mame | Walle Text string |
Fort properties on restart #| | Default location FTOGETHER _HOMESimyprojects

Desktop options
Delete confirmation

& Rewproest

Java Runtime Library

Initial disgrarm | Clazss -

Drop-down list

Expression
= Optimnize import statements - Marme | Walue
Femove unuzed impo File prologue #* Generated by Together */0 Exi
Default prologueiepilogue =
dh Dt File epilogue B

File prologue E3
P Generated by Together *f L
]
Ok | | Cancel |
b

-59._

Using the Options dialog

Note the convention for check-boxes: checked = Boolean #ze, cleared = Boolean false. True
means the option is active, engaged, or in effect. For example, checking the box for a Filter
means the filter is active.

Tips and tricks

Individual options appear as nodes on an inspector tree in each tabbed page. Some options
expand to show sub-options. If there are more options that can display in the page, a vertical
scrollbar will appear.

Help for each page of the Options dialog, and for each of the options, displays directly in
the dialog... no need for constant task switching. To see a general description of the page,
click on its tab. To see Help for an individual option, click on the name.

Where the value of an option may be a multi-line expression (SourceCode | Code
Templates, or View Management | Show | * | Expression for example), a browse button
appears beside the edit field. This launches a multi-line editor.

For checkbox options, checked state is Boolean #ue or yes, cleared state is Boolean false or
no. For example, in View Management's Show options, checking Show | All Members
means yes (show).

You can resize the Options dialog. You can also change the width of the Name and Value
columns of the dialog by dragging the separator between the column headings.

See also

Multi-level architecture overview
Guide to the Options pages
Common Configuration Tasks

- 60 -

Frequently Asked Questions on Common Configuration Tasks

Frequently Asked Questions on Common
Configuration Tasks

Common configuration tasks

This section is intended to be a sort of FAQ for commonly needed customizations. Each
topic in the section provides task-oriented specifics on how to do the specific configuration
modification. Navigate through the table of contents to the desired task section. See Guide
to the Options pages for additional information on the Options dialog customization
facilities.

How to make Association links display a directional arrow

You can configure the default properties of Association links in the Options dialog, and the
properties of individual links in the properties Inspector of the link.

To configure defanlt Association properties:

1. Launch the Options dialog.

2. Use Levels button to select the configuration level if necessary

3. Select the Diagram tab.

4. Expand the Associations node.

5. Set the value of Draw directed as desired.

All - all links will be shown directed.

No - all links will be shown undirected.

Automatic - links represented by the attributes whose names start with "Ink", will be
shown directed. All other links will be shown undirected.

6. Click OK.

This option applies only to Association links whose "directed" property in the link's
Inspector is set to "Automatic". If it is set to "Directed" or "Undirected" then the link will
be always display according to that setting, regardless of the value set for this option.

Tip: You can also set Show as attributes so that attributes that are displayed as links show in
the attributes section of classes.

How to change the default source file header for the generated code

1. Launch the Options dialog.

2. Use Levels button to select the configuration level if necessary
3. Select the Source Code tab.

4. Expand the appropriate language node.

5. Expand Default Prologue/Epilogue node.

6. Edit the default text to whatever you want. For example: "Generated for XYZ. Corp.
Copyright (¢)2001. Company confidential."

How to customize the default settings for C++

If you need to learn how to customize the default definitions for C++ source and header
files, configure default library support, and more, refer to Languages support chapter that
contains special notes related to configuration issues of using Together with C++.

_61 -

Frequently Asked Questions on Common Configuration Tasks

How to create and use custom snippets for source code and text

This features allows to significantly speed up the coding process and avoid misspellings. See
Defining Snippets in the Editor section of the User Guide.

How to configure Stereotypes

Customizing stereotypes is a low-level configuration task and requires Java programming.
This allows to populate stereotype lists, modify default stereotype values, and specify RGB
color values for stereotypes, etc. See Advanced Customization: Customizing Property
Inspectors for more information.

How to customize Inspector properties

If you need to learn how to modify the property names and/or default values in properties
Inspectors, add your own properties, or delete properties you don't want, refer to Advanced
Customization: Customizing Property Inspectors for more information. Customizing
inspector properties is a low-level configuration task and requires Java programming.

How to hide and show elements

To hide specific types of diagram elements from view:

1. Launch the Options dialog.

2. Click Levels to select the configuration level if necessary
3. Expand View Management node.

4. Expand Show node.

To hide the elements defined by one of the options (Inheritance links, for example), clear
the option checkbox. To re-show elided elements, check the option box.

For more information see View Management 'Show' options

Note that individual elements can be hidden in diagrams using the Diagram speedmenu. If
you don't see an element in a diagram, and the element is not hidden by View Management
options, choose Show Hidden from the Diagram speedmenu and check the hidden elements
list.

You can define filtering expressions for the User-Defined options under the Show options
of View Management page. Study the expressions in the pre-defined Show options to see
how you can show or hide different elements.

The other options on the View Management page of the Options dialog may hide some
kinds of information. For example, Diagram Detail 1 eve/ can hide visibility symbols.

How to set options to control the formatting of your source code

To customize source code formatting options:

1. Launch the Options dialog.

2. Use Advanced to select the configuration level if necessary

3. Select the Source Code page.

4. Expand the node for Formatting Options and set sub-options as desired.

_62 -

Frequently Asked Questions on Common Configuration Tasks

How to enable mouse-wheel support (Windows only)

Java VM 1.2, 1.3 doesn't support mouse wheel events. To scroll a diagram or a frame when
using a mouse equipped with a wheel, Together usually transforms mouse wheel events into
Ctrl-Up, Ctrl-Down, Up or Down keystrokes.

To enable mouse-wheel support:

1. On the main menu, choose Options | [lvel] | General.

2. Expand General node and locate the Enable nmouse wheel support option.

If the option is checked, this feature is enabled.
If unchecked, Together doesn't transform mouse wheel events.

Note: This option applies only when Together is running with the Sun Java Virtual Machine (JVM)
under Windows. Unlike most options, this one requires restart of Together before taking effect.

How to set up Together and projects to interact with version control

Together comes pre-configured for the CVS version control system (automatically installed)
and version control support is enabled in the system by default. If you already use a SCC-
compliant version control, you can change your configuration to use that system.

Version control is not automatically enabled for projects... you need to enable it and specify
the version control system project to use when you create the Together project (or later in
Project Properties).

To enable or disable version control integration support:

1. Launch the Options dialog.

2. Use Advanced to select the configuration level if necessary

3. Select the Version control page.

4. Check or clear the Enable version control checkbox.

To enable version control for a project:

1. Click Advanced in the New Project dialog (if creating a new project) or the Project
Properties dialog (for an existing project).

2. Check the Version control project box to enable version control.

3. Click Select. Select the source control project in the currently configured version control
system (CVS or your SCC-compliant system).

For more information, including what Together files to place under version control, see
Using Together with Version Control System.

- 63 -

Command line parameters

Command line operations and macros

Command line parameters

Basic command-line syntax
Together starter [Options] [ProjectFile]
where:

Together_starter |is a command that starts Together.

On the Windows platform Together has the following launchers:

Together . exe with disabled console output,

TogetherCon. exe, that uses the existing console, or opens a new console for output.

Together . exe provides dialogs for selecting parameters. Therefore, console version is
preferable for automated doc generation. In some cases, when graphic output is advisable
in the console version, you can use the option -gui.

For other platforms, you might create Together.sh, Together.cmd, etc.
depending on the operating system.

Alternatively, this can be a complicated command that calls your Java VM, specifying
parameters for it, followed by the Together main class name
(com.togethersoft.together.Main) followed by any parameters for that class.

Options |are one or more concordant options, starting with hyphen.
If an option requires a value, you can use either "=" (equal) or ":" (colon) symbols after
the option's name. For example you can type:

-script=com.togethersoft.modules.helloworld.HelloJava
or
-script:com.togethersoft.modules.helloworld.HelloJava

Note: Use colon (:) symbol under Windows, since
Windows command line interpreter.

is incorrectly processed by the

ProjectFile |is the path to a Together project file to be opened. The file name must have .tpr
extension. Optional for invoking modules that do not need to access model information
from a specific project.

Using the Windows launcher

The installer for Windows platforms installs the Windows-specific launcher

Together. exe. The launcher invokes the registered Java virtual machine, prepares a
command line for it, and passes any parameters in the input command that don't pertain to
itself on through to the main Together class.

For complete parameters of Together . exe see Together.exe parameters.

_ 64 -

Command line parameters

Invoking the Together main class

Under all supported operating systems you can invoke the Together main class directly,
specifying any desired or necessary parameters. The name of this class is

com. togethersoft.together.Main. Since this can require a complex command
that calls your Java VM, specifying parameters for it, followed by the Together main class
name, followed by any parameters for it, you will probably prefer to create
batch/command/shell script files for this kind of startup. You can find examples of such
files in several platform-specific subdirectoties in STOGETHER HOMES /bin. Use these
files directly, configuring as necessary for your system, or use them as models to create your
own launcher files.

Parameters of Together's main class

<Project.tpr> specifies the fully qualified name of Together project file that will automatically
open on start-up.

-config.path:<path> Tells Together to search <path> for configuration properties instead of the
default hard-coded location. For information on usage see Creating a shared multi-
user configuration

-script: <module name> |Automatically runs a module after opening the specified project.

If module name is specified without the full path, Together searches for the
module in the default locations (depending on the file extension). For more
information, see Working with modules.

-version Types Together version and build number, and exits. *

-help Types parameters of Togethet's main class, and exits. *

* This option is only used if console is enabled.

Command-line examples

Standalone Formatter

You can format the source codes of your projects externally, using a standalone formatter.
The command files for standalone formatter reside in the relevant folders under
%TGH%\bin. For the Windows platform, Formatter.bat file resides in win32 folder;
Formatter. sh for the UNIX platform resides in the unix folder.

Run $TGH%\bin\win32\Formatter.bat -help to see the list of parameters.
Running modules on start-up

The following command line starts Together and executes the Hello_World module,
compiling it if necessary. (Note that the scriptloader.config file must be
configured in accordance to your Java environment). The project file name parameter is
optional in this case, since Hello_World module does not access project information. Note
that Java files and Java classes should be specified with the proper case of letters (Java is the
case-sensitive language).

cd $TOGETHER HOME%\bin <Enter>

TogetherCon -script:com.togethersoft.modules.helloworld.HelloJdava
samples\java\CashSales\CashSales.tpr

- 65 -

Command line parameters

Generating doc from the command line

You can run HTML or RTF documentation generation module from the command line as
part of an automated build process, using Together.exe, TogetherCon.exe,
umldoc. exe (for Windows users only) or Together. sh (for Unix users only).
Together . exe launches Together shell and brings you through the entire documentation
generation procedure. The main intention behind using TogetherCon. exe and
umldoc . exe was to be able to produce documentation without opening Together
windows.

When you run Together . exe or TogetherCon. exe in the command line mode, you
can select between generating HTML or RTF documentation, specifying the appropriate
module name. umldoc . exe utility allows to generate HTML documentation only.
Launching the documentation generation module:

<launcher> [module] [options] <projects>

where:

<launchetr> is Together.exe, TogetherCon.exe or umldoc.exe

[module] is a command for the specific utility.

-script=com.togethersoft.modules.genhtml .GenerateHTML for
generating HTML documentation;
-script=com.togethersoft.modules.gendoc.GenerateDocumentation
for generating RTF documentation;
Note: This parameter is not required for umldoc . exe, since it executes generateHTML
module only.
[options] are the ones for the command-line GenerateHTML module launcher
(STOGETHER_HOMES$\bin\win32\umldoc.exe) or for GenerateDocumentation.
The options are listed below in the tables.
<project> is the path to the project on which to generate documentation;

Options for umidoc.exe

Option Description

-overview <file> Read overview documentation from HTML file
-public Show only public classes and members
-protected Show protected/public classes and members (default)
-package Show package/protected/public classes and members
-private Show all classes and members

-help Display command line options

-sourcepath <pathlist> (Specify where to find source files

-classpath <pathlist> Specify where to find user class files

-d <directory> Destination directory for output files.
Note: Not required for Together.exe, since it initiates the Together
documentation generation dialog.

-use Create class and package usage pages

- 66 -

Command line parameters

Option Description

-version Include @version paragraphs
-author Include @authot paragraphs
-splitindex Split index into one file per letter

-windowtitle <text>

Browser window title for the documentation

-doctitle <html-code>

Include title for the package index(first) page

-header <html-code>

Include header text for each page

-footer <html-code>

Include footer text for each page

-bottom <html-code>

Include bottom text for each page

-nodeprecated Do not include @deprecated information
-nodeprecatedlist Do not generate deprecated list
-notree Do not generate class hierarchy
-noindex Do not generate index

-nohelp Do not generate help link

-nonavbar Do not generate navigation bar

-stylesheetfile <path>

Cascading stylesheet file to control appearance and formatting of the
generated documentation

-togethersettings Use settings from config/GenerateHTML.config file

-recurse Create output for packages specified in [package names]and their
subpackages

-javadoc Create the same output as javadoc.exe produces

-browser Launch HTML browser

-diagrams Create diagrams' pictures

-navtree Generate Navigation Tree

-nopackagedependencies

Do not show package dependencies in all class diagrams

_67 -

Command line parameters

Options for gendoc
Each GenDoc option can be either "switch option" or "parameter option". Switch options
are represented as
-option_name
Parameter options should be followed by parameter values
-option_name parameter_value

There are two option types in GenDoc: the Regular gptions and the Custon options. Regular
options allow to specify the required parameters for the Doc Generator, such as template
file, output directory, etc. GenDoc recognizes a fixed number of regular options.

Regular options

Option Description
-template <path> template file. if omitted, the default "ProjectReport' template will be
used:

.modules\gendoc\templates\ProjectReport.tpl

-metamodel <path> meta-model file; if omitted, the default meta-model file will be
used: .modules\gendoc\templates\MetaModel .mm

-format <RTF | HTML | TXT> |output format; RTF assumed by default.

-styletemplate <path> style template file (depends on the output format, e.g. * . dot file
for RTF output)

-d <directory> output destination directory

-f <path> output file path. This option allows to redirect all GenDoc output

to the specified file. The option is compatible with TXT output
format only.

-diagrams include diagram charts
-recurse create output for packages specified in [packagenames] and their
subpackages

Custom options

Any options that are not recognized as the regular options, are considered custom options.
There is no fixed list of custom options and they are not directly processed by the Doc
Generator. A custom option should always have a parameter. GezDor stores all passed
custom options and their values. Subsequently, when a particular template is processed, the
value of any custom option can be obtained by name within the template, using the function
getDGOption (String optionName).

This feature allows to pass parameters to a template from command line and adjust the
template behavior dynamically.

See also

Generating Project Documentation

- 68 -

Parameters for Together.exe launcher

Parameters for Together.exe launcher

The Together.exe launcher is provided for use under Win32 operating systems. Parameters
of this executable file may be used when invoking it from the command prompt.

When invoking Together . exe from the Windows command line (or batch files), specify
its parameters before any other parameters. You can see the complete list of

Together . exe's parameters by running it from the Windows Command prompt using
the -h option.

Parameters for VM preferences

Note the presence of parameters -builtin and -sun13. These enable you to specify the
preferred VM in cases where more than one is installed. By default, the Windows launcher
first looks for the Microsoft JVM and uses it to run Together. Specifying -sux tells the
launcher to prefer the Sun JVM (assuming it is present). If the preferred VM is not found on
your computer, then another one is used. If no VM is found, the launcher returns an error
message.

USAGE: Together.exe [options] [-c[class name]] [parameters]
Valid options are:

Option Description

-?,-h,-help print this usage message and exit

-con,-nocon how/don't show console (default without new console)
-cmd print launched command line

-nowarn do not show warning messages

-full load all *.zip/jar from TOGETHER\lib
-profile display time for common operation
-verbosegc print when garbage collection occurs
-noclassgc disable class garbage collection
-ms<number> initial java heap size (default 64m)
-mx<number> maximum java heap size (default 512m)
-D<name>=<value> set system property (or -d:<name>=<value>)
-Xbootclasspath <path> [set bootclasspath to <path> (JDK 1.3)
-classpath <path> set classpath to <path>

-cp <path> prepend <path> to classpath

-cp:p <path> prepend <path> to classpath

-cp:a <path> append <path> to classpath

- 69 -

Parameters for Together.exe launcher

-nojit disable JIT compiler

-verify,-noverify verify/don't verify classes when loaded

-verifyremote verify network loaded classes (default by VM)

-builtin prefer built-in Java VM (Sun JDK) to other Java VM

-sunl3 prefer Sun JDK 1.3 VM to other Java VM. Note: Together
supports JDK 1.3 only!

-nosystemcheck don't check system memory size

-c<class_name> class name to run (default com.togethersoft.together.Main)

The rest of command line after - ¢ or unknown parameter prefix is class_name or its
parameters. By default, JDK 1.3 (installed with Together on Windows platforms) is used.

EXAMPLE:
Together -sunl3 -mslém paraml param2 param3

See also

Command Line Parameters

~70 -

System macros

System macros

System macros are shorthand notations for lengthy path specifications that you may need to
use for configuration, scripting or other tasks. Together knows how to expand the shorthand
and make the proper reference.

You will most likely need to use macro references when doing customization tasks in the
Tools tab of the Options dialog. Specific references to usage there are noted in blue font.

Macro

Description

TGH

contains the full path to your Together's installation. For example
(c:\'Together5).

$TOGETHER_HOMES$

Identical to TGH

$SYSTEMJVMS

Contains the call of the installed Java VM, along with the value of the system's

CLASSPATH environment variable. For example:
c:\jdkl.2\bin\java.exe -cp %CLASSPATH% (for Sun VM)

c:\WINNT\jview.exe /cp %CLASSPATH% (for Microsoft VM)

You can use this macro in the "Java VM" option and add additional
directories/archive files after a semicolon(Windows) or a colon(UNIX). For
example:

$SYSTEMJVMS ; c: \MyClassesDir (Windows)

$CLASSPATH$

contains the value of the system's CLASSPATH environment vatiable.

$CLASSPATH_JVM$

Contains the path to the rt.jar file.

$CLASSPATH_PROJECT$

contains the paths to all the packages in the project.

$SOURCEPATHS contains the paths to all the writable packages in the project.

$DESTINATION$ contains the value of the Destination option in the Tools tab of the Options
dialog (this value is defined in the "build.destination" property located in the
tool.config file)

$MAINCLASS$ contains the name of a class in the project, defining the "public static void main
(String[])" method. If thete is no such class, this macro contains an empty line
(" ").

$LINENUMBER$ contains the line number of the selection in the file containing the selected

element. For example, for selected operation this macro will contain the line in
the file with the operation's class.

$CLASS_NAMES$

contains the name of the selected class (fully qualified name in Java).

$PROJECT_DIR$

contains the full path to the project's directory. For example, if the project is
located in the ¢ : \together\myprojects\CoolProject directory,
then this macro will contain the value
"c:\together\myprojects\CoolProject"

$PROJECT_NAMES$

contains the name(without extension) of the project file. For example, if the
project file is

c:\together\myprojects\CoolProject\myproj . tpr, then this
macro will contain "myproj".

_71 -

System macros

Macro

Description

$PROJECT_EXTS$

contains the extension of the project file. For example, if the project file is
c:\together\myprojects\CoolProject\myproj . tpr, then this
macro will contain "tpr".

$PROJECT_FULLNAME$

contains the name (with extension) of the project file. For example, if the
project file is

c:\together\myprojects\CoolProject\myproj . tpr, then this
macro will contain "myproj.tpr ".

$PROJECT_SPEC$

contains the full name of the project file (path, name and extension). For
example, if the project file is
c:\together\myprojects\CoolProject\myproj . tpr, then this
macro will contain the value:

"c:\together\myprojects\ CoolProject\myproj.tpt".

$FILELIST$

contains the "@somefile", where somefile is the name of the automatically
generated file with the list of the files (each file on a new line) contained in the
selection. (If a user clicks on a class, somefile will contain only the file with
the selected class, but if a diagram is clicked, somefile will contain all the
files that represent classes in the diagram, and all the classes in subpackages
shown on this diagram, etc.)

$FILE _DIRS$

contains the full path to the selected file's directory. For example, if the selected
file is located in the c:\together\myprojects\CoolProject directory, then this
macro will contain "c:\together\myprojects\ CoolProject”

$FILE_NAMES$

contains the name (without extension) of the selected file. For example, if the
selected file is
c:\together\myprojects\CoolProject\MyClass.java, then
this macro will contain "MyClass".

$FILE_EXT$

contains the extension of the selected file. For example, if the selected file is
c:\together\myprojects\CoolProject\MyClass.java, then
this macro will contain "java".

$FILE_FULLNAMES$

contains the name(with extension) of the selected file. For example, if the
selected file is
c:\together\myprojects\CoolProject\MyClass.java, then
this macro will contain "MyClass.java".

$FILE_SPEC$

contains the full name of the selected file (path, name and extension). For
example, if the selected file is
c:\together\myprojects\CoolProject\MyClass.java, then
this macro will contain "c:\together\myprojects\ CoolProject\MyClass.java".

DEF_FILE_DIR

contains the full path to the selected definition file's directory (C++ only). For
example, if the selected definition file is located in the
c:\together\myprojects\CoolProject directory, then this macro
will contain "c:\together\myprojects\ CoolProject". Definition files has .cpp
extension

DEF_FILE_NAMES

contains the name (without extension) of the selected definition file (C++
only). For example, if the selected definition file is
c:\together\myprojects\CoolProject\guest . cpp, then this
macro will contain "guest".

_7D

System macros

Macro Description

DEF_FILE_EXT contains the extension of the selected definition file (C++ only). For example,
if the selected definition file is
c:\together\myprojects\CoolProject\guest . cpp, then this
macro will contain "cpp".

$DEF_FILE_FULLNAMES$ |contains the name (with extension) of the selected definition file. For example,
if the selected definition file is
c:\together\myprojects\CoolProject\guest . cpp, then this
macro will contain "guest.cpp".

DEF_FILE_SPECS contains the full name of the selected definition file (path, name and extension)
(C++ only). For example, if the selected file is
c:\together\myprojects\CoolProject\guest . cpp, then this
macto will contain " c:\together\myprojects\CoolProject\guest.cpp".

$PROMPT$ Displays a dialog with a text input field and, when you press OK, returns the
entered value. If you press CANCEL, the command is cancelled.

Variants:

$PROMPT:name=placeYourLabelHere$
Same as $PROMPTS, but you can specify the name (a string after the equal
sign) of the label above the input field.

$PROMPT:name=placeYourLabelHere,default=placeDefaultValueHere$
Same as above, but allows you specify the default value of the input field. If
you press CANCEL, the default value will be returned.

Note:
If there are several SPROMPTS$ macros, then only one dialog will be displayed,
containing fields specified in these macros, for example:

$PROMPT$$PROMPT:name=MyLabel$_someString $PROMPTS

will display a dialog with three input fields, and when the user presses OK, will
return a string containing :

AB_someString_C, where A,B,C are the entered values.

Referencing configuration properties as macros

Besides using the predefined macros (described above), it is possible to use any of the
properties defined in the *.config files. In this case you must write $:nameoftheproperty$. Note
that you must use a colon after the first dollar sign ($). If you use a property named
build.someproperty, you can write just $: somepropertys. For all other
properties you must specify their full name.

Examples:

$:build.classpath$ - include the value of the property build.classpath (the value of this
property is in the Tools tab ("Classpath") of the Options dialog)

$:classpath$ - you can use short names for properties build.*, same as above.
$:ves.option.cvs.executable$ - include the value contained in the property
vcs.option.cvs.executable

_73

Template

Template Macros

Macros

The following macros, surrounded with % characters, are used in the template values for
both Forward (code-gen) and Reverse (parser) engineering.

All languages

Macro

Definition

%Class_Name%

‘This macro doesn't show up in the Choose Pattern dialog. For the classes, it is
substituted with the name of the class to which this template is applied (e.g. for class
constructors). For the members, it is substituted with the name of the class, where a
member is created by this template. Note: can't be used in prologue/epilogue propetties

%FILE NAMES%

Name of the class source code file. Note: used for generating prologue/epilogue only.

%$FILE EXT%

Extension of the class source code file. Note: used for generating prologue/epilogue
only.

%Name$% Name of a generated class / attribute / operation, editable in the Choose Pattern dialog
%$Dst% Name of the destination class of a generated link, editable in the Choose Pattern dialog
%Type% Type of attribute or return type of operation, editable in the Choose Pattern dialog
C++ Only

Macro Definition

%Header_ File% |The header file path

In addition to the above macros, parser can use the $Any% macro that matches any token.

Notes:

1. Case of letters in the file macros (¥3FILE NAMES%, etc.) controls case of letters in the
generated file name. For example, "$FILE NAME% %FILE EXT%" is expanded to
"CLASS1_HPP", while "$File Name% %file ext%"is expanded to "Classl_hpp".

2. The file macros (3FILE NAMES%, etc.) are resolved meaningfully. Thus, if due to the
context, they should be resolved to valid identifiers, you should control this on your own.
For example, if you use . h++ file extensions, then the statement in the default file prologue:
#ifndef %FILE NAME% %FILE EXT% can cause compilation errors.

3. Templates replace blueprints of the pre-4.0 versions. Together recognizes Blueprints from
earlier versions, and will for several more releases. However, it is strongly recommended to
converse to Templates, as they are more efficient.

_74 -

Keyboard shortcuts

Keyboard shortcuts

Together provides a keyboard interface for most commonly-needed tasks. The standard
keystrokes are documented in this topic. The files action.configand menu.config
in your installation store the data that controls the presentation and actions of the keyboard
interface. It is possible to modify these files to customize the keyboard interface. However,
such customization is recommended for advanced users only.

Main Menu

Explorer

Expand node Right arrow, ENTER, double click
Collapse node Left arrow, ENTER, double click
File

New project CTRL+SHIFT+N

New diagram CTRLAN

Open project CTRLASHIFT+O

Save CTRL+S

Save all CTRLASHIFT+S

Close CTRL+W

Close all CTRL+SHIFT+W

Print Diagram CTRLA+P

Exit ALT+X

Edit

Undo CTRL+Z, ALT+BACK_SPACE
Redo CTRL+Y, CTRL+SHIFT+Z
Cut CTRL+X, SHIFT+DELETE
Copy CTRL+C, CTRL+INSERT
Paste CTRL+V, SHIFT+INSERT
Delete DELETE

Go to line CTRL+G

Search

Find CTRLAF

Replace CTRL+H

-75-

Search next / previous

F3 / SHIFT+F3

Search in files CTRL+SHIFT+R
Search by query CTRLA+SHIFT+Q
View

Toggle explorer pane F6

Toggle editor pane F9

Toggle diagram pane F10

Toggle message pane F11

Full screen view F12
Select

Next Pane CTRL+F12
Previous Pane CTRL+SHIFT+F12
Next Tab ALT+RIGHT
Previous Tab ALT+LEFT
Open & select explorer pane CTRLA+FG6
Open & select editor pane CTRL+F9
Open & select diagram pane CTRL+F10
Open & select message pane CTRL+F11
Help

Contents SHIFT+F1
Diagram shortcuts

Deselect element ESC

Add Shortcut CTRLASHIFT+A
Select all nodes CTRL+A
Invoke speedmenu of the selected element SHIFT+Right Click
Auto layout all elements CTRL+K
Update F5

Paste reference CTRLA+SHIFT+V

Navigation between elements

UP, DOWN, LEFT, RIGHT

Select first member in the selected class

PAGE DOWN

Keyboard shortcuts

_76 -

When member is selected, select its class

PAGE UP

Diagram scrolling up/down/left/right

CTRL+UP, CTRL+DOWN,
CTRL+LEFT, CTRL+RIGHT

Diagram scrolling page up/down

CTRL+PAGE UP, CTRL+PAGE
DOWN

Diagram scrolling page left/right

CTRL+HOME, CTRL+END

Open Inspector

ALT+ENTER, ALT+double click

Move focus from docked inspector ALT+ENTER
Delete DELETE
Rename F2
Zoom shortcuts

Add Shortcut CTRLA+SHIFT+A
Select all nodes CTRL+A
Activate Zoom Lens CTRL+SPACE
Zoom in +

Zoom in with the toolbat zoom icon click
Zoom out -

Zoom out with the toolbar zoom icon ALT + click
Fit in Window *

Zoom 1:1 /
Class diagram

New class CTRL+L
New interface CTRLASHIFT+L
New package CTRL+E
Class

New attribute CTRL+A
New operation CTRL+O
New member by pattern CTRLAT
New property CTRL+B

Keyboard shortcuts

- 77 -

Package

New class CTRLA+L
New interface CTRL+SHIFT+L
New package CTRL+E

Attribute, Operation, Property, Statechart, Activity diagrams

New attribute

INSERT, CTRL+A

New Operation

INSERT, CTRL+O

New Property INSERT, CTRL+B
New internal statechart transition CTRL+T
New internal activity transition CTRLAT

Compile and Run/Debug shortcuts

Make F7

Rebuild CTRL+SHIFT+F7

Run configuration dialog SHIFT+F10

Run application with the current CTRLA+F5

parameters

Run application with the parameters CTRL+SHIFT+F5

dialog

Debug application with the current SHIFT+F9

parameters

Debug application with the parameters CTRLA+SHIFT+F9

dialog

Attach to remote process SHIFT+F5

Editor shortcuts

Insert snippet CTRLAH]J

Invoke Code Sense CTRLASPACE

Insert Bookmark CTRL+M

Invoke Bookmark Dialog CTRL+D

Insert Numeric Bookmark CTRL+SHIFT+number

Navigate to Numeric Bookmark CTRL+number
CTRL+F8

View method parameters

Keyboard shortcuts

_78 -

File Chooser

Invoke speedmenu in the file chooser SHIFT+F10
dialog

Version Control

System CTRL+Q
Navigation shortcuts

Switching between open panes CTRL+F12
Switching between open panes back CTRL+SHIFT+F12

Switching between Exploret's tabs

ALT+ RIGHT/LEFT ARROW

Move to the splitter bar Alt+F8
Open next openable message ALT+F10
Open previous openable message ALT+F9

Keyboard shortcuts

_79 _

Project basics

Projects and Project Management
Project basics

To begin modeling with Together you need to create a project. At minimum, a project consists
of:

- a primary root directory

- a project file (.1pr tile extension and L1 icon)

- a default package diagram

Primary root directory

The primary root directory stores the project file and any initial diagram created along with
the project. It also provides a storage location for project-level configuration properties files
(see Multi-level Configuration).

When you create a project, the primary root can be either a new or an existing directory. By
default, Together round-trip engineers any source code it finds in the primary root directory
and any subdirectories below it. If you specify the top-level directory of an extremely large
code base as the primary root, you may find the reverse engineering process too slow. In
such cases, you can redefine how project resources are parsed. See the topics Creating and
opening a project and Large projects.

Project file

The project file gets the name of the project as the filename and a .tpr extension. It displays
the L1l icon in the Explorer.

The <default> diagram

When you create a new project, Together generates a diagram that presents a view of the
physical project content contained in the primary root package. The generated diagram is
named <default> and displays the default diagram icon 88. The name of the underlying
diagram file is default.dfPackage. The <default> diagram shows Package icons representing
subdirectories of the primary root directory, as well as the classes etc. of any source code
files found in the primary root.

When creating a new project, you can also optionally specify an znitial diagram that Together
creates along with the project. 'Class diagram' is the default type. If your license supports
creation of other UML diagrams, you can specify another type of diagram as the initial
diagram, or <none> for no initial diagram. Together always generates the <default>
diagram.

Note that there is no defauit diagram that opens every time you open a project. The diagrams
that open along with a project, if any, are controlled by the configuration settings under
Desktop Options (General node of the Options dialog; see Configuring Together). If
properly set, Together remembers what diagrams were open, when the project closed, and
re-opens those diagrams when the project next opens.

Project content

The scope of a project is not limited to a single root directory — you can specify multiple
directories as being project root directories, include or exclude subdirectories of any root,
and exert some initial control over how these directories are treated during round-trip
engineering. You can include individual Zip and Jar archive files in the project as well. You
do this using the Adpanced mode of the New Project dialog (File | New Project). For more
information, see Creating and opening a project.

- 80 -

Creating and opening a project

Creating and opening a project

This section explains how to open an existing Together project and create new projects. If
you are new to Together, please read Project basics before you create or open a project.
Opening existing projects
To open an existing Together project:
1. Start Together if not already running.
2. From the Main menu, choose File | Open Project to display the file selection
dialog for your operating system.
3. Navigate to the primary root directory containing the project (.tpr) file.
4. Select the project file (e.g. myProject.tpr) and click Open or Save (depending on
OS)
Together opens the project and displays the contents in the Model tab of the Explorer. If

the Saved Desktop option is enabled in your configuration options, any diagrams that were
open, when the project was closed, re-open in the Diagram pane.

Tip: You can also navigate to a project file in the Directory tab of the Explorer and
double-click to open it (or use the speedmenu).

New projects

You can create a new Together project "from scratch", from an existing code base, or some
of both. This section describes the process of creating a project manually, so that you
understand the various things that must be specified. You can optionally use the New
Project Expert (File | New Project Expert) as a step-by-step guide to creating a project.

To create your very first project you might consider using the New Project Expert.
New projects "from scratch”

When there is no existing code to reverse engineer, project creation is quite simple. In many
cases you need only specify a primary root directory for the project. You can do this in the
default mode of the New Project dialog. If you decide you want the new project under
version control, or if you want any external resources (headers, libraries, etc.) to be available
to the project, you'll need to specify this in the dialog's Advanced mode (see Advanced
Mode below).

New projects using existing code

When creating a Together project for an existing code base, think first about what you want
as modifiable content, and what you want as read-only content, i.e., shown in diagrams but not
modified from within Together. Also think about what content should be round-trip
engineered.

For example, in a Java project where some of your classes extend Java classes or some
component classes, you might want to show those dependencies in your visual model, but
you would not modify the parent classes. You might also want to include some or all of the
classes residing on your Java classpath in your diagrams, or you might want to see classes or
diagrams from another Together project but not modify them in the new project. If you
compile classes from inside Together, you need all the resources required by your compiler
available to the project, but not necessarily parsed during round-trip engineering.

_81-

Creating and opening a project

The resources available to the project are specified as paths. Content can include classes
and/or Together diagrams residing in different physical directories on one device, or on
different devices. For each resource you define, you can specify whether or not to allow
modification. If you want classes form a physical directory but not including all of the
subdirectories under it, you can exclude specific subdirectories.

Together provides this kind of flexibility when creating new projects, and when modifying
existing projects. You can add or remove project resources as needed (without deleting any
physical files), and you can control what resources can be modified within the context of the
project. You will find this especially useful when dealing with extremely large code bases
with dozens of directories and hundreds of classes. (See Project Management: Large
Projects).

Basic and Advanced dialog modes

The New Project dialog offers two modes: Basic (the default mode) and Advanced. Use
basic mode when...
- all the resources for the new project will reside in and under the directory where you
will create the project, and...
- you want all resources included in the project, and...
- you want all resources to be modifiable and round-trip engineered.
Use Advanced mode to...
- specify multiple resource roots (directories or archives)
- add or remove resource roots (directories or archives)
- exclude subdirectory or file types in resource roots from parsing
- control modifiability of content in resource roots
- set up version control for the project

Creating a new project

To begin creating a new project:

1. From the Main menu choose File | New Project to display the New Project dialog. The
dialog displays in Basic mode.

Using basic mode
The basic mode of the New Project dialog is fairly self-explanatory.

Mew Project Ed |

Project

Project name: |unt'rtled | tpr (legal filename for your Operating System)
Location: =
Initial diagram:; Clazz w | [| Show package dependencies

Default language: ||Java -

Companents:] Include Compaonerts

ok Cancel Advanced == Help

_82 -

Creating and opening a project

2. Enter a name for the project in the Project Name field. This should be a legal filename
for your operating system. The Location field now displays a default path. This is where
Together will create the project file and initial and default diagrams. If you want to change the
location click Browse and navigate to an existing directory where you want to store the
project file and default project diagram. You can also use the dialog to create a new directory
for the project (on most OS platforms).

3. If necessary, use Browse to specify the location of the project directory. This can be any
existing directory, or you can use the dialog to create a new one. Remember that basic
mode's default means everything in and under the project directory is at least reverse
engineered, and is modifiable (unless it's read-only at the OS level).

4. If you want to create an initial diagram (other than the default <class> diagram) along
with the new project, select the type in the Initial diagram list. Otherwise, select Noze.

5. If you have a multi-language product, specify the target programming language for the
project in Defanlt Ianguage. When you choose a language, any language-specific options
available display next to the language selection.

0. The project now contains one root directory- the primary root as specified in steps 1 and
2. If you don't need to include any other directories as part of the project, click OK to create
the project. If you want to specify other directories as part of the project or remove some
added with language options, proceed to Advanced mode.

Checking the Components checkbox will include Coad Components into the project. Fully
qualified path to the Coad Components appeats in the Search/Classpath tab of the
Resources pane (advanced mode).

Show package dependencies checkbox enables to automatically draw dependency links
between packages. However, this can slow down performance for the large projects. You
can rescan the project at suitable time using Update Package Dependencies command of the
diagram speedmenu.

If you clicked OK at this point, the project file with the filename you specified and the initial
diagram (with the same name) are created in the specified directory (called the project directory).
The project file has a .tpr extension and displays with the Il icon in the Explorer. At a later
time, you can modify the project, adding additional resource roots, etc. from the Project
Properties dialog (File | Project Properties).

Using Advanced mode

The New Project dialog's Advanced mode lets you control what resources are available to,
and included as part of, the new project and how these resources are treated during round-
trip engineering. You can also specify which project in your configured version control
system to use for source files that are part of the new Together project.

- 83 -

Creating and opening a project

Mew Project
Project
Project name: |ur|t'rtled | tpr (legal filename for your Operating System)
Location: o=
Initizl disgram: Clazs w* | || Show package dependencies
Default language: | Java -

Components: [[] Include Compangnts

Fezources

rF'rc:ject Paths rSearchJ'CIasspath rITEI|

D Togetherd Srmyprojectsiunti (] Skip path
[_] Read anly

File types to creste in selected path:

[¥] Java source files

[¥] Dezign element files
[¥] B files

Package prefix: |

F |5; | » [_] Wersion Cortrol project: Options...

| &dd Path ar Archive | | Remowve | =

| Ok | | Cancel | | F"" Aovanced | | Help ‘

To use Advanced mode:

1. Follow steps 1-4 in Basic Mode above.
2. Click the Advanced button in the New Project dialog to toggle Advanced mode.

Adding or removing resources

The Project Paths and Search/ Classpath tabs display the lists of the directories and/or archive
files currently included as resources available to the project. By default, the path specified in
Location (near the top of the dialog) is present in the Project Paths, and the paths to the
standard libraries are present in the Search/ Classpath list. Checking "Include Classpath" adds
your classpath directories to the list. For editions that include components, the Include
Components box is enabled and checking it adds the component directories to the list.
Items in the Project Paths list are considered as project roots. Roots contain compiled or source
classes and/or Together diagrams. Project roots are parsed during reverse engineering and

treated as modifiable unless you specify otherwise in the other controls (see Resource options
below).

_84 -

Creating and opening a project

The Search/ Classpath list displays resources that reside on the classpath (as defined in your
environment) and on any other paths you want Together to search for resources. These
resources are available to show in diagrams but are not part of the project. They are not parsed,
and do not show as project content in the Explorer unless they are added to a diagram as a
shortcut. Also, their content is not modifiable within the project context.

Note: If you use an integrated compiler/debugger, make sure all resoutces requited for the tool are
included in the Search/ Classpath list .

To add a resource directory o the project:
1. Click the Add Path button to display the Select Path dialog.
2. Navigate to the directory you want to include in the project.
3. Click Open or Select, depending on the OS you are running on.
Note that all subdirectories of the specified resource directory are included by default. You
can exclude some specific subdirectories in one of the following ways.
- If you want them to be skipped over by the parsing engine, but still tracked with the
project by Together, you can add the individual subdirectories with the Add Path
button, as described above, and then choose the radio button Skip path (see Sk path
section below).
- If you want some subdirectories to be excluded completely, use Ignore Files and
Folders option on the General page of the Project Options dialog (Options | Project)
to specify the ignored directories.
In Java projects, some project resources may reside in compressed Zip or JAR archive files.
Any new Java project automatically gets rt . jar as a "hidden" project root. The path to
this archive is determined from the system classpath. This archive is necessary for proper
functioning of the integrated Java debugger.

Note: If you attempt to add rt . jar manually, a message saying "root added implicitly" displays. If
you open an older Java project without rt . jar specified as a project root, you get a message and the
classpath is searched for rt . jar, which is then implicitly added.

To add an archive file as a project resource:
1. Select either the Project Paths or Search/Classpath tab of the Resources section of
New Project (or Project Properties) dialog
2. Click the Add Path or Archive button to display the Select Path dialog.
3. Navigate to the directory containing the archive file.
4. Select the desired file.
5. Click Open or Select, depending on the OS you are running on.

Removing resources

You can remove any resource from the Project Paths list or the Search/Classpath list by
selecting it and clicking the Remove button. This is useful if, for example, you included your
full Java classpath but that contains some directories that you really don't need in the new
project. Removed resources are not deleted from disk, they are just not available to the
project. If you need them again, you can add them later using File | Project Properties
(Advanced mode).

-85-

Creating and opening a project

Setting Resource options

After you have added resources to the project you can set some options that control how
they are parsed and how you access them when modeling. By default, parsing of all the paths
in the Project Paths list includes all recognized file types, and all resources are parsed as part
of the project and display in the Explorer's Model tab. If that default behavior is not what
you want, you can modify the treatment of each of the resources in the Project Paths list.
To set options for a resource, select it in the Project Paths list and modify any or all of the
following:
Access: Selecting this option gives the parsing engine access to the selected resource.
Read only: Checking this box makes the contents of the resource a read-only part of
the project. It displays as project content in the Explorer's Model tab but is not
modifiable from within the project. When checked, File Types and Package Prefix are
disabled.
File types: Check only those file types you want the parsing engine to work on. This
can speed parsing of resources having different types of content. Use the default (all
file types) unless you have a multi-language product version and want to skip source
files not in the project's target language, or you want to specifically exclude compiled
classes.
Package prefix: Specify the exact name you want Togezher to use for package
statements referencing the selected resource.
Version Control project: Checking this box enables the version control integration
defined in your configuration for the new/current project. The Select button enables
you to select the project or repository of the currently configured version control
system that you want the project to use.
Skip path: Selecting this option causes the parsing engine to skip the selected resource, but
the resource is still tracked with the project by Together and may be included in
documentation generation or accessed as part of model information by modules.

- 86 -

Project management

Project management

Together is designed to minimize or even eliminate the need for extensive project
management. Once you have defined the project structure, created the necessary project
file(s), customized your configuration options at all necessary levels, and set up your tools
and version control integration, there's really very little else you need to do on an ongoing
basis. There's no need to continually update a repository before code is generated, because
Together generates code and synchronizes with the model as your team works.

As the project administrator, you will want to make sure that all your modeling files and all
newly created files get placed under source control. (For information, see Cozzmon
Customizations: Version Control Integration: Together files to include in version control).

You might also consider developing modules to run Together's documentation generation (via
the command-line interface) and integrate this as part of a periodic automated build process.
For more information see Reference: Command Line parameters and Together API.
Setting up large projects

What constitutes a "large" project? A good thumbnail definition might be "any project that
takes too long to reverse engineer". You just can't get around the basic laws of computer
science: even Together's legendary parsing engine needs instruction cycles and system
resources to parse your code. The more code you have, the more resources it takes, and
eventually you hit a point of diminishing returns. The good news is that with Together you can
employ some simple project management techniques that will help you avoid such problems.
When it comes to extremely large code bases, remember the old adage that says, "How do you
eat an elephant? One bite at a time." 1f you have a huge project, you don't deal with it all in one
chunk. You divide it up into subsystems, and perhaps modules or components within those
subsystems. In Together, that translates to projects and subprojects. Don't attempt to create
a single project that encompasses your entire code base. Instead, identify the subsystems and
the modularity within them and create a number of Together projects in key directories of
particular interest or significance. For an example of how this might be done, look at the
/component /CoadModelingComponent directoties under your installation.
Although this is not a particularly large code base, it is illustrative of the project-subprojects
technique you can employ for massive projects.

You should also consider automating documentation generation for very large projects as
described above. You can write a script or module to regenerate all documentation, or a set
of scripts to update different parts, which run automatically on different nights.

Creating views with referenced content

With the project definition features of Together you can create projects whose content is
purely logical and contains only things you need to see for a particular purpose. For example,
you could create a directory that is strictly for views of your code base. Under it you can
create a series of project folders that contain Together projects that bring in different parts of
your code... only abstract classes in your problem domain for example.

When creating such projects, you can specify as resource roots only those specific
subdirectories you are interested in. Other directories with classes etc. you might want to
show (but not modify) can be specified in the Soutrce/Classpath list. (For more information,
see Creating and Opening a Project.)

_87-

Project management

Performance tuning

Here are several things you can check before tackling large code bases.
- Check the resource paths in Project Properties (File | Project Properties). Deep path
names like "C:" will slow things down.
- Look at the memory used while parsing; if it goes close to the maximum, then try to
increase the swapping file size (set the minimum swap file size to something like 100-
150M).
- Try running Together with jre.exe (Sun JVM). It provides options to specify the Java
heap size. Change the maximum heap size (-mx32m) to some larger amount (e.g. -
mx60m or -mx100m, depending upon how much virtual memory is available). Make
sure you have computer hardware with sufficient power and system resources to
handle the values you specify; otherwise the effect may be the opposite of what you
want.

Integrating a project with Version Control
Even when version control is enabled in Together configuration options, you must still specify
a version control system project for each Together project.
- For new Together projects, use the New Project dialog, Advanced mode.
- For existing projects use the Project Properties dialog (File | Project Properties),
Advanced mode.
In both cases, check the Version Control option and specify the version control system
repository.
For more information consult these topics

Version Control Integration
Guide to the Options pages: Version Control

- 88 -

Import-Export operations

Information Import-Export

Import-Export operations

This topic describes the information import and export features of Together. You must
obtain and install a Together product with support for the various types of import-export
operations in order to use the features. (See Where to Get Help for on-line resources for
current product information.)
You can export information from your Together model in several ways:

Export Class or ER diagrams, or EJBs to DDL files for import into JDBC compliant

databases

Generate Interface Definition Language (IDL) for a project.

Export model information to XMI
You can also import several types of information into Together:

Import Rational Rose model files (.mdl)

Import from JDBC databases

Import from XMI

DTD / XSD Import-Export

DTD interchange of class diagrams and database structures

Rational Rose Import

This section explains how to import files created with Rational Rose™. You can import
Rose's .mdl files to create Together projects. Model files must be from Rose 98 version 4.2
or later. If you have older Rose models in a format previous to Rose98 version 4.2, you must
convert them to the later format using an evaluation or regular version of Rose.

Importing a Rose model to Together

Import must take place within the context of a Together project. For maximum efficiency,
especially when importing large models, close other applications to free up memory.

To import a Rose model:

1. Open or create a Together project
2. On the Main menu, choose Tools | Import | Import from Rational Rose. The
Open File dialog for your system displays.
3. Select the Rose model file you wish to import and click OK.

Import processing begins and progress is indicated on the Together status bar.

Notes:
If the converter finds more than one diagram with the same name in one logical
package, the diagram file names are modified by adding an incremented index to the
end of the file name. For example, if there is already a diagram file named
Main.vfUseCase and the converter needs to save another Main.vfUseCase file, then
the latter one is saved as Mainl.vfUseCase and the diagram names reflect the changed
filename).

Note links ("Note anchors" in Rose terminology) are not imported.

-89 -

Import-Export operations

Exporting a Together model to Rose

Direct conversion of a Together project into Rose's .mdl format is not supported. However,
you can export model information to an XMI-compliant format that can be imported into
Rose (see XMI Import-Export).

Database Import-Export

Together allows importing information from JDBC-enabled databases and exporting model
information to create model-based database schemas. The following RDBMS types are
currently supported:

ODBC/Access 97/2000
Cloudscape 3.5

ODBC/MS SQL Setver 7.0
SequelLink/Oracle

Oracle 7.3x, 8.x, 9i

IBM DB2 6.1

Sybase AS Anywhere 6.x / 7.x
Sybase Enterprise Server 12.0
MySQL 3.23

DB2v7.1

Generating DDL

With this feature you can generate Data Definition Language (DDL) for a data table based
on a Class diagram, ER diagram, or EJB. You can opt to generate DDL files only, or to
generate DDL and run in the same operation.

To run Generate DD

1. Open a project containing the diagram to use as the source for information export.

2. Open the Class diagram, ER diagram, or diagram modeling an EJB, from which you want
to generate a database schema.

3. Choose Tools | Database Import/Export | Generate DDL Expert on the main menu.

4. Use the Generate DDL expert dialog to choose the supported DBMS, set access
parameters, etc.

TIP: If you are exporting from a Class diagram, all classes in the source diagram must have their
Persistent property set to True.

Import database

With this feature you can import schematic information from a supported database to create
a Class diagram, ER diagram, or E]B.

To run Import Database:

1. Use your DBMS administration utility to create a JDBC/ODBC data source for the
source database, if such a data source doesn't already exist. (You will need to specify the data
source during the import procedure.)

2. Open a Together project in which to create diagram(s) from imported schematic
information (or create a new project).

3. Navigate to the desired package.

4. Choose Tools | Database Import/Export | Import Database Expert on the main menu.
5. Use the Import Database expert dialog to choose the supported DBMS, choose tables,

etc.

-90 -

Import-Export operations

Generating and using IDL

If a Together project contains class diagrams with models appropriately structured to
support IDL, you can generate and then round-trip engineer IDL for specific diagrams,
selected classes, a specific package structure, or for the entire Together project.

Activating and deactivating IDL support

In products with IDL support, the support is deactivated by default for performance
reasons. You can activate and deactivate IDL support as needed.

To activate IDL support:

1. Open a project.

2. On the Modules tab of the Explorer, expand the Early Access node to show the /DL
Export Support node.

3. Expand the IDL Export Support node to show the IDL. Export Support module.
4. On the speedmenu, choose Activate.
5. After activation, the Generate IDI. command is added to the Tools menu.

Generating

To generate IDL.:
1. Open the project containing the class diagrams that will be the source for IDL generation.
If you want IDL for the whole project, skip to step 5.

2. If you want to generate IDL for a specific package, navigate to it and open the <default>
diagram in the Diagram pane.

3. If you want IDL for a particular package structure, navigate into the top-level package of
that structure and select it in the Model tab of the Explorer.

4. If you want to generate IDL for one specific package, select the package in the Model tab
of the Explorer.

5. Choose Tools | Generate IDL on the main menu to launch the Generate IDL dialog.
0. In the dialog, choose the desired Package option based on your preferences in 1-4.
7. Select a target directory for the generated IDL file(s).

8. Optionally review and change IDL Options. Click Options and use on-screen help text to
change any option settings. Click OK to effect any changes.

9. Click OK in the Generate IDL dialog to launch IDL generation.

TIPS:

- Open the message pane before generating IDL so you can see the messages generated by
the process.

- Deactivate IDL Export Support in the Modules tab when you are finished to free up
system resources.

Round-trip IDL support

Together supports round-trip IDL engineering. You don't need to import IDL into a project.
You can simply create a project around existing IDL code and continue working with it in
Together. The process is the same as creating any new project, except that you choose IDL
as the default programming language during the creation process.

_91 -

Import-Export operations

XMI Import-Export

You can import a model described in XMI into a Together project. This generates source
code in the programming language(s) supported by your Together product.

You can export model information from a Together project to an XML file containing the
modeling information described in XMI.

Note that XMI import-Export requires Sun JRE version 1.2x or above

XMI Import

XMI import is available on the main Tools menu. If you are importing a large model, close
other applications to free up memory.
To import a model described in XMIL.:
1. Create a Together project for the model, or open an existing project to which you want to
add the XML model and create or navigate to the desired package.
2. On the Main menu, choose Tools | Import | Import from XMI.
3. Navigate to the XML file containing the XMI information you wish to import into
Together.
4. Wait while the XMI code is processed. This may take some time depending on the size of
the model.
When processing is finished, a package diagram is created in the diagram pane. The
Explorer's Model tab displays the packages and the default class diagram for each package.
When you open diagrams and select classes, the generated source code displays in the
Editor.
Note: If you plan to export a model from Rational Rose to XMI and later import it to
Together, you should choose the ASCII/MBCS option in the Character Set options in
Rose's Unisys XML Export dialog. Models exported to other character sets will not be
properly imported into Together.
Note: Together supports only XMI 1.0.
Information about import operations is written into a log file located in the source folder of
the imported xml file.

XMI Export

You can export a Together model to an XML file with the model described in XMI. You
can subsequently import the XMI model into other systems that support XMI. Together
supports UML 1.1 and UML 1.3 Unisys XMI interchange for 8 types of UML diagrams,

IBM XMI Toolkit and OMG XMI:

Select XMI Type |

(23 JUML 1.1 Unisys %M Interchange |
i LInL 1 3 Unizys Bl Interchange
{73 1B XM Toolkit

71 ObG XM

| Ok || Cancel || Helj

_92 .

Import-Export operations

To export a Together model to XMI:

1. Open the Together project you want to export.

2. On the Main menu, choose Tools | Export | Export to XMI.

3. Select the desired XMI type from the dialog window and press OK.

4. In the Select Directory dialog, choose destination directory to store the resulting XML file.
If such directory doesn't exist, right click on the desired location and choose Create New
Folder on the speedmenu.

5. Wait while the XMI code is generated. This may take some time depending on the size of
the model. Progress displays on the Together status bar.

User configurable translations

To support compatibility between Together model tags and XMI tags, znterchange module
provides a list of translations that contains entries in the format:

Tag Name = RationalRoseS$SMDC/:Tag Name

If you wish to import or export some specific properties of your project from/to XMI, you
can edit the file

$TGHOME% /modules/com/togethersoft/modules/interchange/Interc
hangeTags.config.

DTD Import-Export

You can import a Document Type Definition (DTD) file into a Together project. The
import process creates a new XML structure diagram in the current package.

You can modify the DTD elements visually in the XML structure diagram. You can also
load the DTD file in the Editor and edit it as text. However, if you modify the XML
structure diagram visually, the original DTD file is not updated. To update the file you
should export the XML structure diagram.

To import a DTD:

1. On the Main menu choose: Tools | Import | Import from DTD

2. In the resulting file chooser dialog, navigate to and select the DTD file you want to
import.

A new XML structure diagram file is created in the current package. The diagram opens in a
new tab in the Diagram pane. A shortcut to the new diagram is added to the diagram that
was current before you began the import process.

To export a DTD file from a modified XML structure diagram:

1. Make sure the XML structure diagram is open, and is the current diagram in the Diagram
pane.

2. On the Main menu choose: Tools | Export | Export to DTD.

3. In the resulting file chooser dialog, specify the location and filename of the DTD file you
want to export.

To open a DTD file in the Editor:

1. Right-click on the Editor pane.

2. On the speedmenu choose Oper.

3. In the resulting file chooser dialog, navigate to and select the DTD file you want to open.
Important: Together does not presently provide round-trip engineering for XML.. Thus, modifications to an XML
structure diagram imported from a D'TD are not reflected in the source file. Likewise, changes to the source file are not
reflected in any XML structure diagram.

-93_

Exporting model information

Exporting model information

Together provides two system modules for exporting model information:
Generate DDL: Generates Data Definition Language for a data table based on a class
diagram.
Generate IDL: Generates Interface Definition Language for the current project.
Both modules are displayed in the System folder on the Modules tab of the Explorer.
To run either module:
1. Select the Modules tab.
2. Navigate to the desired module.
3. Choose Run from the speedmenu.

Generating DDL

The system module Generate DDL. from Class Diagram extracts model information from a class
diagram and creates a DDL file that a compliant DBMS system can read to generate a table
schema based on the classes and their attributes and relationships. You can run this same
module using the Generate DDL command on the main Tools menu.
To generate DD .:
1. Open a project containing one or more Class diagrams that will serve as the
information source for the module.
2. Open the diagram(s) for editing in the Diagram pane.
3. If you open multiple diagrams, click the tab of the first one for which you want to
generate DDL to make it the current diagram.
4. Run the Generate DDL module from either the Modules tab or the Tools menu
(Database Import/Export | Generate DDL Expert). The Generate DDL Expert
shows up.
5. Choose the target database from the list of supported DBMS systems. Generated
DDL output will be compatible with the system you choose.
0. Optionally choose a different output location from the default location indicated.
7. Click OK to generate the DDL file.
8. Repeat 3-7 for other class diagrams.
Important: All classes in the source Class diagram must have their Persistent property set to
True.

Generating IDL

The system module Generate IDL. extracts model information from a class diagram and
creates a IDL file.
To generate IDL.:
1. Open a project you will use to generate IDL.
2. Make sure that IDL Export Support module is activated (Options | Activatable
modules).
3. Select Generate IDL item in Tools main menu item.
4. Select packages you want to use for IDL generation.
5. Optionally choose a different output location from the default location indicated.
6. You can use Options button to setup IDL generation options.
7. Click OK to generate IDL file.
8. Repeat 3-6 for other class packages.

_04 -

Multi-user Team Support

Version Control
Multi-user Team Support

Together delivers support for true multi-user development.* You can use these features to...
- Protect your company's software assets
- Help team members work together
- Unobtrusively impose team-wide or enterprise-wide standards

Multi-user Version Control System

Together delivers seamless integration with your version control system without requiring
you to artificially and manually split up your model into submodels, and subsequently split
those submodels into files for your version control system. Together frees you from
spending your time in the care and feeding of a proprietary internal repository like those
found in some other design and development products.

Together provides built-in integrations for leading multi-user version control systems,
including those that support the SCC standard for Windows systems. CVS, a leading multi-
user version control system, is bundled with Together pre-configured for immediate use.

[& D efault options B

- FT00 - [T s
e Prrwertior _ TESTET - .
Database Wersion Control enabled ¥l
PiebSarvices Get fes on project cpening =
& Tools el in sl filse nin nurekant clcine B
<+ E8 I Mew Project [5]
o Budlder
= Yerson Confrol Progect
= Wergion Control enabled Project rame: [Corfpenents Ape (Jleggal faname for your Cperaling System)
S LA I o e
& CVS CherdiServer Location: |ﬂ
& PVCE Tools I'r=
& Generic pr Inikial diagram: Clazs "'l _| Shov packane dependences
Ard Burnesr
& HPTes
EEmbtﬁ the VC3S support.
............................. CoiTogethers Srmyprojects | | Skip peh
« Levals |

(] Read only

File types to create in selected path:
[#] Java scurce fies
[+ Dagram fies
(] Design element fles
[¥] ¥B fies
[v] VBNET fles
[v L fibes
[C# fles

Lol ot wriwes fins

o ain Ty nmugeiherxﬁumpvnenlsv:nat!

Package prafi:

[#] [ersion Control project

| Ter cicomponents CosdModeingComponent s || B

Set Veersion Control options, enable version control for the project, and you can interact with version control right from the speedmenu system.

-95-

Multi-user Team Support

Interacting with the configured VCS

Once you have configured your version control options and associated your project with a
version control project, it's a snap to interact with you VCS from Together. Version control
commands appear on right-click menus for source elements (such as Classes) both in
diagrams (as shown below) and on their nodes in the Model tab of the Explorer.

ﬁ Tagether 5 -- components

HHECIDMSMMMWTMW

IIEIaﬁ&lﬁﬁ'Ixﬂhﬁlwlﬁ[@ﬁﬂllﬁlﬁldn%?léél by 5B | B | @

rﬁ_lﬁ 9 A} 8 The_Four_Archetypes | =
< | B B ‘] (&
= B comporsnis
[F The_Domsnneutral_Coml| & |-<role==
=[] Trhe_Four_archetypes A Role
B8 The_Four_Archetype ¥
B Description Bo [IHumberin
H laszecs || At+Erter
B maebomentinterval || A [T Fa
] mDetod ‘crossMizdvoid B
3 Momend < void
= B MewClass 4p [20int ClrisR
@ PartyPiaceThing vrossRoles(ing
¥ I Aol 1
BB et
Clrl+Shifted i
S b
[I ¥
) a =
ree ¥
i * daut o i —
* @stereotype Lanyout ¥ ||
ﬂ:f public classz HID Hide: » ﬁ
ﬂj Llic int caleTon
retuen =1y Version Control L3 i
! ? K| Get.
M:I;s
b Sysiem.. Cired [
[Br] | pubic ciass MDetad b [ime I[ot |,

For more information on using Together with a Version control system, see Using Together
with a Version Control System.

-96 -

Multi-user Team Support

Hierarchical Configuration Options

Using the Advanced mode* of the Default Options dialog you can set configuration options
at three levels- globally for your installation, project-specific, and diagram-local. The settings
of all levels are merged together. If an option is set in multiple levels, the more local setting
overrides the more global one. For example, diagram level overrides project level, which in
turn overrides default level. However, options marked Final at a global level (by a project
administrator on a shared installation, for example) cannot be overridden at a more local
level. This is how you can enforce code formatting or blueprint options installation-wide on
a server-based installation.

The number of levels is extensible by modifying the underlying properties file.

Diagram options
= Diagram Chooze options =etting and finalization level | diagram -
Layout
Azszociations Matme “alue Lewvel Firal
Grid Layout inheritance | Yertical w |[detaut w | [
Yiewy Manageme
¥ g Layaut justification | Top v [[cerat = | O
qp - E
= Prirt default
project
diagram

Description

Thiz option defines the aligniment of linkced classes that are placed horzontally in
the same row.

® Top - linked clazses are alioned at the top of the row.

Levelz == | ik | | Cancel | | Apply | | Help

Set options at any of three defanlt levels. Mark as Final any that you don't want overridden at another level.

*(Only available in products supporting this feature. For more information visit wwmw. togethersoft.com/ together/ or contact TogetherSoft sales.)

2

See also

Advanced customization
Common customizations
Configuring Together

_97 -

Using Together with a Version Control System

Using Together with a Version Control System

Together delivers seamless integration with leading version control systems. From the
Together environment, you can get, add, check in, and check out source code using handy
right-click menu commands on visual source elements in diagrams and the Mode/ tab of the
Explorer.

Overview of version control support

Together supports two main version control platforms: CVS and SCC. The SCC standard is
supported by many leading version control products, one of which you should already have
installed and working before configuring Together to work with it. CVS 1.11 comes bundled
with the Together installation. Both CVS-LAN and CVS Client-Server are included.
Together comes pre-configured for CVS LAN (local mode). Compiled CVS binaries for the
different supported OS platforms can be found in the following locations in the Together
installation:

Windows: Y% TGHOME%\bin\win32\cvs.exe

Linux: $TGHOME/bin/linux/i686-unknown/cvs
SunOs: $TGHOME/bin/sunos/sun4u-spatc/cvs
HP-UX: §TGHOME /bin/hp-ux/cvs

Compaq Tru64: $TGHOME /bin/osf1/alpha-alpha/cvs

Getting started with the Version Control

To work with your version control system (VCS) from Together, you need to do several
things:
1. Enable Togethet's version control integration support in your configuration.
2. Set Version Control configuration options for the VCS you will use with Together.
3. Enable version control for your Together projects, specifying the VCS project or
repository to use for each.
4. Use the various right-click menu commands and dialogs for specific CVS operations
(add, get, etc.), and/or use the System dialog which Together provides as a client
enabling you to more fully interact with your CVS from the Together environment.

Each of these steps is described in more detail in the sections that follow.

- 98 -

Using Together with a Version Control System

Configuring Together for version control

The Version Control page of the Options dialog provides configuration settings that enable
Together to work with your version control system. You should already have your VCS
installed and operational before configuring Together.

Remember that Together's configuration system is multi-level. In the case of version control,
this means you can set up versioning options to apply globally (Default level), or to a specific
project (Project level). Most users generally set version control at the Default level, so the
step-by-step procedures here will cite that level. For more information on multiple
configuration levels, see Configuring Together.

Enabling version control support

Version control support is enabled in Together by default.

To enable or disable Together's version control support:
1. On the main menu, choose Options | Default to launch the Options dialog.
2. Select the Version control page of the dialog.
3. Use Advanced to select the configuration level if you want settings to apply at the
Project level (project must be open).
4. Check the Version Control Enabled checkbox to enable version control support in
Together. (Clear it to disable versioning supportt if you ever need to do that.)
5. Click Apply to immediately effect the change, or wait until you set the options for
your version control system as described in the next sections.

At this point, you have made sure that support for version control integration is "turned on".
The default configuration is in effect, which means Together uses CVS LAN in Local/I.AN
mode with default settings. If you are just getting started using version control for the first
time and only need local access, these settings may be OK. But chances are that you will
need to change VCS-specific settings so that Together can work with some existing version
control system.

Choosing which VCS to use

If the CVS-LAN setting is what you want, you can skip this step and go on to Setting Up
CVS LAN. Otherwise, you need to choose which system you want to work with. You
should still be in the Version Control node of the Op#ions dialog.
To choose a version control system:
1. Expand the Version Control enabled node to expose the general and system-specific
configuration options.
2. Locate the Use node and choose the desired VCS from the drop-down list. The choices
include:
CVS LAN (the default, accesses local or LAN-based CVS repository or server)
CVS Client/Server (for accessing a remote CVS server)
SCC: (for accessing an SCC-compliant version control product)
PVCS Tools (for configuring PVCS tool commands)
Generic Provider (for custom VCS interaction)

-99 _

Using Together with a Version Control System

Configuring system-specific version control options

After choosing the VCS, you need to set system-specific options to that Together can work
with the selected versioning system. The Version Control page of the Options dialog
presents several option nodes corresponding to the different choices in the Use option. You
need to set options only for the system you are using and ignore the others. Thus, if you
chose CVS Client/Setver in the Use option, you need to set the options under that node,
ignoring CVS LAN, etc.

Default options Ed

% RunDebug | Mame | Wl
o Database YYersion Control enakled [¥]
2 WehServices Get files on project opening Il
dp Tools) ;))
& EJE Check in all files on project closing]
aF Builder &ction on files reramed | Ask 7
= “Yerzion Contral ;
& K files al hecked out ¥
= Werzion Control enabled : FER Tl SRS Fneches @ v
o TS LAM [% ; Ise dialog before operstion on files | [w]
g CWE ClientiServe Use |p.,‘;5 LAN v |
g PY%CS Toolz 5]
2 Genetic provider ||
] vl
Description

== Levels Ok | | Cancel | | Apply | | Help |

After selecting the V' CS you want fo use, go to the node that contains further configuration options

Setting up CVS Client-Server

1. In the Version Control node of the Options dialog, expand the node for CVS Client/Setver.
2. If you connect to the repository via dial-up or similar non-persistent connection, check Go
offline by default. Otherwise, you can leave this option unchecked.

3. In the Host field specify the host name or a valid alias for your CVS server. This is the
same host you use in your CVS login command. For example, if your login command begins
with: cvs -d :pserver:/ cuthberf@onrCVS-host you would enter ourC1/S-host in this field.

4. In the Repository filed, enter the CVS repository as you would in the pserver section of
the CVS login command. For example, if your login command begins with: cvs login
:psetrver:/ cuthbert@ourCVS-host: /repository_alias you would enter /repository_alias in
this field. Important: be sure to include the initial forward slash character.

5. In the Connection method drop-down list, choose the method by which you connect to
CVS: pserver, or server.

0. If you chose pserver in #5, expand the pserver option and specify the correct port for
your CVS server. Consult your CVS administrator for the correct port number if you are not
sure.

- 100 -

Using Together with a Version Control System

7. 1f you chose server in #5 above, expand the server option and specify the correct port and
command for your CVS server. Consult your CVS administrator for the correct port number
if you are not sure.

8. If you access the CVS server remotely and want to compress traffic to and from the
server, check the Compress traffic box and specify the compression level (1 minimum, 9
maximum) in the Compression level field.

9. If necessary, specify an appropriate vendor tag in the Vendor tag field. If not using such
tag, clear this field. If you're not sure, consult your project manager or CVS administrator.
10. If necessary, specify the Release (Rev) tag for your CVS repository. If not using such tag,
clear this field. If you're not sure, consult your project manager or CVS administrator.

11. Optionally specify the message you want to display when creating a new repository in the
Default import message field.

If you are using CVS Client-Server and have completed the steps above, you can skip to
Enabling 1 ersion Control for Projects.

Setting up CVS LAN

Configuring for CVS-LAN is similar to CVS-CS, especially if you're using pserver protocol...
you specify host, repository, ports, and tags as described in the previous section, only you do
so under the C1”S AN option node.

1. In the Version Control page of the Options dialog, expand the node for CVS LAN.

2. Specify the path the CVS LAN shared folder in the Shared Folder field. For a local or LAN-
based repository, this is the local or LAN path to the repository. For a server-based
repository (using pserver protocol), this is the path to the repository on the server.

3. Choose the connection mode in the Mode field's drop-down list. How you set the
remaining options depends on your choice in this field.

4. Specify the name of the CVS executable file. The default is §TGHS/ bin/win32/ cvs.exe
which is applicable to Windows, but appears as the default no matter what your OS. If you
are not running under Windows, specify the path to the CVS executable for your OS (see
Overview of Version Control Support earlier in this chapter.)

5. If you are using pserver protocol for a server-based repository, set Server Name, Port, 1 endor
Tag, and Release Tag as described in Setting up CVS Client-Server (see steps 3, 5, 9, and 10).
0. Optionally specify the message you want to display when creating a new repository in the
Default import message field.

Setting up a SCC-compliant versioning system
Together provides support for SCC-compliant version control systems. This support is

limited to Windows operating systems.

Together has been tuned and tested to support PVCS, StarTeam, Perforce, and Continuus
version control systems. For specifics about these systems, see Product-specific VCS notes
(or the readme files provided in

STOGETHER_HOMES/ modules/ com/ togethersoft/ modules/ ves). Other SCC versioning systems
may be used with Together, but only those mentioned in these readme files are currently
tested.

Use the Generic provider options to configure other version control products.

- 101 -

Using Together with a Version Control System

Coroutine classes

SCC version control support requires installation of Coroutine classes and dll libraries. The
Together installation program for Windows automatically installs these files and updates the
environment classpath.

Make sure you log on to your Windows N'T or Windows 2000 computer with full Administrator rights
before installing Together.

After Together installation, you can check to confirm that Coroutine classes have been
installed. Look for them in the directory:
$TOGETHER_HOMES$/lib/coroutine/com/neva/. Also check to be sure your classpath
includes this path.

If, when using SCC version control feature, you get an error message that Coroutine can't be
initialized, it means that Coroutine classes were not found where expected. If for some
reason Coroutine is not installed you can install it separately by running:

STOGETHER HOMES$/bin/win32/jcinst.exe. If Coroutine is installed and the
error message persists, check that your classpath points to the Coroutine directory.

Setting SCC Version Control options
If you want to set global SCC options, you can do so with or without opening a project. To
set SCC options for a project, you must first open it.
1. Choose Options | Default to display the Default Options dialog.
2. Click Advanced to display levels.
3. As you work, if you will be setting some options to apply at different levels, click
the desired level before setting the option.
4. Expand the node for the option Version Control enabled (this option should be
checked at Default level).
5. Click on the Use option and select SCC from the drop-down list.
To set SCC options:
1. Make sure SCC is selected in the Use option.
2. If using one of the tested versioning systems, expand the option node for your
product.
3. If using another SCC system, expand the Generic option node.
4. Set the options of the selected node to conform to your version control system.
Context-sensitive on-screen Help texts are provided.

Switching among different SCC providers
If you have several SCC providers installed on your system, for example SourceSafe and
PVCS VM, you probably have to change registry entries in order to be able to work with
specific source control system.
All SCC providers are listed in values of following key:

"HKEY LOCAL MACHINE\SOFTWARE\SourceCodeControlProvider)\

InstalledSCCProviders"
Using Copy and Paste commands, copy the value of your preferred SCC provider key to the
following value:

Key: "HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider"
Value: "ProviderRegKey"

The one that is stored in this value will be used by Together, as well as by the other tools,
such as DevStudio

-102 -

Using Together with a Version Control System

Tuning SCC support for Visual SourceSafe
Be sure you have installed VSS Explorer. You must have SSSCC . DLL in order to use SCC.
Check your SRCSAFE . INT file in the directory where you have VSS explorer installed. If
you are using several SourceSafe databases you may want to select one of them to work from
Together. If you are using only one database, you can skip this section.
SCC interface functions ignore the settings kept by VSS explorer in the registry and rather
use the ones stored in this file. If you ever want to switch the default database used by the
source safe SCC interface, you should modify values of following keys:

Data_Path

Users_Path

Users_Txt
Each of these points to a directory where the SourceSafe database is located or to a file in
this directory. You have to type the path to your preferred database in each of these keys in
order to work with it.
Examining differences
Having selected the type of version control to be used, you can set up the desired tool to
view differences. Together provides a built-in difference viewer, which is used by default.
For CVS LLAN and CSV Client-Server, however, checking the option Using External Diff too!
by defanlt allows to invoke any other external tool, whose fully qualified path is specified in
the field Nawme of Excternal Diff executable.

Enabling version control for projects

Enabling version control and setting up system-specific configuration options in the Options
dialog only activates version control integration and prepares Together to interact with your
VCS. The configuration process does not set up version control interaction in new or
existing projects.

New projects
Whether or not you immediately enable version control for a new project depends on your
development plan for the project. If you think you will spend quite some time
brainstorming, modeling, and designing, and you don't need to preserve any artifacts of this
process in version control, you can wait until you are ready to begin "real" work on the
project to enable version control. On the other hand, if your design concept is already
thought out, or if you are creating a new project for an existing code base, you'll want to
enable the new project for version control as you create it.
To enable version control in a new project:
1. Make sure your version control system is already installed and operations, and that it
is configured in the Options dialog as described earlier.
2. Launch the New Project dialog (File | New Project).
3. Select Advanced mode.
4. Check the Version Control Project checkbox.
5. Use the browse button to the right of the field below the checkbox to specify which
VCS project or repository in your version control system the Together project should
access. Depending on which VCS you are using, you may be presented with a login
dialog when you click the browse button. One you log in, a chooser dialog relevant to
the configured VCS project or repository is presented. Choose the folder or repository
that is relevant for the project you are creating.
For more information on creating projects, see Creating and opening a project.

- 103 -

Using Together with a Version Control System

Existing projects

To enable version control in an existing project:
1. Make sure your version control system is already installed and operations, and that it
is configured in the Options dialog as described earlier.
2. Launch the Project Properties dialog (File | Project Properties).
3. Use Advanced mode.
4. Check the Version Control Project checkbox.
5. Use the browse button to the right of the field below the checkbox to specify which
VCS project or repository in your version control system the Together project should
access. Depending on which VCS you are using, you may be presented with a login
dialog when you click the browse button. One you log in, a chooser dialog relevant to
the configured VCS project or repository is presented. Choose the folder or repository
that is relevant for the project you are creating.

Other version control information

Together files to include in version control

To protect your visual modeling information you should place diagram and project files
under source control in addition to your source code files. The following table describes the
types of files you should look for and add to source control:

File(s) |Description here located

* . tpr |Together project file Project primary root folder

.df |UML diagram files. .dfPackage is the default |There will be one .dfPackage file in every folder in
package view diagram generated by Together. [the project that has been parsed. Other diagram
All other diagrams are user-created. files are wherever users have created them.

* . tws |User-specific desktop settings. Probably nota [Project primary root folder
source-control item, especially in multi-user
environments, but you can back it up in VCS if
you want to.

CVS documentation

You can find documentation on CVS in the file
$TOGETHER_HOMES$/bin/win32/cvs.html, or refer to the
http:/ /www.gnu.org/manual/cvs/html_chapter/cvs_20.html .

Peculiarity of jCVS in Windows environment
Together uses jJCVS, a Java based CVS Client When working in Windows environment,
JCVS can throw exception

java.lang.StringIndexOutOfBoundsException: String index out of range: -1.

This situation takes place if the CVS repository contains folders with the same names
presented in varying case, for example:

MyRepository

MySourceFolder
<...>
mysourcefolder
<...>

Make sure you don't confuse folder names to avoid this problem.

104 -

Using Together with a Version Control System

Interacting with version control
After you set Version Control options and set up version control in project properties, you
can use Together to interact with your system. You can add, get, check in, check out, etc.
To use version control in your project:
1. Make sure that version control is enabled in the Options and Project properties.
2. Select a source-generating diagram element in a diagram (Class or Interface for
example), or...
3. Select a source generating element in the Explorer, or...
4. Focus the Editor with a class source file loaded.
5. Right-click and choose Version Contro/ from the speedmenu. This displays a
submenu of the commands available for the currently configured VCS.
6. Choose the desired action from the submenu.
You are now presented with a dialog that enables you to complete the chosen action. The
layout and content of the dialog varies depending on the action selected and the version
control system you are using. If you're experienced with your VCS, the dialog should be
fairly self-explanatory. For information about the various dialogs for different systems, see
Version control dialogs.

n I|_'u:|r:tht:! 5 == components
Fie Ect Object Search View Sslect Oplions Tools Help
llEIaﬁ&lﬁﬁlxﬂmleﬁﬁﬁ®lmlnﬁl¢¢iﬁlag| DB @
rﬁ_ﬁ 1} 88 The_Four_archetypes | |
< B e =
B & comporsnts : »
[The_Domsn.netral_Com{| [|-<role=» i
=[] The_Four_archetypes F | Role i
B8 The_Four_Archetyps e V
[[Description Bo | Murnberint
¥ B lassess | 5 Properties .. AL +Enber
5 E mskeMomentiderval || A [———————— Rename F2
o B mOetol {tcrosshlsfvoid s
T Momentiterval # lvoid Adel Linked, ..
3 Mewlazs ﬁ‘ VAL Choose Paftern... CirkR
3 PartyPcaThing AerossRoles(ing i =
i I Roe 5—
BB wdefmd= | Cogry
Clone ClrieShift e L}
| -
] f 1 S RO E
-'.'.. : 4
Delete [ralste -
b Larvout 3
g | Hide b %
?j‘ lic int caleTd
retumn =1y Wersion Control » i
P i Visitily b Gt
{0 Abstract Updiate...
L Eivate int g; (' H hl%
= 4 [EEeEEen Salect in Model Tres Check
Toois y| System. ke [
Br] | puthe ciaes mDetad GRS s K ensn) BT | B

Access the most needed V'CS' commands right where you work
See also

Product-specific VCS notes

Project basics

Project management

- 105 -

Product-specific VCS notes

Product-specific VCS notes

Together® has been tuned and tested with PVCS (VM and Dimensions), StarTeam,
Perforce, and Continuus version control systems. This topic covers specifics related to these
systems. Other versioning systems may be used with Together, but only those mentioned
here are currently tested.

PVCS command line tools

This section covers support for PVCS command line tools in Together®. Support for PVCS
tools was introduced in Together build 822 and is currently available only on the Win32
platform.

The latest version of the module implementing support with PVCS tools was tested with
PVCS VM 6.5 running on Windows NT 4.0 SP 5.

Known problems
- PVCS locks are not recognized. Together figures out if the file is checked in or out
ONLY in function of its read-only status. That is, if a writable file is recognized as
being under version control, it is assumed to be checked out. On the other hand, a
read-only file under version control is always assumed to be checked in. Recognition
of locks will be added in further versions.
- At startup time, the path to the PVCS database is checked. If the directory does not
exist, the module goes into an uninitialized state and you must restart Together in
order to make it function. This is a known problem and will be fixed soon.
- Advanced options of the PVCS tools must be set using the Options dialog. For
convenience, later versions will add the ability to specify additional options to most of
the version control commands.

Setting up Together to use PVCS tools
1. In the Options dialog, go to the Version Control tab and select PVCS Tools from the
drop-down list in the Use field.
2. Set the path to your PVCS database directory in PVCS Database (visible after expanding
the PVCS Tools option). By default, the value points to: ¢: \Program
files\PVCS\VM\SampleDb, which is also the default for PVCS.
The default archive suffix is set to "-arc", which may be changed, for example, if you are
using "v" as default suffix.
Below, we provide specifications of the PVCS commands used by Together to operate with
the repository. You may want to add some options or specify the full path to all commands
if your PVCS tools are not on PATH. By default, it is assumed that all tools are on system
PATH.
These commands are used by Together for version control tasks:

PUT - used for Add and Checkln

GET - used for Get and CheckOut (with -1 parameter)

VLOG - used to get History and Details

VDIFF - used to get the difference with the latest revision in repository

VDEL - used to remove a file from repository

VCS - used to test if PVCS tools are on PATH. It is executed at start-up time. If the

command can not be executed, the module does not function.

- 106 -

Product-specific VCS notes

Specifying a PVCS project in the Together Project Properties dialog

1. When in the Project Properties dialog, either with a new project or having already opened
one, click on the Version Control Project checkbox to have the PVCS project be associated
with the currently selected root. By default, the short name of the root directory is used as
the proposed PVCS project.

2. Click Select to see the list of available projects in the repository. Note that Together
internally adds the archive suffix to the path entered in the Options dialog, so you do not have
to specity it explicitly.

Using PVCS within a Together project

After Together has opened a project that contains roots associated with Version Control
projects, the Version Contro/ command is added to each element's speedmenu. This leads to a
submenu with VCS-specific commands.

Short summary of commands:

Add: adds file(s) to repository
Get: get latest version of file(s) from the repository
ChecklIn: put local file(s) into the repository and optionally unlock
CheckOut: get latest version from the repository and lock
System: displays dialog with further information about files
Within the System dialog, additional operations are available:
Diff: shows the result of VDIFF command, including the local file and latest version
in repository
History: shows the history of revisions, result of VLOG with -br parameter

Details: detailed information about the file: locks, revisions etc. The information is
the output of command VLOG with -b parameter.

PVCS Dimensions

This section covers issues concerning support of PVCS Dimensions with SCC interface.

The SCC integration with PVCS Dimensions version 5.0 was tested with Together® 4.2
under SUN JDK 1.2.2, Windows NT 4.0 SP 5 and Windows 2000.

Known issues

- Before starting to use Dimensions with Together, Dimensions must be configured to
support Together as IDE. See the corresponding section in this document for details.
- The directory path set in the default Work Set must be the parent directory of the
Together project root that is associated with the Dimensions project.

- The initial name of the Dimensions project, as entered in the Version Control

Project field of the Project Properties dialog, must be unique among all directories in
the Work Set.

107 -

Product-specific VCS notes

Problems and workarounds

- The SCC integration does not work under JDK 1.3. There is no workaround for this
problem at time of writing. You must use SUN JDK 1.2.2.

- When running Version Control commands from Together, Dimensions may display
a modal window with command execution status, which is inactive and can't be
closed. To avoid this problem, set the property in the vcs . config file to

ves. scc.usecallback=true (false is the default). This causes Dimensions to display
all status messages in the Together message window.

- After adding or checking in a file to Dimensions, no matter what was the state of
Keep Checked Out checkbox, Dimensions deletes the file(s) from the local directory.
To get these files back, execute "Get" or "Checkout" on the directory where the file(s)
were located.

- On first running a Get or Checkout command from Together with PVCS
Dimensions, it may crash unexpectedly without any warning; the process terminates,
killing the Java machine. To avoid this problem, set the property in the
ves.config file to ves. scc.queryinfobeforeget=true. This option tells VCS
to query info on files before proceeding with Get.

Configuring PVCS Dimensions to work with Together's IDE

Together initializes the sccpems.dll with the IDE name "Together", so the IDE environment
Together must be set up correctly.

In product §GENERIC, add an object type PROJECT with attribute IDE_VALIDSET.
Define Valid Set IDE_PROJECTS, which by default contains definitions for IDEs certified
to work with Dimensions, created by IDE Setup. Add a value Together, tg. Attach lifecycle
SOURCE to the object type.

Define file formats and MIME types for file types you wish Together to upload to
Dimensions, if not yet defined. These types are:

Name Format MIME type
JAVA Ascii text text/plain
C++ Ascii text text/plain

PASCAL Ascii text text/plain

IDL Ascii text text/plain

PROJECT |Ascii text text/plain

DIAGRAM |Ascii text text/plain

WMF Binary binary/wmf

GIF Binary binary/gif

- 108 -

p tool, define item types used by Together. These items are:

In IDE Setu
Pattern Format Type
%.java JAVA SRC
%.cpp C++ SRC
Y%.cc C++ SRC
%.hpp C++ SRC
%.h C++ SRC
%.idl IDL SRC
%.pas PASCAL SRC
%.dfActivity |DIAGRAM |SRC
%.dfBusiness [DIAGRAM |SRC
Process
%.dfClass DIAGRAM [SRC
%.dfCompon |DIAGRAM |SRC
ent
%.dfDeploym |DIAGRAM |SRC
ent
%.dfE]BAsse IDIAGRAM |SRC
mbly
%.dfER DIAGRAM [SRC
%.dfPackage |DIAGRAM [SRC
DIAGRAM |SRC
%.dfSequence
%.dfUseCase [DIAGRAM |SRC
%.dfXMLTyp |DIAGRAM [SRC
e
Yo.tpr PROJECT [SRC
%.tws PROJECT [SRC
Y. wmf WMF DAT
%.gif GIF DAT

Product-specific VCS notes

- 109 -

View Management

View Management

Togethet's view management features take into account the fact that not all of the
stakeholders in a project need to see everything contained in a model all the time. Domain
experts don't need to see implementation details, for example. With Together, you see what
you want to see, when you want to see it.

View management features

These features are:

Creating work views

You can toggle Main window panes to create the desired view.
Control the general level of detail shown in diagrams

Choose the desired level of details in diagrams. Possible levels are: Default, Analysis, Design,
Implementation. Default level is assigned according to the current role.

Control whether members in Classes display with UML or Java format

This options controls the way the elements are displayed in diagrams. Java format is only
available for the products with Java language support.

Show or hide subpackage contents in diagrams

Check this option to display subpackages' contents as package icons with the lists of classes,
interfaces and underlying subpackages.

Control how Java Bean classes/C++ properties display in Class diagrams

If the option Recognize JavaBeans is on, the classes on the Class diagram are recognized as
JavaBeans. Bean tab adds to the Object Inspector of the classes, where you can add bean
properties, getters and setters, event sets. Show attributes and accessors option controls whether
bean properties and events show up on the class icon.

You can also opt to impose constraints on the classes with or without public/default
constructors.

The option Recognize C++ properties allows to display C++ properties in classes.

Recognize JavaBeans/ C++ properties options are also available from the Options menu and
correspond to the Project level of the Options dialog.

Show or hide referenced classes in diagrams
When checked, displays names of the referenced classes in diagrams.
Control the display of dependencies

You can opt to show dependencies between classes and interfaces. If this option is on, it is
possible to choose the scope of analysis: declarations only, or all usages of the dependencies,
including the method bodies. Besides that, it is possible to recognize @see tags as
hyperlinks.

Caveat
Recognizing dependencies option can result in slow performance and too large diagrams.

Control display of the Sequence diagrams

The options under this node provide full control of Sequence diagrams display. You can opt
to show object class names and message numbers, control display of messages in Sequence
diagrams, assign depth of call nesting, choose generating and showing multiple diagrams.

- 110 -

View Management

Control banned destinations

Use this group of options to keep association links under control. If the links to standard
classes are not filtered from the view, your diagrams will soon become crowded with links
that only impede comprehension. Some standard java classes are banned by default. Three
additional slots allow to define custom banned destinations.

It is also possible to add more fields, but this requires editing the

viewManagement . config file. This procedure is described step by step in the
Description field of the Options dialog,.

Sequence diagram options

In this node you can control display of the Sequence diagram: specify maximum call stack
depth for Sequence diagrams generated from operations, choose generating multiple
diagrams, control display of messages etc.

Show or hide aggregations of diagram elements and EJB elements

View management Show/Hide options allow to control presentation of information in
diagrams. Together comes with a number of predefined view management options and
provides additional ones that you can custom-define.

You can find detailed description of each option on the View Management page of the
Options dialog.

Default options Ed

o Mew Project sl Mame | Walue
o Show Favorites nod Ciagram detail level |
s Diagram Member formst |L|r-.-1L - |
= Yiew Management
dh Sy Referenced Classes | Showy Mame - |
= Hide

2 Regular Expres
o Showw subpackage (2
o Java Beans FC++ P
o Dependencies
= Sequence diagram
o Generate Sedus
@ Fenerate Sourg—

‘ 14 [

kA
Description
Drefines how much of the element's information will be displayed in the
diagrams:
* Default - the default value for the current detail lesel
& Analyziz (for the Business MWodeler role) -l
== Levels | | ik | | Cancel | | Apply | | Help

View Management page of the Options dialog
See also
Working with View Management

- 111 -

Working with View Management

Working with View Management

This topic discusses the different ways to show or hide model content to create different
views of the project for different purposes or users- analysts, domain experts, managers, etc.
Some technical books on UML refer to this practice as e/ision or eliding of model content.
Togethet's view management features enables you to apply this concept at several levels.

View management mechanisms

Together's view management features provide several ways to control what you see in your
visual model at any given time:
View Management ""Show" Options: these configuration options enable you to:

- control how much detail is shown in classes,

- include or exclude different types or groups of elements from view
Element Show/Hide: optionally hide and restore individual elements or selected groups
Detail levels: control how much detail is shown in classes
Work views: toggle main window panes to facilitate your personal work style

"Show" Options

Together provides a number of configuration options that control which elements in a Class
diagram are visible and which elements are hidden. For example, you might choose to hide
such things as abstract Classes, private Members, or some types of relationship links. These
are called simply Show Options... you use them to specify what you want to show in the
diagram.

The Show options are expression-based and user-modifiable. Show Options are in one node
of the View Management page of the Default Options, Project Options, and Diagram
Options dialogs. Use Default Options to apply the settings globally at the level of your
configuration. Use Project Options to apply the settings to a currently open project. Use
Diagram Options to set them individually for a specific diagram, overriding the more global
settings. Tip: The Diagram View Management button on the Main Toolbar provides a
shortcut to view management options for the current diagram.

Setting Show Options

Show Options are binary in the sense that the elements they affect are either Shown (box
checked) or Not shown (unchecked). The default state is Shown.

To set default Show Options:

1. On the Main menu choose Options | Default

2. Select the View Management page and expand the Show node.

3. Set options as desired and click OK to finish or Apply to set changes and continue
setting other options.

To set Show Options for a diagram:

1. Make sure that the diagram you want to affect is the current diagram in the Diagram
pane.

2. On the Main Toolbar click the Diagram View Management button to display the
Diagram Options dialog. Select the View Management page.

3. Set options as desired and click OK to finish or Apply to set changes and continue
setting other options.

- 112 -

Working with View Management

To set Show Options for a project:
1. Open the project
2. On the Main Menu, choose Options | Project
3. Click the View Management tab.
4. Expand the Show node and set options as desired.

To turn Show Options on or off:

1. Clear checkboxes to hide the designated element(s).
2. Check the checkboxes to show the designated element(s).

Show/Hide for individual diagram elements
You can hide Node elements in all diagrams, either singly or as a group, using the Hide
command on the speedmenus of such elements. Any relationship links between elements
you hide this way become hidden as well. It is also possible to hide links and members. You
can restore hidden elements and their links to view at any time.
To hide elements:

1. Select one or more elements.

2. Right-click on any of the selected elements.

3. Choose Hide from the speedmenu.
T restore hidden elements:

1. Right-click on the diagram background to display the Diagram speedmenu.

2. Choose Show Hidden to display the Show Hidden dialog.

3. The "Hidden" list on the left displays all hidden elements.

To restore all elements click Show All
To restore some of the elements, select one or more elements (the "Hidden"
list is multi-select) and click Show.

4. Click OK to close the dialog.

The previously hidden elements are restored to view along with any links between them to
elements that were not hidden to begin with.
Tip: In large diagrams you may find it more convenient to use the Show Hidden
dialog to hide elements. Just follow the procedure to restore elements, except that you
select elements from the "Shown" list and use the Hide or Hide All buttons.

Detail levels for Classes
You can control how much of the information in Class diagram elements (e.g. Classes,
Interfaces) displays in the diagrams. The different detail levels are:
Analysis: names only (no visibility signs)
Design: names and types (visibility signs are shown)
Implementation: names and types, parameters for operations, initial values of
attributes (visibility signs are shown). This is the default detail level.
Set the Diagram Detail Level option on the View Management page of the Default, Project,
and Diagram Options dialogs (Main menu | Options).
To change the detail level in a Class diagram:
1. Right-click on the background of the Class diagram.
2. Select Diagram Options... to display the Diagram Options... dialog.
3. On the View Management tab, in the Diagram Detail Level node, select the desired
level of detail for the diagram and click OK to write the changes to your system
configuration.

- 113 -

Role-Based Workspace

Managing Working Views with Panes

Together main window is comprised of several panes. Depending on what you do, you may
or may not need to see some of the panes. For example, a designer might not need to see the
Editor pane. And regardless of which pane you use most, it can be handy to get the Explorer
pane out of the way. You can do pane management in 3 ways: with the main View menu, the
Main Toolbar, or using keyboard shortcuts. Have a look at the View menu and try out the
different toggles to see which view and toggle method you prefer.

Role-Based Workspace

Together introduces the concept of role-based workspace. The role-based workspace is a
framework designed to enhance team communication, by providing each team member with
an individual set of facilities and enabling team members with different roles to exercise their
own approach to development.

Role is a pre-defined configuration of the user interface for specific groups of Together
customers. Choose your role - and Together automatically optimizes the user interface for
working in that role, by adjusting tool-bar content, menu content and workspace layout
accordingly.

Roles are only available in ControlCenter.

The four roles are:

Business Modeler:

If you are a domain expert or analyst, choose this role. In brief: diagram editor central,
text editor upon demand, tool bars and menus focused on business modeling.
Explorer displays only the items that pertain to business modeling: The Modules tab
of the Explorer is hidden, and the Directories tab shows only the Current Project,
Samples, and Users projects nodes. New Project and Project Properties dialogs are
removed from the File menu (Project Expert can be used instead), Activatable
modules are removed from the Options menu, Quality Assurance and Compile are
removed from the Tools menu, and EJB buttons do not appear on the Class diagram
toolbar. Speedmenus are also streamlined for the business modelet's tasks: source
formatting, make/rebuild QA features, and the Choose Pattern command for
members and attributes are all removed.

Designer:

If you are an analyst and designer - or a designer - choose this role. In brief: both
diagram and text editor central, everything up to the point of compilation, yet not
further.

Developer:

If you do a little bit of everything, if you are an analyst, designer and
programmer, - or a designer and programmer, choose this role. In brief: both
diagram editor and text editor central; compile, debug, assemble, deploy and run.

S 114 -

Role-Based Workspace

Programmer:

If you are a programmer, choose this role. In brief: text editor central; compile, debug,
assemble, deploy and run. With this role selected, Together opens with the closed
Diagram pane, but it is still possible to open it if required.

Changing the configured role

You select a role during installation. However, it is possible to change roles any time in the
General options of the Options dialog (Options | Default). Select the new role from the
drop-down list in the Role after restart option. The change takes effect next time you start
Together. Advanced users can also modify the default role-based configurations by editing
the workspace.config file.

Default options E
o AntRunner Mame | Wallug |
4 General Role after restart evelnper
ar- Diagram [-
Business Modeler e
= ‘iew Management U=ze system backgrou... — [
qr- Showy Canfirm change to Lo... by cioner
= Hid
e Enahle mouse wheel ... |[Programmer
2 Regular Expresi |
o Show subpackage (| | Enable Drag and Drop | [n
Uk I — hd
Dezcription

== Levels | ik I | Cancel | | Apply | | Help |

Complete descriptions of the default settings and detail levels can be found in the
Description field for the General node in the Options dialog (Options | Default), and in
Diagram Options | View Management of the Diagram speedmenu.

- 115 -

Introduction to modeling

Part 2. Working with Features
Modeling with Together

Introduction to modeling

The main reason for modeling is to organize and visualize the structure and components of
software intensive systems. With models, you capture requirements, identify and specify
subsystems, and visualize and document logical and physical elements, and structural and
behavioral patterns.

In the UML User Guide, Booch et al cite a number of activities involved in modeling a
system's architecture. These activities may be summarized as:

- Identify different architectural viewpoints, i.e., use case, design, process,
implementation, and deployment views

- Identify the system context and the actors involved
- Decompose a large, complex system into its most granular subsystems.

In addition, the authors outline a number of activities that apply to both the overall system
and each of the subsystems:

Use Case view: model use cases describing system behavior as seen by analysts, end
users, and testers. Use Case diagrams for the static aspects, and appropriate
combinations of Activity, Collaboration, Sequence, and State diagrams to show
dynamic aspects.

Design view: model a design view specifying classes, interfaces, and collaborations.
These provide a working vocabulary for the system in terms of both problem and
solution. Create Class diagrams (including Objects as necessary) to model static
aspects, and again, appropriate combinations of Activity, Collaboration, Sequence, and
State diagrams to show dynamic aspects.

Process view: model a process view to describe threads and processes of various
synchronization and concurrency mechanisms. Same diagrams as above are
recommended, except focusing on active classes and objects representing threads and
processes.
Implementation view: model the components used to build and release the system.
Use Component diagrams for the static aspects, and again, appropriate combinations
of Activity, Collaboration, Sequence, and State diagrams to show dynamic aspects.
Deployment view: model the nodes, components, and interfaces forming the
hardware topology for the runtime system. Use Deployment diagrams for static
aspects, and appropriate combinations of Activity, Collaboration, Sequence, and State
diagrams to show the dynamic aspects.
Patterns: model the architectural and design patterns of each of these models with
appropriate diagrams to show collaborations.
The authors go on to point out that creating of a system architecture isn't a single event;
rather it is a process of successive refinement, in a manner that is "use case-driven, architecture
centric, and iterative and incremental."*

- 116 -

Introduction to modeling

Choosing the right set of models is important. There are no hard and fast rules, but the
wrong models give you an inaccurate view of the system and jeopardize the overall success
of a project. A few points to remember about good models are:

- Good models are a simplification of reality from a specific point of view
- Good models can stand alone semantically

- Good models are loosely coupled to other models

- Good models in aggregate provide a complete blueprint for a system.

S117 -

UML and Together Diagrams

UML and Together Diagrams

Together provides support for the most frequently needed diagrams and notations defined
by the UML. As the UML specification evolves, you can count on Together to keep pace
with developments and supply new builds that deliver updated UML support.

UML Diagrams and support

Together now supports the major UML 1.3 diagrams:
Class (includes Object diagrams and Packages)
Use Case
Sequence
Collaboration
Activity
StateChart
Component
Deployment

Together Diagrams

Together provides several other custom diagrams in addition to the UML types:
Robustness diagram to provide robustness analysis of the use cases
Business Process diagrams for modeling business operations
Entity Relationship diagrams for data modeling
Diagrams for visual assembling of distributed applications: EJB Assembler diagram,
Web Application diagram and Enterprise Application diagram.
XML Structure diagrams for visually creating DTDs. Import existing DTDs to get a
quick visual picture of the elements and their relationships
Taglib diagram to create tag libraries.

Notation

UML diagrams are rendered on-screen and in print using UML-compliant notation. In Class
diagrams, you have full control over code generation for the various notational elements
through either global or diagram level configuration options.

Stereotypes

Together supports the use of stereotypes. You can use stereotypes to adhere strictly to
UML-defined stereotypes, or you can customize them to suit your requirements. You can
even add color to stereotypes... a new dimension in communication that exceeds what the
UML presently specifies.

Additional resources

You can find detailed information on UML modeling techniques for Class and Package
diagrams in Chapters 8-12 of the UML User's Guide, and detailed information about
component modeling in color in Java Modeling in Color with UMIL: Enterprise Components and
Process.

- 118 -

Creating Diagrams in Projects

Working with Diagrams

Creating Diagrams in Projects

This topic explains how to create new diagrams, and clone or rename existing diagrams.
Diagrams exist within the context of a pryject. You must create or open a project before you
can create any new diagrams. If you create a Together project around an existing code base,
Together automatically creates Class diagrams showing the contents of each package when it
parses your code. Before creating a project you may want to customize forward and reverse
engineering and/or soutrce code formatting (see Configuring Together).

You can create any of the diagram types your license supports. Diagrams fall into two basic
categories:

- UML diagrams (Class, Use Case, Sequence, etc.)

- Special Together diagrams (Entity Relationship, EJB Assembler, XML Structure, etc.)
When you begin a new project, or add new diagrams to an existing project, you can create
diagrams using...

- the Main menu

- speed menus in the Explorer

- the Hyperlinking feature

Using the Main Menu or toolbar

You can use the File | New Diagram menu command, or the New Diagram icon of the
toolbar to create a new diagram in any directory/package in your project.

Hew Diagram E3

s Ot E O B 2] O

Clazs ze Caze Sequence Collaboration Statechart Activity Component Deployment

il

Dizgram name: |Class |

Packade Name. |zgefaufts ==

] include in current diagram

Description:

Presz Ok to create a newy diagram.

ik || Cancel || Help |

- 119 -

Creating Diagrams in Projects

1. Select the destination directory or package in the Project Exploret's Directory or Model tab.

2. Choose File | New Diagram from the menu bar, or click on New Diagram icon of the
toolbar to display the New Diagram dialog (see figure above).

3. Click the icon for the type of diagram you want to create (only those diagrams enabled by
your license are enabled).

4. Enter the diagram name and optionally its description.

5. Choose a destination for the new diagram file. Default is the package currently selected in
the Explorer.

0. Check Include in current diagram if you want to place an element with a logical link icon to
the new diagram in the current diagram.

Using Explorer speedmenus

When a package node is selected in the Explorer's Model tab, you can use the New |
Diagram command on its speedmenu to display the New Diagram dialog box. Follow the
same steps as above.

Using the Hyperlinking feature

The Hyperlink feature enables you to create a new diagram that is automatically linked to an
existing diagram or diagram element. You can do this in the Hyperlinks tab of the class
Inspector (class speedmenu | Properties). For more information see Hyperlinking diagrams.

Cloning diagrams
The Clone command on the speedmenus of existing diagram nodes in the Explorer Model
tab lets you quickly create a new diagram with the same content as the existing one. The new

diagram is created with a unique default name in the same package as the first diagram. You
can rename the clone diagram as described below.

Renaming diagrams

To rename an existing diagram:

1. Open it for editing.

2. Click on the background to display diagram properties in the diagram Inspector
3. Modify the Name property in the diagram Inspector.

Configuring diagram options
The Diagram page of the Options dialog provides a number of customization settings that
affect diagrams in general and Class diagrams in particular. You can set these options either

globally for all diagrams, project-wide for just the current project, or locally to the current
diagram. For more information, see Creating a shared multi-user configuration.

See also

Opening diagrams for editing
Creating and opening a project
Configuring New Diagram dialog

-120 -

Drawing diagram elements

Drawing diagram elements

This topic covers the basic techniques for placing diagram elements and annotations into
diagrams and drawing relationship elements between them. Drawing diagrams with Together
is simple and intuitive. If you've used eatlier versions of Together you can probably skip or
just skim this information.

When you create a new diagram, the Diagram pane presents an empty background. You
place the various Node elements (e.g., Class, UseCase, etc.) on the background and draw
relationship /Znks between them (Association, Communicates, etc.) What elements and
relationships you draw is up to you... whatever meets the requirements of your model.

The main tools you use for constructing diagrams are:

Diagram Toolbars: Place icons for Node elements and draw links on the diagram
background.

Diagram speedmenu: Show hidden objects, manage the layout, control Zoom,
configure diagram-level Options, update diagrams and hyperlinks.

Element speedmenus: The right-click menus of the various nodes and links provide
functions specific to each. For example, you can add or delete members (or delete the
element itself), cut-copy-paste, hide and show elements, route links, and more.
Explore the speedmenus of the different elements as you encounter them to see
what's available for each one.

Inspectors: (Speedmenus | Properties) Edit diagram or element properties, create
hyperlinks between diagrams, elements of diagrams and other diagrams, and between
diagrams or elements and files or URLs. Edit annotations and source code comments.

Using the Grid

You can optionally display or hide a design grid on the diagram background, and optionally
have elements "snap" to the nearest grid coordinate when you place or move them. Grid
display and snap are enabled by default.
To control grid parameters:
1. Go the Main menu and choose Options | [scope| (where scope is default, project, or
diagram depending on how broadly you want the settings to apply).
2. On the Diagram page of the Options dialog, expand the Grid node and set the Show
grid and Snap To Grid options as desired.
3. Specify granularity of the Grid in the fields Grid width and Grid height in pixels.

-121 -

Drawing diagram elements

Placing Nodes

To place a Node element:
1. Create or open a diagram
2. On the Diagram Toolbar click the icon for the element you want to place in the
diagram. (Icons are identified with tool-tips.)
3. Move the pointer over the Diagram pane to the place you want to create the new
element and click. This creates the new element and activates the in-place editor for its
name. (INofe: You can place multiple elements of the same type in one operation. See
Tips and Tricks below.)

[=] Aldbutes
=] Soeratio...

1. Click the desired element icon. 2. Move pointer over diagram and click 3. New element created, in-place name editor
Icon stays depressed. activated

4. Alternatively, you can invoke the diagram speedmenu and choose the New node. Its
drop-down list displays all basic elements that can be added to the diagram, and
Shorteut option.

-122 -

Drawing relationship links

To draw a relationship link between Nodes:

1. On the Diagram Toolbar click the icon for the type of link you want to draw in the
diagram. (Icons are identified with tool-tips.)

2. To draw the link...

Drawing diagram elements

- Move your pointer over the Node element where the link should originate.
- Drag from the originating element to the destination element and drop the

link.

- If the destination element is out of reach, drop the link on the background.
The Choose Destination dialog displays. Choose the destination element in the list
and click OK to create the link. (Note: You can place multiple links of the same
type in one operation. See 1ips and Tricks below.)

! qqpamr::::
P
1| Customer
: [=] AR butes —

.. i -name:Sting k. . .
- :quemtﬁnns{ C
> o : +addMewdvoi

; |

1 o O 5 L A

-date:Date

+addhewvoi

ﬁqﬁqﬁ‘mmmhi%ﬂ‘x

1. Click the desired link icon. Icon stays
depressed.

Bending points

1 o O O A

Ty IR T' “u

,;Eu Clazs |

1
|
i Customer
: [=] ARdbutes

: [=] Qoermtions
- : +addM e voi
1

-date:Date

+addhew) voi

2. Move pointer over first element, drag to
second one

1 o O 5 L A

g2 af 28 . [O “w B \| ™

! qqpamr::::
P
1| Customer
: [=] AR butes —

.. i -name:Sting k. . .
- :quemtﬁnns{ C
> o : +addMewdvoi

; |

-date:Date

+addhewvoi

3. Drop when second element is highlighted

If your diagram is densely populated, you can draw the links between the source and target
elements bypassing the other elements on the way. This is how it's done... choose link icon
on the toolbar and click on the source element. Then, drag the link line and click on the
diagram background to create sections of the link, and finally click on the destination

element.

- 123 -

Drawing diagram elements

Link to self

Choose Association link icon on the Diagram toolbar and double click on the element. This
draws the link to self.

Bidirectional links

An association link between two classes can be converted to a bidirectional link. To do this,
select the link and invoke Choose Pattern command on the speedmenu (or press CTRL+R). In
the Choose Pattern dialog select Bidirectional pattern, adjust members if necessary and press
Finish to complete operation. This adds Sp/it #p checkbox to the list of pattern parameters.
If there are two classes on a diagram associated with each other, both associations can be
coupled into a single bidirectional link. To do this, select both associations and apply
Bidirectional pattern to them.

All usual operations are applicable to the bidirectional links: you can move, reroute or delete
them as required.

To split one bidirectional link into two separate associations, select the bidirectional link and
invoke Choose Pattern dialog. Set the flag Sp/it up and press Finish. The link falls apart into
two associations.

Link labels

For better lucidity of a diagram, add textual labels to association links. To do that, invoke the
link's speedmenu and choose Labe/ command. This brings in an in-place editor where you
can enter the link description. If the description is too long , it is possible to wrap it. This
facility is controlled by the Wrap link labels text flag on the Diagram page of the Options dialog,.
When this option is selected, and the label exceeds a pre-defined length in pixels (also
specified in the same place of the Options dialog), the label text wraps and displays in multiple
lines.

Labels can be oriented along the links. This behavior is controlled by the option Show labels
oriented along the links in the Diagram page of the Options dialog. However, oriented labels and
multi-line labels are alternative. If oriented labels are selected, word wrapping is disabled.

See also

Manipulating diagram elements
Editing properties
Managing diagram layout

124 -

Drawing diagram elements

Tips and tricks

Constructing diagrams with Togezher is straightforward and easy to master. For newcomers,
this section details some techniques that you may find helpful as you work.

Adding multiple elements: You can place a number of nodes of the same type in the
diagram without returning to the toolbar. These will all have default names which you can
then edit in-place or in the properties Inspector for each one.

- With the depressed CTRL key, click on the Toolbar button for the node you want to
create (the button remains depressed).

- Release CTRL key.

- Click the desired location in the Diagram pane. The new element is placed on the
diagram at the point you click (the button remains depressed)

- Click the next location in the Diagram pane. The next new element icon is placed on
the diagram

- Repeat previous step until you have one less than the desired number of elements of
that type.

- To place the last element in the series, click once more on the background and close
the inplace editor for the element name.

- Click "Select" toolbar button or just press ESC.

Anti-aliasing: When zooming in a diagram, you can observe piecewise-linear lines. To
dither the lines being drawn, set _Antialias graphics flag in the Diagram page of the Options
dialog.
Canceling toolbar selection: After making a selection on the toolbar or doing the first of a
multi-draw or multi-placement operation, you can cancel the operation by clicking the Select
Arrow on the toolbar.
In-place editing:You can edit the name property of elements, members, and links in place.
Click once to select the name label, then again to activate the in-place editor. For Attributes
and Operations you can type in either the full declaration statement or the element name
only. The declaration must be full correct syntax for the project's target language.
Properties: Clicking on the diagram's background displays the diagram's properties in the
diagram Inspector. Selecting an element in the diagram displays its properties in the
element's Inspector. View Inspectors using Properties on the speedmenu of a selected
element or the diagram background.
Selecting: Click on any element in the diagram to select it.

- Select multiple elements by holding down CTRL and clicking on them individually,

or click on the background and drag a "rubber-band box" around an area to select all

elements it contains.

- For elements containing members, click on a member to select it.

- Selecting the node for a diagram element in the Model tab of the Explorer select it in

the diagram and scroll the view to make it visible.
Speedmenus: Many things that you will want to do with elements or the diagram as a whole
can be done from the different speedmenus. Some of the operations include:

- Add or delete members

- Set association cardinality

- Cut-copy-and paste attributes, operations, or text

- Hide individual elements or show hidden elements

-125 -

Drawing diagram elements

Right-click on diagram elements, including class members, for access to element-specific
operations on the respective speedmenu. Right-click the background to access the diagram's
speedmenu. (Note: The speedmenu of a selected element is duplicated in the main Object
menu.)

Note that if you select an element on diagram and wish to invoke its speedmenu, you can by
chance loose the focus and get the speedmenu of some internal element. To avoid this
situation, use SHIFT+Right Click. This invokes the speedmenu of the desired element and
preserves the current selection.

Undo/Redo:Undo and Redo work with changes that affect the visual diagram, layout of
elements, adding of Attributes and Operations, etc. These features do not work when the
change to the diagram involves the creating or renaming a file or directory-- creating and

renaming classes, interfaces or packages for example.

- From the main menu, choose Edit | Undo or press Cttl + Z to undo the last change
you made to the diagram.

- From the main menu, choose Edit | Redo or press Ctrl + Y to restore the last
change you made using Undo.

Tip: The size of the Undo/Redo buffer is configurable in the global ot project-local
workspace.config file.

Viewing:Scroll the Diagram pane horizontally and vertically using its scrollbars or the
Overview tab.

- Resize the pane vertically by dragging its lower edge up or down.

- Resize the pane horizontally by dragging the separator located between the Toolbar
and the Explorer pane, or by resizing the window.

- Enlarge your work area in the Diagram pane by hiding any or all of the other panes
using the View menu or Main Toolbar.

- Modify the Zoom level (magnification) using the Diagram speedmenu or by dragging
a corner of the shadow in the Overview tab.

Zooming: you can obtain the required magnification on the Diagram pane. This is how it's
done: select Zoom lens button and click on the Diagram pane to zoom in, depress ALT key
and click on the Diagram pane to zoom out. Alternatively, choose Zoom command on the
diagram speedmenu, or use keyboard shortcuts. More sophisticated zooming capabilities are
available on the Zoom node of the diagram speedmenu: Zoow: to Selection, Fit in window , Fit
1:1.

-126 -

Manipulating Diagram Elements

Manipulating Diagram Elements

Once you have placed elements into a diagram you may find you need to manipulate them
visually. If you experiment a little you should find this easy and intuitive to do. Most
manipulations involve dragging with your pointing device or executing speedmenu
commands of selected elements. If you want to know more about some of the common
visual manipulations, check the sections below.

Moving elements and drag-drop copying

You can visually move Node elements into different packages, or members into different
classes, by dragging them on top of the destination icon and dropping them. For example,
you could drag Classes into a Package (Class diagram), or Components into a Node
(Deployment diagram).

You can use the same technique to copy members to different classes and interfaces by
pressing CTRL before initiating the drag. When you move an element, it is deleted from the
source package or element and moved into the destination package or element. Copied
elements are 7ot deleted from their source.

When you drag Nodes or members around on a class diagram, the appearance of other
element icons changes when the dragged element crosses their boundaries. This indicates
that the icon being "crossed" has received focus and is a potential drop target. For Class,
Interface and Package elements, the drop focus is represented by a blue rectangle around the
icon border. Members are highlighted in blue when focused.

If you drag an element outside the borders of the diagram, the diagram automatically scrolls
to follow the dragging.

Full drag-and-drop support

Drag-and drop support can be extended beyond the borders of the single diagram. This
teature is controlled by Enable drag and drop flag in the General tab of the Options dialog.
When this option is selected, you can drag classes and members between the Explorer's
Model tab and the diagram, or between two diagram tabs. It is even possible to move
elements within the Mode/ tab from one node to another.

Copying and "cloning” elements

You can copy and paste Node elements within the same diagram, or between different
diagrams. You can also copy and paste members within the same class or between different
classes, and you can paste a class into another to create an inner class.
Copy an element by selecting it and using the Copy command on the speedmenu, or
Edit | Copy command of the main menu
Paste an clement by selecting it's destination (element or diagram background) and
using Paste on the destination's speedmenu, or Edit | Paste command of the main
menu.
Note that Cut works the same way except the source item is deleted once the Paste
operation is complete.
An element that can be cut/copied and pasted can also be coned by using the Clone
command on its speedmenu. Cloning is basically a one-step copy-and-paste.
Note that you can perform cut, copy, paste, and clone operations from the Explorer using
the appropriate speedmenu command of an element selected there.

-127 -

Manipulating Diagram Elements

Resizing node elements
Drag the corner of a selected diagram element to the desired size. The element grows or
decreases in the direction of the cursor.

If you hold Shift key depressed while dragging the corner of a selected element, the element
grows or decreases uniformly in all directions.

Manually resized Node icons shift to an automatically optimized size when their contents
change, when members are added or deleted, for example. Restore the default size with the
Layout | Actual Size command on the element's speedmenu.

Changing link routing

You can alter the routing of a relationship link's line by selecting the line and dragging any

point on it in any direction. To remove bending points created this way, select Layout |
Route Links from the speedmenu of either connected Node.

Changing link destination

To change the sounrce or destination node of a link:
1. Select the link
2. Drag cither the source or destination end point of the link to a new Node element.

Tip: If the drop destination is out of range, drop the link end-point to the diagram
background and select the target from the dialog that appears.

Related topic

Managing diagram layout

- 128 -

Standalone Design Elements

Standalone Design Elements

Together allows users to work with diagrams and diagram elements in a really flexible way.
To keep the projects nice and clean, the design elements are stored inside the diagram
packages. However, this impedes sharing of the elements between team members and
storing the elements in a source code control system.

To tackle with these problems, Together enables storing design elements in separate files.
Such design elements are called Standalone Design Elements (SDE). Physically, they are
stored in the files with . ef<shapetype> extension. For example, a standalone actor is
stored in a file named like Actorl.efActor.

Using Standalone Design Elements simplifies visual analysis and facilitates exchange of
design elements among the team members through the version control system, email etc.
Note: it is worth mentioning that a design element is any element that has no underlying
source code... an Actor, an Object, a SwimlLane, a Note, but not a Class or a Package.

Creating SDE's

There are two possible ways to create SDE's:

1. In the General tab of the Options dialog, check the flag Create new design element as
standalone. With this option selected, any design element created on a diagram, is added as a
shortcut, and appropriate . ef<shapetypes> file is written to the physical package of this
diagram.

2. Alternatively, when this option is unselected, you can copy a design element on the
diagram and add it to the model as an SDE. To do that, right click on a package where you
want this element to be added, and choose Paste as standalone on the package speedmenu.

Integrating SDE into a diagram
To integrate a standalone design element into a diagram, select this element in the Exploret's

Model tab and paste to the diagram pane. The element adds to the diagram like a regular
design element, and appropriate node is removed from the Explorer.

Using SDE's
As mentioned above, with the Create new design element as standalone option selected, each
subsequent design element added to a diagram is created as a separate file in the diagram

package. You can observe all different files in the Directory tab of the Explorer: for
example, Actorl.efActor, Actor2.efActor, Actor3.efActor.

If this option is unselected, and you still want to make use of an existing or imported
standalone design element, select this element in the Model treeview and choose Copy
command on the node speedmenu. Next, right click on the target diagram and choose
Paste/ Paste shorteut on the diagram speedmenu.

See also

Using Together with a Version Control System

-129 -

Managing diagram layout

Managing diagram layout

Together makes it easy to manage simple or complex diagrams with automated layout
features that optimize the diagram layout for viewing or printing. You can also create your
own diagram layouts.

Using the automated layout features

The Diagram speedmenu provides access to the automated layout optimization features with
the following commands.

If you click on the background:

Layout | All positions all diagram elements automatically according to the Layout options
settings.

Layout | All for Printing positions elements within page borders. You can set Print
options to display the print grid on your output.

If you select a diagram element:

Layout | Selected, Layout | Selected for Printing repositions only selected element as
just described.

Creating your own 'manual’ layout
You can create your own layout by selecting and moving single or multiple diagram
elements. You can...
- Select a single element and drag it to a new position
- Select multiple nodes and drag them as a group to a new position
- Select multiple nodes and cut them as a group and paste them to a new position
- Manually reroute links
If you need to know how to do these tasks, see Drawing Diagram Elements: Tips and
Tricks.

Diagram layout tips

Manual layouts are saved when you close a diagram or project and restored when you next
open it.

Manual layouts are not preserved when you run one of the auto-layout commands.

You can revert to your manual layout after an auto-layout operation using Undo. For
example, you might invoke Layout All for Printing, print the diagram, then call Undo to
restore your manual layout.

- 130 -

Searching on Diagrams

Searching on Diagrams

Together allows to search through the diagrams and projects. Commands are available on
the Search item of the main menu. Search adds new tabs to the Message pane to display the

T
. b
results. Icons at the left allow to expand / collapse the treeview nodes ! , and to save the
=]
search results .
'7 =] ':d ECOMMErce -
= £3 Magazine i
= 5 sampleproject
=1 25 i

B[] ServerService java
(10,300 puklic firel static String SERYER_USER. O0="syste
(11,30 public final static String SERVER_USER_PASSWORD = "“together™,
(27,39) hputiContext SECURITY_PRINCIPAL, SERVER_USER;

-

4] [A0

£ Messages | Search Results |

This section gives just a brief overview of search and replace facilities. You can find the
detailed description of controls and options in the appropriate topics of the Context Help.

Search on diagrams

This function allows to search the current diagram, or all opened diagrams for the specified
string in a certain scope.

Search by query

This feature provides advanced search tool. Selected element is sought for in the specified
scope, according to the user-defined query or filter.

Search / Replace

These commands provide a flexible and powerful facility of searching and replacement in
the specified range. Search results display in the special tab of the Message pane as a treeview
of found elements.

Search for Usages Dialog

This command performs search for the occurrences of a language construct in the specified
scope. Search results display in a special tab on the Message pane as an expandable treeview.

- 131 -

Searching on Diagrams

Update Dependencies

Diagram Editor draws links between the classes and interfaces within the same diagram - for
example, a class extends the other class, or implements an interface... However, if the
diagram contains packages, the dependencies between those packages are not drawn
automatically.

Update Package Dependencies option of the Diagram speedmenu builds links between
the packages. A link between two packages means that there is some sort of dependency:
implementation, inheritance, usage - say, real dependencies are only taken into account. For
example, if a certain class is imported but never actually used, this is not considered a
dependency.

This is how it works... Select one or more packages in the Diagram Editor and choose
Update Package Dependencies on the diagram speedmenu. Together will build all the
links between the selected package(s) and the rest of the diagram. If none is selected, all
packages are considered selected. In this case Update Package Dependencies provides two
options: Current Diagram (quite self explanatory) and .4/ (arm yourself with patience - this
builds links for the entire project).

Once built, the links on a diagram are not kept up-to-date. Obsolete or even non-existent
dependencies go on displaying until deleted or created anew. To update a link individually,
select it and choose Rescan from the link's speedmenu.

The process of building dependency links is quite time consuming... However, its speed is
configurable. Flag option.dependencyLinks. fastSearchin
STGHS\config\diagram.config controls recursion into subpackages. Setting this
flag to true skips subpackages and provides faster operation, while f£alse causes
generating the links between subpackages.

- 132 -

Opening diagrams for editing

Opening diagrams for editing

After opening a project that has diagrams, you can open one or more diagrams for editing.
Each diagram opens in its own tabbed page in the Diagram pane. Tabs display the diagram
name and diagram type icon. (The icons correspond to those shown in the Model tab of the
Explorer.) Switch between open diagrams by clicking the desired tab.

To open a diagram for editing:
* Select the Model tab of the Explorer if it is not currently selected.
* In the Model tab, find the diagram you want to open.

* Right-click on the diagram in the treeview and choose Open or Open in New Tab
from the speedmenu.

Tips
- If you want to work with several diagrams, right click on each diagram icon and select

Open in New Tab.

- Icons for UML diagram types look like the UML symbol for the main element of each
type. For example, the icon for a Component diagram looks like the UML icon for a
component.

- You can also open diagrams from the Main menu with File | Open .

- Speedmenu "Open" replaces the contents of the current diagram (if any) with the diagram
you are opening.

- Double-clicking on a diagram node in the Explorer opens the diagram in the currently
focused diagram page replacing any open diagram.

Closing open diagrams

You can close the current diagram by choosing File | Close from the main menu, or by
right-clicking on the diagram tab and selecting the Close speedmenu.

You can close all open diagrams at once by choosing File | Close All from the main menu,
or by right-clicking on the diagram tab and selecting the Close All speedmenu.

- 133 -

Editing properties

Editing properties

When you select an element in a diagram, or the diagram background, the properties of the
element (or diagram) are available in the properties Inspector (further referred to as Inspector).
The content of Inspectors varies depending on what is selected. Generally an inspector
presents several tabbed pages representing different categories of properties. For example,
the class Inspector has the following tabs:

Properties: General properties of the class (name, stereotype, abstract, etc.) Displays two
columns:

Name shows the name of each property
Value displays the value or setting of the property named in the same row of the
Name column.

Hyperlinks: Intra-project and URL hyperlinks to related information (see Hyperlinking
diagrams)

View: Visual properties of the diagram icon (color, etc.)

Description : Source code comments

Javadoc: Properties used for Javadoc generation (author, version, etc.)

HTMLdoc: source code comments in HTML format

Req: Information tracking requirements (number, priority, difficulty, etc.)

Beans: Optional JavaBean properties (if class is a JavaBean)

Property editors

In the general Properties of Properties of CashSalesApp
elements and diagrarns, you can Javadoc |/HTI'-.-1Ld|:u: rRequirements rElean |
enter a value for string type Properties |/ Hyperlink |/ "WliEny |/ De=scription |
properties by typing a value in the Mame [Value
edllt tield in the Valiue cglumn. Some ame CashSalesApp
string type properties display a
"browse" button beside the field to package
indicate that an editor dialog is sterectype Jui-component ||
available: alias
- Mulg—hpe string properties display e
a multi-line text editor dialog

. . public [#]
- String properties whose value must _
be the name of some object or il [0
element in the project display abstract [
- Some properties can have multiple extends ﬂ
Values,' such as pammez‘ei'"of an implements o ﬂ
operation. Here, the editor accepts a

.. . i i i
comma-delimited string. e iants
- Some properties have a pick-list of EEIE = [
available values. You can select from Apply EJB psttern | nane - |
the list or enter your own value in
such fields. @ Fress Ciri+Erter to finish editing and close Inspectar
P

134 -

Editing properties

Tips for Editing Properties
Applying changes: Changes to property fields are applied when you:

press Enter (inspector dialog remains open)

press Ctri+Enter (inspector dialog closes)

exit the edited field, or...

when the open inspector dialog loses focus.
Important: Note that if you click the dialog's close button while changes are pending to a
tield, zhe changes are not saved.
Inspector contents: In the Diagram pane, select a diagram element to load its properties in
the appropriate Inspector. (If you select nothing, the background is selected by default and
diagram properties are loaded.)
Inspector invocation: Use the element or diagram speedmenu (choose Properties) to
display the Inspector. Also accessible from the Object menu. Keyboard shortcut is Alt +
Enter.
File chooser buttons: Use keyboard shortcut ALT+INSERT to edit the fields with file
chooser buttons.
Modifying properties: To modify a property value, click on it in the Inspector. Some
properties are not modifiable with the Inspector and are therefore disabled for editing. Note
also that some diagram elements, such as compiled classes, are read-only and therefore all
properties are disabled for editing.
Complete operation: Press Enzer to complete editing in a text field. C#r/-Enter applies
modifications and closes the inspector.
In-place editing: You can edit the name property of nodes in place on the diagram icon
itself.
Stereotype: The szereotype property typically has a pick-list but these are not always populated
by default. If you want to modify an Inspector to add or modify default stereotypes, it is
possible to do so with a little Java programming. See Advanced Customization: Customizing
Properties Inspectors.
Exit: Press Esc to quit the Inspector.

See also

Property Inspectors

- 135 -

Editing Properties in-place

Editing Properties in-place

Working with diagrams encourages inplace editing of the properties, in addition to the
inspector edit. Each diagram element has an initial string with a certain set of properties.
However, some of these properties are not displayed, and become available only in course of
inplace editing. Users may modify all properties, or some of them, so that the underlying
engine completes changes.

To edit in-place, double click on the selected element, choose Rename on the element
speedmenu, or just press F2 for the selected element. This brings in a highlighted text string
with a cursor that allows modification, unless a diagram is read-only. The changes are applied
by pressing <Enter>, or clicking on another element, which causes relevant code generation.

When editing properties manually, it is the user's sole responsibility to adhere to correct
syntax. This specifically applies to code-generating diagrams. Together responds to the
wrong syntax of modifiers with error messages. But beware - misspelled attribute type is
exactly reproduced in the forward engineering.

In case of incomplete entry, the omitted visibility modifiers, attribute types, return types of
the operations are replaced with their existing values. For example, if an attribute was private
and the visibility is not entered, then it will be kept private. If no value was specified before,
then default values are substituted as they are specified in the appropriate template
properties. For example, an attribute with undefined visibility modifier and type will be
private integer; if an operation's return type is not specified, it defaults to void.

Almost all strings that show up on the diagrams can be modified on the fly.

Note: shapetypes and link types are not editable.

A 5 F
- =zmarmentintenal=s | '
i
CashSale | ; Q L
[|
I
1

|
+TA BATE:double=0.05 I\ F
-zsubtotal:BigDeitnal TS ' unna_med _ L

|—discuuntﬂxmnunt:EligDecimaI| ||| || ashier Wrs.Jones |

| - —-F - -
-tax:BigDecimal | r x

-pavmentBigDecimal |

Inplace edit of a member Inplace edit of a link comment Inplace edit of an actor

- 136 -

Hyperlinking diagrams

Hyperlinking diagrams

This topic explains the types of hyperlinks you can create with Together and why you might
want to create them. There are also step-by-step instructions for creating, viewing,
removing, and browsing hyperlinks.
You can create hyperlinks from your diagrams to other system artifacts and browse directly
to them. You can create hyperlinks from the current diagram as a whole, or from a selected
diagram element (or group of elements) to...

- A new diagram (created on the fly)

- An existing diagram or diagram element anywhere in the project

- A document file on a local or remote storage device

- A URL on your company's intranet or on the Internet

You create, view, remove, and browse hyperlinks with the Hyperlink Tab speedmenu.

Properties of Class1

Hyperlink

= &= Flement
hlake & Sale
= & URL
.&, kit Sy togethersoft.com

@ Prezz Cirl+Enter to finizh editing and cloze Inzpectar

S137 -

Hyperlinking diagrams

Properties of Class1

Hyperlink

E%lem..l |

ey dlagram

= @& URL| Existing element

'% h Remove Al Com

@ Press Cirl+Enter to finizh editing and close Inspectar
s

Add or remove hypetlinks using the speedmenus of the link-type nodes of the Hyperlinks tab
Why use hyperlinking?
- Link things that are generalities or overviews to specifics and details.

- Create browse sequences leading through different but related views in a specific order;
create hierarchical browse sequences.

- Link descendant classes to ancestors; browse hierarchies

- Link diagrams or elements to standards or reference documents or generated
documentation.

- Facilitate collaboration among team members

How to create hyperlinks

This section explains how to create the various kinds of hyperlinks. Hyperlinks exist within
the context of projects, so you must first open a project to create or browse them.
Hyperlinks are essentially properties which is why they appear in the properties Inspector.

Hyperlinking to a new diagram

You can create a hyperlink from an existing diagram or one of its elements to a new diagram
that you create as part of the hyperlinking task. When creating a new diagram this way, the
main difference in procedure is launching the New Diagram dialog from the Hyperlink tab
instead of the Main menu. Of course, the new diagram is then hyperlinked to your
originating element by default.

To create a new hyperlinked diagram:

1. Open an existing diagram from which to create the hyperlink (or create a new
diagram).

- 138 -

Hyperlinking diagrams

2. Select the element or group of elements to which you want to link the new diagram.
If you want to link to the diagram as a whole, click on the diagram background to
deselect all elements.
3. Choose Properties from the speedmenu and select the Hyperlinks tab in the
Inspector.
4. Right-click on the Element node to display the speedmenu.
5. Choose New diagram to display the New Diagram dialog.
0. Specify the new diagram's type and location as described in Creating Diagrams in
Projects and click OK.
The new diagram opens in the Diagram pane and the Hyperlinks tab displays the link to the
originating diagram or element.

Hyperlinking to an existing diagram or diagram element

You can create a hyperlink from an existing diagram or one of its elements to any other
diagram or diagram element In the project.
To create a yperlink to an existing diagram or element:
1. Open an existing diagram from which to create the hyperlink (or create a new
diagram).
2. Select the element or group of elements that you want to link to another diagram or
element. If you want to link to the diagram as a whole, click on the diagram
background to deselect all elements.
3. Choose Properties from the speedmenu and select the Hyperlinks tab in the
Inspector.
4. Right-click on the node named E/ement to display the speedmenu.
5. If you want to link to a diagram or a diagram element, choose Existing element.
0. Select the desired diagram or element in the dialog that is now displayed. For

element selection, you can expand diagram nodes in the selection dialog's treeview.
7. Click OK to close the dialog and create the link.

Hyperlinking to a URL or file

You can create hyperlinks from your UML diagrams to any on-line resource anywhere on
the planet. For most users such hyperlinking will probably take the form of documents on a
LAN or document server, or URLs on the company intranet . But you can just as easily link
to on-line information from the OMG, newsgroups, discussion forums... if it's available on
line you can link to it.

To create a hyperlink to a file or URL.:

1. Open an existing diagram from which to create the hyperlink (or create a new
diagram).

2. Select the element or group of elements that you want to link to another diagram or
element. If you want to link to the diagram as a whole, click on the diagram
background to deselect all elements.

3. Choose Properties from the speedmenu and select the Hyperlinks tab in the
Inspector.

4. Right-click on the node named URL to display the URL dialog.

5. If linking to a file, enter the complete path, or browse for it. If linking to a URL,
enter the URL.

0. Click OK to create the link.

- 139 -

Hyperlinking diagrams

Viewing hyperlinks
All the hyperlinks defined for any diagram or element display in the Hyperlinks tab of the
properties Inspector. Select the Hyperlinks tab before checking diagrams for defined
hyperlinks.
To check if anything is hyperlinked to a diagram, click on the diagram background
and then view the Hyperlinks tab for defined links.
On a diagram all names of diagram elements that are hyperlinked to something else
display in blue font. If you want to know what is hyperlinked to the element, click on
the element (node or relationship link) and then view the Hyperlinks tab.

Browsing hyperlinked resources

Once you have found the defined hyperlink(s) for a selected diagram or element, you can use
the Hyperlink tab's speedmenus to browse to the linked resource(s).
- Browsing to a linked diagram opens it in the Diagram pane or makes it the current
diagram if already open.
- Browsing to a linked element causes its parent diagram to open or become current,
and the diagram scrolls to the linked element and selects it.
- Browsing to a linked file launches the application registered in your system for the
file type and loads the file.
- Browsing to a linked URL launches the your system's default Web browser and
loads the URL.

To browse any hyperlink:

1. Right-click on the desired hyperlink in the Hyperlink tab.
2. Choose Open from the speedmenu.

Removing hyperlinks

You can remove hyperlinks as easily as you create them. Removal can be done from either
"end" of a diagram or element hyperlink. That is, if you created a hyperlink from the diagram
Foo to the diagram Bar, you can remove the hyperlink from either Foo or Bar.
To remove any hyperlink:

1. Open a diagram that displays the link you want to remove.

2. On the diagram speedmenu choose Properties.

3. Right-click on the link in the Hyperlinks tab.

4. Choose Remove from the speedmenu.

- 140 -

Annotating diagrams

Annotating diagrams

The Diagram Elements toolbar always displays Noze and Noze Link buttons that place Notes
and Note Links on the diagram. Notes can be free floating, or you can draw a Note Link to
some other element to show that a Note pertains specifically to it.

Using Notes

- You can paste text from the clipboard into a Note when its in-place editor is active.
- Note text wraps when you resize the Note smaller.
- You can edit a Note's properties using its Inspector (Alt+Enter).

Properties of [note]
(Text rF'ru:uperties |/"-"iew rHTI'-.decu: rﬁequirements |

In the Note Inspector you can:

- Edit the text as text, inserting
HTML tags if desired, in the
Text tab

- Change the text only property
in the Properties tab

- View the Note text as HTML
in the HTMI doc tab

- Change the foreground and
background colors, and control
3D appearance in the [Zew - tab
- Track various requirements
properties including stereotype,
priority, and difficulty in the
Reguirements tab

- Add Custom propertes in the @ Press Cirl+Enter to finish editing and close Inspectar
Custom Properties tab. Z

Note:these classes are linked to the
original ANALYSTS lewel classes, and
mrere done separately and sawved in
wnalysiz pkd.

The Note Link

Notes are automatically included when you generate HTML documentation. The text of
Notes linked to Class diagram elements does not appear in the source code. Use the
Description tab of the Class Inspector to enter class description, and enter source code
comments directly in your code using the Editor pane.

The Note Link Inspector evoked by selecting Properties from the Note Link speedmenu, is
similar to the Note Inspector but for the Text tab, which is replaced by the Link tab. In the
Link tab you can view both sides of the link - client and supplier.

Inspector Documentation tabs

The Description tab of the element Inspectors displays the description of the selected element
(for example, class description) for source-generating diagram elements. If you edit the text
in this tab, source code updates when you press Alt+Enter or return to the diagram.

You can also use this tab to create and edit comments for elements that do not generate
code (including non-class diagrams). These comments are stored with other diagram-specific
information by Together.

Use Javadoc tab to enter the values of Javadoc tags for the source code comments.

Besides these tabs that allow view and edit comments as plain text, there is the HTMI doc tab
that displays comments in the Browser mode.

141 -

Saving and Copying Diagram Images

Saving and Copying Diagram Images

You can save or copy entire diagrams or their selected parts for further re-use. There are
three possible behaviors in Together:

Copy - Paste within Together

Select the required part of a diagram and copy it by choosing Cgpy command on the Edit
menu or selection speedmenu (you can also use CTRL+C hotkey). Next, Pasze the selection
to the target location. This feature works in Together only.

Note: If link labels don't display after pasting, press F5 with the Diagram pane having the focus, to
refresh the diagram.

Copy image

In the Windows environment, you can copy diagram to the clipboard, and then paste the
clipboard content to an external application.

You can opt to copy images in bitmap or WMF format. To choose the desired format,
set/clear the flag Copy diagram image into clipboard as bitmap in the Options | General page.
Bitmap format cures such problems of WMF format as distorted fonts, wrong conversion of
the national fonts, lack of Java 2D functions support. Besides that, some rasterized graphics
applications don't accept clipboard metafiles, but recognize bitmap.

Note: when a diagram is copied in WMF format, labels of non-horizontal links are not reproduced in
the target application.

Tip:

Pasting bitmap images to MS PowerPoint produces "invisible slides". To aviod this,
use Paste Special command, rather than Paste. However, if you copy a diagram in
WMTF format, it can be reproduced in PowerPoint by the usual Paste command.

Save image

Once created, a diagram can be saved on the hard disk for further use. Together allows a
choice between WMF, GIF and SVG formats. To save the current diagram, invoke Save
Image command on the File menu, and select the required target format from the list. This
brings in the File Chooser dialog for the selected format.

Thus, the diagram image is stored on the disk and can be imported to the applications that
recognize the selected format.

142 -

Printing Diagrams and Source Code

Printing Diagrams and Source Code

You can print both diagrams and text. To print individual diagrams, you must first open
them in the Diagram pane. To print the source code, you must open it in the Editor pane.

Setting Print Options

You can set printing options at different levels in the Options dialog.
To check Together's defanlt Print options:
1. From the main menu bar, choose Options | Default to display the Default Options
dialog.
2. Select the Print tab and check the settings.
To check Print options for the current project:
1. From the main menu bar, choose Options | Project to display the Project Options
dialog.
2. Select the Print tab and configure settings as desired.
To check Print options for a specific diagram:
1. Open the diagram for editing.
2. Choose Diagram Options from the Diagram speedmenu (or select Options |
Diagram from the main menu) to display the Diagram Options dialog.
3. Select the Print tab and configure settings as desired.
For further information, consult the topics under Configuring Together chapter.

How to print diagrams

You can print any diagram separately, as a group, or all diagrams in the project.
To print a single diagram:
1. Open the diagram in the Diagram pane (project must be open).
2. If there are several open diagrams, click the tab of the one you want to print
3. Choose File | Print Diagram on the Main menu to launch Print Diagram dialog.
4. Click OK
To print several diagrams at once:
1. Open the diagrams in the Diagram pane (project must be open).
2. Click on the workspace of any open diagram.

3. From the Main Menu, choose File | Print Diagram to launch Print Diagram dialog.
4. Select the All Open option and click OK.

How to print text

To print source code:
1. Make sure the Editor pane shows up (check Editor pane checkbox in the View
menu, or press F9).
2. Click on the desired element of a diagram to display its source code in the Editor
pane, or just type your text in the active tab of the Editor pane.
3. With the Editor pane having the focus, choose File | Print File from the Main
Menu, to start Print File dialog.
4. Make necessary settings and click OK.

143 -

Printing Diagrams and Source Code

Tips and tricks

- The Options dialogs provide context-relevant Help for each option directly in the dialog.
- If you are running Together under Windows, set your printer's True Type Fonts property to
Print As Graphics in the Font tab of the Windows Printers dialog before printing diagrams.

- To make sure that all diagram elements fall within page boundaries, run the auto-layout
command Layout All for Printing from the Diagram speedmenu before printing a diagram.
If you have done a manual layout, restore it using Undo after printing. Be sure to run Undo
before closing the diagram or your manual layout will be lost.

Troubleshooting

Printing problems can stem from a number of things unrelated to a particular application
program such as Together.

Some printer drivers on the Windows platform can cause printing problems. The diagram
image is scaled up or down on the paper and doesn't match the visual boundaries. This
problem was reported with the Sun JVM versions 1.1.5 and 1.1.6 under Windows (both 95
and NT). They consistently occur with the MS JVM build 2829 (SDK 3.0) and build 2925
(SDK 3.1).

On the other hand, Sun JVM 1.1.7B does not cause this problem. Upgrade to this version or
a later if you use Java from Sun.

For other VM versions, Together provides a workaround for printing in Windows via the
propetty: print.dpi=72 in the STOGETHER HOMES/config/misc.config file.

This property prevents problems in most cases. If you experience printing problems as
described above, try adjusting the value or commenting out this property. Then try printing
again.

For each test, modify and save the misc.config file, call Tools | Reload Options
(assuming Together is running), and finally invoke File | Print diagram.

Using auto-layout for printing

Together has automated layout optimization for printing diagrams. Auto-layout for printing
ensures that all diagram elements fall within page borders defined by page size in Print
Options.

Invoke print auto-layout immediately before printing a diagram. Right-click on the diagram
background, then choose Auto-layout | All for Printing.

Tip: If you want to preserve a diagram layout that you have done manually, you can invoke
Undo after you running auto-layout and printing the diagram.

Printing generated documentation

- After generating HTML documentation, open it in your Web browser and print from
there.

- After generating documentation in another format, open it in an application that reads the
file format and print from there.

See also

Print Diagram dialog
Print File dialog

144 -

Creating UML Diagrams

UML Diagrams
Creating UML Diagrams

Using the main menu or toolbar

You can use the File | New Diagram menu command or the New Diagram icon of the
toolbar to create a new diagram in the directory/package currently selected in the Project
Explorer.

1. Select the destination package in the Project Explorer Mode/ tab.

2. Choose File | New Diagram from the main menu bar, or click on New Diagram icon of
the toolbar to display the New Diagram dialog box.

3. Click the icon for the type of diagram you want to create (only those diagrams enabled by
your license are available). Use edit control to edit the default diagram file name, and use
Browse button to specity Package name. Optionally you can uncheck znclude in current diagram
checkbox and/or write comments in the Description edit box.

If you only specify a filename, the diagram file is created in the Directory or Package
currently selected in the Project Explorer. If you use Browse button, the destination path
you specify overrides the Project Explorer selection.

4. Click OK to create the new diagram file and open it for editing in the Diagram pane.
5. Use in-place editing in the Project Explorer to rename the diagram if desired.

Using Project Explorer speedmenu

1. Click on the destination package in the Project Explorer Mode/ tab.
2. In the New group on the speedmenu select Diagram.
This displays the New Diagram dialog box.

Using the Hyperlink feature

The Hyperlink feature enables you to create a new diagram that is automatically linked to an
existing diagram or diagram element.

1. Right-click on the background of the Diagram pane of an open diagram and select
Properties speedmenu.

2. In the opened Inspector dialog click on the Hyperlink tab.

3. Right-click on the Element item and select New Diagram speedmenu.

145 -

Use Case Diagrams

Use Case Diagrams

Use Case diagrams provide a way of describing the external view of the system and its
interactions with the outside world. Actors, are a representation of the outside world, and
they could be people or computer systems. A use case is a coherent unit of functionality
provided by a system or class as manifested by sequences of messages exchanged among the
system and one or more outside interactors (called actors), together with actions performed
by the system. A use case diagram shows the relationship among actors and use cases within
a system.

Creating and drawing Use Case diagrams

If you need to learn how to create new diagrams in a project, or the techniques for placing
elements and drawing links, consult the User's Guide topics found under " Working with
Diagrams: Basic Diagram Techniques" in the Table of Contents. See Related Topics below.

Key elements and properties

Content of Use Case diagrams

Use Case diagrams usually contain:

IE Use cases
I% Actors

Relationship links:
s Communicates
I:IJ: n Extends
T
I | Includes
]:-;
Generalization

System boundary

I? Notes and note links

Elements of Use Case diagrams are defined by the UML and Together provides these on the
Use Case Diagram Toolbar. Use Tool-tips to identify the different elements on the toolbar.

=gk

Actor

An Actor element characterizes the role played by an outside object; one physical object may
play several roles and therefore several actors may model it. You can select the type of class
the actor will belong by setting the stereofype property. Select the stereotype from the drop-
drown list or enter a new one.

- 146 -

Use Case Diagrams

Use Case

A Use Case is a descriptor for a set of action sequences performed by a system (including
variations thereof) that produces an observable result of value to one or more actors. You
can view Use Case properties in the Properties Inspector. Properties you can define include
stereotype, explanation, pre and post conditions, and flow.

Links

There are several standard relationships among use cases or between actors and use cases.
These are:

Communicates: The participation of an actor in a use case. This is the only relationship
between actors and use cases. It can also be used between Actors to indicate necessary
communication between them.

Extends: An extends relationship from Use Case A to Use Case B indicates that an instance
of Use Case B may include (subject to specific conditions specified in the extension) the
behavior specified by A. Behavior specified by several extenders of a single target use case
may occur within a single use case instance.

Includes: An includes relationship from Use Case A to Use Case B indicates that an instance
of the use case A will also include the behavior as specified by B.

Generalization: denotes a relationship in which objects of a specialized element can be
substituted for the objects of a more general (parent) element.

Working with Use Case diagrams

Outside of the basic mechanics of drawing the diagram to construct your use case views,
there are several conceptual things you should understand about Use Case diagrams:

How to create browse-through sequences of Use Case diagrams using Hyperlinks
How to show another diagram in a Use Case diagram

Creating browse-through sequences of Use Case diagrams

Typical uses of Use Case diagrams include modeling system context and modeling system
requirements. Often you begin at a high level and specify the main use cases of the system
itself: "Conduct Business" for example. Then you break the main system use cases down
further. For example, the "Conduct Business" use case might have another level of detail
that includes the use cases: "Enter Customers" and "Enter Sales". Once you have broken
things down to the desired level of granularity, it's useful to have a convenient way of
"drilling down" or "rolling up" to grasp the scope and relationships among the system's use
case views.

Together's Hyperlinking feature makes it easy to create browse-through sequences
comprised of any number of Use Case (or any other) diagrams. You can link entire diagram
at one level of detail to the next diagram up or down in a sequence of increasing granularity,
or you can link from key Use Cases or Actors to the next diagram. You can browse the
hyperlink sequence to follow the relationships between the Use Case diagrams.

You aren't confined to such sequences, however. Hyperlinking is completely flexible and you
can use it to link diagrams and elements in the ways most meaningful to you. For example,
you might create a hierarchical browse-through sequence of Use Case diagrams, and within
the diagrams themselves create hyperlinks that follow a specific Actor through all use cases
that involve it.

147 -

Use Case Diagrams

The mechanics of creating and browsing hyperlinks are covered in Working with Diagrams:
Hyperlinking diagrams.

Showing other diagrams in a Use Case diagram

You may find it more useful to show relationship of a Use Case diagram to some other
diagram as part of the Use Case diagram itself, that is, #o# using the Hyperlinking feature.
You can do this by placing a shortcut to another diagram into the current diagram.

An diagram shortcut is represented with a Package that displays the icon of the diagram type
it represents and the diagram name. The Package also lists the elements of the diagram.

T create a shortcut to the current diagram:

1. In the Model tab, select the node for the diagram you want to import and choose
Copy from its speedmenu.

2. Right-click on the diagram background and choose Paste from the speedmenu.

You can open the diagram represented by the shortcut using the speedmenu of its Package
icon.

Tips and Tricks

- Using the Clone command on the context menu of the navigation pane node, you can
quickly create a new diagram with the same content as the existing one. The new diagram
has a unique name and is created in the same package.

- Using Add Shorteut command on the diagram's context menu, you can reuse any already
created elements in other Use Case diagrams.

Related Topics

Creating diagrams in projects
Drawing diagram elements
Opening diagrams

Customizing property inspectors

- 148 -

Class Diagrams

Class Diagrams

Class diagrams are the most common type of diagram in many object models. They show
the static structure of the system, in particular, the things that exist (such as classes and
types) and their internal structure. Class diagrams also depict collaborations and relationships
between classes, and inheritance structures. A Class diagram may also show instances (or
objects) and links between objects,
- Class diagrams define a vocabulary for the system, and may also be the basis for
Component and Deployment diagrams.
- Class diagrams are the basis for visualization, specification, and documentation of
the structure of the system and also for the implementation (Class diagrams that are
round-trip engineered by Together).
- Class diagrams that show only Packages are referred to as Package diagrams.
If you need to learn how to create new diagrams in a project, or the techniques for placing
elements and drawing links, consult the User's Guide topics found under " Working with
Diagrams: Basic Diagram Techniques" in the Table of Contents. See Related Topics below.

Content of Class diagrams

Content of the Class diagrams is language-dependent. Elements of Class diagrams are
defined by the UML and UML extension. Together provides these on the Class Diagram
Toolbar. Use Tool-tips to identify the various elements on the toolbar.

Class diagrams usually contain:

E Packages
=] Classes
Interfaces

Classes by pattern

Objects

O |4 | @

|

+ |Notes and note links

Relationship links

Dependencies

Generalizations /
Implementations

Associations

NG|

& Links by pattern

149 -

Class Diagrams

Depending on the current project language, Class diagram toolbar displays icons specific for
the selected language:

Java %:? Entity EJBs
%:? Session EJBs
Ig MessageDriven EJBs
DL, = Struct
az| |Valuetype
E_:x! Exception
C++ F Aggregation

Packages represent underlying physical packages that are part of your project, subsystems of a
larger system, or logical groupings of information from any resource available to your
project. Since Together diagrams can contain any kind of elements, diagrams can also be used
as general grouping mechanism for creating different views.

A diagram imported into another diagram displays as a Package with appropriate stereotype-
icon. For more information, see Creating Views.

An EJB Application diagram or a Web Application diagram imported into an Enterprise

Application diagram displays also as a Package with appropriate stereotype-icon, see Creating
EJB Shortcuts.

Key elements and properties

Class

A class is the descriptor for a set of objects that have the same attributes, operations,
relationships, and semantics. Classes usually implement one or more znterfaces. Classes capture
the vocabulary of the system.

In Together, classes have various properties in addition to the usual members. Most of these
are defined by the UML, but some such as a/as are provided as enhancements to
communication. Some properties of interest are listed below:

Key Class properties

Property Description

Name Every class has a name to distinguish it from other classes. Name is a text string. You need
only enter the simple name for classes (as opposed to qualified name). Because classes are
coupled to round-trip engineering, name must be a valid identifier for the target
language.

Stereotype Provides problem-specific extension of the basic UML vocabulary for a class. You can enter
a new stereotype in the property Inspector (Speedmenu | Properties) as you model, or
choose from a list of the stereotypes defined in your configuration.

Alias Optional alias replaces the Name in the diagram. Because spaces and other characters aren't
allowed as class names by e.g., Java, using aliases can make your class diagrams more
readable.

- 150 -

Class Diagrams

Showing Java Beans

To show classes as Java Beans on the Class diagram you have to turn on the bean support
option:

1. Invoke the Options dialog,

2. Expand View Management node

3. Select the page Java Beans /| C++ Properties

4. Set Recognize Java Beans option.

Java Beans, including Enterprise JavaBeans (E]B), are displayed as classes with two
additional sections, one for properties, and the other for events to which the Java Bean can
respond. When you select the Beans support option, all the classes on the diagram are
rescanned. Those classes with get and set methods are displayed as Java Bean nodes on the
diagram denoted by a Bean symbol by the class name. Display support for Beans is
controlled in Default and Diagram Options.

Interface

An interface is a device that unrelated objects use to interact with one another. It defines a
set of methods but does not implement them. A class that implements the interface agrees to
implement all of the methods defined in the interface. Interfaces have the same properties as
classes except for Implements.

Object

An Object represents an instance of a class. Objects are displayed on diagrams to facilitate
communication about the model; they have no representation in source code.

Key object properties

Property Description

Name Name is any text string since Objects are not coupled to round-trip engineering,
Stereotype You can assign Actor or Database as stereotype or enter any stereotype name you want.
Persistence You can choose transient, static, or persistent or enter any stereotype name you want.
Entity EJB

Entity E]B creates elements in the visual model and generates the underlying source code for
a default implementation of a persistent entity EJB with skeleton declarations.

Session EJB

Session EJB creates elements in the visual model and generates the underlying source code
for a default implementation of a nonpersistent session EJB with skeleton declarations.

Message Driven EJB

Message Driven EJB creates elements in the visual model and generates the underlying
source code for a default implementation of a message-driven bean with skeleton
declarations.

- 151 -

Class Diagrams

Class by pattern

Class by pattern creates elements in the visual model using one of the pre-defined patterns
or templates.

In C++ project it is possible to create a template class according to UML 1.3 specification,
as a small dashed rectangle superimposed on the upper right-hand corner of the class
rectangle.

Package

A Package is a group of items of the physical model. Packages may also show logical
groupings of model content.

Packages often represent physical directories. If the default diagram for the project (specified
in your configuration) is a Class diagram, it will contain Package icons for each physical
subpackage under the project directory... essentially it is a Package diagram.

Other diagrams of any type may be represented in a class diagram. These appear as Packages
with a visual stereotype, i.e., the icon representing the diagram type. Packages are
represented in the Explorer, Diagram toolbar, and element selectors in dialogs with a smaller
icon of the same shape:

El

Tips on packages:

Viewing Packages and content: The Model tab of the Explorer displays the packages and
subpackages in the project. You can use the Explorer to navigate into them and view their
contents.

Opening packages: Choose one of the Open commands on the speedmenu.

Renaming a Package: You can rename a package in place, or using the properties
Inspector (Speedmenu | Properties). This change is propagated to all the source files.
Moving elements into Packages: Classes and interfaces can be visually moved to other
packages by dragging from the diagram to the target package. For more information see
Manipulating elements. Other packages, imported or compiled classes or interfaces cannot
be moved in this way however. Pressing the CTRL key and dragging a class into a package
imports the class into that package. The class name in italic appears in the package icon.

By default the package icon on the diagram displays its updated contents. You can use the
class/interface context menu and add attributes and operations directly. The diagram option
Subpackages controls how the packages are displayed in the diagram.

Moving nodes from Packages: You can move that class or interface to the current
diagram, deleting it from its current package and moving it to its new package by dragging
the class or interface name from the package element to the diagram background.
Dependency links: When you choose Update Package Links on the diagram speedmenu,
Together scans each package on the diagram. If it finds an element within the package that is
linked to an element of another package, then it creates a Dependency link between those
package icons on the diagram.

This covers only source-code based elements. Inter-package dependencies between such
elements as Objects, Notes, search-path imported classes, Use Cases, etc. are not recognized.
Deleting a Package: You can only delete a package using its context menu if all of its
contents have been removed first. A physical package can't be deleted if it contains source or
diagram files, files of non-Together types, or if other applications share the corresponding
directory.

- 152 -

Class Diagrams

Links

There are several standard relationships defined by the UML and applicable in class
diagrams. Together's class diagrams support:

Association: a structural relationship describing a set of object links. There are two
specialized forms of Association:

- Aggregation: a special type of Association that denotes a whole-part relationship

- Composition: a form of Aggregation with strong ownership in which the parts may

be created after the composite but once created, live or die with it.
Generalization: denotes a relationship in which objects of a specialized element can be
substituted for the objects of a more general (parent) element.
Implementation: visually the same as Generalization and drawn with the same toolbar icon.
Use to show the inheritance of the implementation of a more specific element
Dependency: indicates a semantic relationship between two (or more) model elements in
which a change to the independent element may affect the dependent element.

Link by pattern: the link is chosen from the tree of links that already exists.

Note link: the relationship between the note and the diagram element that defines the
content of the note.

Working with Class diagrams

Outside of the basic mechanics of drawing the diagram to construct your model, there are
several conceptual things you should understand about Class diagrams:

How to show classes from packages that are part of your project
How to show classes from search path packages outside your project
How to define inner classes

How to import another diagram into a Class diagram

Showing Association, Aggregation, and Composition

Showing project content from different packages

Packages, classes and interfaces that belong to your project display in the Model tab of the
Explorer. Their paths are defined in your project properties (File | Project Properties). If,
when creating the project, the Class diagram was specified as default, the project package
contains a Class diagram that maps out the packages belonging to the project. Depending on
your specifications in the New Project dialog (and later Project Properties), the classes of
these packages may be reverse-engineered into Class diagrams.

Assuming this is the case, the Class diagram having the same name as its containing package,
shows the classes and interfaces in the package, along with relationships and dependencies.
You can optionally add classes from any package in the project in these diagrams, or you
may choose to create new Class diagrams in a package to show different views of the
package contents and relationships to other packages. For example, you might create
different Class diagrams to show classes for components or subsystems contained in
multiple packages. Assume for the moment that everything in such views resides in a
package that belongs to the project and thus displays in the Model tab.

- 153 -

Class Diagrams

To show classes ete. from another project package in a Class diagram:
1. In the Model tab, navigate to the package containing the element(s) you want to
show.
2. Select the desired element in the Explore and copy it to the Clipboard.
3. Paste the element in the desired location in the diagram.
4. After copying all elements, choose Update Package Dependencies on the diagram
speedmenu.

Showing classes on the search paths

When you create a project you can define directories any number of search paths whose
content you may want to show in diagrams. For example, you might want to show things
that reside on the standard for full Java classpath. Such resources "exist" for the project but
are not included in generated HTML documentation as belonging to the project.
To show classes ete. from one of the search paths in a Class diagram:
1. Open or create a Class diagram.
2. Right-click on the background and choose Shorzut from the New node of the
diagram speedmenu to launch the Add Shortcut dialog. This dialog shows all the
content available for the diagram on the left-hand side, and all content residing outside
the current package on the right.
3. Navigate to the resource you want to add and click the Add button. Repeat until
you have added all the resources you want.
4. Click OK to close the dialog.

Tip: If the resource you are looking for is not shown, it is probably not in the search paths
defined in Project Properties. You can add resources to the search paths at any time by
choosing File | Project Properties | Advanced and selecting the tab for search paths. For more
information, see Uset's Guide: Creating and opening a project- Advanced mode.

Defining inner classes

The easiest way to create an inner class is to drag it over another class and drop it. This
works well when the inner class already exists. If the inner class doesn't exist you can ctreate
it and define it within its parent at the same time.
To create and define a new inner class:
- Select the parent class.
- Choose New | Inner Class from the speedmenu.
Tips:
- You can define new inner classes from the speedmenus of classes in the Explorer.
- You can use drag-drop to remove inner classes from classes in the diagram.

Importing other diagrams

You can import another diagram of any type into a class diagram creating an automatic link
to that diagram. A diagram that is imported into another diagram is shown as a Package with
a corresponding stereotype-icon. You can open the diagram from the context menu of the
package icon. (See also: Packages below).

154 -

Class Diagrams

Showing Association, Aggregation, and Composition

Use the Association icon ﬂ on the toolbar to draw all types of Association links. After
drawing the Association link, select it and use the link's speedmenu to specify which type
of association to show in the diagram. (You can also change the type by applying the
appropriate pattern to the link.)

You can show directionality of Association, Aggregation, and Composition links by setting
the directed property in the link's properties Inspector (Speedmenu | Properties).

Clas=1 Class2
-1nkClazsz

M Azzociation [%
- Aggregation

[0 Composition

Choose Patterm...

Label
Classl c1a${2
_inkClassz [~ %‘/’ Delete Delete

Scroll to Source

/ Scroll to Destination
Class1 Clas=2 b

Toolz
-lnkClazs: -

How to show different Association types. The directional arrow is specified in the directed property of the link.
You can also show semantic directionality in the link label of these relationship links using
the /abel direction property of the link. Semantic direction may be independent of the link
navigation direction, as shown in the following figure.

Company 1 emmploys = 0+ Person
“Emplover employed
-Mame:string RIgY Rioy -Mame:string
0* —L=sanices
+addhlew(void liant cuntractn? +addhew(void

The semantic direction of the link label vs. the link direction

Here there are two possible relationships between Company and Person. As you can see, the
label direction creates semantics Company employs Person in the first instance, and Person services
Company in the second case.

For more information see Common Customizations: Association direction.
See also

Creating diagrams in projects

Drawing diagram elements

Opening diagrams

Introduction to modeling

- 155 -

Creating and editing members and properties

Creating and editing members and properties

Adding and editing members

To add an attribute or an operation to a class or interface :

- Right-click on the class or interface

- Select New | Attribute or New | Operation

- The member is inserted after the last attribute or operation, respectively
If a class or interface already has attributes or operations, you can right-click on these
directly to create the additional member using the existing member's speedmenu. The new
member is inserted before the selected member.
You can also add members form the Explorer. Use the speedmenu of class or interface
nodes.
To edit an attribute or an operation:

Use inplace editing or editing in the properties inspector.

Adding and editing properties

To add a property:

- Right-click on the class

- Select New | Property
Location of the newly created property in the class depends on whether Recognize Java
Beans options is on or off. If this option is selected, the property adds to the properties'
compartment, and to the list of properties in the Beans tab of the Inspector. The class
displays as a bean icon. If this options is off, the property adds to the attributes' section, and
its accessor methods add to the operations' section.
In the latter case, you have to take special care when editing or deleting properties. When a
new element is created, in-place editor is immediately available. However, if you edit
property type in place, the relevant types in the accessor methods will not be synchronized.
Same happens when a property is deleted: accessor methods stay in place and should be
deleted individually.
Thus the only safe way to edit properties is to use the Choose Pattern dialog. This is how it's
done:

- Right-click on the property to be edited

- Select Choose Pattern

- In the pattern treeview select Property pattern, make all the necessary changes and

click Finish.

When this technique is applied, the changes propagate to all components of a property.
Rearranging the order of Attributes and Operations

Use drag and drop to reorder members within a class icon. The members are reordered in
source code simultaneously.

Dropping one member on another member name positions the dropped member before the
target member. Dropping a member on the class name moves it to the last position in the
attribute or operation list respectively.

- 156 -

Compartment controls

Compartment controls

You can optionally show an expansion/contraction control in the Attributes and Operations
compartments of Class nodes. This is handy if you have large classes whose content you
don't need to see all of the time. You can set this option at any configuration level... default,
project, or diagram. On the Main menu choose Options | [scope], then select the Diagram
page of the dialog and check Show controls for compartments.

Diagram options
4p Diggram Mame | W alue |
ar View Managemert Showy labels oriented along links [sl
qh 248,
& Print Showy page borders [
ap JProbe
ap Poweertier
............. o
| Class1 : |
' : [=] Attributss P
Class1 | Class1 | -attribute1:int il :
| Attributas T [E] 0 parations I
| +operationt ():void L
I
| |
Fo——== T === |
Selected,
Lnselected collapsed Selected, expanded

You can use j icon on the main toolbar to control this behavior.
Class node in various selection states when compartment controls are enabled.

157 -

Sequence and Collaboration diagrams

Sequence and Collaboration diagrams

Sequence and Collaboration diagrams, sometimes called collectively znteraction diagrams, are
two of several diagrams you can use to model the dynamic aspects of a system or subsystem.
Both depict interactions consisting of a set of objects, their relationships, and messages
exchanged among them.

Collaboration diagrams emphasize the structural organization of objects, while Sequence
diagrams emphasize the #me ordering of messages. Collaboration diagrams are essentially graphs;
Sequence diagrams are essentially tables with different objects and messages depicted across
the X axis and increasing time down the Y axis. However, the two diagrams are sexzantically
equivalent: one type can convert to the other type with no loss of information. Together
enables you to do this conversion with a simple mouse click.

Though semantically equivalent, the two diagrams do not necessarily show the same
information. For example, Collaboration diagrams explicitly show how objects are linked,
while in Sequence diagrams the links are implied. Message return values show in Sequence
diagrams but not in Collaboration diagrams.

This feature only works in products that support Java, in projects where Java is the target
programming language.

Creating and drawing Collaboration and Sequence diagrams

To create a Sequence diagram, invoke Generate Sequence Diagram Expert on the element
speedmenu.

To generate a Sequence diagram from an operation:

1. Open the Class diagram containing the class whose operation you want to model.

2. Locate the desired class and choose the desired Operation.

3. Choose Generate Sequence Diagram from the Operations' speedmenu to display the
Generate Sequence Diagram Expert. View a list of the packages and classes involved in the
operation for which you are generating a Sequence diagram.

4. In the Package/class list, select the packages and classes you want to display in the
generated diagram. All packages and classes are selected by default. However, some Java
things might not be relevant... java.lang. integer, for example. You can increase the
meaningfulness of the generated diagram by removing anything that doesn't really help
explain the sequence of operations.

5. In the Package/class list, for those elements you decide to show in the diagram, check
whether or not to show implementation detail in the generated diagram.

0. Click OK to generate the diagram and open it in the Diagram pane.

Together generates a new Sequence diagram in the same package as the source class, with
the same name as the source operation, and opens it in the Diagram pane.

Using Options dialog to control Sequence diagrams' generation

You may use Options dialog to check options for the generated diagrams or control their
behavior. To do this, select Diagram Options on the diagram's speedmenu. This command
displays Iew Management, Diagrams and Print tabs of the Options dialog on the project level.
Alternatively, invoke the Options dialog from the main menu.

It is possible to generate sequence diagrams for several methods. You can display sequence
diagram for each method in a separate tab, or to show sequence of calls for all selected
methods in a single sequence diagram. To control this behavior, use the options Create
multiple diagrams and Show multiple diagrams of the Sequence diagram node in iew Management
tab of the Options dialog.

- 158 -

Sequence and Collaboration diagrams

When the option Create multiple diagrams is checked, a separate diagram is generated for each
selected method. Otherwise, sequence of calls for all methods is generated on a single
diagram.

When the option Show multiple diagrams is checked, all generated diagrams should show up
automatically after generation completed.

It is also possible to control nesting level. Depth of call nesting option allows to change nesting
value according to the required degree of complexity.

Converting to a different interaction diagram

As mentioned in the introduction above, Collaboration and Sequence diagrams are just
different ways of viewing the same information. Togezher enables you to view either type of
interaction diagram as the other type. However, when you create a new diagram, you must
specify that it is either a Sequence diagram or a Collaboration diagram, and Together then
tracks it as such. The diagram displays in the Explorer as the type of origin, and opens in
that view. That is to say, if you create a Sequence diagram, it will always show in the
Explorer, and open in the Diagram pane as a Sequence diagram. But you can view it as a
Collaboration diagram.
To view an interaction diagram as the other type:

1. Right-click on the diagram background.

2. If the diagram is a Sequence diagram, choose Show as Collaboration from the

diagram speedmenu. If viewing a Collaboration diagram, the menu command is Show

as Sequence.

3. Repeat this process to switch back and forth.

Note: You can also do this switch from the speedmenus of interaction diagrams in the Explorer.

Key elements and properties

Content

Collaboration and Sequence diagrams both typically contain:

Obijects: to encapsulate states and behavior

Actors: to send and receive messages

Statement Blocks: to generate statements for messages or self messages

=l = |

Relationship links

Messages: to convey information from one object to one or more other objects

Messages with delivery time:

Self Messages

Nl | U]] |]

Aggregation

+ |Notes and note links

- 159 -

Sequence and Collaboration diagrams

Key elements

Object

An object role in a Sequence diagram is shown as a vertical dashed line called the “lifeline”.
The lifeline represents the existence of the object at a particular time. If the object is created
or destroyed during the period of time shown on the diagram, then its lifeline starts or stops
at an appropriate point; otherwise it goes from top to bottom of the diagram. An object
symbol is drawn at the head of the lifeline.

Message

A message is a communication between objects that conveys information with the expectation
that action will ensue. Receipt of a message is a kind of event. A message is shown as a
horizontal solid arrow from the lifeline of one object to the lifeline of another object. The
message may also be drawn from and to the same object, representing a message from an
object to itself. The arrow is labeled with the name of the message (operation or signal) and
its argument values. The arrow may also be labeled with a sequence number to show the
sequence of the message in the overall interaction. Sequence numbers are useful on the
diagrams for identifying concurrent threads of control.

Note: The appearance of messages is defined in the View Management page of the Options
dialog, under the Sequence diagram node. In the field "Maximum message labels length" you
can specify the number of pixels allocated for the message label. If the label is too long, it can
be either truncated and displayed with trailing dots, or wrapped into multiple lines, depending
on the flag "Wrap message labels text".

Actor

The Actor enables you to create sequence diagrams that model how business workers
interact with and handle business objects while performing the workflow of a realization of a
business use-case.

The Actor in a Sequence diagram displays a lifeline and can exchange messages with other
Actors and/or objects.

Key Object properties
Name

Every object has a name to distinguish it from other objects. Name is a text string. You need
only enter the sizple name for an Object. The qualified name is used when you specify the
Object's classifier (see nstantiates).

Instantiates
Specifies the Object's classifier. You can either enter the value yourself, or pick the class

from a dialog that lists all the resources available to the project.

When you apply this property, the Object displays its fully qualified name. The properties
Inspector displays the Class tab in which you can access the properties of the Object's class.

Tip: You can also specify the classifier by selecting the Object in the diagram and calling
Choose Class from its speedmenu.

- 160 -

Sequence and Collaboration diagrams

Key Message properties

Properties of Messages, and the labels they create on the diagram, convey a great deal of
information about the dynamics of the interaction, especially in Sequence diagrams. You
won't necessarily set a value for every property: for example you wouldn't set Condition
unless modeling some elementary branching.

Properties of This iz the very first message
|/Link rOperatiDn |/Descripti|:|n |/HTru1Ld|:u: rﬁequirements |
fHame | Walle
client
supplier
operation setSezsionContext(SessionCantext): void Eh
lakel Thiz iz the very first message
sequence number |1 |
creation]
destruction]
abrguments
return
return arrowy]
conclition
iteration
constraint
synchronization c:all -
zend time
receive time
non-atomic delivery]
@ Pre=z Ciri+Enter to finizh editing and close Inspectar y
g

Operation

If the Message is sent by an operation, you can identify it here. Enter a value or pick the
operation from an explorer dialog listing your project resources. You can specify arguments
and/or return value, if any, in those properties.

Label

Optional arbitrary identifier. For example, if the message is one that creates another Object,
you could label it "create".

Sequence number

Time-ordered sequence number. Value is automatically incremented as you draw Message
links. You could modify this value for two or more Messages to reorder their time sequence.
Creation

Check if the Message is the one that creates the Object to which it is sent.

- 161 -

Sequence and Collaboration diagrams

Destruction

Check if the Message is the one that destroys the Object to which it is sent.
Condition

Normally a Boolean expression (e.g., error > 0).

Iteration

Enter a value if the Message is iterative or sent on a given iteration.
Synchronization

Specify how or whether the target Object waits for some result. Useful when modeling
multiple threads of flow control.

Working with Sequence and Collaboration diagrams

How to create messages to self
How to create Message links that call operation
How to reorder message links

Creating a Message-to-self

To create a message from an Object back to itself:
1. Click on the Self Message button on the diagram's toolbar
2. Click on the Object's life line at the point where you want the Message to appear

Creating a Message link that calls an operation

For such message links there is additional tab "Operation" in the Inspector. If the Editor
pane is visible, it displays the source code of this operation.
To create a Message link that calls an operation:
1. Create a Message link between two objects. Both objects must have their /nstantiates
property set to point to a class.
2. Select the message link.
3. In the Inspector, go to the gperation field and launch the picker dialog using the
field's browse button to display the Choose Operation Name dialog. The dialog
displays the operations of the recipient object's class.
4. Select the operation and click OK. This renames the Message link to the operation's
name.
If you now select this Message link, the Inspector displays two tabs. The tabs are
MessageLink (Message link properties) and Operation. The Operation tab displays the
operation's properties.
Reordering Message links
Select and drag Message links up and down the Object lifeline to reorder them. Reordering

automatically updates the Message link numbers.

Sometimes you may wish to reorder message links keeping their sequential order and freeing
the space between for new links. To do this, select a Message link line, press CTRL, and drag
it . This shifts all succeeding links. If you select a number of Message links (pressing Ctrl
key), then those selected are moved keeping their increments.

- 162 -

Sequence and Collaboration diagrams

Tips and Tricks

Tips and Tricks for Sequence diagrams

If you've not previously drawn Sequence diagrams using Together, a few pointers may be in
order.

- Objects display with a default lifeline when placed on the diagram. Their tops align
vertically. If you draw a Message to an Object and then check the creation property of the
Message, the created Object will move downward to show that it exists at a point forward in
time from its creator.
- You can lengthen or shorten object lifelines as needed by dragging the horizontal line of
the bottommost Message link upward or downward. You can arrange the position of other
intervening Messages this way also.
- You can reorder the Sequence diagram, maintaining any Message links already created
between the Objects. Select any Object and drag it to the desired position. Such change is
performed across the X axis of Objects- you cannot move Objects vertically along the Y axis
except as described in the first point above.
- The bold X indicating destruction of a created Object is rendered automatically: draw a
Message to the Object and check the Message's destruction property (Link tab of the
Inspector).
- The focus controls of Objects that show periods of time an object performs some action
are also rendered automatically: just draw Message links to create them.
- You can nest Messages by originating Message links from a focus control.
- Use properties of Message links for specifying such things as:

linked operation

arguments

return value

simple branching condition

iteration

time and other constraints

Tips and Tricks for Collaboration diagrams

When you draw a Message between Objects, a generic link line displays between the Objects,
and a list of Messages is created above it. The link line is present as long as there is at least
one Message between the Objects.

As you add Messages, they display in time-ordered sequence from top to bottom of the
messages list. You can select Messages and edit their properties in the message properties
Inspector just as you can do in a Sequence diagram.

The Collaboration diagram adds the capability of showing relationships between Objects. In
addition to the default link, you can add links to show Association and Aggregation
relationships. These links do not display if you view the diagram as a Sequence diagram.

Related topics

Creating diagrams in projects
Drawing diagram elements
Opening diagrams
Approaches to modeling

- 163 -

Generating Sequence Diagrams

Generating Sequence Diagrams

Suppose that you want to understand more clearly the workings of a class's operations, and
communicate this visually in your model. Normally you would have to study the relevant
code and build Sequence diagrams for this purpose. Together can handle this chore for you
by generating a Sequence diagram from any operation you select in the visual model of a
class. This functionality can be extremely useful when you are implementing classes from
patterns... especially third-party patterns with which you are unfamiliar.

IMPORTANT: For Sequence diagram automation to function correctly, the Together installation
directory name must not contain spaces.

Generating Sequence Diagrams Using the Expert

The Generate Sequence Diagram module enables to generate Sequence diagrams from class
operations for visual modeling and source code analysis. To invoke this command, select the
desired operation on the Class diagram, and right click to display the speedmenu. Choosing
Generate Sequence Diagram option brings in the Expert dialog:

8 Generate Sequence Diagram Expert
E§§|Pa-:kage.l'-:lass ¥ [Showy on diagram Showy implementatio
= =] 2default= [¥] [¥]
Sinaleton v] vl
| Ok | | Cancel |
p

The two options define the outlook of the resulting Sequence diagram. Check Show on
diagram flag to show the object of the corresponding class in the generated Sequence
diagram. Show implementation allows to hide/show internal calls for any classes.

Using Sequence automation to analyze patterns
This section provides a short tutorial exercise that can help you learn how to use Sequence
automation to analyze patterns.

For the exercise, you need a Together product that supports Sequence diagrams and
Sequence diagram automation. (To learn where to get product feature information , see
Where to Get Help.)

Create an example project for training purposes:
1. Launch Together.
2. From the main menu, choose File | New Project to invoke the New Project dialog.

3. In the New Project dialog enter a project name patterns. Use browse button to select
or create a directory for your project (under myprojects” for example), return to the New
Project dialog and click OK to create the project.

164 -

Generating Sequence Diagrams

Analysis of the Singleton pattern

Now use the Patterns feature to create an instance of the Gol Singleton pattern in the project
just created.
T create the Singleton pattern:
1. Create new package and name it singleton.
2. On the "singleton" package icon invoke the speedmenu and select Open in New Tab
to open the default package diagram for the new package. This diagram is empty.
3. On the diagram toolbar, click Class by Pattern, then click again on the diagram
workspace. The "Choose Pattern" dialog appear.
4. In the patterns tree, select the pattern GoF - Singleton and click the "Finish"
button. A new class Singleton is created in the package and displays in the diagram.
At this point you have an instance of the Singleton pattern in the project. It is displayed
visually in the default diagram and its source code is loaded in the Editor. You can see the
attributes and operations of the class in the diagram.
Suppose now that you want to understand more clearly, and then model the workings of the
getlnstance() method. Normally you would have to study the code and manually construct a
sequence diagram for this purpose. With Together, you can simply generate this diagram.
To generate a Sequence diagram on getInstance() method:
1. In the Singleton class icon, select the method getlnstance:Singleton, invoke speedmenu
and choose Generate Sequence Diagram. The Generate Sequence Diagram Expert dialog
appears.
2. Click OK. A Sequence diagram named "Singleton.getInstance" is created and
opened in a new tab in the Diagram pane.
3. Select the activation rectangle of the message labeled /geslnstance():Singleton... that is,
the destination of this message.
4. On the main toolbar click the Editor Pane icon to display the Editor pane, which is
hidden by default for Sequence diagrams, or select View | Editor Pane from the main
menu. The insertion cursor will be positioned on the method declaration for the
getlnstance() method.

Analysis of the Composite pattern
1. Left click on the diagram tab named "<default>". The <default> package diagram
will be opened in the Diagram Pane.
2. Create new package and rename it to "composite".
3. On the "composite" package icon invoke speedmenu and select "Open in New
Tab".
4. Press the diagram toolbar button "Class by Pattern" and click on the diagram
workspace. The "Choose Pattern" dialog displays.
5. In the patterns tree select pattern GoF | Composite and click "Finish". Two classes
will be created in the package.
0. In the "Composite" class icon select method "sampleOperation:void", invoke
speedmenu and select menu item "Generate Sequence Diagram". The "Generate
Sequence Diagram Expert" dialog displays.
7. Press "OK" button. Sequence diagram named "Composite.sampleOperation" will
be created and opened in a new diagram tab.

- 165 -

Generating Sequence Diagrams

The resulting sequence diagram shows some things which are not relevant: two java.util
classes (Vector, Enumeration), and message to self in the "initial" object.

To refine the diagram and show only collaboration between the pattern classes the GSD
options should be changed.

1. In the main toolbar press "Undo" button. The "Composite.sampleOperation”
diagram tab will disappear, "composite" package diagram will become current diagram.
2. On the main toolbar press "Diagram view management..." button. The "Diagram
options" dialog appears.

3. Uncheck option Sequence diagram - Include messages to self and press OK.

4. In the "Composite" class icon select method "sampleOperation:void", invoke
speedmenu and select menu item "Generate Sequence Diagram". The "Generate
Sequence Diagram Expert" dialog displays. This dialog contains a tree-table showing
the classes that take part in the given collaboration. The tree-table consists of packages
on the first level and classes on the second level. This table enables you to exclude
from the generated Sequence diagram either the implementation of some classes, or
the classes themselves.

5. In the tree-table select package java.util and uncheck checkbox in the column
"Show on diagram".

0. Click the OK button. A Sequence diagram named "Composite.sampleOperation" is
created and opened in a new diagram tab.

Generating implementation source code

This section demonstrates how to draw and edit a Sequence diagram that generates source
code.

Creating project and class
1. Create a new project. In the New Project dialog enter project name and press OK.
<default> package diagram displays.
2. Create new class MyApplication.

3. On the MyApplication class speedmenu select Choose pattern to display the Choose
Pattern dialog.

4. In the patterns tree select Main class pattern.
5. Press the Finish button. New method »ain() is created.

Generating sequence diagram from a class
1. Select Generate Sequence Diagram from the main method speedmenu. The

Generate Sequence Diagram Expert dialog displays.

2. Press OK button. A Sequence diagram My Application.main opens in a new diagram
tab.

3. On the main toolbar press the Diagram View Management E button, or select
Options | diagram from the main menu and click on View Management tab. The
View Management page of the Options dialog displays.

4. Check option Sequence diagram | Show message numbers and press OK button.

- 166 -

Generating Sequence Diagrams

Creating source-generating elements in the sequence diagram

1. On the diagram toolbar press the Statement Block button m and click on the
activation rectangle of the message #1. Choose statement type dialog displays.

2. Check for radio-button and click OK. The statement for and its shaded rectangle
show up on the diagram.

3. Invoke in-place editor and enter: int i = 0; 1 < 4; i++.Thelabelreads:
for(int i = 0; 1 < 4; i++)

|
4. Press Object button J on the diagram toolbar and create a new object with the
name frame.
5. Select Choose Class | More on the object's speedmenu to display Choose Object's
Class dialog.
6. In the Search/Classpath, select class javax.swing.[Frame and click OK. The name of
selected class displays in the object's icon.

Creating message sends

1. Draw a message link from the statement block for(int i = 0; i < 4, i++) to the lifeline
of the frame object. Message #1.1.1 is created. All the other messages should have
same source and destination.

2. Select message #1.1.1. and choose Type | Creation on its speedmenu. The message will
change visually to the creation type (the link now points to the frame object, which
means that the object is being created).

3. Draw a new message. Its label is message #1.1.2. Select Choose Operation on the
speedmenu. From this dialog choose sezDefaultCloseOperation(int):void. The message label
becomes: 7.7.2:setDefanltCloseOperation(int):void.

4. Invoke in-place editor and enter (JFrame.EXIT ON_ CLOSE) after the
message number and column. The message label becomes 7.7.2:
{setDefanltCloseOperation(:int):void} (| Frame. EXIT_ON_CLOSE) .

5. Draw message #1.1.3. Using Choose Operation dialog, select sezSzze(int,int):void
method. Invoke the in-place editor and enter: (600, 400) after the message number
and column. The message label becomes 7.7.3: set$ize(600,400):v0id

6. Draw message #1.1.4. Using Choose Operation dialog, select
setLocation(int,int):void method. Invoke in-place editor and enter

(50*1i,50*1) after the message number and column. The message label becomes:
1.1.4: {setLocation(50%,50%i):v0id}.

7. Draw message #1.1.5, invoke its speedmenu and select Choose Operation | More
to display the Choose Operation Name dialog. Choose show() method from the list.
The message becomes 7.7.5:5how():void

Tip: If you cannot find the desired name in the list, expand A% Operations node and search through the
loaded list of methods.

167 -

Generating Sequence Diagrams

Generating implementation code

1. Select the activation rectangle of the message #1, invoke speedmenu and select
Generate Implementation. to create implementation of the »ain() method. This
implementation code displays in the Editor. Message labels for which implementation
code has been generated, display bold style on the diagram. Message pane opens. If
for some reasons code generation fails for certain messages, they remain normal style
on the diagram, and appropriate messages show up in the Message pane.

2. Select any message on the diagram, and observe that the Editor scrolls to the point
of appropriate method invocation.

3. In the Editor, add import statement for javax.swing.

4. The main menu | Tools and the diagram speedmenu allow to Run the generated
code and Make the project. In the former case you will observe a cascade of four
frames. In the latter case the following messages show up in the Builder tab:

*** Make started

*** Make completed

**%* Qutput directory:
D:\Together5\out\classes\MyApp

See also

Sequence and Collaboration diagrams

- 168 -

Statechart Diagrams

Statechart Diagrams

Statechart diagrams enable you to model UML state machines. State machines are one of
several ways to model the dynamics of a system or subsystem. They generally model the
behavior of a single object as it goes through different states in response to events that occur
during its lifetime, including its response to events. The state of an object is some situation
during its life where it meets some condition(s), does something, or waits for an event.
Statechart diagrams emphasize the possible states of an object and the transitions between
states. You can use them to model the lifetime of an instance of a class, an instance of a use
case, or even an instance of a system. During that period, the object of interest can be
exposed to different kinds of events to which it responds with some action, and the result of
which is a change in the object's state.

Tip: To focus on the actions and activities of objects, use Activity diagrams.

Content

Statechart diagrams generally contain:

States: to represent the states of an object during its lifetime

Start state

End state

History state

Transitions: directed link-lines representing the transitions between object states

Al 2] @] =] (O]

Fork/Join (or SyncBars): to represent multiple transition soutces ot targets

hotizontal Fork/Join

vettical Fork/Join

Objects: encapsulating states and events

I? Notes and note links

Key elements and properties

al | = [+

Key elements

Transition

Most of the information for the Statechart diagram is communicated through the various
properties of Transitions. With these you can specify event name and event arguments, guard
conditions, action expressions, and specify general and send/receive time constraints.

- 169 -

Statechart Diagrams

History State

History states enable modeling of objects that remember the last active substate of a
composite state before leaving it. The deep property of a History State supports the UML
deep history concept for multi-level nested substates: when checked it signifies that the
object remembers the last active substate down to the innermost nested level. Only one
history element is allowed for a state.

Key Object properties
Name
Every object has a name to distinguish it from other objects. Name is a text string.

Instantiates

Specifies the Object's classifier. You can either enter the value yourself, or pick the class
from a dialog that lists all the resources available to the project.

When you apply this property, the Object displays its fully qualified name. The properties
Inspector displays the Class tab in which you can access the properties of the Object's class.

Tip: You can also specify the classifier by selecting the Object in the diagram and calling Choose Class
from its speedmenu.

Key Transition properties

Event

Specify the event name in the event name property of the Transition. Optionally specify any
arguments in the event arguments property.

Guard condition
Enter an appropriate expression in the guard condition property of the Transition.
Action

Enter an appropriate value in the action expression property of the Transition.

Working with Statechart diagrams

How to draw self-transitions

How to create internal transitions

How to specify entry/exit Actions

How to create nested substates

How to draw multiple Transition sources or targets

Drawing a self-transition

Self-transition means that the flow leaves the State, dispatching any exit Action(s), then re-
enters the State, dispatching any entry Action(s).
- Select the desired State on the diagram.
- Drag a Transition link from the selected state and drop it on the diagram
background.
- In the Choose Destination dialog, navigate to the State where you began the link,
select it, and click OK.
Tip: Another way is to draw a Transition between two States, and then drag the opposite
end of the link line back to the desired State.

170 -

Statechart Diagrams

Creating internal transitions

Internal transition is a shorthand for handling events without leaving a State and dispatching
it's exit/entry Actions.

- Select the desired State on the diagram

- From its speedmenu choose New Internal Transition.

You can immediately edit the event name in place. For additional information see
Entry/Exit Actions below.

Specifying entry/exit Actions for a State
These are Actions executed upon entering or leaving a State, respectively. You create Entry

and Exit Actions in Together Statechart diagrams as stereotyped internal transitions.

Create an internal transition in the desired State.
When you edit the name in place, use the following syntax: stereotype/ actionName|argument]

Example: exit/setState (idle)

Optionally, you can create the internal transition and set the event name, event arguments and
action expression properties in the properties Inspector (speedmenu | Properties).

Creating nested substates

You can create a composite State by nesting one or more levels of States (i.e. substates) within
one State. You can also place Start/End states and History states inside a State, and draw
Transitions among the contained substates.

The easiest way to create a nested substate is to place a State node on the diagram
background, drag it on top of another State, and drop it.

Showing multiple Transition sources or targets
A Transition may have multiple sources, meaning it is a join from several concurrent states,

or it may have multiple targets, meaning it is a fork to several concurrent States.

You can show multiple transitions with either a vertical or horizontal orientation in your
Statechart diagrams. The Statechart diagram toolbar provides separate Fork/Join buttons
each orientation. The two orientations are semantically identical.

To create multiple Transitions:

1. Identify the States involved. If necessary, place all the States on the diagram first,
and lay them out as desired.

2. Place either a horizontal or vertical Fork/Join on the diagram. Resize it as needed.
3. If depicting multiple sources, draw Transitions from each of the source States to the
Fork/]Join;

4. If depicting multiple zargets, draw a Transition from the source State to the
Fork/Join; then draw Transitions from the Fork/Join to each of the target States.

-171 -

Statechart Diagrams

Tips and Tricks

-You may want to resize the main State larger. You can essentially draw another Statechart
diagram inside it, complete with Start/End/History states and transitions of all kinds, to
create, in effect, a substate diagram

- You can nest multiple levels of substates inside one State. For really complex substate
modeling, however, you may find it easier to create different diagrams, model each of the
substate levels individually, and hyperlink the diagrams sequentially.

- You can easily reuse any elements that you have already created in other Statechart
diagrams. Invoke .Add Shortcut command on the diagram's speedmenu and navigate in the
dialog's Explorer to the existing Statechart diagram and select one or a number of its
elements, States, Histories, and/or SyncBars (Fork/Joins).

- Using the Clone command on the context menu of the diagram's Explorer node, you can
quickly create a new diagram with the same content as the existing one. The new diagram
has a unique name and is created in the same package.

- The above can be useful if modeling complex composite states or substates.

Related topics

Creating diagrams in projects

Drawing diagram elements

Opening diagrams

Approaches to modeling

S172-

Activity Diagrams

Activity Diagrams

Activity diagrams provide one of the possible ways to model system dynamics. An Activity
diagram is basically a flowchart that describes the flow of control from one activity to the
next. You can show sequential and/or concurrent steps of a process, model business
workflows, model the flow control of an operation, or the flow of an object as it passes
though different states at different points in a process. Unlike interaction diagrams
(Sequence, Collaboration) that emphasize the flow of control between objects, Activity
diagrams emphasize the flow of control between activities.

An activity can be described as "an ongoing, non atomic execution within a state machine" *,
the ultimate result being some action that affects the state of the system or returns some
value.

Content

The content of an Activity diagram can vary depending upon what kind of control flow you
are modeling and what level of detail you choose to provide. Activity diagrams most
commonly contain:

Activities: to represent activity states and action states

‘Transitions: to show events and actions

Objects: encapsulating states and events

Decisions: for branching flows

States: to represent the states of an object during its lifetime

Start state

End state

@] =] o] |ol O] Al |0l

Fork/Join (ot SyncBars): for concutrent flows

horizontal Fork/Join

vertical Fork/Join

Swimlanes: to show responsibility for activities

Signal Sending: to represent sending transition

Signal Receipt: to represent receipt transition

Object flow: to represent a control flow for objects

‘rﬁlﬁ'\iam

Notes and note links

m
" .,
-

-

173 -

Activity Diagrams

Key elements and properties
Activity

Activities are atomic actions that cannot be further decomposed. For example, in an airline
reservation system, "Request a reservation", the activity representing a custometr's request,
cannot be broken down further.

Use Activity for both action states and activity states-- graphically there is no distinction. Use
Notes with Note Links if you need to differentiate.

Swimlanes

Swimlanes enable you to partition activities into groups based on responsibility for carrying
out the activities. You could have swimlanes for different objects when modeling operation
workflows, or different business entities when modeling business process workflows. For
example, in an airline reservation context, you might have separate swimlanes for Customer
and Ticket Agent.

Swimlanes normally have a vertical orientation. The flow of activity runs from top to
bottom. Transitions between activities will cross swimlanes left-to-right or vice versa as the
responsibility for carrying out activities changes.

Transitions

Transition links show the path of the flow control from one action or activity state to the
next. Together provides two types of transition links:

Transition: used to show flow control between Activities or States.
Object Flow: used to show flow control when modeling flow control of objects.

Several properties of Transition links can be used to convey important information about
what's happening in the diagram.

Decisions

Decisions show branching and specify alternate flows based on the evaluation of some
Boolean expression. The Decision icon itself has only one property Nazze . Relevant
information about the decision should be shown in the properties of the Transitions that
represent different branches. For example, specify the Boolean expression for each branch
in the guard condition property of the Transition link for each branch.

In an aitline reservation context, the decision you want to show might be "is space available
on this flight". So you could name the Decision "isSpaceAvailable", one guard condition
property of the branch being "Available" and the other "Not Available".

Tip: If you want Together to show labels inside decisions, go to %Together_Home%\ config\diagram.config
file and change the value of the option option.show decision label to #ue (it is set to false by
default).

Note that if your labels are long (for example, when the project from an older version of Together is loaded),
it may affect the diagram layout.

Signals

Two icons Signal Receipt and Signal Sending are provided to enable explicit symbols for
certain kinds of information that can be specified on transitions: signal receipt and signal sending.
You will probably not use these in Activity diagrams that model business process
workflows... they are rather more useful in the context of object control flows.

174 -

Forks and Joins

Activity Diagrams

These controls are used to model concurrent flows. For example, an activity "Check
Customer Info" might check a customet's purchase history and current credit card

information concurrently.

There are two Fork/Join controls available on
the Activity diagram toolbar: one for showing

concurrency with a vertical orientation and

the other for horizontal orientation |¥ This
functionality is also called SyncBar, and in fact
the default name for both horizontal and
vertical variants of this element is "SyncBarx"
(where 7 is an incrementing integer).

When representing a "fork" where flow
becomes concurrent, the SyncBar typically has
one Transition coming in, and two or more
going out. When representing "join" where flow
is no longer concurrent, the SyncBar typically
has two or more Transitions coming in, and one
going out.

CEhec}: Customer Info _)

(Check Credit)(Check History)

4< Beturn Customer Info)

Using SyncBars for fork and join in Activity diagram

Key properties

Event

Specify an event name that triggers a transition in the event name property of the Transition.
For example, a Transition between the Start State and an activity Check Flights might be an
event TicketAgentRequest. When modeling an object work flow, you might specify an actual

system event and use the event arguments property .

Action

Specify an action that causes the transition. This could be a user action in business process,
or a computation that results in a state change in the process.

Guard condition

Two icons Signal Receipt IE and Signal Sending |E are provided to enable explicit
symbols for certain kinds of information that can be specified on transitions: signal recezpt and
signal sending. Y ou will probably not use these in Activity diagrams that model business
process workflows... they are rather more useful in the context of object control flows.

175 -

Activity Diagrams

Tips and Tricks

Non-trivial systems will probably require many activity diagrams to capture the dynamics of
a workflow or operation. Use the Clone feature to create new diagrams with identical
content in the same package.

Using Add Shortent command on the diagram's speedmenu, you can reuse any already created
elements in other Activity diagrams. Note: Elements imported this way are independent
copies of the existing ones.

Start with the main flow modeling. Next, cover branching, concurrent flows, and object
flows. Use separate diagrams as needed and hyperlink them for easy browsing later on.

Related topics

Creating diagrams in projects
Drawing diagram elements
Opening diagrams

State diagrams

176 -

Component Diagrams

Component Diagrams

Component diagrams are the second way to shows the physical architecture of a computer-
based system. Together with deployment diagrams, they are geared expressly toward
computer systems.

A component - as the main element in a such type of diagrams - is used to package other
logical elements, and represents things that participate in the execution of a system.
Components also use the services of another component via one of its interfaces. Usually,
components are used to visualize logical packages of source code (work product
components), binary code (deployment components) or executable files (executions
components).

A component diagram usually shows components, interfaces and relationships among them.

Content

Component diagrams usually contain:

% | Subsystems

ﬂ Component

O Interfaces
I? Notes and note links

Relationship links
A Dependencies
. | Supports

Component diagrams in Together use two kinds of relationships: dependency and realization

(supports).
To group one or more logical elements of the model, component diagrams also can use
packages or subsystems.

Key elements and properties

Components

Components typically represent a package of other logical elements and can be grouped
themselves. They also can realize its own interfaces or use interfaces of another component.

Remember, that each component represents just one aspect, one view of the system.
Interfaces

See Deployment Diagram for more information about interfaces.
Links

Dependency: indicates that one component uses the services of another component
Support: represents that a component might realize an interface

177 -

Component Diagrams

Tips and Tricks

Using the Clone command on the speedmenu of the navigation pane node, you can quickly
create a new diagram with the same content as the existing one. The new diagram has a
unique name and is created in the same package.

Using Add Shortent command on the diagram's speedmenu, you can reuse any already created
elements in other state diagrams. Note: Elements imported this way are independent copies
of the existing ones.

You can represent realization in two ways: using the support stereotype and the dashed line
(canonical form), and using the solid line (lollipop notation)

You can hide subcomponents on a component diagram. Go to Options | Default | View
Management, and enter the following for one of the "User Defined" fields under 'Show":

Name: "Nested components" Expression: hasPropertyValue ("$shapeType",
"Component") && ! (getContainingNode() == null)

Related topics

Creating diagrams in projects
Drawing diagram elements
Opening diagrams

178 -

Deployment Diagrams

Deployment Diagrams

Deployment diagram provides one of the two ways to model the physical aspects of a
system. It is a graph of nodes connected by communication associations and it shows the
physical architecture of the hardware and software of the system.

Content

Deployment diagrams usually contain:
Nodes, representing a processing resource
Relationship links:
Association
Dependency
Realization (supports)
Aggregation
Deployment diagrams in Together can also show:
Components, that live on nodes and they may provide realization of interfaces
Interfaces
Objects, that may live in processes that live in components

Key elements and properties

Nodes

A Node is a run-time physical object that can include not only computing devices but also
human resources or mechanical processing resources. Basically, nodes are things that execute
something and they represent locations where other elements are deployed.

Components

Though components are a lot like nodes, they are things that are executed by nodes.
Components typically represent a package of other logical elements and they can be
deployed on one or more nodes.

Interfaces

Interfaces are used to specify a service of a component and they may be imported or
exported by them. Therefore an interface specifies a contract that a component (or a class)
must carry out.

Together uses the most common way to show a relationship between a component and its
interfaces - through an elided (hidden) realization relationship.

Links

Association: usually they represent a communication between two elements. Use a
stereotype to indicate the nature of the communication.

Dependency: represents a connection between two components (sometimes through
interfaces)

Realization (supports): represents that a component might realize an interface
Aggregation: represents a connection between an aggregate (whole) and a component (part)

179 -

Deployment Diagrams

Tips and Tricks

Using the Clone command on the speedmenu of the navigation pane node, you can quickly
create a new diagram with the same content as the existing one. The new diagram has a
unique name and is created in the same package.

Using Add Shortent command on the diagram's speedmenu, you can reuse any already created
elements in other state diagrams. Note: Elements imported this way are independent copies
of the existing ones.

Organize components by specifying the relationships among them.

Objects and components can migrate from one component instance to another component
instance, respectively from one node instance to another node instance. In this case, the
object (component) will be on its component (node) only for a part of entire time. To show
that, use the dependency relationship with a becomses stereotype.

A component may reside on nodes. You can represent this in two ways: using the support
stereotype and the dashed arrows, and by graphically nesting the component symbol within
the node symbol.

Related topics

Creating diagrams in projects
Drawing diagram elements
Opening diagrams

- 180 -

Business Process diagrams

Together Diagrams

Business Process diagrams

Business Process diagrams are a feature of Together ControlCenter. Though it is not yet
specified as a diagram type in the UML, Together provides the Business Process (BP) diagram to
enable you to apply some of the UML extensions for business modeling. Business object
models model the structure, processes, use cases, and relationships of a business as part of
an overall business object model. The business object model describes the realization of
business use cases, providing an abstraction of how business workers and business entities
are related and how they must work together to actually run the business.

A business object model describes the use cases of a business from the internal viewpoint of
business workers . It defines the static and dynamic aspects of relationships between the
workers and the classes and objects they use to produce the expected results. In aggregate,
the objects of the model’s classes should be capable of performing all the use cases of the
business.

Using BP diagrams, you can model the static aspects of a business object model, especially
business use cases. To one or more BP diagrams, you may add Sequence and Activity
diagrams to show the dynamic aspects of the business object model and thus achieve a
complete business model.

Content

Business Process diagrams contain:

Business Actors

Business Use cases

Business Workers

Business Entities

o] | @] |0 | =

Relationship links

Association/Communicates

]

£ Extends

¥ Includes

ﬂ Generalization
F Aggregation
|? Subscription

- 181 -

Business Process diagrams

@ System boundary

|7 Notes and note links

Notation

The current UML specification (v. 1.3) does not specify any graphical variation for elements
such as Use Case and Actor when used in a business object modeling context. Together BP
diagrams use the standard UML graphical notation for these elements, and provides
compliant notation for UML extensions such as business worker and business entity.

Related topics

Creating diagrams in projects
Drawing diagram elements
Opening diagrams

- 182 -

Robustness Analysis Diagram

Robustness Analysis Diagram

Robustness Analysis diagrams, part of the Objectory process, serve a number of useful
purposes in a use case driven modeling effort. Robustness analysis involves working through
the text of a use case, and taking a preliminary peek at how you might design some software
to implement a given use case, using the objects you've discovered up to this point.
Obviously one of the main purposes of this activity is to discover when you don't have all
the objects you need, and then add them to your class diagram. While you're exploring
possible designs, its useful to classify objects into one of the three stereotypes (boundary,
control, entity) provided.

The robustness model provides a bridge between the "analysis level" view provided by the
text of the use case and the "detailed design" view shown on a sequence diagram. Since it's
very difficult to jump from analysis directly to detailed design, it's hard to do modeling
successfully without this step.

Drawing the robustness diagram for a use case provides a visual completeness check that
shows that the entire use case has been accounted for. It also serves to enforce the "active
voice" style that is most effective when writing use cases.

It is beyond the scope of this guide to provide detailed review of the robustness analysis.
The most comprehensive information on this issue can be found in "Use Case Driven
Object Modeling with UML" by Doug Rosenberg with Kendall Scott.

Content

Robustness diagrams usually contain:

Boundaries

Entities

Controllers

Worker boundaries

Worker controllers

Actors

e @ e e .

Relationship links:

Associations

Robustness Associations

Cw N

Notes and note links

|

-

- 183 -

Robustness Analysis Diagram

Key elements and properties

The robustness diagram symbols, such as Entity, Boundary, Worker Boundary, represent
stereotyped views of classes. For each symbol on the robustness diagram, there is a
corresponding class. There is a mechanism for converting a Controller and a Worker
Controller to methods. Rosenberg’s suggestion of using “invokes” in place of “includes” and
“precedes” in place of “extends” is realized via specific Robustness Association.

Boundary

Boundary objects are the objects in the new system with which the actors will be interacting.
These may be windows, screens, dialogs, and menus.

Entity

Entity objects refer to the database tables and files that store data, fetch data and perform
computations that don't change frequently. These objects should be enough simple and
generic, to provide the possibility of future reuse.

Controller

Control objects, or controllers, represent the functionality and system behavior of the use
cases. Controllers may be converted into methods associated with the interface objects and
entity objects.

Association
Links are represented by arrows. Unlike sequence diagrams, these arrows don't correspond
to messages. They rather indicate logical associations.

The associations should follow certain rules:

1. Actors can talk only to boundary objects

2. Boundary objects can talk only to controllers and actors

3. Entity objects can talk only to controllers

4. Controllers can talk to both boundary objects and controllers, but not the actors.

See also

Creating diagrams in projects
Drawing diagram elements
Opening diagrams
Approaches to modeling

184 -

Entity Relationship diagrams

Entity Relationship diagrams

The Entity Relationship (ER) diagram is a high level data model that shows the major
entities and relationships which support a general business area. The objective of the ER
diagram is to provide a view of business information requirements sufficient to satisfy the
need for broad planning for development of its information system.

Simply stated the ER model is a conceptual data model that views the real world as entities
and relationships. A basic component of the model is the Entity-Relationship diagram which
is used to visually represent data objects.

Visit www.togethersoft.com for more information about Together products that support ER
diagrams.

Notation

The ER diagram is not specified in the UML. | 7 it
Tfhus,.UML purists may not wish to 1n.clude It Descrigtion HIMLdos | Requiremerts
in their modeling process. However, since ; .
K . Propetties |/ Hyperlink |
many enterprise developers use ER diagrams v | el
(and asked for them in Together!), they are : Gl el
supported in Together ControlCenter. diagram type
There are two ways to represent data objects name Ertity Relationship
in ER diagram. Together allows a choice packane
between the most popular notations IDEFIX || yereatype
and I1E, or Crow Feet notation.
. . aliss
To switch between notations, open the _
diagram object inspector and select the target ssrver | undefinedt> ~]
desired notation from the drop-down list in wigw
the Properties tab: niotation IE -
JDEF1X g
When notation is changed, the diagram Mo CiliEnieh do o |

automatically redisplays its contents.

Logical and Physical Diagram view

Various database servers use different names of similar attribute types (for example,
NUMBER in Oracle and INT in Cloudscape). Together supports portability of the data
structures providing logical and physical views of ER diagrams. Normally, modeling is
carried out in a logical view, which displays the attribute names only. However, you can choose
physical view, and show attribute names and types in the notation specific for the selected
database server.
The server is chosen from the zarget server drop-down list in the diagram object inspector. If
no target server is specified, logical view is assumed by default, and the zzew field is disabled.
Tip: Changing the target server, press F5 to redisplay the diagram contents.
Object inspector provides Logical view and Physical view tabs for the entities, relationships and
attributes. Modification of a property in the logical view causes automatic change in the
physical view. The reverse is not true - some property values are editable in the physical
view, but the corresponding values in the logical view stay intact.

- 185 -

Entity Relationship diagrams

Contents
ER diagrams contain the following elements:
IDEF1X IE Description
E E Entities are represented by labeled rectangles. The label is the name of the entity.
Entity rectangles are divided into two sections.
Attributes, when included, are listed inside the lower section of the entity
rectangle.
Primary key attributes when included, are listed inside the upper section of the
entity rectangle.
|7 |7 Identifying relationships: The relationship name is written above the line. Verbs

are preferable.

Non-identifying relationships: The relationship name is written above the line.

#
* - Verbs are preferable.

I? I? Many-to-many relationships
I? I? Notes and note links

Entities

Entities are represented by the labeled rectangles, divided into two sections. Client entities
with identifying relationships are displayed as rectangles with rounded corners. Names of the
entities should be singular nouns.

Attributes

Attributes are displayed in the lower section, and the Primary key attributes are displayed in
the upper section of the entity icon. Names of the attributes should be singular nouns.

In the logical view of the attribute object inspector you can edit the attribute name and
choose its type from the drop-down list. You can also make an attribute a Primary key, and
impose certain restrictions on its value (ot null, unigue).

Is Foreign key flag is a read-only field that displays the status of an attribute depending on the
relationship between two entities.

The physical view displays read-only fields Physical type, Size and Digits, which depend on the
selected target server and specific driver.

The Size parameter used for the string variables specifies the maximum number of characters
(Digits field is disabled). If attribute type is numeric, S7ge specifies the total length of the
number. The sense of Dzgits field depends on the selected database server. In general it
defines the number of digits after the decimal point. However, for certain servers (e.g.
Oracle 7.3.x/8.x and SequelLink/Oracle) this value stands for precision.

- 186 -

Relationship links

Relationship links are displayed according to
the selected cardinality, with the names
written above the line. It is advised to use
verbs as the links' names.

You can create identifying or non-identifying
relationships using the appropriate toolbar
icons. Identifying relationships are displayed
in solid line, and non-identifying relationships
are in dotted line. Once created, a
relationship link can be modified through its
properties inspector.

Logical view tab of the inspector displays
client and supplier names of the selected
relationship link, and provides a test area
Verb phrase, where you can edit the
relationship name.

Properties of {relationship)

Entity Relationship diagrams

HTML o rﬁequirements |

Relstionship: physical view r Description

Relationship: logical wies

flame | Walue
client
supplier
Yerb phrase links
[dentifying]
Optional]
Cardinality Eeru:u ar kore -

iFero or Mare
one oF More (P
Fero ar one (L)
Exactly

Display of cardinality also depends on the selected notation. The following types of

cardinality are possible:

Cardinality IDEF1X IE
Zero ot more " links links
» B
One or more " links links
|
= Ii" I
Zero or one links |.ink5.
L
£
Exact cardinality links links
. . » | I
(arbitrary integer value) 12 1= T
Optional links links
P—————> Bl —— — — -4

Related topics

Creating diagrams in projects
Drawing diagram elements
Opening diagrams
Import-Export Operations

187 -

EJB Assembler Diagram: Visual Assembling EJBs for Deployment

EJB Assembler Diagram: Visual Assembling EJBs
for Deployment

Enterprise JavaBeans (EJBs) can be used in multi-tier distributed applications, in which the
business logic is usually implemented as a set of E]Bs.

Together EJB Assembler diagram allows to model the way EJBs are assembled into an
application. With the help of EJB Assembler diagram the user can combine all E]Bs in a
JAR and deploy to an Application Server. E]Bs are added to the EJB Assembler diagram as
shortcuts from other diagrams.

EJB Assembler diagrams are not supported in all products. For current product information,
visit www.togethersoft.com/together or contact the nearest TogetherSoft sales office.
Together 's EJB Assembler diagram supports J2EE specifications (J2EE Support): E]B-
references, security references, resource references, and environment references. You can
show method permissions for the business methods of EJB's classes and link these to
security roles that you define. All references are implemented as separate visual design
elements. This way is very useful for linking EJBs, resources and other elements, and for
providing reusability.

EJB Assembler diagram is a visual equivalent of the Application Assembler described by the EJB
2.0 Specification. According to the specification, the assembler "assembles enterprise beans
into a single deployment unit." It provides application assembly information to the
Application Deployer, which is represented in Together by the [2EE Deployment Expert. Refer to
EJB 2.0 Specification, p. 432 for details.

Content

EJB Assembler diagrams contain:

E Security Role: Defines security role that stands for one of the recommended security roles for the
EJB's client(s). Security Role element in an EJB Assembler diagram presents a simplified view of the EJB
app's security to the app deployer (i.e., the J2EE Deployment Expers).

Principal: Creates a visual design component representing a User or Group of users separated from their
Security Role.

Method permission: Enables you to show the required permission(s) on one or more methods.
Represents a binary relation between the security roles and the methods of an EJB's home and remote
interfaces. Represents a permission required to invoke methods on these interfaces.

=8| | =

EJB Properties: Creates a visual design component representing EJB's properties as a separate
element with its own properties

=

Container Transaction: Enables to define transaction attributes for the methods of EJB home and
remote interfaces. When linked to one or more EJB methods, it specifies that the linked method(s) are
assigned the transaction attribute value defined in the Container Transaction element's properties (Alt -
Enter). All methods linked to a single Container Transaction element should belong to a single bean.

=]

f5 ! EJB Reference: Creates element with its own properties in the visual model, representing a reference
to an EJB.

oo [Environment: Creates a visual design component with the properties of some static constant, which
cannot be changed after EJB deployment.

Resource Reference: Creates a visual design component which has all properties of the referenced
resource.

al |

- 188 -

EJB Assembler Diagram: Visual Assembling EJBs for Deployment

Message Web Service: Creates message Web Service for BEA Weblogic 6.1

Assembly Link: Drawn between diagram elements to show their relationships in the application.

Note: Creates a visual Note element

AEREY e

Note Link: Creates a link between the note element and another visual component to show the note's
relationship with this element.

The main difference between this diagram and other diagram types is that a key element of
the diagram is not placed into the diagram using the Diagram toolbar. You need to create a

shortcut to each EJB that you want to show in the Assembler diagram (see information
below).

Notation

The EJB Assembler diagram is not specified in the UML. It is specific to Together as a part of
J2EE specification support. You can consider this diagram an extension of standard UML.

Security roles

Together EJB Assembler diagram implements two variants of Security Role's definition:
- Declarative Security Role;
- Programmatic Security Role;

According to J2EE specification (p.130), the Declarative security is realized in a form external
to the application:

"...The deployment descriptor is the primary vehicle for declarative security in the
J2EE platform.

A deployment descriptor is a contract between an Application Component Provider
and a Deployer or Application Assembler. In the context of J2EEsecurity, it can be
used by an application programmer to represent an application’s security related
environmental requirements. Groups of components are associated with a deployment
descriptor.

The application’s logical security requirements are mapped by a Deployer to a
representation of the security policy that is specific to the environment at deployment
time.

A Deployer uses a deployment tool to process the deployment descriptor. At runtime,
the container uses the security policy that was derived from the deployment descriptor
and configured by the Deployer to enforce authorization".

For this purpose Together provides a special visual element called Mezhod Permission.

- 189 -

EJB Assembler Diagram: Visual Assembling EJBs for Deployment

TE EJBreference rgg EJBreference r S EJB Assembler ﬁ'_ﬁ Declarative Security Roles
B =default= |/ TEh TranzactionAttributes |/

----- (-] SessionBean
T DeclarativeSecurityRoles Bean
"""" Ceclamtive Secwity ks

....... Ceclarative Secuity Bole s bhme

....... -t Session Context

....... I: set Session Context
e I: ejbfctivate
P I: ejbPassivate
Lo I: ejbRemove
SERERE i
....... I: ejb Create
AR)
....... I: securehdethod
e e
....... .

How to define the Declarative Security Role in the EJB Assembler diagram

Programmatic security is used by security aware applications. According to J2EE
Specification, " Programmatic security consists of two methods of the ETBContext
interface and two methods of the HttpServletRequest interface:

isCallerInRole (EJBContext)

getCallerPrincipal (EJBContext)

isUserInRole (HttpServletRequest)

getUserPrincipal (HttpServletReque

These methods allow components to make business logic decisions based on the security
role of the caller or remote user. They also allow the component to determine the principal
name of the caller or remote user to use as a database key, for example."

In this case the user has to add Security Role icons to the EJB Assembler diagram (support and
tester in the example) and link them to the corresponding principals (John, Nick, Robert).
If EJB has a security role reference, the user defines EJB Security reference (QA_ref) as an
attribute of EJB. This security reference can be linked to the Security Role icon (tester in our
case). Then the J2EE Deployment Expert will generate information about properties of Zester-
reference in the Deployment Descriptor.

- 190 -

EJB Assembler Diagram: Visual Assembling EJBs for Deployment

- [SezsionBean
Programmatic SecurityRolesE. .
Programaratic SecuntyHoles
Progaamatic SecudtyRolesHome

-ebSessionContext

setSezsionContext

o

ejbfctivate

ajbRemowe

[

[ot

[: ejbF assivate
(

[: ejbCreate
[: sacuredhlethod k
-~
2
”

ﬁ'_ﬁ Programmatic Security Roles

Coo EElserE 0

£ dehn oL

© . azBecutityRoleEE 4 oo

cooEelgerEEl D00

Co Mgk ool

- - oaSeeurityRoler - - - - - - - - =aldzeres

Coo . Suppart LoDl L L User. .

How to define the Programmatic Security Role in the E]B Assembler diagram

Container Transaction

There is a definition of a transaction attribute in "Sun Microsystems Enterprise Java Beans

2.0" specification:

"...Every client method invocation on an enterprise Bean object is interposed by the
container. The interposition allows for delegating the transaction management

responsibilities to the container.

The declarative transaction management is controlled by a transaction attribute
associated with each enterprise Bean’s home container. The container provider’s tools
can be used to set and change the values of transaction attributes.

Enterprise JavaBeans define the following values for transaction attribute:

TX NOT_ SUPPORTED
TX BEAN_ MANAGED
TX REQUIRED

TX SUPPORTS

TX REQUIRES NEW
TX MANDATORY

The transaction attribute is specified in the enterprise Bean’s deployment descriptor.”

See description of possible transaction attribute variants in "Sun Microsystems Enterprise

Java Beans 2.0" specification (p.100).

Together allows to define a transaction attribute using the Container Transaction visual
component. The user defines appropriate methods of EJB and draws the links between
these methods and the required Container Transaction elements:

- 191 -

EJB Assembler Diagram: Visual Assembling EJBs for Deployment

ﬁg Transactionsttributes |

.. = SessfonBean | 00 0L

: withTransactionAttrBean iy SRIRERIE
transactiondtributes withTransacty 00 0 L0 DL S
transactiondftribute s with Transact

-ctx SessionContext

zetSessionContext
gibhActivate

ejbPasszivate

=

ejbRemove e s
© 0 Reguired ¢ 0
gjhiCreste — .
ta_BeanDe .H?EE!!UL.I’E:SI?JE:W:

ta_MotSupported 7Y

—. .

T e [T e

ta_Supports : .
ta_r-nandatu:ujy///% e @: ..
s e
ta_Requireséw) : *_—h :
ta_Mever) @ :

1
£
=
R
=
{11]
-

[

When security roles, transaction attributes, and references are completely defined, you can
invoke the J2EE Deployment Expert. If the Deployment Descriptor is required, don't forget
to check the Generate JAR Deployment Descriptor option on the first page of the J2EE
Deployment Expert.

-192 -

EJB Assembler Diagram: Visual Assembling EJBs for Deployment

EJB References

EJBs are not allowed to refer directly to each other. One EJB can refer to another EJB only
via a visual E]B Reference element. User has to define an EJB reference (¢jb_ref), add the EJB
Reference icon (bookBean) to the EJB Assembler diagram, and draw the links:

TE EJBreference |

| EntiyBean | i::l Entity Boar
backBean o Mbonerent Bean
Ebrerermnge bonit EiBrderenne Aborewent
EsErererence. bookthaie Ed Breference AbonementHie
Esbmremice bookPh EiBmfemane Abonenente
-ote: Entity Context -cta Entity Context
Hd_bookint Hrurnberint
Hitle:5tring .
. Hd_book:int
+author. String Hd_reader:int
- +0rderDate : Object
|: setEntity Context J +Back Date: Object
I: un=et Entity Context J
i i et Bntity Context
|: ejbfctivate J I: = :]
|: b Passivate J E unzet Entity Context -%
- ejbfctivate
ajb Remone
E gjb Store % [: ejb Pazsivate _:l
|: sjbLoad J |: ejb Remoe j
[: ejbStore _jl
i |: ajb Load ;I
|: gjb Create J
|: ejb Post Create _2 oy
&jb Create
= [)
[ebFindbyPrimanykey [ejbiPost Create _)
Ba [- . T
T eib Find By Primary Key
[4
r E‘mﬁi

.................. —’(oot)

- 193 -

EJB Assembler Diagram: Visual Assembling EJBs for Deployment

Working with EJB Assembler diagrams
Apart from the basic mechanism of drawing diagrams, there are several fundamental things
you should understand about E]B Assembler diagrams:

Creating EJB shortcuts

How EJBs are displayed in the diagram

Showing or hiding various elements of an EJB

How the EJB Assembler diagram relates to the J2EE Deployment Expert

Working with references

Creating EJB shortcuts

By the time you are ready to assemble one or more EJBs into an application, you should
have completed EJBs in your Together project. If you want to use the EJB Assembler
diagram to specify security roles, method permissions, etc. for deployment, you need to
display the relevant bean(s) in the EJB Assembler diagram. You can do this by creating one
or more shortcuts to the finished EJB(s) that comprise the application. A shortcut is just a
visual representation of some EJB element that "lives" somewhere else in the project.

To begin:

1. Create a new EJB Assembler diagram, or open an existing one in the project that contains
the EJBs for the application (File | New Diagram).

2. If you want to include EJBs that are not part of the current project, specify the path(s) to
them in the Search/Classpath tab of the Project Properties dialog (File | Project Properties -
Advanced).

To create a shortcut:

1. Right-click on the background of the open EJB Assembler diagram and choose Add
shortcut.

2. In the Add Shortcuts dialog, expand the Model node and locate the EJB classes and
interfaces from your project which you want to display in the diagram. Select them in the
tree view and click .4dd.

3. In the Add Shortcuts dialog, expand the Search/ Classpath node and locate the EJB classes
and interfaces from outside your project (if any) that you want to display in the diagram.
Select them in the tree view and click Add.

4. Click OK to display selected EJB(s) on the diagram. Tip: Run auto-layout from the
diagram speedmenu at this point.

194 -

EJB Assembler Diagram: Visual Assembling EJBs for Deployment

How EJBs are displayed in the EJB Assembler diagram

EJBs are displayed in essentially the same kind of visual container as Class diagrams. The
methods show as elliptical objects within the Class framework. These objects are highlighted
when there are link sources or targets.

i::l javax aib SessionBeanyf - - - - - - -

' hello.HelloBean L

hedio.Helio | = n

helfo HelloHome

-chjavax ejb. SessionContext e

[setSessionContext :] C

[—— D =l

ejbActivate)% : @ S

[: ejbPassivate :] L Supports

[: eihRemove :]:::::::::::::

ﬁ'ﬁﬁﬁﬁﬁﬁﬁﬁﬁ:ﬁﬁﬁ

[: eihCreate)

Bo |l e

(hello)____3,@

Ry | - o NetSupported

I R
Y P b =1t

How an EJB displays in E]B Assembler diagram
Showing and hiding EJB elements

When creating your EJB shortcuts in the EJB Assembler diagram, you can select home or
remote interfaces, or primary key classes in the selection dialog. If they don't appear in the
diagram, it means that your View Management option settings hide them. These elements
are hidden by default, and you need to change the settings if you want to see them. To
preserve the settings at the project level, you can just change them for the specific diagram.
1. Right-click the diagram background and choose Diagram Options.

2. Select the View Management page and navigate to the Show node.

3. Expose the EJB-related options and check those elements that you want to display in the
current diagram.

You can also hide individual elements in the diagram using the Hide command from the
element's speedmenu. Restore with the Show Hidden command on the diagram speedmenu.

- 195 -

EJB Assembler Diagram: Visual Assembling EJBs for Deployment

How the EJB Assembler diagram relates to the J2EE Deployment Expert

Together provides an "expert" dialog that simplifies the process of deploying EJBs. You can
run the J2EE Deployment Expert against either a Class diagram, or an EJB Assembler
diagram : Main menu | Tools | J2EE Deployment Expert.
- For "fast track" deployment with default values, or deployment prototyping, use the
Expert from an appropriate Class diagram.
- If you need "full featured assembly information" with control over security and
permissions, use the J2EE Deployment Expert from an EJB Assembler diagram.

For information on using the J2EE Deployment Expert, see Deploying Enterprise JavaBeans.
Working with references

Use the following example of Environment reference to learn how to define references. The
other types of references are defined similarly. First, define E]B-element (here bookBean) and
its attributes in the Class diagram (EJB Reference).

L] EntityBean
ReaderBean
EJBreferahce Readar
EJBreference ReaderHome
EJBreferahce ReadorFE

-t EntityContext
+id_reader;int
+Firsthame:String
+Lasthame:String

+setEntitvContext{context Entity] -
+unsetEntityContextdvoid '
+ejhActivatedvoid
+ejbPassivateovoid
+ejbRemovedvoid
+ejbStore()void
+ejbLoaddvoid

Y

+ejhCreated:ReaderPE
+ejhPostCreatewvaid

T

+ejbFindByPrimarkeyipk Read

Bo

I

Next, create an EJB Assembler diagram (New diagram | Together | EJB Assembler) and
add the shortcut to the bookBean (select Add shortent from the diagram speedmenu and
choose the necessary EJB in the Class diagram EJB Reference).

If there are environment variables in the project, the user can add Environment references
as EJB's attributes (New | EJB Environment Reference on the EJB speedmenu). In this
example we have environment variables of the following types: boolean BooleanEny, string
StringEny, integer IntegerEny, double DounbleEn.

- 196 -

EJB Assembler Diagram: Visual Assembling EJBs for Deployment

The properties of the Environment references are defined in the Properties Inspector. For
example, we can define the properties of BoolanEny Environment reference as shown in the
following image (note that the initial value is in quotes).

Properties of BooleanEnv
Custom Properties | EJB EnvironmentReference
Properties rHyperIink rDescriptiDn rJavach rHTI'-.deu:uc rHequirements |
Marme | Y alue
MEme BooleanEry
sterectype | | v|
aliss
type |t:u:u:ulean |v| ER
associates B
initial walue
visibility | private v |
static [#]
firal]
tranzient [
wilatile]
@ Press Ciri+Enter to finizh editing and close Inspector y
2%

On the EJB EnvironmentReference tab of the Inspector, specify the properties of this
Environment reference:

Properties of BooleanEny

Custom Properties | EJB EnvironmentReference
Properties |/H§.-'perlink rDescriptiDn rJavach rHTMLch rRequirements |

Hame | Walue

Matne BooleanEny

EnY-Ertty-name | |

env-entry-type | javalang Boolean - |

eny-entry-value

@ Pre=z Ciri+Enter to finizh editing and close Inspectar

197 -

EJB Assembler Diagram: Visual Assembling EJBs for Deployment

The user can also define a specific Environment entry value using the Custom properties tab
(True for BooleanEnv):

Properties of BooleanEny

Custom Properties |/EJEI EnvironmertReference
Properties |/H'-,-'perlink rDescriptiDn rJavach |/HTr-.-1Ld|:u: rRequirements |

Al
Marme | Walle
Er-REF
Ervvironmert Entry Type java Lang Boolean
'Enviru:unment Entry “Walue true

@ Pre=z Ciri+Enter to finizh editing and close Inspectar

v

When environment references and their properties are completely defined, the
corresponding records appear in the EJB's list of attributes. If the J2EE Deployment Expert
is invoked from the Class (EJB Reference) diagram, the appropriate description is generated
in the Deployment Descriptor (*.xml file).

However, there is an EJB Assembler diagram in Together that is designed to simplify the
deployment process. Create an EJB Assembler diagram EnvironmentRef and add a new
Environment element ShortEnv. Define its properties as described above. If you need to link
BooleanEny with ShortEnv , you can draw the Assembly link from this reference to the
ShortEny element.

If the properties of ShortEny Environment design element and BooleanEny Environment reference
are different, and the J2EE Deployment Expert is called from EJB Assembler diagram
EnvironmentRef, the properties of ShortEnv are preferred.

In our case the boolean type of the environment variable will be redefined as short type (See
the EJB Assembler diagram).

- 198 -

Erdity Bear
bookBean
EdBrefemme ool
EJ B mze ookt
Ed Breferene bookiPl

-ctu: Enitity Context
Hd_book:int
+Hitle: 5tring
+author: 5tring

et Bntity Context
un=et Entity Cont et
ajbfctivate

ejbPassivate

ejb Remowve

ejb Store
ajb Load

P e o Vo P PP
LT, R, N NDY, N, N, N

7
ejb Create _:|

_
)

wjb Find By Brimary ke J

gjb Post Create

e

EJB Assembler Diagram: Visual Assembling EJBs for Deployment

|: Boolean By J
[|: String Enw J
E IntegerBnw j
r

DaubleBnw

Observe two icons on the diagram: FloatEnv and ShortEnv. The FloatEnvy element is not
linked to EJB's Environment reference and will be deployed as a separate environment
variable. Draw a link from BooleanEny environment reference to ShortEny visual element. In
this case BooleanEny becomes a short type in *.xml file and the name ShorEnvy is used as a
"lookup".

Tips for Assembler diagrams

- The Properties Inspector of a Container Transaction element (speedmenu | Properties)
enables you to define the transaction type (Supported, Not Supported, Never etc.)

- The Properties Inspector of the Security Role element (speedmenu | Properties) enables you
to define the name of the element.

- You can create a link from one or more Method Permission(s) to a Security Role. This defines
method permissions for the Security Role.

- You can create a link from the Security Role to one or more Principals. This defines the User
ot the Group for this Security Role.

- If an E]B defines any Security Role Reference(s) (shown in the last compartment of the EJB
icon in the diagram), all of them must be linked to Security Role elements.

- Each Security Role Reference must have one and only one link to some Security Role element.

- One Security Role element can be associated with null to many EJB Security Role References.

- 199 -

EJB Assembler Diagram: Visual Assembling EJBs for Deployment

- You can create a link from some method in EJB's implementation class to E]B's Container
Transaction element or to a Method Permission element.

- A Container Transaction element can be linked to an EJB icon as a whole, and/or to sub-
icons representing methods (see previous figure).

- If a Transactional Attribute is linked to the EJB icon, it means the corresponding
transaction type will be used as default for all methods.

- If a Transactional Attribute is linked to method(s), it means that the corresponding
transaction type will be used for the linked method. It overrides default value defined above.

- You can create a link from an EJB Reference in EJB's implementation class to EJB
Reference icon.

- You can create a link from an EJB Reference icon to an EJB icon.

- You can create a link from an Environment Reference in EJB's implementation class to an
Environment icon.

- You can create a link from a Resource Reference in EJB's implementation class to a
Resource Reference icon.

How to Create an EJB Application Step by Step

To create an E]B Application:

1. Create all necessary Class diagrams that contain EJBs.

2. Create a new EJB Assembler diagram.

3. Create shortcuts for the necessary E]Bs and add shortcuts to the EJB Assembler diagram.
4. Define EJB References and other references as the EJBs' attributes.

5. Add shortcuts to the necessary classes.

0. Define references as separate visual elements.

7. Define principals (users or groups) and add visual elements to the EJB Assembler
diagram.

8. Define security roles as visual elements.

9. Draw links for the references.

10. Draw links for the security roles.

11. Define container elements.

12. Draw all the necessary links.

13. Invoke J2EE Deployment Expert.

See also

Creating diagrams in projects
Drawing diagram elements
Opening diagrams

Working with View Management
Deploying Enterprise JavaBeans

- 200 -

Web Application Diagram: Visual Assembling of Web Applications for Deployment

Web Application Diagram: Visual Assembling of
Web Applications for Deployment

Web Application diagram allows to visually create and build Web Application archive (WAR),
where all JSPs and Servlets are stored.

If a web application is already implemented as a set of Servlets, JSPs and other Web files (for
example, pictures), it is possible to generate the Deployment Descriptor and assemble Web
components to the archive (WAR) with *.war extension.

Togethet's Web Application diagram enables modeling the way JSPs, Servlets and other web
files are assembled into an application. With the help of a Web Application diagram the user
can combine all JSPs, Servlets and other Web files in WAR and deploy it to an Application
Server.

Web Application diagrams are not supported in all products. For current product information,
please visit www.togethersoft.com/together/ or contact your nearest TogetherSoft sales office.

Content

Web Application diagram contains:

Shortcut(s) to one or more EJBs

E Security Role: Creates a visual design component for security role ... meaning one of

recommended security roles for Web Application 's or EJB's client(s) . The Security Role
element in a Web Application diagram presents a simplified view of the JSP's (Servlets) or
EJB app's security to the app deployer (i.e., [2ZEE Deployment Experi).

Principal: Creates a visual design component that represents a User or a Group of Users
separated from their Security Role.

=

Note: It is possible to change stereotype using in-place editing.

Security constraint: Creates a visual design component for annotating the intended
protection of the web contents. Security constraint includes web resource collection,
authorization constraints and user data constraints.

=]

Web resource collection: Creates a visual design component for the set of resources to
be protected. A Web Collection is a set of URL patterns or HTTP methods that describe
resources to be protected.

(@)

EJB Reference: Creates an element with its own properties in the visual model that
represents a reference to an EJB.

_+
aly

Environment references: Creates a visual design component with the properties of a
static constant, which cannot be changed after EJB's deployment.

Resource references: Creates a visual design component that has all
properties of the referred resource.

al | %l

JSP: Creates a visual design component that represents JSPs and Servlets.

—
"
o

Web Files: Creates a visual design component that represents Web files (images etc.).

@l

-201 -

Web Application Diagram: Visual Assembling of Web Applications for Deployment

Filter mapping: Creates a visual design component that enables mapping servlets to
filters. You can link a servlet to this component, and then map it to a filter. Refer to
Setvlets 2.3 Specification for details.

<1

Error page: Creates a visual design component for the error page returned if the user
authentication fails.

TagLib: Creates a visual component used to describe the JSP tag library.

Web Links: Creates a link between diagram elements to show their relationships in the
application.

Nz |G

I—_ Notes and note links for documentation

Key elements and properties

Similar to the EJB Assembler diagram, some of the key elements cannot be added to the
diagram with the toolbar icons. To show E|Bs in the Web Application diagram, a shortcut to
each EJB should be created. To include Home and Remote interfaces of an EJB, you must
add shortcut to this EJB in the Web application diagram.

Notation

Web Application diagram is not specified in the UML. It is specific to Together as a part of
the product's EJB development and J2EE specification support.

Having created this diagram, the user can call J2EE Deployment Expert to generate the
Deployment Descriptor and deploy the application to the selected server. If you have a separate
element (for example, some reference in the Web Application diagram), appropriate record
appears in the generated Deployment Descriptor. For E]Bs, Home and Remote interfaces are
generated.

Properties of the Web Application diagram

Web Application diagram has certain Web properties, which are available in the WebProperties
tab of the diagram object inspector. Specifying the properties, keep in mind that the
application server should comply with the Sun Microsystems specification for EJB 1.1 and
higher. Refer to http://java.sun.com/products/ejb/docs.html for details.
Module name: The name of * . war file in course of deployment process
Welcome File List: This property allows to define welcome pages in the Deployment
Descriptor of a Web Application (web.xml). Welcome file list is an optional element that
contains an ordered list of welcome file elements. When URL refers to a directory name,
application server is the very first file on this list. If this file is not found, the server tries the
next one. Actually, Welcome File List is the list of files, which can be used as a starting page.
This is useful for making your site more friendly, since the user may type a URL without
giving a specific filename.
Welcome pages are defined on the Web Application level. If your Server is hosting multiple
Web Applications, you need to define welcome pages separately for each Web Application.
If the Welcome Pages are not defined, WebLogic Server looks for the following files in the
following order:

index.html

index.htm

index.jsp

-202 -

Web Application Diagram: Visual Assembling of Web Applications for Deployment

Enter the list welcome pages in the appropriate field of the object inspector, using comma as

a delimiter.

Error pages: You can configure the application server to display custom web pages or other

HTTP resources in response to particular HT'TP errors or java exceptions. In this case the

user-defined pages appear instead of the standard error pages of the application server. If the

Error page property is defined, the corresponding error-page element of the Deployment

Descriptor (web.xml) appears. This optional element maps error code or exception type with

the resource path in the Web Application.

Session timeout. This is an optional element defining one of the session parameters for the

Web Application - the time in seconds that WebLogic Server waits before timing out a

session. Minimum value is 1, default is 3600, and maximum value is integer MAX_VALUE.

This parameter allows to override the session-timeout element in web.xml.

Small icon: Use this optional parameter to select small icon appearance for Weblogic Icon

Element. In this case you must specify location of a small (16x16 pixels) *.gif or *.jpg image

used to represent the Web Application in the GUI tool.

Large icon: Use this optional parameter to select large icon appearance for the Weblogic

Icon Element. In this case you have to specify location of a large (32x32 pixels) *.gif or *.jpg

image used to represent the Web Application in the GUI tool.

Context Root : optional parameter that defines context root for the Web Application.
Example:

<web> <web-uri>petStore.war</web-uri> <context-
rootsestore</context-root> </web>

Servlet Context Params: use this optional parameter to define a context-param element
that declares context initialization parameters of the web Application servlet. The following
methods are used to access these parameters:

javax.servlet.ServletContext.getInitParameter ()
javax.servlet.ServletContext.getInitParameterNames ()

Working with Web Application diagrams

Besides the basic technique of drawing diagrams, there are several fundamental things you
should understand about Web Application diagrams:

Creating EJB shortcuts

Creating filters

How EJBs are displayed in the diagram

Showing and hiding E]JB elements

How the Web Application diagram relates to the J2EE Deployment Expert

Creating EJB shortcuts

By the time you are ready to assemble one or more E]Bs into an application, you should
have completed E]Bs in your Together project. If you want to use the EJB Assembler diagram
to specify security roles, method permissions, etc. for deployment, you need to display the
relevant bean(s) in the Assembler diagram. You do this by creating one or more shortcuts to
the completed EJB(s) that comprise the application. A shortcut is just a visual representation
of some element that "lives" somewhere else in the project.

- 203 -

Web Application Diagram: Visual Assembling of Web Applications for Deployment

To begin:
1. Create a new Web Application diagram, or open an existing one in the project that
contains the E]Bs for the application (File | New Diagram).
2. If you want to include E]Bs that are not part of the current project, specify the
path(s) to them in the Search/Classpath tab of the Project Properties dialog (File | Project
Properties - Adpanced).

To create a shortcut:
1. Right-click on the background of the open Web Application diagram and choose Add
shortcut.
2. In the Add Shorteuts dialog, expand the Model node and locate the EJB classes and
interfaces from your project which you want to display in the diagram. Select them in
the tree view and click .Add.

3. In the Add Shortents dialog, expand the Search/ Classpath node and locate the EJB
classes and interfaces from outside your project (if any) that you want to display in the
diagram. Select them in the tree view and click .Add.

4. Click OK to display the selected EJB(s) in the diagram. Tip: Run auto-layout from
the diagram speedmenu at this point.

Creating and mapping filters

The objective of Filter mapping design component is to provide filter mapping element for
the deployment descriptor.
To create a filter or a collection of filters in a Web Application diagram:
1. Right-click on the Filter mapping element to invoke its Properties Inspector,
2. Choose the MappedFilters tab.
3. Click Add to create a filter.
4. Add as many filters as required and press CTRL+Enter apply changes and close the
Inspector.

This generates a filter class that implements javax.servlet.Filter interface. This
class is attached to the Filter mapping element by a Web link. Properties Inspector of the
filter class provides the FilterProperties tab where you can specity the following properties:

Filter name: used to map the filter to a servlet or URL

Display name: visible name of the filter

Icon: fully-qualified path to an image file used as the filter's icon

Init Params: initialization parameters for a filter.
All filters of a Filter mapping element are listed in its properties inspector.
Note that Rezove button of the Filter mapping Inspector only deletes the link between a
Filter mapping and a filter. The filter class is still preserved on the diagram.
Use URLPatternMapping tab of the Filter mapping Inspector to define groups servlets and
static resources in the web application to which the filter is applied. The rules of the path
mapping are outlined in the Java servlet Specification version 2.3, SRV 11.1, Use of URL
Paths.

204 -

Web Application Diagram: Visual Assembling of Web Applications for Deployment

How EJBs are displayed in diagrams

EJBs are displayed in essentially the same kind of visual container as the Class diagrams. The
various methods show as elliptical objects within the Class framework. These objects exhibit
highlighting when they are link sources or targets.

[i”?El Wb Application |

- [E] Javax.aib SessionBean
[hello.HelloBean

heiio Helio

hejio HelioHome

-ctejavax.ejh.SessionContext

(_ setSessionContext J :
E eibActivate) :
(eibPassivate j :
[eibRemove j :

= B
(ejhCreate E@)
(hello)

Showing and hiding EJB elements

When creating your EJB shortcuts in the Web Application diagram, you can select home or
remote interfaces, or primary key classes in the selection dialog. If they don't appear in the
diagram, it means that your [zew Management option settings are hiding them. These elements
are hidden by default, and you need to change the settings if you want to see them. To
preserve the settings at the project level, you can just change them for the specific diagram.

- Right-click the diagram background and choose Diagram Options.

- Select the [7ew Management page tab and navigate to the Show node.

- Expose the EJB-related options and check the elements that you want to display in

the current diagram.

You can also hide individual elements in the diagram using the Hide command from the
element's speedmenu. Restore with the Show Hidden command on the diagram speedmenu.

How the Web Application diagram relates to the Deployment Expert

Together provides an J2EE Deployment Expert dialog that simplifies the process of deploying
Servlets, JSPs, Web files and possibly EJBs. You can run the [2EE Deployment Expert against
either a Class diagram, or an Web Application diagram : Main menu | Tools | Deployment Expert.
For "fast track" deployment with default values, or deployment prototyping, use the [2EE
Deployment Expert from an appropriate Class diagram. 1f you need "full featured assembly
information" with control over security and permissions, use the [2EE Deployment Expert
trom the Web Application diagram.

- 205 -

Web Application Diagram: Visual Assembling of Web Applications for Deployment

J2EE Deployment Expert is used same way as in case of EJB Assembler diagram, with the only
difference: check Generate WAR Deployment Descriptor option in the J2EE Deployment Expert's
dialog.

When deployment is performed from the Web Application diagram, Together takes files with
the directory structure from the WebFiles source folder.

Tips for Web Application diagrams

- Properties Inspector of a JSP element (speedmenu | Properties) enables defining the
component's type (JSP or Servlet) and Servlet Init Parameters.
- JSP Editor is accessed from Web Application diagram.

- Properties Inspector of a Security Role element (speedmenu | Properties) enables defining
the element name.

- You can create a link from a Security Role to one Principal.

- If it is necessary to define an EJB Reference, use EJB Reference visual component linked
to the corresponding EJB.

- To define Resource and Environment references, use separate visual Resource Reference
element and Environment Reference element.

- To define Web files, use the separate visual WeblFiles element placed on the Web
Application diagram.

- If a JSP or Servlet defines any Security Role, it must be linked to the corresponding Security
Role element.

- If it is necessary to define an EJB Reference, use EJB Reference visual component linked to the
corresponding EJB.

- To define Resource and Environment references, use separate visual Resource Reference element
and Environment Reference element.

- To define Web files, use the separate visual WebFiles element placed on the Web Application
diagram.

See also

Creating diagrams in projects

Drawing diagram elements

Opening diagrams

View Management

Deploying Enterprise JavaBeans

- 2006 -

Enterprise Application Diagram : Visual Assembling of Enterprise Applications for Deployment

Enterprise Application Diagram : Visual
Assembling of Enterprise Applications for
Deployment

To support J2EE specification, a tool is required that enables to collect elements for EAR in
a single diagram. Such tool is the Enterprise Application diagram that combines Web
Applications and EJB Applications. Thus Enterprise Application Diagrams are used to visually
assemble Enterprise Applications for deployment.
We suppose that the developer already has one or more EJB Assembler and Web
Application diagrams.
Enterprise Application diagram contains shortcuts of EJB Assembler and Web Application
diagrams. This diagram provides all necessary elements for generating the Deployment
Descriptor and creating *.ear archive file.
Note: If the target application server doesn't support *.ear generation (which is the case for WebLogic
5.1 and WebSphere 3.5), multiple *.jar files are generated instead. WebLogic 6.0 can deploy *.eat's, and
thus a single *.ear file is generated, when deployment is performed from the Enterprise Application
diagram.
Enterprise Application diagram supports Security Roles.
Enterprise Application diagrams are not supported in all products. For current product
information, please visit www.togethersoft.com/together/ or contact the neatest
TogetherSoft sales office.

Creating and drawing Enterprise Application diagrams

If you need to learn how to create new diagrams in projects, or the techniques for placing
elements and drawing links, consult the User's Guide topics found in the Part II of this
manual (Working with Diagrams).

Content

Enterprise Application diagrams contain:

= Module: Creates a visual shortcut to an existing EJB
==\ Assembler, Web Application or Class diagram.

Archived Module: Creates a visual shortcut to an existin
] g
*jar file.

|§ Security Role: Defines the Security role that stands for one of

recommended security roles for the EJB's client(s). Security
Role element in an Enterprise Application diagram presents a
simplified view of the EJB app's security to the app deployer
(i.e. the J2EE Deployment Exper).

Note: Creates a visual Noze element.

<+ |Note link: Creates a link between the note element and
another visual component to show the note's relationship
with this element.

The Enterprise Application diagram is not specified in the UML. It is specific to Together as a
part of the product's EJB development and J2EE specification support.

207 -

Enterprise Application Diagram : Visual Assembling of Enterprise Applications for Deployment

Creating diagram shortcuts

By the time you are ready to assemble one or more diagrams into the Enterprise Application
diagram, you should have the completed Web Application and EJB Assembler diagrams in your
Together project. As in the case of EJB shortcut, a diagram shortcut is just a visual
representation of some element that 'lives' somewhere else in the project.

To begin:

In your application, create a new Enterprise Application diagram (File | New Diagram), or open
an existing one in the project that contains Web Application and EJB Assembler diagrams. 1f you
want to include diagrams that are not part of the current project, specify the path(s) to them
in the Search/ Classpath tab of the Project Properties dialog (File | Project Properties - Advanced).

T create a shortcut:

Select Module icon on the diagram toolbar and draw an element on the Diagram pane. This
invokes Selection manager dialog that enables choosing available EJB Assenmbler, Web
Application or Class diagrams to be added to the current Enterprise Application diagram.
Alternatively, you can right-click on the background of the Enterprise Application diagram and
choose Add shorteut command on the diagram speedmenu, to invoke Add Shortcut dialog,
expand the Model node and locate the Web Application or E]B Assembler diagram, which you

want to display in the resulting Enterprise Application diagram. Select them in the tree view and
click Add.

Working with Enterprise Application Diagrams

Outside of the basic mechanism of drawing diagrams, there are some fundamental things
you should understand about Enterprise Application diagrams:

How EJB Assembler and Web Application diagrams are displayed in the Enterprise
Application diagram

How the Enterprise Application diagram relates to the J2EE Deployment Expert

How EJB Assembler and ﬁ'_g EJB &=zzembler @ Enterprize Application rﬂﬂ Wik &pplication

Web Application diagrams | . —

. . I =3 o I::::::::::::::
are displayed in the | T &
Enterprise Application - - | EJB Assembler |- - Webh Application | - - . .
diagram +haookBean . | +EsBreference bockBean |

)))) e Shnr‘tEn"." . . F
Diagrams are displayed in a kind || | | Flaateny il
of a visual container that L Lo seSendribRoless e
includes all internal elements,as [- | f- - - -k
shown below: oo e

How the Enterprise

Application diagram relates to the J2EE Deployment Expert

Together's deployment expert simplifies the process of deploying EJBs to various
application servers. You can run the [2EE Deployment Expert against either a Class diagram or
an Enterprise Application diagram using [2EE Deployment Expert command on the Tools menu.
For information on using the J2EE Deployment Expert see Deploying Enterprise JavaBeans.

- 208 -

Enterprise Application Diagram : Visual Assembling of Enterprise Applications for Deployment

TagLib Diagram

Taglib diagram allows to easily create tag handlers, and declare the tags in a special file
called zag /ibrary descriptor. The tag handlers must implement either of the two interfaces Tag
or BodyTag, or extend one of the classes TagSupport or BodyTagSupport. To
learn more about the tags and tag handlers and their implemented methods, refer

http:/ /www.javasoft.com/products/jsp/tutorial/ TagLibraries.pdf.

TagLib diagram helps minimizing the amount of Java coding in JSP applications and
facilitates re-usability of statements used in the tag handlers in JSP's.

Content
TagLib diagram contains the following design elements:

= Creates a handler for a simple tag without a body. The handler class implements Tag
= interface.

Creates a handler for tag with attributes. The handler extends TagSupport class.

Lok

¢ Creates a handler for a tag with a body that contains tags, scripting elements, html text etc.
= between start and end tags. The handler class implements BodyTag interface.

i Creates a handler for a body tag with attributes. The handler class extends
= BodyTagSupport .
i Creates a visual design element for a class that extends TagExtraInfo, and provides
T

information to the JSP container about the scripting variable.

I? Notes and note links

Properties

Inspector of a TagLib diagram contains specific page Tugl ib Properties that define a tag
library.

Properties of TagLib

TLD File Name HThLdoc rﬁequirements rTagLib Properties |

This field allows to specify Properties | Hyperlink | Description | HTMLdoc | HTMLdoc |
fully qualified name of the tag Marme | Valug

library descriptor, or select it TLD File Mame |DZ.I'T Dgetherhwpru:ujeu:tsiexampletaglunt'rtle"%l
using the File Chooser button. chort Name TagLib

The descriptor generated by

Generate T1.D command of TagLib Version 1.0

the diagram speedmenu JSP Wersion 141

resides in this location. TagLib LRI

Short name

A simple default name that

could be used by a JSP page

authoring tool to create

names with 2 mnemonic

value; for example, short @ Press Cirl+Erter ta finish editing and close Inspectar

name may be used as the ¥

preferred prefix value in taglib directives and/or to create prefixes for IDs.

- 209 -

Enterprise Application Diagram : Visual Assembling of Enterprise Applications for Deployment

TagLib Version

Version of the tag library.

JSP Version

The JSP specification version used by the tag library.
TagLib URI

The URI that uniquely identifies the tag library.
Working with the TagLib diagram

Apply usual technique to create the diagram and populate it with the necessary elements. For
each element specify its tag name, implemented TEI class, and tag body content (if any).
Additional information can be added in the Description tab of the object inspector. Having
created the diagram, right click on the diagram pane to display the speedmenu and select
Generate TI.D command. Thus tag library descriptor file is written to the location specified in
TLD file name field of the diagram inspector.

Tag handlers are referred to from the Web Application diagram. To add a tag handler to the
WAD, choose Tagl_ib button on the diagram toolbar and click on the diagram pane. This
invokes Select Tagl ib diagram dialog in the form of Selection manager. Expand the desired
node and select taglib to be added.

Subsequently, working with JSP applications, you have to specify that your JSP is supposed

to employ certain tag library, using the taglib directive before any custom tag (refer to
the tutorial for details).

Tag Library Helper

To insert the tags from your library, right click on the JSP editor and select Tag Library Helper
command from the Tools node. The helper displays contents of the tag library according to
the current library descriptor.

Tag Library
Insert
Mame | TagClazs | TeiClass | BodyContent | Info
toc_tag tags SimpleTag il Jz=P khis iz a test tag description
toc_bhodytags... tags BodyTagSuppart] tags TagExtrainfol null il
Body Tag tags BodyTagl il rull il
Body Tagsupp... tags BodyTagsupport2 |null rull il
Tag tags. Tagl il rull il
Cloze
p

Choose the required tag and click Insert to add the tag to the desired line in your JSP code.

See also

How to Use Taglibs in a Web Application
JSP and HTML Editor

- 210 -

XML Structure Diagrams

XML Modeling
XML Structure Diagrams

XML structure diagram enables you to create an XML structure definition from scratch. It is
assumed that you are familiar with the basics of XML, since training is beyond the scope of
this help topic. You can refer to the following books on XML:

1. Java and XML (O'Reilly Java Tools) -- Brett McLaughlin, Mike Loukides

2. XML by Example (By Example) -- Benoit Marchal

3. Professional XML -- Mark Bitbeck, et al
To learn more about XML Scheme, refer to XML Schema Part 0: Primer (02 May 2001,
David C. Fallside), XML Schema Part 1: Structures (02 May 2001, Henry S. Thompson,
David Beech, Murray Maloney, Noah Mendelsohn), and XML Schema Part 2: Datatypes (02
May 2001, Paul V. Biron, Ashok Malhotra) at http://www.w3.0rg/TR/.
Alternatively, you can create an XML structure diagram by importing an existing DTD or
XS8D file. This can be very useful if you are not familiar with the DTD or XSD and want to
get a quick overview of the elements it contains, and their relationships.

Warning: If you want to use an XML structure diagram created in previous versions of
Together, you have to invoke Convert to New Diagram Format command on the diagram
speedmenu. Failing to do this leads to incorrect diagram behavior.

Content

XML diagrams contain the following components, represented by the buttons on the
toolbar:

Icon Name
Element: creates a visual design component of an element type.
3 Groups: this component supportts re-use of elements and attributes in an XML Structure
diagram; creates a visual design component of a group, Sequence by default. Select the required

compositor property in the Properties tab of the inspector, or on the group speedmenu.

A Reference Link: cardinality of a link is selected from the link speedmenu. The following
cardinality values are possible:

? Follows an element or group of elements and indicates that it occurs zero times or once.
* Follows an element or group of elements and indicates that it occurs zero or more times.
+ Follows an element or group of elements and indicates that it occurs one or more times.

1 Follows an element or group of elements and indicates that it is required.

T Attribute: this design element can be created by a toolbar button, or from an element
speedmenu.
I Attribute Group: another means of reusability. Creates a visual component for groups of

attributes that are accessible for the elements of the diagram. This design component can be
created by a toolbar button, or from an element speedmenu.

s Data type: creates a visual design component for an arbitrary data type by means of
inheritance (#ype field in the Properties tab of the inspector). This component is specific for XSD.

- 211 -

XML Structure Diagrams

Icon Name

e Complex type: creates a complex data type component that allows elements in its content and
may carry attributes. This component is specific for XSD.

() Entity: creates a visual design component for an entity. This component is specific for DTD.

@ Notation: creates identification for external binary entities format. This component is specific
for DTD.

I? Notes and Note Links

There are two possible formats of an XML Structure diagram: DTD and XSD. As you can
see, the sets of elements for DTD and XSD formats are overlapping: the majority of design
elements are common for both formats. However, there are elements specific for a particular
format, which are not enabled in another format. Thus, special care should be taken when
exporting a diagram to a DTD or XSD file, to avoid loss of information.

Creating XML Structure Diagram

If you need to learn how to create new diagrams in a project, or the techniques for placing
elements and drawing links, consult the User's Guide topics found under " Working with
Diagrams" in the Table of Contents. Also refer to the topic Creating diagrams in projects.

XML Structure diagram is implemented as an activatable module. Thus, you have to check
the flag XML Structure diagram in the list of Activatable modules under Options menu.

Note that the set of toolbar buttons depends on the selected diagram format.

Changing XML Diagram Format

When creating a diagram, choose its format in the diagram properties: open Properties tab of
the diagram inspector and select DTD or XSD Schema from the drop-down list of the format
field. The set of controls in the inspector is specific for the selected format.
When converting from one format to another a warning message is displayed that the
elements irrelevant to the selected format will be permanently deleted from diagram. For
example, if DTD format is selected, entities and notations disappear from the resulting
diagram.
The reversed situation is slightly more complicated. Complex types and data types are
deleted. If there are elements that inherit certain data or complex types, then their attributes
(if any) add to those elements in the resulting diagram.
Example:

- Create XML diagram in XSD format.

- Add an element (Elementl) and a complex type (ComplexTypel).

- Add an attribute to the complex type (Attributel).

- Select the Element1 and change its base type (field base) in the Properties tab of the

inspector to ComplexTypel.

- Change format from XSD Schema to DTD, and observe that Attributel adds to the

Element] in the resulting diagram.

-212 -

XML Structure Diagrams

Step by Step How to Create XML Structure Diagram

Here we shall consider creation of a sample XML diagram that represents the structure of
personnel management data in XSD format.

Creating XML Structure diagram

Activate the module XML Structure Diagram. To do this, select Options | Activatable
modules | XML Structure Diagram and check appropriate checkbox.

To create a new XML diagram, select File | New Diagram and choose XML Structure
Diagram from the Together tab.

Right-click on the diagram and invoke the diagram inspector. In the format tield of the
Properties tab select XS§D Schema from the drop down list. Properties tab of the inspector
displays the fields relevant to the selected format.

Creating elements, links, and attributes

Select Element icon from the toolbar, create an element and change its name to
personnel. Create two elements and call them ezzployee and chief executive respectively. Invoke the
Inspector for each element (speedmenu | Properties) and see that the property "content" is
set to "empty".

Create a Reference link, using the button ﬂ, trom personnel to employee, and from personnel
to chief executive. Right click on the employee link and check the box zero or more in the link's
speedmenu, which means that there can by any number of employees. Click on the chief
executive link and check the box zero or ome, to specify that there can be one chief executive

only.
employee chief_executive
#
4k -@xs-
* ?
1 Propetties... A+Enter
Delete Delete

Zeroll to Source

Scroll to Destination

[recjuirecd
[ZEro ar one
[Zero oF mare

[ane of mare

Add an Attribute to each element. Select New | Attribute on the speedmenu of this
element, or click the A##ribute icon on the toolbar and then click inside the element to place
the attribute there; change its name to identifier. This attribute is a unique identifier of an
employee. In order to verify or change the attribute's properties, invoke its speedmenu,
select Properties, click the Properties tab and set the field oceurs to required, which means that
this property is mandatory.

-213 -

XML Structure Diagrams

Besides unique identifier, each employee and the chief executive are characterized by name,
position in the organization's hierarchy, url, email address and postal address. Now create the
following elements:
- url to a file that contains additional data, for example some graphics
information.

- hierarchy with the attributes subordinates and supervisor. The attribute subordinates
should have data type zdrefs, which means that a person may have a number of
people supervised; the field occurs of Properties is set to "optional". The attribute
supervisor should have data type 74, which means that a person may have one
immediate supervisor only; the field occurs is set to "optional". Both properties
are optional.

- personal, with the name and date of birth. The attribute Date of birth is
mandatory (field occurs in Properties is set to "required"), and the field #pe is set
to "CDATA"

Note: To insert data type of an attribute, in the Properties Inspector click File chooser button and select
appropriate type in Search/Classpath | XML data types directory.

Invoke speedmenu of each element and see that the property content is set to "empty".

Creating and using complex type and data type
Complex type allows to provide special customized data types containing internal elements.
Consider an address type that includes zip code, state, street and several email addresses.

amType b - - - - .

. . = e A S
using the icon Q on the diagram toolbar. = - address }...... ..

Rename it to address. Next, create elements email, - - - - - - | F.
state, street, and zp, and draw links from address
complex type to these elements. Set appropriate
cardinality values for the links. State, street and
zip code are required, while the link to email has
gero or more cardinality, which means that a
person may have unlimited number of email » v y y
addresses. LA PR LA RS P R

Create a Complex type visual component,

Now create an element address, using button, I8 Select Data Type

invoke its properties inspector, select base field in = BB Model
the Properties tab and click File chooser button. This B9 gefautts
brings in Select Data Type dialog. Expand the Mode/ 2 Class
node and select address type under personnel =l personnel el
diagram: G2 |

' ' money -
Create data Hjpe visual element, using button,
and rename it to woney. In the Properties tab of the [o | | Cancel | | Help |
inspector click File Chooser button to select data type &

from the Model, Search/Classpath or Favorites.

Next, create salary element. In the Properties tab of the inspector click File chooser button of
the base field, and select money type under personnel node of the Model tree. You can use
derivation hpe field to select the desired type of inheritance. Each derivation type displays its
own set of controls. If you select restriction, you can assign minimum salary value.

214 -

XML Structure Diagrams

Creating re-usable attributes

XML diagram enables creating Global attributes. Choose A##ribute button on the diagram
toolbar and add job_description attribute to the diagram. All elements of the diagram can refer
to this attribute.

the reference from the model . . . | . | .
....... I Ok | | Cancel | | Help

and search/classpath tree.
Same way, you can create T
global attribute comments, and

add it to any element where needed.

To add this attribute to the . g R
elements employee and chief : employee | T[[:hief executive |\ .
excecutive, r1ght click on the =ref=job_description q !I
appropriate element and : B : = '
select New | Attribute | — [Select Attribute Pl = 2
Reference on the speedmenu. =+ = =+ El fxp ¥ML Structure sl O
Select Attribute popup window - - - - - - - I = | -
displays, where you can select -+« B SearchiClasspath = |
|;:é

Select AttributeGroup button on the toolbar and create global group of attributes #ame. Add
the attributes first name, second name, last name to this group. All these attributes have String
data type. Firstname and lastname are mandatory (the

tield occurs 1s set to required), while the attribute personal [narme
yem.ﬂd name 1s op.tlonal. (the tield occurs is set to refename firstnarme
optional). Now right click on the element personal to date of birth secondname
invoke its speedmenu, and select New | Attribute A E—DX— I lastname
Group Reference to refer to this attribute group in ik

open Select Attribute Group dialog.

Creating groups

You can try to create links from the employee and chief executive elements to each of the
elements hierarchy, url, personal, address, salary. However, the result looks too entangled. The
more elegant way to link multiple elements to multiple elements lays with the Groups. Select

the Group icon @ on the toolbar and create a new group General_Info. By default Sequence
group is created. Link the employee and chief executive elements to this group. Invoke the
speedmenu of employee link, and set the flag occurence to "required".

Next, link the group to each of the above elements. By default, the links have the property
zero or one. Same refers to #r/ element. Select the link to personal element and in the Properties
set the flag occurence to "required", which indicates that personal information is unique and
mandatory. At last, select the link to the héerarchy element and set the flag zero or one in its
speedmenu, thus indicating that a lucky one can easily do without any subordinates or
supervisors.

-215-

XML Structure Diagrams

L)

chief executive

4
Ty

-

Working with DTD-specific components

Entities, notation and processing instructions are specific for DTD format only. Entities and
notations are created in a usual way using toolbar buttons. Properties inspector for an entity
provides external checkbox. When this flag is set, additional controls for external entities
show up. In particular, there is a reference to a notation.

url hierarchy personal address |. . . |salary
supemnisar date_of_hirth @ o
* i * S -
AN subordinates =ref=narme AN N AN
e # .
£ 4y 1. =

To assign notation for an external entity, click File Chooser button on the notation field of the
Properties inspector to display Select Notation dialog. You can select the required notation
from the Model, Search/Classpath or Favorites.

Processing instructions are
defined for the entire
XML structure diagram
in DTD format. Right-
click on the diagram
background, select
Properties, and on the
Processing instructions tab
press Add button. To
specify notation for a
processing instruction,
click File Chooser button
and select required
notation. Enter
appropriate information
in the data field. Press
Ctrl+Enter to apply the
changes and close the
Inspector.

Properties of XML Structure ﬂ
Description rHTMLch rﬁequirements rCustDm properties |
Properties r Processing Instructions r Included diagrams r Hyperlink |
| Aclcd | | Remowve |
Target | Data
[IMetationd &) Select Notation []
pi2 B adefaul= =
(7l POS System
% quicktour ctd =
= ¢ ¥ML Structure
(# Motationt
3 ke
@E,E' SearchiClazspath -
| Ok | | Cancel | | Help
A

- 216 -

XML Structure Diagrams

DTD Import-Export

When XML structure diagram is ready, you can perform Export to DTD. Choose Tools |
DTD Import-Export | Export command. This displays Export to DTD dialog, where you
can specify the target location and invoke the editor to view and modity the file. Once
created, DTD file can be imported for further use. On the Tools | Import menu choose
Import from DTD option and select the required DTD file from the dialog window. This
invokes a standard File chooser dialog, where you can select the desired source DTD file.

XSD Import-Export

It is also possible to export the created XML diagram to a schema file. Choose Tools | XSD
Import-Export | Export command. This displays Export to XSD dialog, where you can
specify the target location and invoke the editor to view and modify the file. Once created, a
schema file can be imported for further use. On the Tools | Import menu choose Import
from XSD option and select the source schema file from the dialog window. This invokes a
standard File chooser dialog, where you can select the desired source schema file.

Note: When exporting or importing DTD or schema files, keep in mind that some components are only
enabled for specific format. In particular, complex type and data type are allowed in XSD format, while entities,
notations and processing instructions are allowed in DTD only. Check view formats of the diagram
components to avoid loss of information.

See also

Import-Export Operations
Opening diagrams for editing
Creating and opening a project

-217 -

DTD Interchange

DTD Interchange

Together supports exchange of information between Class and ER diagrams, and XML
diagrams. You can export an existing Class diagram, or database structure to a DTD file, and
import information from DTD.

This exchange of information is implemented as an activatable module DT'D Interchange. Find
this module in the list of activatable modules on the Options menu and set the checkbox.
This adds DTD Interchange node to the Tools menu.

The node contains four commands:

- Export classes to DTD

- Export ER entities to DTD

- Import classes from DTD

- Import ER entities from DTD

Note that commands are only enabled when the diagram pane gets the focus. The set of
enabled commands depend on the current diagram. For example in a Class diagram Expor?
ER entities to DTD command is disabled, and vice versa.

Export commands invoke Export dialogs for appropriate diagrams. The dialogs differ only in
title.

Export Claszes to DTD |

|D: dtdirterchange.dtd

JJa

[#] |Open DTD in =ML Structure Diagram|

[#] Dpen DTD in internal ecitor

| Ok || Cancel || Help |

In the text area specify target location of the generated dtd file. You may opt to immediately
create an XML structure diagram and open the generated dtd file in Together's internal
editor.

The reverse operation is to import information from a dtd file to a Class diagram, or to an
ER diagram. Import commands invoke File Chooser dialog, where you have to select the
source dtd file.

See also

XML Structure diagram
Entity Relationship diagram
Class diagram

- 218 -

XML Editor

XML Editor

Key features of the XML editor

Required information

This XML Editor stands out for it's unique capability to edit XML files while rigorously
following the underlying DTD-file specification. Prior to editing XML file, the XML Editor
requires certain information from DTD file:

1. List of all allowed XML elements

2. List of all XML attributes declared for each XML element

3. "Rule" specifications for each element.

4. "Cardinality" specifications for each group member in compound element

declarations.
For compound XML elements, the Editor supports any grouping rules except those having
more than one entry of a child element in the group. For example, grouping rule in the
declaration:

<!ELEMENT papers ((subject, title) | (authors, title))>

will not be correctly supported by the editor, because the element 'title' has two entries in the
group. However, equivalent declaration:

<!ELEMENT paper ((subject | authors), title)>
will be supported without problems.

Creating child elements

When a compound element is selected for editing, the editor analyzes existing child
elements. Next, according to the element grouping specification, the editor creates child
elements' buttons pane. Each button represents a particular child element and, if enabled,
can create one and put it in the appropriate place among the other already existing child
elements. Each child element button has 3 states: required, allowed and probibited. These states
are evaluated according to the grouping/cardinality rule and the current set of children of a
certain element, under the assumption that none of them will be deleted:
Required state means that the current set of existing children will never satisfy the
grouping/cardinality rule unless a new instance of at least one of the "required"
button's child elements is added. The "required" button displays red highlighted.
Allowed state means that a new instance of the child element can be added to the
current children set, but is not obligatory to make it eligible for the
grouping/cardinality rule. The "allowed" button displays normal.
Probibited state means that appending of a new instance of the child will make the
current children set not eligible for the grouping/cardinality rule. Such button displays
disabled.

When a new instance of a child element is created the states of all buttons are recalculated.

-219 -

XML Editor

Example

Consider a declaration:
<!ELEMENT book (subject?, author+, title)>

Here an instance of the element 'book' has children “subject’, 'anthor', 'title’. Hence, the editor
creates 3 child element buttons.

* If the current set of children is void, the buttons' states are as follows:

Button name |State
subject allowed
anthor required

title required

* If the current set of children is Authorl, Titlel, the buttons' states are:

Button name |State
subject allowed
anthor allowed
title prohibited
* If the current set of children is Subjectl, Authorl, Title1, the buttons' states are:
Button name |State
subject prohibited
anthor allowed
title prohibited

Location of DTD files

As emphasized in the previous section, to edit an XMIL-file, XML Editor requires the
underlying DTD-file. If DTD file is missing, error is reported.

Opening an XML file, the XML Editor locates it's DTD file, using parameters from the
<!DOCTYPE ...> directive, unless otherwise is specifically defined. However, one can
redirect the search of DTD file, using special DTDMapping.properties file, located in
the XML Editor package directory:

STGHS\modules\com\togethersoft\modules\xmleditor

File DTDMapping.properties contains a number of line groups. Each group
describes redirection of one DTD file. Each line in the group should start with the same
prefix tag. For example:

ejb-jar.VendorName = Enterprise JavaBeans 1.1

ejb-jar.PublicID = -//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN

ejb-jar.SystemID = http://java.sun.com/j2ee/dtds/ejb-jar 1 1.dtd

ejb-jar.Local = ejb-jar 1 1.dtd

- 220 -

XML Editor

"ejb-jar. 'prefix defines the lines of one group. Values of the keys 'PublicID' and
'SystemID' are used to identify the group by appropriate values taken from < ! DOCTYPE

. .> directive in the XML file. "Local' key specifies the local DTD file to be used. This
DTD file should be located in the same directory with the file
DTDMapping.properties file.

Note: It is important in the curtent implementation. Do not specify any local file path - this won't

work.
Opening an XML file, the editor takes the values of 'PublicID' and 'SystemID' keys from
<!DOCTYPE ...> directive. Then, it looks through all groups defined in

DTDMapping.properties. If some group has one of 'PublicID' or 'SystemID' keys'
values matching with those taken from the XML file, then the local DTD file defined in this
group is used. If no matching is found the editor tries to open DTD file by the URL
specified as SystemID in <IDOCTYPE ...> of the XML file.

DTD configuration file

DTD-config file is intended to declare additional properties for the XML Elements and the
XML Element Attributes, (now associated mainly with the EJB deployment process) cannot
be described in DTD file itself.

Each DTD-config file should reside in the same directory with the DTD file it extends. A
DTD-config file consists of a number of declarations specified for some XML elements and
their attributes. The common form of such declarations for the XML Element and XML
Element Attribute looks like:

Element declaration
<xml_ element spec>.<modifier> = <modifier value>
Attribute declaration

<xml_ element spec>.attr.<attr name>.<modifier> =
<modifier values>

where

<xml element spec> := <xml element name> |

<xml element paths>

<xml_ element name> - tag name of the XML Element

<xml element paths> - XML Element Path (see description below)
<attr names> - name of the XML Element Attribute

<modifiers - specifies the property of XML element/attribute to be set
<modifier value> - value of the property

Examples

1. Specifies value type of the Text XML Element 'description’
description.valueType = ExtendedStringField

2. Specifies that 'id" attribute of the XML Element 'ejb-jat' shouldn't be visible in the XML
Editor (modifier: 'hidden")

ejb-jar.attr.id.hidden = true

-221 -

XML Editor

XML element path

Declarations based on XML Element tag name, like

<xml element name>.<modifier> = <modifier value>

specify an XML element's property for all instances of this element in XML Document Tree.
However, in some cases it might be needed that the specified property would impact the
instances located in the particular places of the XML Tree. only. In the other locations this
property should be disabled, or treated differently (i.e. have different 'modifier_value').

In such cases it is possible to define particular location of the XML element instance by it's
path in the XML Document Tree. Thus, in the property declaration we can use this path
instead of the solely element's tag name.

For example, the declaration

ejb-jar.enterprise-beans.session.description.rwiProperty =
Sdoc

sets the value '$doc' for the property modifier 'rwiProperty' of the XML element
'description', only for those instances that appear in the path 'ejb-
jar.enterprise-beans.session.description'of the appropriate nested
XML elements. For the other instances of 'description' the property 'rwiProperty’
has no definite value.

Such property declarations are dubbed as "XML Element Path Related Declarations" (or just
"path related declarations").

Sometimes there are many places in the XML tree where some of the XML element
instances (but not all of them) have the same property. In this case, it is awkward to repeat
the same declaration for all eligible paths. For example, the element 'description' must
have property 'param.XMLElement' set to value 'ejb-class' for those its instances
only that belong to the XML element 'session', no matter where the instance of the
element 'session'itself is located in the XML Tree. For such a case, it is possible to
designate unimportant initial segment of the XML Tree path by the asterisk:

* gession.description.param.XMLElement = ejb-class

If the element 'session'is the root of XML Document Tree, such declaration will still
work.

Consider situation when the two declaration like the above one are in conflict:

* gession.description.param.XMLElement = ejb-class

* enterprise-beans.session.description.param.XMLElement =
ejb-name

Both declarations specify the property 'param.XMLElement' of the element
'description'. However, the first one says the property should be set to the value 'ejb-
class'as soon as the element 'description' belongs to the element 'session'. The
second declaration says the property should be set to 'ejb-name' as soon as, in addition,
the element 'session' belongs to the element 'enterprise-beans'.

Such contradicting declarations are resolved according to the following rule: wore detailed
declaration bas higher priority.

Hence, in the above example, if the instance of 'description'element is in the path that
ends with the elements's chain "enterprise-beans.session.description",
the valid declaration is the second one. However, if 'session' element doesn't belong to
the element 'enterprise-beans’, the first declaration is in force.

=222 -

XML Editor

Dynamic modifiers

Normally, the <modifier value> is specified as a constant string after '=' sign in
DTD-config file.

However, it is possible to calculate the modifier value dynamically for each instance of the
XML element in the XML Document Tree (i.e for all instances with this modifier specified).
To do so the Environment Variables of the Element Instance are used. Each environment
variable and its calculation method are declared as a set of several XML element path related
properties:

<xml element paths>.env.<var name> =
<datg_provid€r_c1ass_name> B

<xml element paths>.env.<var name>.param.<paraml>
<value of paramls>

<xml element paths>.env.<var name>.param.<param2>
<value of param2>

<xml_ element path>.env.<var name>.param.<paramN>
<value of paramN>

where

<var_name> - name of the variable

<data_provider class names> - full name of the class that provides this variable's
value. This class should implement the interface
..xmleditor.api.EnvDataProvider. Default implementations of this interface
reside in the package ..xmleditor.api. For these classes it is enough to specify class
name only, omitting full package name prefix.

<paraml> .. <paramN> - parameters specific for the particular Data Provider
implementation.

You can access environment variable for any instance using $%env.<var name>%%
macro in the string that specifies the modifier value. In this case the macro is substituted
with the variable value.

Example

Suppose we have to adjust the appearance of XML element 'session' in the editor's tree view,
showing the entire XML Document Tree.

Let each instance of the XML element 'session' describes an object 'session' of some
particular kind. This object's name is stored as a value of an instance of 'ejb-name' element
nested in the appropriate element 'session'.

Now assume that we need the name of the 'session’ object to appear on the label of
appropriate 'session' element in the XML tree view.

This should be declared in the following way:

* .session.title = Session: %%env.name%%

* .session.env.name = ValueOfXMLTextNode

* gession.env.name.param.XMLElement = ejb-name

where "ValueOfXMLTextNode" is the standard Data Provider that returns the value of
XML Text Element - the child of the current element instance (i.e. contained in the sub-tree

of the current element) and whose tag-name is specified in the variable's parameter
"XMILElement".

- 223 -

XML Editor

List of XML element modifiers

valueType

<xml element>.valueType =

This modifier applies for XML Text elements only and specifies which inline editor will be
used to edit the value in XML Editor. The modifier is specified for the element tag name (all
instances of the XML element).

Allowed values:

StringField // default
ExtendedStringField // multi-line text
BooleanField

IntField

FloatField

FileField

DirectoryField

PasswordField

values

<xml element>.values = "v1", "v2",

Specifies a predefined list of values for the XML Text element. In that case, the XML editor
will create a combo-box for editing the element value. The modifier is specified for the
element tag name.

title

<xml_element path>.title =

Specifies the label that represents an instance of XML element in the treeview.
disableNew

<xml element path>.disableNew = true

Disables the possibility to create new instances of XML element with the specified path.

Example:

* gession.disableNew = true

Disables creation of a new instance of the XML element 'session'.

readOnly

<xml element paths>.readOnly = true

Prohibits to modify the value of XML element instance with the specified path

type

This modifier allows to connect an instance of the XML element with the particular RWI-
element of the current diagram or model. Further, this connection may be used to modify
some properties of the RWI-element with the values of this XML element instance, its
attributes or its children. (See 'rwiProperty' modifier)

224 -

XML Editor

Connection is declared as follows:

<xml elements>.type = <rwi element providers

<xml element>.param.<paraml>

<value_ of paraml>

<xml element>.param.<paramN>

<value_ of paramN>

where

<rwi element provider> - fully qualified name of the class that provides the
RWI-element. This class should implement the interface:
.xmleditor.api.RwiElementProvider

<paraml> .. <paramN> - parameters specific for the particular RWI Element
Provider implementation

By default, if connection with the RWI-element is not specified, the instance of the XML
element inherits the RWI-element from its parent. RWI-element of the current diagram is
assigned by default as the root element of the document tree.

rwiProperty

Specifies for the XML Text element instance that when the XML document is saved the
instance's value should be written to the property of the RWI-element connected with this
element instance. (See 'type' modifier)

<xml element paths>.rwiProperty = <rwi property name>

Example

Consider an XML document where each instance of XML element 'entity' represents a
class of the current diagram. Its child element 'ejb-class' contains the SCI qualified
name of the class, and its child element 'description' contains the class documentation.
We need the 'description', modified within XML editor, to be written in the model
when the XML document is saved. Then, the required declarations in DTD-config file
should be:

entity.type =
com.togethersoft.modules.ejbframework.xmleditor.RwiClassByXM
LTextNode

entity.param.XMLElement = ejb-class

* entity.description.rwiProperty = $doc

where

RwiClassByXMLTextNode is the implementation of RWIElementProvider that returns the
RWI-element of the class by its SCI qualified name taken from the value of the child XML
element, whose tag-name is specified in the provider's parameter 'XMLElement'

Sdoc - name of the RWI-property of the class RWI-element storing the documentation

- 225 -

XML Editor

List of XML attribute modifiers

valueType

<xml element>.attr.<attr name>.valueType =
Same as for XML Element.

values

<xml elements>.attr.<attr name>.values = "v1", "v2",

Same as for XML Element.
title

<xml element paths>.attr.<attr name>.title =

Same as for XML Element.
readOnly

<xml_ element path>.attr.<attr name>.readOnly = true
Same as for XML Element.
rwiProperty

<xml element paths>.attr.<attr name>.rwiProperty =
<rwi_ property name>

Same as for XML Element. Specifies that the attribute's value should be written to the
property of the RWI-element connected with the XML element instance owning this
attribute. The connection of XML element with the RWI-element should be specified by
'type' modifier for this XML element.

hidden

<xml element paths>.attr.<attr name>.hidden = true

Specifies that the given attribute of the XML Element instance does not show up in the
XML Editor attributes' inspector window.

- 226 -

XML Editor

Using XML Editor

XML Editor launches from Together Tools menu. First, make sure the XML Editor module

is activated: go to Options | Activatable Modules | XML Editor menu item and make sure
it is checked. Next, select Tools | XML Editor (it displays if XML Editor module is active).
XML Editor dialog window shows up.

You can load an existing XML file or create a new one. In both cases appropriate DTD file
should exist and be specified to the editor. When opening an existing XML file, you can
specify physical location of DTD files in the file "DTDMapping.properties” (see Location of
DTD-files for more details).

If you create a new XMIL-file, you are asked to choose the appropriate DTD-file and XML
element to be the root of a new XML document.

Use Save button to save the results.
Example

Consider creating an XML file based on the existing DTD file.

Create the following dtd file, and save it with the name BookCatalogue.dtd to your
disk:

<!-- A book catalogue contains zero or more books -->

< !ELEMENT BookCatalogue (Book) *>

<!-- A Book has a Title, one or more Authors, a Date, an ISBN, and
a Publisher -->

<!ELEMENT Book (Title, Author+, Date, ISBN, Publisher)s>

<!-- A Book has three attributes - Category, InStock, and
Reviewer. Category must be either "autobiography", "non-fiction",

or "fiction". A value must be supplied for this attribute whenever
a Book element is used within a document.

InStock can be either "yes" or "no". If no value is supplied it
defaults to "no". Reviewer contains the name of the
reviewer. It defaults to "" if no value is supplied -->

<!ATTLIST Book
Category (autobiography | non-fiction | fiction) #REQUIRED
InStock (yes | no) "no"
Reviewer CDATA "">
<!ELEMENT Title (#PCDATA) >
<!ELEMENT Author (#PCDATA) >
<!-- A Date may have a Month. It must have a Year. -->
<!ELEMENT Date (Month?, Year)>
<!ELEMENT ISBN (#PCDATA) >
<!ELEMENT Publisher (#PCDATA) >
<!ELEMENT Month (#PCDATA) >
< !ELEMENT Year (#PCDATA) >

Invoke XML Editor module on the Tools menu and click New to create an XML file. Select
BookCatalogue2.dtd file in the treeview of the Choose DTD File dialog.

Next, specify the root element for the xml file, selecting it from the dropdown list, and set
the flag Create basic structure:

- 227 -

XML Header Parameters

Root Elemert. ||BookCatalogue

“ersion: |1 o

Encoding: |UTF-3

PublicID: |

System I |fi|e:.l'D:.l'Elu:u:ukCataI-:ugu32.dtd

[#] Creste baze structure

|Ok

| | Cancel

&

XML Editor

The Editor creates an entry for the root element BookCatalogne in the structure pane, and a
button Book for the child element. Pressing this button adds the Book element to the
resulting xml document, displays the attributes defined in the ATTLIST section of the

underlying DTD file, and adds buttons for the child elements.

While adding the instances of the child elements, observe the changes of the button states.
When the current set of child elements is void, the buttons are in the required state (red

highlight). If the cardinality rule for a certain element doesn't allow creating new instances

b

the button becomes probibited (in our case this element is Title, since a book may not have
more than one title). The buttons in the a/lowed state enable creating more entries (a book

may have several authors).

XML Editor - Untitled

Ij BookCatalogue Element Attributes
=3 NEE | Yalle
|__°“| Avthor Reviewer (%] abi
= CJ Date Cateqory (*) | fiction - |
DI Manith InStock (%) | YES - |
D Year
[1=Bm
B [Book
[it | Title |
| Author |
| Publisher |
| Py | | CHen | | Save | | Help

4

When the process is complete, you can save the resulting XML file, pressing Save button.

- 228 -

XML Editor

Launching XML editor from Java code
You can start XML Editor from you Java code, using XML Editor API class

com.togethersoft.modules.xmleditor.api.XmlEditorAccess

Standard XML Editor window is invoked by showEditor () method.

You can launch XML Editor for editing the only XML file you need, using boolean
showEditor method with the name of the required XML file as a parameter. In this case the
editor opens with the specified XML file and enables Save and Cancel buttons only, so that
no other file can be opened from the editor window.

Method returns 't rue' if the XML-file was modified. Exception throws when the file
cannot be parsed as XML file, no DTD file found, DTD file is incorrect or doesn't
correspond to the XML file. Appropriate error message is passed to the Exception object
and displayed in the Together's Message Pane.

By default, XML file opens same way as if selected from the File Chooser dialog. However,
you can specify the following fields for the XML file:

- DTD file used to edit this XML-file

- DTD-config file (not necessarily located in the same folder with DTD)
- XML file prolog to be used when the file is saved

- Encoding used in this XML file

These parameters are set in the appropriate methods of XmlEditorAccess class. All
parameters should be set before method showEditor is called.

Example

import
com. togethersoft.modules.xmleditor.api.XmlEditorAccess;

XmlEditorAccess editorAccess = new XmlEditorAccess() ;
editorAccess.setDtdFileName (myDtdFileName) ;
editorAccess.setXmlProlog (myXmlProlog) ;
editorAccess.setEncoding (myEncoding) ;
try

{

editorAccess.showEditor (myXmlFileName) ;

}

catch (Exception e)

{

System.out.println (e.getMessage()) ;

}

-229 -

Various Language Support

Enterprise SW Development Features

Various Language Support

Java is Togethet's originally supported language. Eventually, Together extended support to
IDL, C++, C#, Visual Basic and VBNet. Working with languages other than Java,
engenders certain limitations related to specific features of those languages. These limitations
stem from the lack of deep parsing, and non-object-oriented nature of some languages.
Special chapter is devoted to C++. This section provides summary information on the
features for the supported languages, and brief notes about language-specific properties.

Basic functionality + + + + early access | eatly access
Deep parsing + n/a + - - -
Default Templates + + + + + +
Additional textual + _ + + + +
templates
Code-based + - + - + _
patterns
Properties + - + _ + _
Events + - - - + -
Syntax highlight + + + + + +
Formatter + + + + early access | early access
Metrics Full set of |not supported | limited set of | limited set of | limited set of | limited set of
metrics metrics metrics metrics metrics
Audits Full set of |not supported | limited set of | not supported | not supported | not supported
audits audits
Search for usages + + + in declarations|in declarations|in declarations
only only only
Class diagram Entity, ValueType, | Aggregation common common common
toolbar Session and | Exception
(language-specific | Message
components) Driven
Beans
Doc generation + + + + + +

- 230 -

Languages Support

Languages Support

Language support is customizable. To disable an unnecessary language, comment out
appropriate line in the $TGHS /config/languages . config file. Inspector options
are described in the *.config files for each language. Recognition of the language-
specific properties is defined in the 7ew Management page of the Options dialog.

SCI Implementation
Basic functionality

For the supported languages Together provides parsing of the syntactical constructs that
map directly to UML objects (classes, interfaces, methods etc.). As of this writing, C# and
VBNet are in the early access state.

Deep parsing

This term is used to describe functionality that handles syntactical constructs within the
method bodies, initialization of variables etc. Deep parsing is only supported for Java and
C++.

Re-use support
Default templates

Textual templates, whose names start with Default_, create one-click elements on diagrams.
These types of templates are available for all supported languages. You can see the list of
currently available default templates in the Templates folder of the Directory tab. Default
templates do not show up in the Pattern Chooser.

Additional textual templates

Additional templates are invoked from the Choose Pattern dialog. You can observe the up-
to-date list of available templates on the Pattern Chooser panel, or in the Templates folder of
the Directory tab. The textual templates in the Pattern Chooser are marked with an asterisk, to
distinguish them from the code-based patterns. The users can create their own custom code
templates.

Code-based patterns

Together patterns are public Java classes that implement SciPattern interface. You can
observe the up-to-date list of available patterns on the Pattern Chooser panel. Those
patterns that are inapplicable to a certain language, are grayed out in the list. Minus sign in the
table entry means that no ready patterns are currently available for this language. However,
the users are free to develop the patterns of their own.

Properties support

The properties feature originates from the Java Bean properties, where a property is
represented by a triad of the property itself, and its getter and setter methods. Subsequently,
when properties support was extended to the other languages, similar rules were accepted.
Thus, an additional tab adds to the inspector: Bean tab for Java, C++ properties tab for C++,
Properties and Events tab for Visual Basic. To recognize the properties, select appropriate
option in the I7ew Management node of the Options dialog.

Refer to Inspector Customization section, and Open API for the list of properties,
supported by the model.

- 231 -

Languages Support

Language-specific inspector

As you already know, choosing language for the project means that any component created
on the Class diagram, will correspond to the selected language. However, a project may
contain components in different languages. Dynamic inspector tabset complies with the
origin of each component.

VB6-specific inspector
Properties and Events tab

This tab adds to the VBO6 class inspector when appropriate option is selected in the [77ew
Management page of the Options dialog,.

Class / Interface
Class and interface elements have only the properties common for all languages.
Operation

return valne: Byte, Boolean, Integer, Long, Currency, Decimal, Single, Double, Date, String,
Object, Variant

visibility: public, private, friend

static : Boolean property adds szatic modifier to an operation.

Attribute

Hpe: Byte, Boolean, Integer, Long, Currency, Decimal, Single, Double, Date, String, Object,
Variant

visibility: public, private

const: Boolean property adds const modifier to an attribute.

C#-specific inspector
Class

namespace. text area for the class namespace

abstract: Boolean property adds abstract moditfier to the class. If the class is sealed, this field is
disabled.

sealed- Boolean property adds sealed modifier to the class. If the class is abstract, this field is
disabled.

extends: text area and file chooser button for the base class name.

implements: Multi-string field for the list of implemented interfaces.

visibility: public, protected internal, protected, internal, private (Visible for inner classes only).
new: Boolean property adds #ew modifier to a class. (Visible for inner classes only).

Interface

namespace. text area for the class namespace

extends: text area and file chooser button for the list of inherited interfaces.

visibility: public, protected internal, protected, internal, private. (Visible for inner interfaces
only).

new: Boolean property adds #ew modifier for class. (Visible for inner interfaces only).

- 232 -

Languages Support

Operation

return type: bool, byte, char, decimal, double, float, int, long, object, sbyte, short, string, uint,
ulong, ushort, void

new: Boolean property adds 7ew modifier to an operation.

vistbility: public, protected internal, protected, internal, private

static: Boolean property adds szatic modifier to an operation. Disabled for virtual, abstract and
override operations.

virtual: Boolean property adds virtua/ modifier to an operation. Disabled for static operations.
override: Boolean property adds override modifier to an operation. New, static and virtnal
modifiers are disabled if this property is selected.

abstract: Boolean property adds abstract modifier to an operation. Szatic and virtnal modifiers
are disabled if this property is selected.

extern: Boolean property adds extern moditier to an operation. Abstract modifiers are disabled
if the property is selected.

Attribute

type:bool, byte, char, decimal, double, float, int, long, object, sbyte, short, string, uint, ulong,
ushort, void

new: Boolean property adds #ew modifier to an attribute.

vistbility: public, protected internal, protected, internal, private

static: Boolean property adds szaic modifier to an attribute.

readonly: Boolean property adds readonly modifier to an attribute

IDL-specific inspector
Links

In addition to the common c/ent and supplier fields, the following fields are added:

label: text area to enter the label of the link

label direction: drop-down list of possible directions of the label (default, forward, reverse)
association class:

client role | supplier role: two text areas to specify the appropriate roles

client cardinality | supplier cardinality: drop-down list of possible cardinality values (zero or one,
required, zero or more, one or more)

client qualifier | supplier gualifier: two text areas to specify the appropriate qualifiers

directed: drop-down list of the link directions. (Automatic, directed, undirected. Defaults to
undirected)

fpe: drop-down list of the link types (association, aggregation, composition)

C++-specific inspector

C++ properties tab
Recognition of C++ properties is defined in the 17ew Management page of the Options dialog.
If this option is selected, C++ Properties tab adds to the object inspector of a cpp class.

Links

In addition to the common clent and supplier fields, two more fields are added:
visibility: public, protected, private

virtual Boolean property adds virtua/ modifier to the link.

- 233 -

Using Together with C++

Using Together with C++

Important Notes for C++ Support

Together is a file-based product destined for round-trip engineering of source code, and as
such concentrates effort on retrieving and keeping in sync the fragments of source code that
directly map to the object modeling entities. Using Together with C++ engenders a number
of complexities and limitations of functionality that stem from specific characters of C++
language semantics.

For example, fully qualified class names in C++ don't correspond to the actual physical
locations of the classes. It implies that to retrieve a class by name, all known classes need to
be visible right at project open time, which implies that all available files should be
processed. This leads to increased memory demand for C++ projects. It becomes crucial
assuming that development involves wide usage of libraries, which provide sets of headers.
The size of these libraries is quite significant (for example, MFC, VCL, OWL), while the real
projects make use of just a small portion of the libraries.

Another issue lies with the fact that C++ makes use of a preprocessor. Usage of a
preprocessor falls into two parts.

The first one concerns the usage of macro definitions. Contents of the object model
significantly depends on the results of resolving macros. Besides that, the macros are used in
course of conditional compilation, and thus define the portions of the source code that may
or may not appear in the object model.

Each encountered macro, defined by the preprocessor directive, is considered global, and
falls to the global table. Thus C++ semantics, which assumes the use of macro definitions in
the context of compilation unit, is violated. However, the experience of using Together
shows that in absolute majority of projects this violation is not critical and can be avoided by
proper tuning of the project structure and configuration options

The second issue concerns the usage of #include directives. Together project is folder
oriented, and thus Together processes all files, both headers (*.h) and sources (*.cpp), it
finds in folders pertaining to the project. Generally, this is done in an arbitrary order. If
Together encounters an #include directive while processing a file, it switches to processing
of that file. Each file is processed only once.

Considering the problems described above, the task of creating and configuring C++
projects, especially the ones already existing, becomes especially creative. The project must
achieve a proper balance between the desired completeness of the model at run-time and
resources used.

These problems can be solved by proper organization of project structure and usage of
macro-definitions.

Project management

Defining Project Structure

Together provides various means of handling files included in the Project Path and in
Search/ Classpath. The former are parsed anyway, while the latter are only parsed if
#include'd in one of the files under the project path (maybe, through a chain of
#include directives).

234 -

Using Together with C++

Search Path in Large Projects

In the large-scale projects, it is advisable to add to the search path the sources, that can be
considered external, or standard, with respect to the entire project structure. This helps
restrict the number of files handled within a project.

Internal and External #include Directives

Together makes use of a well-known technique to discriminate the project internal and
external headers. The external files are included by means of #include< > directive with
angles, while the internal files are included via #include" " with quotes.

Skip Standard Includes

It often happens that external #include directives contain information useless for object
modeling. Hence, the external files can be skipped, which is done by default in Together:
Options dialog provides Sk&ip standard includes flag in C++ node of the Source Code tab. This flag
is checked by default for the sake of memory saving.

Using preinclude file

In order to address problems described above, Together introduces technique of preinclude
file. The idea is that there is a special file preinclude.inc that is processed before any other
C++ file available within the project. Preinclude file is treated by Together almost same way as
other C++ files. Namely it may contains #include directives as well as macro definitions.
The difference is that Together ignores symbol declarations in this file.

The global preinclude file is delivered with Together and resides in the /1ib folder of your
installation. As well it is possible to create project local preinclude file

(preinclude. inc) in the project root (for example using Together Editor). Together
merges information from both global and project local preinclude files.

Managing includes

The possibility to add #include directives into preinclude file allows to specify all the
necessary files from the required external library. This is done by means of #include
directives (with quotes). This form provides independence from the Skip Standard Includes
option. All files thus included will be processed (if found relatively to search path specified),
and the classes declared in those files become available even from new empty project (see
"Add shortcut...;").

Note: Definitions of the class members are stored in physically different locations, other than class
files. It implies that Together binds definitions and declarations of members in the classes by signature.
To provide seamless binding, the definition files st be visible in the project and properly parsed.
Hence, preinclude. inc should contain #include directives for the definition files.

nn

By means of #include directives in preinclude file it is also possible to strictly define the
order of processing file when it is critical for correct processing of project sources or sources
of external libraries.

You can see the example of this technique in the preinclude files delivered with Together.
These files configure the usage of Standard Template Library (3TGH%\1ib\pi_ *.inc
for MS Visual C++ and Borland C++).

- 235 -

Using Together with C++

C++ Macro Definitions

Preinclude.inc file is also used for another purpose. When the project source code is parsed,
all macro definitions, required for proper parsing, should be already known in advance,
regardless of whether the containing files were processed or not. Note that macros can be
defined either in various external libraries, or in internal company headers that, although
external to the project structure, are still part of the source code that Together should process
into diagrams. If these library headers are not included in the Together project resources (and
thus are not parsed), Together cannot perform the substitution of the macros encountered in
course of parsing. This leads either to error messages, or to some desired visual information
not showing up from the resulting diagrams.

The latter occurs if some constructs that are part of the object model, have been defined
with macros - class member declarations for example. If no substitution is defined for it,
Together cannot propetly recognize such constructs and thus cannot propetly display them in
diagrams.

On the other hand, including all library sources into a Together project is not advisable
because it makes the project overly large and rather clumsy, and usually leads to dramatic
decrease in parsing speed. To address this problem, preinclude. inc is provided so that
you can more narrowly define what macro substitutions should be used by Together when
parsing the project.

There are different approaches to writing definitions. The first way is to use macro
definitions exactly as they are used in the library. However, this is often unnecessary because
the original definitions can be quite complex and yet make no sense for Together. Remember
that your real goal is to make Together to parse the sources without error messages, and
display all desired information on the diagram.

It means that macros can often be defined just to nothing if the corresponding constructs
are not supposed to have any visual feedback on the diagram. Together simply skips such
macro declarations.
Where you expect to get visual feedback from a macro declaration, you have to be more
accurate and define a non-empty substitution. You can use the full library definition if that's
what you need to see, or you can simplify the definition to bring in only the item(s) you want
displayed in the diagrams. Note that any substitution to these definitions made for Together
inpreinclude.inc does not affect the compilation of your sources in any way. Your
compiler will use the real library headers.
To illustrate the above, refer to the macro sets provided in the default preinclude. inc
file for MFC which are controllable via wrapper macro
TS_PREINCLUDE_MICROSOFT_VISUAL_C:
MFC_MACROS_SHOW_EXPANDED (complete as in MFC)
MFC_MACROS_SHOW (show as functions)
Otherwise empty
You can refer to the System Macros section for the list of standard macros that Together
provides for C++ projects.

- 236 -

Using Together with C++

Default library support

The default preinclude. inc addresses the problems that can occur on parsing a
number of libraries commonly used by C++ developers. Sets of defines are provided for:

Microsoft Windows

Microsoft C++

Microsoft Foundation Classes (MFC) library
COM

ATL

Borland C++ version 5.0

Borland C++ Builder

There are additional wrapper macros that are used for controlling which of these sets of
defines are "enabled" currently via #ifdef. These are:

TS_PREINCLUDE_MICROSOFT_WINDOWS
TS_PREINCLUDE_MICROSOFT_COM
TS_PREINCLUDE_MICROSOFT_VISUAL_C
TS_PREINCLUDE_ATL
TS_PREINCLUDE_BORLAND_CPP
TS_PREINCLUDE_BORLAND_CPP_BUILDER
(See the comments in the preinclude. inc file)
It is of course impossible to anticipate which of the above you actually use. Neither is it
possible to include something for every conceivable library, or anything at all for your own
company standard headers. Therefore, some resetting of C++ configuration options and
some hand-tuning of the preinclude. inc will most likely be necessary before you
begin using Together for C++ projects.

Setting wrapper macro options for default libraries

Note that some "widely used libraries" may use macros with identical names but different
definitions. For example, MFC and OWL both define "BEGIN_MESSAGE_MAP" in
completely different ways and that will cause problems with parsing.

Before using Together for C++ projects, make sure that the wrapper macros for the libraries
you use are defined in your C++ configuration options, and those for the libraries you don't
use are "un-defined". If you don't do this, some macro names will be duplicated but have
different definitions, which will cause Together to display numerous error messages while
parsing C++ source code files.

To define or un-define wrapper macros:

1. Choose Options | Default to display the Default Options dialog

2. Select the Source Code page

3. Expand the C++ node on the options tree and click Define.

4. Remove the names of wrapper macros for libraries you don't use from the value string.

5. If the name of the wrapper macro for a library you do use is not present in the value
string, add it to the string. Observe the all-upper case naming convention and be sure to
delimit all the macro names with a semi-colon (;).

0. Click OK to close the dialog.

Note that the above configuration can be done at the Default or the Project level. See the
Configuring Together topic for information about multi-level configuration.

237 -

Using Together with C++

Configuration issues
Entries in ".config" files
Configuring C++ source and header file definitions

The file %TGH%/config/resource.config (version 3.x and above) contains definitions of
file types for Together and sets of extensions corresponding to the file types.
For C++ sources and headers the following definitions are specified by default:

-- C++ --

resource.file.cpp source.extension.l = "cpp"
resource.file.cpp source.extension.2 = "c"
resource.file.cpp source.extension.3 = "CPP"
resource.file.cpp source.extension.4 = "C"
resource.file.cpp header.extension.l = "hpp"
resource.file.cpp header.extension.2 = "h"
resource.file.cpp header.extension.3 = "HPP"
resource.file.cpp header.extension.4 = "H"

If you add more extensions to this section of the configuration file, corresponding files will
also be recognized as C++ sources and headers.

Specifying codegen file extensions

The default file extensions for generated header and source files are declared in the following
properties in $TGH% /config/cpp.config:

codegen.cpp.declaration file ext = "h"
codegen.cpp.definition file ext = "cpp"

To generate files with different extensions, you need change the value for these properties.
You can do this in the Options dialog: choose Options | [level] | Source Code | C++ and
edit the options labeled Extension of generated C++ header file and Extension of C++
definition file respectively.

External Tools

Using a C++ compiler

Together provides no default C++ compiler. Set up a compiler at your choice, following
same procedure as described in configuration sections (Configuring other Java
compiler/make utilities).

Configuring C++ compile/make utilities

Configuring can be done from Together Options Dialog (use Options | Default. menu
command to display it) or Project Options Dialog (Options | Project. menu command).
After opening the dialog expand Tools node. There you can see the treeview of available
tools. Select the one you are going to configure and enter the required settings.

Select C++ from the drop-down list in Language field, specify command for the executed
tool, command line parameters, filtering for the tool's output, menu settings - where
configured tools should be displayed or not, etc.

- 238 -

Using Together with C++

Tips:

- Do not overwrite default compiler/make settings; use empty "Tool #x" slots instead.

- For proper setup use on-the-fly help, displayed in the Description window of the Options
Dialog.

- Pre-defined command names in the Options Dialog display like ["toolEditor/Compilet"].
To create the desired name, use just a text, without '[' and "' characters. For example, you
can name the compile command C++ Compiler.

Executing C++ compile/make utilities

When configuring the tools, you have to specify appropriate menu command names and
where these commands should be displayed. So you should already know how to execute
compile and make utilities.

Known Problems

C++ support in Together has some limitations that impact the usage of certain features. You
can contact support group for more details and workarounds. The following sections outline
problem issues:

Deep parsing

This feature provides handling of statements and variables in the methods' bodies and
initializers. With C++, the usage of this feature affects the completeness of results in Update
Package Dependencies, Autodependencies between classes, Show dependencies, Add
Linked, Find Usages and Generate Sequence Diagrams.
Namely:
1. Expressions in the initializers of attributes and variables are not processed.
2. The operations are matched to the operation calls by number of parameters, rather
than by types (types are ignored).

Class usages

Classes used as the arguments in templates, are not handled. For example:

class A{

SomeTemplate<FirstClass, SecondClass>pSome;

}
In this situation the occurrences of FirstClass and SecondClass are ignored. This affects the
completeness of results in Update Package Dependencies, Autodependencies between
classes, Show dependencies, Add Linked, and Find Usages. These calls are not renamed,
when the referenced class is renamed. The usages from template arguments are handled in
read-only mode.

This issue will be addressed in the next versions.

- 239 -

Using Together with C++

Recognizing Member definitions
To be recognized, member definitions should have exactly same signature as the member
declarations.
For example:
--- header ---
class A {
void op(std::string str);
J
--- source ---
using namespace std;
void A::op(string str) {} // this definition will not
be recognized
This mean in particular:
- Shift+click on a class member on diagram doesn't navigate to the source
- definition file property in the inspector is empty
- editing of operation 'op' declaration doesn't affect definition in the source
In order to avoid this use either short names in both places ("string"), or full names in both
places ("std::string)
Processing of enumerations, typedef's and global symbols

As of this writing, these elements are not processed. This feature is under construction for
the future releases.

See also

Important note for C++ users in Find Usages dialog

- 240 -

DefDocComments

DefDocComments

DefDocComments module provides access to the doc comments of c++ member
definitions. The status of this module is Early Access. It is compatible with Together
versions 4.x and higher.

Installation

If you have Together 4.2 and higher, you can skip this section.

To install the module, place defDocComments subfolder under
$TGH%\modules\com\togethersoft\modules. If you've unpacked archive at
modules\com\togethersoft\modules, this is alteady done. Otherwise copy this
folder to the specified location. Upon restart of Together, command "c++ definition doc-
comments" appears in Options | Activatable modules. Same command is available under
Early Access node on the Modules tab of the Explorer.

Usage

Make sure that the module defDocComments is activated. If this module is not activated,
check the box "c++ definition doc-comments" on the menu Options | Activatable
Modules.

Being activated, the module adds Definition documentation tab to the object inspector
(Properties...) for c++ members with definitions. This page allows to view/edit
documentation of member definition in the same way as used for Description and Javadoc
tabs.

The module registers support for new boolean property "DefDocComment" that represent
definition doc-comment. Instance of this property has subproperties representing tags from
doc-comment. Description part (text preceding any tag) is available as subproperty with a
null name.

Access through API
import com.togethersoft.openapi.rwi.*;
import com.togethersoft.openapi.rwi.enum.*;

RwiElement member = ...;
RwiPropertyMap defDocs = null;
if (member.hasProperty ("DefDocComment")) {

RwiPropertyEnumeration e =
member .properties ("DefDocComment") ;

if (e.hasMoreElements ()) {
defDocs = e.nextRwiProperty () .getSubproperties() ;

}
}

String description = defDocs.getProperty(null) ;
String since = defDocs.getProperty ("since") ;

RwiPropertyEnumeration authors =
defDocs.properties ("author") ;

RwiPropertyEnumeration paramDocs =

241 -

DefDocComments

defDocs.properties ("param") ;
Generate documentation issues

Documentation of member definitions is available also for Documentation Generation
feature. In order to make use of this possibility, one should change metamodel settings of
GenDoc module. Edit the file
$TGH%\modules\com\togethersoft\modules\gendoc\templates\Meta
Model .mm

Add line
DefDocComment = "Definition doc-comment", boolean;

to the end of first "# RWI specific properties" section.

This property must be also added to the lists of properties for metatypes
GENERIC_OPERATION and ATTRIBUTE. Search for occurrences of strings
GENERIC_OPERATION and ATTRIBUTE respectively, and add entry
DetDocComment; to the list of metatype properties.

These changes let gendoc recognize "DefDocComment” property as the standard property
of elements.

Modified gendoc ClassReport . tpl template supplied with the module (renamed to
ClassReportDefDoc. tpl) can be used as a sample of new feature usage in
documentation. There is a new "Definition documentation" stock section in the template
that demonstrates usage of the new feature. This section is called from Operation
description section. Try to generate documentation for a sample project supplied with this
module, using both modified template and its original version, and compare results.

242 -

Using the Editor

Editing
Using the Editor

Together comes with a multi-page built-in code/text editor with a set of standard and
extended features. You can switch between tabs by clicking on tab's header, located right
under the editor.

fﬁ === =SS CS =SS SS=S=SS=SSSSSS=SS=S=S=S=====
* Business Methods
[
LCashSa!e.java LInsuffPaymerﬂEx-I:eptiDn.java LCashSaleDetelail.java |

[nactive TElltIS Active Tah Editor window

Standard features

These commands are available from the main Edit menu, or the speedmenu of Editor. You
can use hot-key combinations to speed up access to a particular command.

Edit menu commands and hot keys

Command Function Hot-key
Undo Rolls back last several changes. Cttl-Z
Redo Reinstates last Undo operations. Ctrl-Y
Cut * Cuts selected text to Clipboard. Ctrl-X
Copy * Copies selected text to Clipboard. Ctrl-C
Paste * Pastes text from Clipboard at the cursor position. Ctrl-V
Delete Deletes selected text. (Restore with Undo) Del
Select All Selects all the text in the currently focused file Ctrl-A
Insert Text From File |Displays standard "Open File" dialog to pick up the file containing (none)
the text to be inserted.
Go To Line Displays dialog to specify a line number, then jumps to the specified Cul-G
line number

* (Note: Clipboard commands also work with diagram elements in the diagram pane.)

243

Using the Editor

Editor speedmenu commands

The Editor speedmenu can be invoked from the Editor pane and from a tab of each tabbed
page in the Editor pane. Both speedmenus contain a number of commands, some of which
are self-explanatory or highly intuitive (Cut, Copy, Paste, Select All), while others require
some brief explanation. The detailed information about the features listed below can be
found in the relevant sections under Enterprise Software Development chapter.

Command Description

Select on Diagram Selects the visual class in the default Class diagram for the class currently being edited.
Opens the diagram if it is not already open in the Diagram pane.

Preserve Tab Appears on the page tab speedmenu. This allows you to prevent the contents of
active tab from being replaced with another file when you use the Oper command.
When you select this command, another Untitled tab is opened and then you can
safely use Oper menu command

Format Source Petforms syntax formatting of the source code in active tab

‘Tools Contains a sub-menu with a list of tools you can apply to active tab. You can
configure tools using "Tools" tab of Together Options Dialog

Text Editor Options (Invokes the Test Editor page of the Options Dialog.

Version Control Contains a sub-menu with a list of version control commands.
Bookmarks Contains a sub-menu with a list of bookmarks commands.
Refactoring Contains a sub-menu with a list of refactoring commands

Commands for the Integrated Debugger

The Editor interacts with the Integrated Debugger by means of several speedmenu
commands:

Command Description

Toggle breakpoint [Toggles breakpoint to the current line of source code
(F5)

Disable/Enable Disables or restores a breakpoint.*

breakpoint

Breakpoint properties |Allows you to edit breakpoint's properties.*

*(Hidden when no breakpoints are set in the file)

Extended features

The Editor provides the following advanced features:

Rectangular blocks (Ctrl-L): Gives you the capability to work with rectangular blocks.
Ctrl-L key combination toggles rectangular block capabilities on and off. Any time you need
to work with a rectangular block, press Ctrl-L, then select the desired block of text with your
mouse, or by holding down the Shift key and using arrow keys. When rectangular block
capabilities are no longer needed, press Ctrl-L again to switch to normal block mode.

User defined snippets (Ctrl-J): You can define as many snippets as you wish and then use
them easily in your code by typing the snippet name and then pressing Ctrl-J. See Defining
Snippets in this chapter.

244

Configuring the Editor

Code Sense (Ctrl-Space):This allows you to auto-complete methods of standard Java
classes. See Using Code Sense in this chapter.

Browse symbol allows to pass on to the source code of a class, attribute or operation.
Bookmarks: mark specific lines in files and navigate to them from any file in the project.

Note: you can change the hot keys for extended features using "Editor" tab of the Options dialog. See
Configuring the Editor for more information.

Configuring the Editor

You can configure the Editor using the Options dialog at any of the multiple configuration
levels. On the Main menu choose Options | [level]|, where level is the configuration level at
which the settings will apply (Default for example) . Select the Text Editor node. You will see
the following nodes representing the main categories of configuration options for the

Editor:

Code Sense:a set of options for CodeSense, the feature that auto-completes reserved words
in a supported programming language (only Java is currently supported).

Keyboard: a set of options for customizing Editor hot-key combinations

Schemes: a set of options with sub-options enabling you to customize colors, indentation,
and text formatting for text editing and programming languages.

External Editor: a list of external editors available.

Default options
= [ext Editor -~ | Mame | Wallie
o0 Code Sense Ecfitor font | Monospaced - |
° Heyboard Font size [12 |
= Schemes
o Plain Cursor's orientation |Ver1i|:al v|
o Java
o T+
o DL
o HTML
o JSP B
2 Yizual Basic
o CE
o Yizual Baszic MET
= External editor
o Showwy in menu hd
1 | v
Description
FY
Thiz page provides confiouration options for the Together Editor. Here ywou can:
® Snecify Editor font size and cursor orientation
® Artivate or deactivate CodeZense (the feature that auto-completes Java |
-
.| A Fu) ™ H 1 i fan] A 1 i L Fi .| 1

== Levels Ok | | Cancel | | Apply | | Help |

Configuring the Editor

Code Sense node

Expand the Code Sense node to view and modify options for the Code Sense feature.

Keyboard node

Expand this node to view the current settings for keyboard shortcuts that invoke Editor
commands. You can redefine the settings to fully customize keyboard shortcuts for the
Editor.

Schemes node

This node presents a tree of option subnodes. Use these options to tune the Editor for
working with different contents:

- Plain: for plain text files

- Java: for Java source code files

- C++: for C++ source code files

- IDL: for Interface Definition Language files

For each of these types of text you can set up color schemes, Snippets for programming
languages, and common Editor parameters such as Tab Size, Right Margin, etc. The Editor
will automatically pick up the particular scheme depending on the type of file loaded and
focused in the Editor.

External Editor node

Expand this node to define an external text editor and customize its display in menu.

- 246 -

Defining Snippets

Defining Snippets

Use the snippets to significantly speed up the process of developing your applications.
Define as many snippets as you want. Then, while coding in the Editor, type the name of the
snippet and press Ctrl-] to insert the entire block of code contained therein. There are
already several default snippets for common constructs in each supported language: 7, for,
while, etc.

Defining your own snippets

1. Open Options Dialog.

2. Select the Text Editor node.

3. Expand the Schemes option node in the tree of options.

4. Expand the node for the language you want to configure (plain text, C++, Java, or IDL).
5. Select Snippet option node and press Ediz to display Snippets Editor dialog.

6. Select one of the I Snippets

existing snippets listed _—
at left, or click the "+" whi + - + +

(plus) button toadda = |;
new snippet. If adding ife
a new snippet, give it ey

a name. | far |
7. Edit or add the - Title:

actual code that you - for(.. .. |
want inserted in your Cortert:

source files when you | for ("condtion”] {
invoke this snippetas | “Expression’
you work later on. '
8. Check Space Expand
to enable expanding a
snippet by hitting
space bar rather than
CTRLA+]J. 7
9. From the drop-down list, select the range, where the snippet is applicable.

10. Click OK when done and close the Options dialog.

| | Space Expand ||&nywhere -

Ok || Cancel |

Deleting Snippets

1. Perform steps 1-5 listed above.
2. Select the snippet name you no longer need at the left.
3. Click the "-" (minus) button. The selected snippet is permanently deleted.

Using Snippets ny =
To make use of the snippets, type in the public . interface IMakeCashiale [|
keyword and press CTRL-]. The code vold maketashiale(];

completes automatically, leaving you a chance to = ":':'ndl r1on] ! L
do some job of replacing the placeholders with ERpression

the required expressions.

Using Code Sense

Using Code Sense

The Code Sense feature is currently available in products with Java language support. It
helps you to auto-complete references to standard Java classes in Java code, significantly
speeds up your coding and helps you avoid syntax errors. Code sense works in two modes: it
is invoked by a hotkey stroke (CTRL-SPACE by default), or activated upon delay. This is
defined in the Editor tab of the Options dialog, Code Sense and Keyboard nodes.

Example 1

1. Type System.

2. With the insertion point cursor placed after the second period character, press Ctrl-Space.
The list of available methods for this class is displayed.

public InsuffPaymentException(] {
SUper | ;

-

public InsuffPaymentException(Strimg =) |
Sy=tem.
SUper (s

F L e L T TN L

| b

=iy loadLibrary (String) woid

=g maplibraryName [5trimng) String

H

Printitrean

| 7 |51 anization() woid e]
—|\I o e —|#% runFinalizersOnExitiboolean) wold |&:
RS e =iy setErr (PrintStrean) woid
=6 getIn(Inputitrean] void |« || rfor g

3. Select the desired method with mouse or arrow keys and press Enter. The name of the
selected method is inserted into the line.

Example 2
1. Type System.out.p

2. With the insertion point cursor placed after the letter p, press "Ctrl-Space". The list of
available methods for this class beginning with the letter p is displayed.

public InsuffPaymentException(] { =]
super () ; |

public InsuffPayvmentException(String 3) |
Sy=tem. out. pl

T =

SWET (81} LG Flush() woid |
; =i getClazs|) Clazs [
' =i hashCode |) int ;tg
e =6 notify) woid O
=6 notifyall () woid
—LlnsuffF‘aymentExceptiDn.java $ out QutputStreen
x Lr: 16 Cal 21

3. Select the desired method with mouse or arrow keys and press Enter. The name of the
selected method is inserted into the line.

248 -

Using Code Sense

Browse Symbol

When you click on a class name or attribute name, Browse Symbol opens the source code of
this class and highlights declaration. When you click on an operation name, the source code
of the corresponding class opens, highlighting the method signature.

By default, Browse Symbol works with the project classes only. To work with the library
classes, it needs additional customization of the $SOURCEPATHS.

In the Builder page of the Options dialog expand the node Compiler Options, select the field
Sourcepath and specify path to the JDK source jar file. If your JDK home directory is
C:/jdk1.3, then the sourcepath will be

SSOURCEPATHSSPSSC: /JDK1.3/src.jar!/src

Alternatively, you can unzip src . jar and specify path to the source library:
SSOURCEPATHSSPSSC: /JDK1.3/src.

You can press the Browse button to invoke the Sourcepath dialog. Press "Add Path" button
and select the required path from the file chooser.

Sourcepath

FECOURCEPATHE
CAjdk1.2. s

¥

Add Path... Add ZipldAR...

| Ok || Cancel |

- If you wish to add jar file this way, you will need to edit the field and append "! /src" to
the end of the sourcepath string.

- Press Apply to apply the changes and OK to close the Options dialog,.

- The library classes open in read-only tabbed pages.

* [Hauthor Georges Zaah
* Mauthor David Kloba
*

EIN

public class JFrame extends Frame implements WindowConstants, Accessible, FootPaneContainer

private int defaultCloselperation = HIDE_ON_CLOSE:

J,-"ﬂ'?f

[4]

K | | v]
UMakeCashSale.java LPOSFrame.java L JFrame java L EligDecimaI.javal

249 -

Breakpoints

Breakpoints

Setting Breakpoints

Breakpoints specify where to stop code execution during debugging to permit inspection of
variables, expressions, class members, etc.

Setting and removing breakpoints

There are several ways to set breakpoints in the Editor. In every case, place the insertion
point cursor at the beginning of the line of code at which execution should stop, and then...

- Click on the extreme left margin next to the line, or...

- Press F5, or...

- Right-click on the line and choose Toggle Breakpoint from the Editor speedmenu.
When a breakpoint is set, a red dot appears in the extreme left margin.

To remove a breakpoint, place the insertion point cursor at the beginning of the line that has
the breakpoint, then use any of the techniques listed above to remove the breakpoint.

Working with breakpoints
Once set, a breakpoint can be disabled or re-enabled using the speedmenu commands
Disable Breakpoint and Enable Breakpoint.

You can edit properties of a breakpoint by placing the insertion point in the line containing
the breakpoint and choosing the speedmenu command Breakpoint Properties.

"Throw-away" breakpoints
You don't need to set a breakpoint that you think you will need only once. Instead you can
use the Run to Cursor option to run your application up to a specific line in your program.

To use Run to Cursor:

- Place the insertion point cursor at the line where execution should stop.
- Press F4 (or choose the Run to Cursor speedmenu command).

- 250 -

Setting and navigating Bookmarks

Setting and navigating Bookmarks

You can set global bookmarks'® in your source code files and navigate to them from any
open file that is part of your project. You can view, edit, classify, and navigate to bookmarks
in the project using the Edit Bookmarks dialog. Alternatively, use CTRL+M shortcut to
toggle bookmark in the current line. Once set, the bookmarks are stored in the project
profile and will be re-used when the project opens next time.

Bookmarks have lower priority then the breakpoints. It means that if you set a breakpoint
and a bookmark on the same line, the breakpoint will override the bookmark and executable
line icon.

The other type of bookmark provided by Together is the local bookmark | It is slightly
different from previously described bookmark in scope of operation and the way of usage.
Global bookmarks are project-wide, while the numeric bookmarks are only valid for the
currently opened file.

Setting and removing global bookmarks

T set global bookmarks:

1. Open the file to be bookmarked in the Editor.

2. Scroll to the line where you want to set a bookmark and place the insertion cursor
anywhere on the line.

3. Right-click and choose Toggle Bookmark from the speedmenu. (Note that the menu
command displays a keyboard shortcut which is user-defined in Text Editor options.)

The default bookmark icon displays in the margin. A default bookmark description is saved
using up to the first 50 characters of the line. You can edit this description if you wish (see
Viewing, Editing, and Classifying Bookmarks below).

To remove a bookmark:

1. Navigate to the line in the open file where the bookmark has been set.

2. Right-click and choose Toggle Bookmark trom the speedmenu. (Note that this menu
command displays a keyboard shortcut which is user-defined in Text Editor options.)

Tips
- You can also remove bookmarks using the Bookmarks dialog (see next section).

- Undo/Redo does not apply to bookmarks.
- By default CTRL+M shortcut is used to toggle bookmarks.

Viewing, editing, and classifying global bookmarks

The Bookmarks dialog displays a list of all the bookmarks currently set in files in the current
project. In this dialog you can:

- Edit the default bookmark description

- Reorder the list of bookmarks

- Visually classify bookmarks using different icons

- Delete individual bookmarks

To display the Bookmarks dialog:

1. Open any file in the project in the Editor.

2. Right-click and choose Show Bookmarks on the speedmenu. (Note that this menu
command displays a keyboard shortcut which is user-defined in Text Editor options.)

- 251 -

Setting and navigating Bookmarks

Editing global bookmark descriptions

By default, the Description field for a bookmark contains the characters of the bookmarked

line (up to maximum 50 characters). The field has in-place editing, or you can use the Edit

Bookmark dialog (invoked from the Bookmarks dialog toolbar) to change the description.
Note: You cannot edit the Line and File fields.

You can change the list order of any bookmark by selecting its row in the Bookmarks dialog

and using the Up/Down icons on the dialog's toolbar to reposition the bookmark in the list.

Classifying global bookmarks

The Bookmark dialog enables you to classify the various bookmarks in your project. A set of
icons is provided for this purpose. You can use this icon set to devise any sort of
classification scheme that is meaningful to you.

For example, you might use one icon only for bookmarking constructors, another for start
of business methods, another for JavaBean getter/setter methods, etc.

When you select a bookmark in the Bookmarks dialog, you can change its associated icon in
either of two ways:

In place: click the Icon tield in the list and pause for the drop-down list of available icon
variants.

Edit Bookmarks dialog: invoke from the Bookmark dialog's toolbar, then use the Ilcon drop-
down list to change the icon.

The icon you select for each bookmark displays in the margin of the Editor next to the
bookmarked line.

Navigating with global bookmarks

Once bookmarks have been set, you can use them to navigate from any open file in the
project, to any bookmarked line in other project files.

To navigate to a bookmarked line:

1. Open the Bookmarks dialog (as previously described).

2. Select the target bookmark in the list.

3. Click the Go To button.

If the target file is not open, it opens in a new Editor tab and the cursor moves to the
bookmarked line. No diagram is opened... just the file.

If the target file is already open in the Editor, the insertion cursor moves to the start of the
bookmarked line.

If you have a small number of bookmarks, you can navigate within a single file using
hotkeys. CTRL/Grey+ moves forward, CTRL/Grey- moves backwards. Hotkeys do not
work for the entire project.

Setting and removing local bookmarks

Local bookmarks are very fast and handy to operate. They are numeric, in the sense that they
are numbered from 0 to 9. Hence, there can be only ten local bookmarks per file.

To set local bookmarks:

1. Open the file to be bookmarked in the Editor.

2. Scroll to the line where you want to set a bookmark and place the insertion cursor

anywhere on the line.
3. Press CTRL+SHIFT+number.

- 252 -

Setting and navigating Bookmarks

The numbered bookmark icon displays in the margin. Each new bookmark gets the next
number. The local bookmarks don't add to the list of bookmarks and don't display in the
Bookmark dialog.

To remove a bookmark:
1. Navigate to the line in the open file where the bookmark has been set.
2. Use same keyboard shortcut: CTRL+SHIFT+number displayed on the bookmark
icon.
Navigating with the local bookmarks

Navigating with the local bookmarks is nice and easy. All you have to do, is to press
CTRL+number, and the cursor moves to the start of the bookmarked line.

Tip: Local bookmarks work with the main keyboard only. Small numeric keypad buttons produce no
result.

- 253 -

Split pane

Split pane

Drag down for
\urizun tal split

val {TAX_RATE) } ; jhecimal calcTax() |
-

zimal subrtotal = calcSubtotall):
T————wer simal tax = subtotal.multiply(new BigDecimal (TAX _RATE)):
return Cad;

3]
LY E
public class Cash3ale {| B
J*% Poor way to do taxes (but it's easy <g»). =/
public final static dowble TAX_RATE = 0.06:
-

For the ease of editing large files, the you can split the Editor pane into two or four
segments, each one with own scroll bars. To split the Editor pane horizontally, grab the
upper right corner of the pane and the drag splitting line down. If you grab the lower left
corner of the pane and drag the splitting line to the right, you can split it vertically. Typing in
any split pane is reproduced in all the other panes.

Drag rightfor
1 _vertical split

|recimal makeCashSalfDi /®--——--—-ommommmmmmmmm oo
Lom paymentimt; Copyright (c)Z000 Togetherio
nite change dus BEIE — - e
imal total = caleTo

|imal change = paqu@ package FProblemDomain;
f4 IE change is negative,

El]

if (change.coupareTo (mew import java.util.Date:
HumberFormat cE = HNum import java.uril.Vector:
String nsg = new Stri import java.util.Emmeration;
Lappend{ct. formar import java.math.Bighecimal ;

throw new InsuffPa import java, cext.NunherFormar;
7"7: import DataManagement.SaleDM:

i

To remove split you need only to drag the splitting line away.

254 -

Context Help

Context Help

Text Editor allows to create and use context help that provides access to the specification of
JDK used with Together (for example, jdk 1.3), and other documentation at the uset's
discretion (EJB specifications, J2EE, WebLogic etc.)

To enjoy the advantages of this feature, you have to create the database. It is possible to
create context help system on the General level, that covers all resources required for
development, and on the Project level, that includes information related to the specific
project.

Creating context help database

Help databases are not supplied with Together. It is the user's responsibility to create context
help system according to the specific requirements. If you have to create a new database, or
update an existing one, press Modify button. Together asks for confirmation. If you are eager
to proceed, answer "yes".

Context Help System [Chooze Index Files)
= & index-files = CAjdk1 Napitindex-filestindex- 1|+
incgs:-1 bt CHAjdk1 Mapitindex-filestindex-1 |52
incles-10 kil . . .
11 hirml C.'l.j.dl{'] 313pf1fndex-ﬂleslfndex-1
index-12html — CAjdk1 Fapitindexs-filesiindex-1

indes-173 Hml CAjdk1 Fapitindex-filesiindex-1
indesc-14 Hml CAjdkT Fapiindex-filesiindex-1
indles-15.html (288 Crijdk] Sapitindex-filestindex- 1
indesc-18 i Al == Cojdk1 Taphindex-flestindex1 |

incles-17 kil . . . —
P == Remove CAjdk1 Fapitindex-filesiindex-1

index-1 q kitmil CAjdk1 Rapiindex-filestindex-1
incles-2 kil CAjdk1 Fapiindex-filestindex-1

incieze-20LHml Ak Bapiindes-filestindex-2
!”jex;-:m: Cjdkl Sapiindes-filesindex 2
INdIEx-22 FLm . L .
index- 23 ptml || CAjdk1 Faphindex-filestind ex- 2 i
; - CAjdk Rapiindex-filestindex- 2|«
3 A [=IO

g3 [[(g g2 [0 [[[(g [P [rg? 0 [[[[

J

Ok Cancel

&
Context Help System dialog in the regular form of Selection Manager shows up. The left
pane displays the treeview of available resources. Select required documents and add them to
the target pane.

- 255 -

Context Help

Using context help

Pressing F1 button on the Editor pane, displays the Context Help dialog, that contains two
tabbed pages. G/lobal tab displays the default level help database, and the Project tab is for the
project-specific database.

Context Help
Incles: (AbstractDocument LeafElement |
AbstractDncument.DefaultDncumentEvent;1 |~ |

AbstractDocument DefaultDocumentEve nt)iE))
AhstractDocument. ElementEdit
AhstractDocument. ElementEdittElement, i
AhetractDocument. LeafElement

OverviewPackage

AhstractDocument. LeatElement(ghstractD
AhetractlayoutCache
AhetractlayoutCached

FREW CLASS MEXT CLASS
SUMMARY:
INMER | FIELD | CONSTR | METHO

ShstractLayoutCache.ModeDimensions
AhstractLavoutCache ModeDimensionsh

Ahstractlist
Abstractlistd javax.swing, text
Abstractlistiodel ~| | Class AbstractDo ‘

class javax.swing. text AbstractDocument.Le

Java. lang. Chiject

HE

| ¥]

e

Global | Project |

[»

Clear hoify Cloze Help

4

When the database is successfully created, pressing FF1 with the cursor on a certain keyword
will put in action a search throughout the context help database.

Index field displays the keyword for which the context help is invoked. The upper left frame
displays the list of available documents. The lower left frame displays fully qualified path to
the selected document. The right frame displays documentation for the selected class or
package.

You can navigate through the list of available contents with arrow keys of a mouse. When an
entry is selected, the relevant path displays in the lower frame. However, the documentation
frame doesn't refresh, until you click on the path string in the lower frame, or hit Enter on
the selected entry.

Refer to the Context Help description in the Dialogs chapter for detailed information about
controls.

See also

Using the Integrated Debugger
Using compile and make from Together
Using Code Templates

- 256 -

Editor tips and tricks

Editor tips and tricks
Opening files for editing

You can open one or more files for editing. Each file opens in its own tabbed page in the

Editor pane.

There are several ways to open files for editing:
Right-click on a file name in the Explorer and select Edit or Edit in New Tab from
the speedmenu. The file opens in the Editor pane. (Only source code, configuration,
and properties files have these speedmenu commands.)
Right click on a file name in the Explorer and select Tools | External Editor. The
file opens in the application configured as External Editor in Options: Tools.
Choose Open on the File menu and select file from the Open file dialog. The file
opens in the Editor pane. (File must be text, not binary.)
Click on a class (interface, link, member, method) in the Diagram pane. The source
code opens in the Editor pane tab, highlighting the line that corresponds to the
selected element.

To close a file you don't need anymore, select it and choose Close on the File menu.

Showing - hiding the Editor pane
You can easily hide or show this pane using the View menu or the Main toolbar.

The Editor pane may be hidden by default depending on the Ro/e after restart selected in
Options : General

Using '‘Preserve Tab'

As noted above, source code files automatically open, replacing the contents of the active
tab, when you select source-generating elements in diagrams (classes for example). You can
override this default behavior by checking Preserve Tab in the Editor pane speedmenu while
the active tab is selected. The current tab remains and a new tab appears named <wntitled>.
Your next selection of a source-generating element in the diagram opens its source in this
new tab (or you can open some other file using the pane speedmenu).

Checking Preserve Tab for a selected tab doesn't prevent you from closing it later. It only
means that if you open another file while the tab is active, the other file will open in a new
tab thus preserving the flagged tab. This enables you keep several source files from the same
diagram open in the Editor pane.

Using the Editor with an open project

When a project is open, you can have one or more source-generating diagrams open
concurrently in the Diagram pane. As you click on source-generating elements in the current
diagram, the contents of the Editor updates to display the source code for the selected
element. It displays that same file until you select a different source-generating element in
the same or another open source-generating diagram.
You may also open non-source diagrams such as Use Case or State concurrently with
source-generating diagrams. When you first open a project, the following default Editor pane
behavior is in effect:
- When you then open or select the tab of a non-source diagram, the Editor pane
hides automatically.

257 -

Editor tips and tricks

- If multiple diagrams, some source-generating and some not, are open concurrently,
the Editor pane shows when you select a source-generating diagram in the Diagram
pane, and hides when you select any other diagram.
This default behavior prevails unless you override it by using the Main Toolbar or View
menu to show the Editor pane while you are focused on a non source-generating diagram.
From that point on, until the end of the current session, you control the display of the
Editor pane using the View menu or Main Toolbar.
Note: If you have a file already opened in some of the Editor's tabs, Together will open the
existing tab on attempt to open that file again.

Using the Editor with no open project

When you launch Together, the Editor pane fills the entire right side of the Main Window and
displays a single tab. A new file "<Untitled>" is open. You can immediately edit and save
this file, or you can use the Directory tab in the Explorer or the Editor speedmenu to open
one or more other files (see Opening Files below). Files supported by the Editor pane
include the source files of the supported language(s), text type files, and configuration files
such as * .propertiesor *.config.

Although you can open and edit source files without opening any project, most of the time
you will probably work with diagrams and files in the context of an open Together project.

- 258 -

Using JSP and HTML Editor

Using JSP and HTML Editor

Together's Editor allows working with HTML and JSP files.

Opening files for editing

There are several ways to open *.html or *.jsp file in the Editor pane. The first way suggests
to navigate to the desired file in the Explorer and double-click on it, or choose Edit / Edit in
New Tab on the file speedmenu. Another option is to use File | Open on the main menu.
This brings in the File Chooser dialog, where you have to navigate to the required file and
select it. In this case, each file opens in its own tab in the Editor. You can select file to edit
by clicking on the required tab.

Alternatively, you can open *,jsp file in the Editor from the Web Application diagram,
selecting the required visual component on the Diagram pane. To use this way of opening
jsp files, make sure that [SP Sowurce is specified in the [SP Properties tab of object inspector.

Specific view of HTML/JSP Editor

The file content displays in the Editor pane. HTML Editor page is divided into two sections.
The right section contains the source code in html format, with java code lines, added in
case of JSP. The Editor highlights keywords and tags. The left section displays structured
treeview of the document tags and highlights typical constructs (opening and closing tags for
headers, body text, tables, hyperlinks etc.)

J=P <html f
<» HTML <head> 5
<» HEAD <title=Sample project<ftitles

<» TITLE < /head>
< HEAD <hody bgcolor=#FFFFFF:

< BODY e

zi FJEOCTDTY <h2»Login page
<x HTML </he> . . .

<form method="post" name="LoginForn” action="CheckLoginPasswo
<tahle:-

Ltre=<bd=Login: <ftd:
<td=<input type="text” name="userLogin’=<Fftd-

1]

NEE

index jsp

Structured Browser

The structured treeview of the html or jsp document provides a convenient way to navigate
through the document. You can expand the nodes and select the required tags or elements.
One click on an element highlights it, the second click highlights appropriate location in the
edited code.

All changes in the code are immediately reflected in the tree structure, and vice versa. These
features of the editor significantly speed up the coding process.

- 259 -

Using JSP and HTML Editor

Code sense in JSP Editor

Code sense is also available for JSP Editor. It works basically same way as in the Java Editor.
However, to make use of this feature, you have to modify Search/Classpath of your project.
Invoke Project Properties dialog on the File menu, and add

STGHS \bundled\tomcat\lib\servlet.jar to the Search/Classpath. Actually,
this resource is not required for jsp debugging, but makes code sense working.

Viewing HTML files

There are two ways to view an HTML file:
1. Choose Tools | View in Browser command on the Editor's speedmenu.

2. Navigate to the desired file in the Explorer and choose View command on the node's
speedmenu.

Thus the HTML file displays in the default browser window.
Tag Library Helper

Tools node of JSP Editor speedmenu contains Tag Iibrary Helper command that allows to re-
use tags in JSP code. Provided that the tag library is already created, this command displays
the list of available tags. Refer to Taglib diagram section for details.

- 260 -

Using Compile and Make from Together

Compile-Make-Run

Using Compile and Make from Together

When developing with Together you can compile classes and make your project without
leaving the Together environment. There are several options:

Using default compiler/make: This will execute the default Java compiler and make utility
installed along with Together.

Using another (external) Java compiler/make: Executes a user-defined external Java
compiler and/or make utility. You need to modify the compiler specification in your
configuration options (see below) to point to a different compiler.

Using C++ compiler/make: Compiles a C++ project with your preferred external tools.
You need to modify the compiler specification in your configuration options (see below) to
point to a different compiler.

Configure compile and make tools using Options dialog (Options | Tools on the required
level). Refer to User's Guide: Configuring Together: Multi-level configuration for details of
multiple configuration levels.

Using the default Java compiler (SDK)

On Windows platforms, Together installs and uses javac . exe from Java 2m) SDK
version 1.3 as the default compiler.* This compiler is located in STGHS /jdk/bin.

For other operating systems, you need to get the recommended Java 2 SDK for your
platform, install it, and make sure it is included in your environment's search path. Field
"JDK Home" in the Options Dialog points by default to STGHS/jdk. IfJDKisnota
part of installation, actual JDK location should be specified in this field. Otherwise, compile,
make and run will not work.

Note: Java (Javac) compiler will misbehave if the system temporary (TMP, TEMP) directory path
contains spaces, as can often occur on Win32 systems. Together attempts to intercept such errors and
try alternative paths (uset's profile directory, system root) to store the necessary temporary files.
However, to prevent problems, specify Togethet's temporary directory during installation and set this
environment variable for your operating system. If the environment variable is not defined elsewhere,
you may set it in Together.bat (for Win N'T/9x) or Together.sh (for Unix).

Executing the compiler and make tools

The default Java compiler/maker can be executed from :

- Project, package or class menu in the project explorer

- Project, package or class menu in the class diagram

- Current file in the editor

- Buttons on the Builder pane

- Using keyboard shortcuts

Compiler and maker are pre-configured to redirect their output to the Messages tab of the
Message Pane. In case of errors/warnings during compiling/making you can simply click on
the appropriate line in the Message Pane and navigate directly to the line of source code that
caused the error/warning. The Message Pane also displays executed commands and status of
tools' execution.

- 261 -

Using Compile and Make from Together

Configuring the compile/make utilities

In general, the default compiler is pre-configured, and thus ready to work. However, if you
need to reconfigure it, choose Options dialog, referring to command syntax for popular
compilers for details.

Using another Java compiler

You are free to use compiler at your own discretion. If you are not inclined to use the default
compiler, you have to configure your favorite compile / make tool in the Tools node of the
Options dialog.

Expand sub-tree at the selected Too/#x slot and configure command for the tool:

- Specify command name to be displayed in the menu, command line parameters,
compile/make output, menu settings etc.

- Check required boxes in the "Show in menu" node to specify the menus where this
command can be invoked

- Use information from the Description window of the Options dialog to create proper

configuration.
Tip: To avoid overwriting the default compiler/make settings, use empty "Tool #x" slots.
Default options
= Toolz bzl Mame | Walle |
= External Editor Language | Jawa s | -
@ Show inmenu : 9 i i
L hﬂh" Favorite Cl:umpiler| vy Favorite Compiletr by Favorite Compiler
o Showy in mEnu Command 5 T
4 Tool 2 % 5
I TEEI : Parameters $FILE_SPECS -classpath "Ficla...
3¢ Tool 4 Updste Disgrams [
gr Tool 5
Show promt [#]
gr Tool &
b Toal 7 Open Message Wi... | [¥] —
s Tool & | | Show all meszages | [b
Description
Defines the string which will appear in the menus for the command of the specified
external tool
== Levels Ok | | Cancel | | Apply | | Help |
£

- 262 -

Executing other compiler or make utility

Using Compile and Make from Together

Having specified your own compile and make commands, you can run them from any menu
that you have checked.

Toals | Help

Documerntation

Quality Lzsurance

Inzpector Property Builder ...

Code Template Expert...

Databasze ImportExport
Imprort

Export

Real Time

OTD ImportExport

X=D ImportExport
JZ2EE Module Import...
Wieh Services Expert. .

JZEE Deplovment Expert...

XML Editor...

- T W w w v

My Favarite Compiler

it I

RunDebug

Format Project Source...

synchronize with external changes

Using a C++ compiler

Ant Runner

Together provides no default C++ compiler. Set up a compiler at your choice, following
same procedure as described above (Configuring other Java compiler/make utilities). Refer
also to External tools section under Uszng Together with C++ for further details.

- 263 -

Using Compile and Make from Together

Compiler output

Compiler errors/warnings are presented in a navigable overview of the entire list of
errors/warnings, thus reducing the compiler's default output. You can then expand the
overview list to get the detail.

For example, if the compiler returns an error , use the right-click menu in the Builder's
output pane and choose "Full Output” to see exact location of the error. You can reverse the
display selecting "Reduced output" on the Builder's speedmenu.

g** Make started.
AZTogethers. Flexhsanplest javalCashidalestproblen domai
Bighecimal makeCashiale(Bighecimal paymentAmt)

A

o [B

1 error
% Compiler reported

Copy
Copy Al

Remove Al

Reduced Cutput

Giotothe first errar

E B | »
E] Mezsages Builder Lbfg Run/Diebug |
See also

Using the Integrated Debugger
Guide to the Options dialog: Tools

*(Current version as of this writing. For up to date information on supported/shipping JDK see system
requirements posted at www.togethersoft.com.)

264 -

Using Compile and Make from Together

Run/Debug Configuration

In order to run your project, you have to choose Tools | Run/Debug | Run on the Main
menu. Running a program requires specifying main class name, arguments and VM options.
Large-scale projects may have numerous main classes and significant number of parameters.
Together helps simplify the process by means of Run Configuration feature, which allows to
enter various sets of runner parameters.

This how it's done... Choose Tools | Run/Debug | Run Configurations on the Main menu,
or use keyboard shortcut CTRL+SHIFT+F5. Press Add button and enter the required
arguments and parameters. You can add as many configuration as needed, and assign one of
them as the default one. It is possible to create Run configurations for applications, applets
and servlets.

Default configuration is highlighted in thick print.

Run/Debug Configurations X
<NoName:> ‘ |LI

Arguments and Parameters

Configuration name: |N|:|Name| |

[&pplication [Applet | ServistilSP |

Class with 'mairt: | 55
Progyram argurerts: | |
VMOPHONS [cpassic |
[o | | Cancel | | Help |
| S
| ok || cancel || hHep |

v
When you further choose Run command from the Tools menu, the program runs with the
configuration which is set as default.

Arguments and Parameters

Arguments and Parameters of a run configuration are specified in the Arguments and
Parameters frame, which shows up on pressing Add or Edit buttons. The frame contains
three tabbed pages: Application, Applet and Servlet/]SP.

Application

Class with 'main". enter the name of the main class in the text area, or press selection button to
choose one of main classes, available within the current project.

Program arguments: text area to enter parameters. Multiple parameters are delimited with
commas.

M options: parameters for VM to be launched.

- 265 -

Using Compile and Make from Together

Applet
Class with applet: enter the name of the applet class in the text area, or press selection button
to choose one of the applet classes, available within the current project.

Applet parameters: text area to enter parameters. Multiple parameters are delimited with
commas.

"M options: parameters for VM to be launched.
Width and height: enter applet frame dimensions in pixels

Servlet / JSP

Start Page | Servlet: specify an entry for the web browser that starts on launching Tomcat. It
can be jsp, html, shtml file, or servlet name from the current project.

Query String: enter Start page parameters, separated with &. This creates browser address in
the form: http://hostname:port/startpage?plname=plval&p2name=p2val....

Context Parameters. enter parameters which can be sent to any JSP/Servlet by the web server,
in the format "param1=vall" "param2=val2" ... These parameters are accessible from all
servlets. To see them, you can add the following code to your servlet :

out.println("Context init parameters:");
ServletContext context = getServletContext () ;
Enumeration enum = context.getInitParameterNames () ;
while (enum.hasMoreElements()) {

String key = (String)enum.nextElement () ;

Object value = context.getInitParameter (key) ;
out.println(" " + key + " = " 4+ value);

)

M options: same as above

- 266 -

Using Compile and Make from Together

Makefile generation

Together provides the possibility to generate makefile for your projects. This feature is
especially precious for large-scale projects. Having once created a Together project and
generated a makefile for it, you can further install this project anywhere, independently from
Together.

Makefile contains all necessary command line commands and parameters, required for the
independent run of your project. You can generate makefile on various levels: for a project, a
package, or even a class. Default Makefile destination is specified in the Builder node of the
Options dialog, and you can specify any other location on the default or project level.

Default options
= JSP - Mame | Walue
Tomcat settings Compile befare run |E

Databasze .) m
iehServices Compile before debugging [+] -

2L Tools Reflect compiling process in status... | [

o Showy javac output in full farmst [#]

= Builder
&b Compiler options hdzitnum number of errars 100

2 Wersion Control Makefile destination directary $PROJECT DIRE =
Ant Runner

Description

Thiz option defines the destination directory for generating Wakefiles.

== Levels | ik I | Cancel | | Apply | | Help |

To generate a makefile select Tools | Generate Makefile from the Main menu. For large
projects the process can be rather time-consuming. Finally, a messages shows up to inform
you that the makefile was successfully generated.

&

Resulting makefile is editable. You can add and modify commands and parameters at your
discretion.

267 -

Using the Integrated Debugger

Debugging
Using the Integrated Debugger

Full-function integrated Java debugger allows you to debug your projects right inside
Together.

Debugger features

Breakpoints: Enables you to stop at any line of the source code including "Logging" and
"Pass Count" features. Provides 5 kinds of breakpoints: line, exception, class, method and
attribute breakpoints.

Command execution: "Run", "Pause, "Continue", "Stop" commands available. For
debugging methods there are "Step over", "Step into", "Step out" and "Run to the end of
method" facilities.

Watch: You can watch/modify expressions, variables, and class members.

Evaluate: Enables evaluating variables and expressions, and changing their values in course
of run in Debugger.

Threads: Enables browsing the state, methods and variables of a thread.

Frames: You can work with the information of the current frame.

Skip classes: This feature enables you to specify classes that should be skipped. Shows the
classes that are already loaded.

Remote process: Enables attaching to a remote process, by specifying address and
transport.

There are several ways to access the debugger commands: using the Main menu: Tools |
Run/Debug, using the Debugger toolbar (Can be accessed using Tools | Run/Debug |
Show Run/Debug tab menu command), and the hotkey shortcuts.

Starting a Debugger session

Tip: Before starting a debugging session be sure you've set up all the needed breakpoints.
For more information see Working with breakpoints.

It is possible to start the debugging session in two ways. If you are going to use the current
run configuration, choose Run/Debug | Run in Debugger without showing the Parameters Dialog on
the Too/s menu, or use the hotkey Shift+F9. If you need to specify the main class or modify
run configuration, choose Run/Debug | Run in Debugger with Parameters Dialog (Ctrl+Shift+F9).
This starts your projects in debug mode and automatically shows Debugger Tab. Debugger
Tab significantly speeds up access to the information you could need during the debugging
process.

Debugger Tab
oo O F[En Frame |/SS Threads r@ Classes |’E«+§ Monitors |/Dcn Wiatches |/ Evaluste | b Userlnterface.CaShSaleSAmﬂ
s L3 W] %1 Console r . Breakpaints r = Skip classes |
5;13»1%%%&1‘5&535?3
+ o+ | Type | Location | Enahled | Stop | Log |Pass Co..| Condition
o :2 :‘} 20 |l uncaught exc... v v v 1
O: O O || [Line =unwerified= |Uzerlnterface POSFrame_sbout ... [v] vl (M} 1

L@ Messages Builcier L%‘_‘g Debugoer
. [Progress]| Insert Ln: 245 Cal: 1

[

- 268 -

Using the Integrated Debugger

Debugger tab has its own elements:

Console tab: Displays Java console

Threads tab: Threads viewer. Displays in details all the running threads.

Classes tab: Displays a hierarchy of loaded classes.

Monitors tab: Displays synchronization monitors.

Watches tab: Watch window for class members/expressions.

Breakpoints tab: Displays list of breakpoints.

Skip classes tab: Contains list of "disabled for debug" classes.

Evaluate tab: This tab enables evaluating expressions and modifying values (including
method executions) when the Debugger is in suspended state.

Frames tab: Frames viewer. Displays the frame stack of the current Thread.
Toolbar: Provides mouse-click access to the debugger commands, such as "Pause",
"Resume", "Reset", "Step over", "Step into", etc.

Controlling program execution

When a debug session starts, you have to control the program execution, using the following
set of control commands:

Command Icon |Description Hot Key
Pause o0 [Pauses program and passes control to the
debugger.
Continue [|Resumes program execution.
Stop program] |Terminates the program and debugging session. | Shift-F2
Run to cursor] |Resumes program and breaks before cursor. F4
Step over L7 [Skips debugging of a method that is currently Shift-F8
under cursor. The method executes and returns
result.
Step into L5 |Forces debugging of a method that is currently Shift-F7

under cursor. Debugger stops at the first line of
this method.

Forces current method execution and stops in
the current method's caller at the next line after
call.

Step out

IHII

Run to end of method| |5 [Forces current method execution and stops
before return.

Toggle smart step ~+ [Debugger performs a "smart step". You can set
up smart step using Debugger tab of the Options
Dialog.

See also

Using the editor

- 269 -

Breakpoints

Breakpoints

Breakpoints provide the most powerful debugging facility, which makes it possible to break
program execution at the specified place, in order to inspect variables, class members, etc.

Setting breakpoints

To set a line breakpoint, it is enough to select the desired line and press F5, select Toggle
Breakpoint command on the speedmenu, or just click on left margin next to the this line.
(See also: User's Guide: Using the Editor: Setting breakpoints). Alternatively, use appropriate
Debugger Tab toolbar button.

Class, exception and method breakpoints are added by pressing the Debugger Tab toolbar
buttons, or by appropriate speedmenu commands on the Breakpoints tab.

The attribute breakpoint has no icon on the Debugger toolbar and can be added from the
Watches tab only. Select the desired watch, and choose Add Attribute Breakpoint command
on its speedmenu. This adds breakpoint for the selected attribute to the Breakpoints tab.

Controlling breakpoints

Breakpoints tab of the Debugger provides a toolbar that enables full control of the
breakpoints:

= Disable all breakpoints
= Enable all breakpoints
B Remove all breakpoints
Edit breakpoint properties
= Go to breakpoint

o Disable/Enable breakpoint
= Remove breakpoint

* Add line breakpoint

+ 0 Add exception breakpoint
B Add class breakpoint
o Add method breakpoint

- 270 -

Breakpoints

Modifying breakpoint properties
After the breakpoints are set, you can disable or enable them. To do this, check or uncheck

Enabled flag for the appropriate breakpoint in the Breakpoints tab. If a breakpoint is enabled,
it is accessible for modification.

To modify a line, class, method or exception breakpoint, choose Breakpoint Properties
command on the speedmenu in the Editor pane, or in the Breakpoints tab of the Debugger.
Alternatively, use the Debugger toolbar icon. This bring in a Breakpoint Properties dialog
that allows to define if there should be a stop execution at this point, specify number of
passes through this breakpoint before stop, conditions, and also whether this stop should be
logged or not.

Besides the Breakpoint Properties dialog, it is possible to modify all type of breakpoints in
the Debugger tab. The controls of the dialog are replicated in the table of the Breakpoints tab.
Note that Pass count and Condition fields are editable in place. The flags S7g9p Execution and Log
Message may not be disabled simultaneously. At least one of these flags must be set. Refer to
the description of the Breakpoint properties dialog in the Context Help chapter of this
manual for detailed description of the fields.

Attribute breakpoint has two properties that are modified in a slightly different way. These
properties are: Szop on Read that allows to break application when an attribute is about to be
read, and Stgp on Write that allows to break application when an attribute is about to be
written. By default both options are enabled. You can enable/disable these options,
choosing Enable/Disable Stop on Read/Wrtite on the speedmenu of the selected attribute
breakpoint.

Examining data values at breakpoint

When staying at the breakpoint you can examine data using "Add watch" command,
available from "Tools | Run/Debug" menu and from the Debugger Tab toolbat.

- 271 -

Attaching to a remote process

Attaching to a remote process

You can remotely debug Java programs with the integrated debugger. Start the external Java
program to be remotely debugged (debugged per attach) in the following way:

java ... -Xdebug -Xnoagent -Djava.compiler=NONE --> -
Xrunjdwp:transport=dt socket,address=8787, server=y, launch="%1\bin\win32\
display.bat %1"

If port 8787 is not convenient for you, you could allow the JVM to define the port:

-Xdebug -Xnoagent -Djava.compiler=NONE --> -
Xrunjdwp:transport=dt socket, server=y,launch="%1\bin\win32\display.bat%1l

In the latter case, the JVM prints the address. Note the address and enter value in the Attach
to Remote Process dialog.

See also

Using the debugger

=272 -

Evaluating and Modifying Variables

Evaluating and Modifying Variables

Together allows to access the variables in course of program execution. Set breakpoint in the
desired location of your code and select Tools | Run in Debugger on the Editor speedmenu
ot on the main menu. This adds Evaluate tab to the Debugger pane and Evaluate/Modify
command to the Editor speedmenu.

Displaying structured context

While your program runs in the Debugger, you can check the value of each object. To do
this, you need only navigate the cursor to the desired object, and after a small delay the
description of this object will show up. The form of presentation is defined by the Show
variable as tooltip flag in the Run/Debug | Debugger node of the Options dialog. If the flag is
set (by default), evaluation window shows the entire structure and value of an object.
Expand the nodes to reveal the constituent properties.

Dimension screepnii =
Dimension framel = E| screenzize: java.awt Dimenzion = java.awt Dimensioni@ sty

jave vt Dimenzion
&2 height: irt = 1024
&2 wicith: int = 1280

if (frameiize.
frame3iize.
if (framelize.
frame3ize.

Ee et = mm T m mman

If this flag is cleared, evaluation window shows object's address or value only:
if (framelize.height > screeniize.height)
frameiize.height = zcreenfize.height:

if (framelize.width arreenfizme wridth)

Wi dtlframeSize.height = SE?Jldth;

Dimension screeniize = Toolkit.getDefaultToolkit().geticreeniizel()

frameiize

fa = T A

screensize = java.awt Dimensioni@ 37

Dimension frame

if (framelize.h

Evaluating arrays

When evaluating an array, you can specify the bounds of display range. To do this, right click
on the array name in the evaluation window and choose Change Display Range command on
the speedmenu, and enter starting and ending element numbers, or an asterisk to display the
entire array.

public string = va lang . Stringl] = javalann Shina 251 -
gL, e, [E] test[o)="1" B0, Create sttribute Watch .. :
rien, LT, et E] testrt]="2" £ Creste sttribute Breakpoirt

[F] test2]="3" _
public String El test[3] = 4" Change DISlQl_‘E':-" Ranoe...
R =] test[4]="5" E -

(137,714}, {157, " 16"}, {T17", 18"}, {T1a", 207}, {217, T2), {TR3T, 24T)

273 -

Evaluating and Modifying Variables

Evaluating and modifying objects

It is also possible to evaluate and modify objects in the Evaluate tab of the Debugger pane.
To do this, select Evaluate command on the Editor's speedmenu and specify variable or
expression to be evaluated/modified.

| Evaluate/Modify

Enter expression to evaluste imodify:

|frameSize.height*2+frameSize.width*2| |

Ok Cancel

Appropriate entry adds to the Evaluate tab, showing location, type and value of the object in
question.

Conzale rﬁ— Breakpoints r@ Skip classes rfﬁ:, Frame rSS Thresads rE Classes |’Z»§ Monitors rDO\ Wigtches r Evaluste |
| Expression | Location | Type Result
soreenSize [|Userirterface CashSalesspp <init=0) [C... java.awt Dimension lizva st Dimension@3f7
Tramesize height [» |Userinterface CashSalesApp =int=C) [C_|int 367
] [* |Userinterface CashSalestpp. =init=() [C... =iz not in scopes
screenSize >
framesize height*2+irameSize width*2 [» |Userinterface CashSalesApp =int=C) [int 1386

Expression in the list are evaluated every time you choose Evaluate/Modify command on
the speedmenu of the current row, or press the right-arrow icon in the second column.

You can change the value of variables, typing directly in the Expression field of the tab. Click
arrow icon for the changes to take effect.

Console ru_ Breakpoints [’g Skip classes rfbn Frame rSS Threads rE Classes ﬂwﬁ Monitors: I/DD\ Watches r Evaluate |
| Expression | Location Type | Result
sCreensize [|Userinterface CashSalesApp.... [ava.awt Dimension va.awt Dimensionga 336
frameSize height=100 [\Userirterface CashSalesMpp.... it 100
] [» |Userirterface CashSalesApp.... =iz naot in scope=
frameSize height*2+frameSize wicth*2 [+ |Userirterface CashSalesApp.... int 1336

Note, that you can only evaluate and modify objects within the current debugging context. If

you try to check an object past the breakpoint, the Result field will report that the variable is
out of range.

274 -

Watching Expressions

Watching Expressions

Watching class members, inspecting objects etc. is an important side of the debugging
process. Select Tools | Run in Debugger on the Editor speedmenu or on the main menu.
This will open Debugger tab with the full set of elements, and show "Add Watch" command
on the Editor speedmenu. Now you can add watch on the Wazches tab of the Debugger, or
from the Editor speedmenu.

|/§~H*§ Manitars |/|:H:n Viatches r Evaluste | Pi% Class1
Valuetlessage = ripition
[o, Add Watch
Add Watch

Expression: |tes,1 |

Description: |Display values of the array test]] |

Ok || Cancel

pr
Specity the expression you would like to watch and its description (optionally). This
expression displays on the "Watches" tab of the Debugger Tab. Add as many watches as
needed.

Using watches

Right-click on the selected watch invokes its speedmenu that provides commands for
adding, removing and modifying watches.

Change Display Range
If the expression being watched refers to an array, you can confine its range to the elements
that are of interest for you. Speedmenu command Change Display Range serves this purpose.

You can explicitly specify the numbers of the starting and ending array elements to be
displayed in the watch. Entering an asterisk (*) displays the entire array.

r?.‘é! Console ra_ Breakpoirts rﬁ Skip classes |/El=,:, Frame rSS Threads rE Classes rﬁﬂz Manitors |/Dcn Watches |/ Evaluste |

“arighle/Expression | Type | ValuehMessage |Descrip1..
[é test ava lang String(] java lang String[25] [=unnam...
= [= test izva lang. String(] javalang String[23] test[12]
E % Change range

[E] te=t(s) g

El test[E] E Enter display range bounds (f.e. 10-200 or " to output the whole array gn

[E] test7] lg-10 | g

El testis] Cancel &

[E] test=) e

[E] testr1m niq

275 -

Watching Expressions

Change Values

Having selected a watch in the Watches tab, you can change the value of the variable. The
values are changed in-place, or by means of Change 1”alne command on the watch
speedmenu. Note that the string values must be entered in quotes. Otherwise any
modifications will be ignored.

Change display format

For the integer variables, it is possible to toggle between decimal and hexadecimal
representation. Use complementary commands Show decimal valne | Show hexadecimal valne on
the watch speedmenu.

Similar modification features are available in Evaluate, Threads and Frames tabs. There you can
also edit variables in-place and toggle between decimal and hex view for the integer values.

Using Threads and Frames

It is possible to observe the various threads in course of program execution. Using the two

[

buttons on top of the Threads tab, you can display all current threads and frames

, display

the current thread only d or display all threads i) .

Frames tab represents a frame stack of the current thread being resumed. This tab displays
information which is a subset of the Threads tab. This spares the user from unnecessary
navigating to the Threads tab, and allows to operate with the current frame.

Combo box on top of the Frames tab allows to choose the location of the currently
suspended thread.

rﬁ! Consale |/E_ Breakpairts rg Skip classes |/EI§:. Frame rﬁﬁ Threads rE

=k =init=01: Class1, Class1 java, 13 h

Elemert Select current frame |

[E] this

- 276 -

Working with Code Templates

Re-use Support
Working with Code Templates

Code Templates are used by the OneSource™ round-trip engineering engine to generate the
initial source code and default property values for new modeling elements you create in
Together. A simple example is the default template for a class. When you create a new Java
class, the default name is "Class1", and the default code generated for it is:

public class Classl {

By modifying the appropriate template, you can change the name to "New1" (or whatever
you want). more importantly, you can also modify the default code, adding default attributes
or operations. For example, you could change the default code for a Java class so that a
default addNew() operation is always generated when you create new classes in diagrams:
public class Classl {
public void addNew () {
J
J

This may seem trivial at first glance, but consider the implications for things like Enterprise
JavaBeans (EJBs). When you use the one-click EJB feature, you get default source code for
an entity or session EJB (see figure below). By modifying the respective Code Templates,
you can customize the default code for EJB classes, home and remote interfaces, etc. adding

fields, properties, business methods... whatever you want... to the default source generated
for new instances of the particular element in diagrams.

Textual patterns, or templates, can be regarded as an abstraction like a form ready for "filling
in" for a specific instance. Templates reside in the STGHS \Templates folder that contain
separate sub-folders for templates in supported languages. Each language provides support
for class, link and member templates.

A class template is stored in a folder whose name corresponds to the name of this template.
This folder contains file ¥Name% . * (with extension specific for the selected language), and
optional properties file. Link and member templates have the template name with the */nk
and *.member extension respectively.

Template Properties

Properties of the template are defined in an optional file zemplate_name. properties in the same
subfolder. This file includes values that will be substituted instead of the macros, when a
new object is generated, flag that specifies whether this template will be displayed in the
Choose Pattern dialog, and other information.

Possible properties are:

Properties Description

defaultName ‘The name on the created object, that is used as a starting value. For example,
Class1 for the first generated class, Class2 for the next one etc.

defaulf Type Defines types of the attributes and return types of the operations.

hidelnChoosel ist If this property is present in the * . properties file, the template will be ignored
by the Pattern Chooser panel.

277 -

Working with Code Templates

Properties Description

\generatePrologueEpilogue |1f true, pre-defined prologue and epilogue will be generated

\pasteClasses ToOneFile Some of the class and interface templates stipulate generation of two classes. If this
flag is #rue, both objects are generated in a single file.

singleOccurrencePerClass | This property refers to the operators and members, and specifies that this operator or
member can occur in the generated class only once.

\patternDescription Contains brief description of this template in HTML format.

doNotKeepTag Contains the tag name that should not be preserved when an object is replaced with
another one. For example, doNot KeepTag=1ink means that the /Zn£ tag should
be omitted in a new link.

Textual pattern Default class is used every time a new class is created. Same refers to the
interfaces, associations, aggregations, dependencies etc., whose names begin with
"Default_". These templates never show up in the Pattern Chooser panel.

The templates make use of macros whose full list and descriptions are provided in the
Template Macros. Each template type handles certain pre-defined macros:

Template type Macros handled

Class %Name%o, %Class_Name%

Member %Name%o, % Type%o, %0Class_Name%o
Link %Name%o, % Type%, %0Dst%

The macros not supported by a certain template type will be ignored by the parser, and such
template will become inapplicable. In addition, each template type handles unlimited number
of the user-defined macros.

Default properties in templates

The template node for each modeling element contains two subnodes (see figure below).
The first is for the default source code, the second is for default properties.

Each template contains a set of default properties whose values you can modify. For
example, the default name is specified in the properties. Thus, to change the default code for
an element, you open and edit the source code node; to change default values of properties
you edit the properties node. (See Editing Code Templates below.)

Caveat

NEVER play around the default templates. Improper modifications can result in
improper functioning of Together, and make it impossible to create classes, interfaces
etc. in the diagrams.

Browsing the available Templates

You can browse through the available Code Templates using the Directory tab of the
Explorer. (It doesn't matter whether a project is open or not.) To see the main template
categories, expand the Templates node. The categories correspond to different programming
languages and IDL variants.

Note that while all templates are available to view and edit, not all templates function in all
products. For example, Java templates don't work in products that support only C++.
Functionality depends upon your product license.

278 -

Working with Code Templates

Each main category has subcategories for class templates, link templates, and member
templates. Expand any node in the treeview to see the available templates. The figure below
shows the structure of the Templates node in the Directory tab, and the default code for the
selected element. This is the code generated for this element... in this case and entity EJB...

whenever a new one is created in the visual model. You can edit this code (see next section)
to change the default source generated for new instances of the modeling element. For
example, for the EJB shown below you could add default declarations for finder or business

methods.
Together 5 -- book_store M= B4
File Edit Search Wiew Select Options Toolz Help

BIhaEa|loc | Xhi | REHae | 8|d|es | L]l

BE E‘[E| public class %Nawme% implements java.:-c.ejhf
Directory private javax.ejb.EntityContext ctx; [|
=] Current Project
= o, public void zetEntityContext(javax.ejb
=0 0 Ctx = context;
= E, !
= H:\
= 0 public woid unsetEntitcyContext()] throm
= ctx = null;
£ Samples }
£ User Projects
= &l Templates public woid ejbictivate() throws jawa.
= cre)
= oL
= ?gVCALASS public woid ejbPassivate() throws Jjava
B Appiet '
&1 BE& _WLE
£ Default_Class public void ejbRewmove () throws java.rm
£ Default_Flrterface ¥
£ Default_Inner_Class
] Default_Inner_Interface public woid ejb3tore() throws java.rmi
] Default_Interface 1
= =] EJB0
1 <= EJB_Entity_Bean_Clas public wvoid ejbload() throws java.rmi.
}
EJE_Entity_Besn | !
£ EJB_Home_Irterface -
£ EJB_Frimary_Key_Cla i
£ EJB_Remate_Interfaca || |24 [[»
[i [» |_ —L%Name%.java |
| Progress | | Insert Lr: 1 Zal: 1

&

Code templates in the Explorer, and the default code for an entity EJB

279 -

Working with Code Templates

Editing Code templates

You can edit the default source code specified by a template, the default values of properties,
or both using the Together Editor. You can open multiple source templates or properties in
the editor at once, thus facilitating clipboard operations between templates. Changes to
source code or properties are automatically saved when you leave the Editor. You can
manually save changes using the File menu or Main toolbar.

Using template macros

You will notice in the default code delivered with Together that several "template macros"
(former blueprint macros) are used. For example the default class code uses $Name%
macro:

p?blic class %Name% }
This macro expands to the default class name specified in the properties (Class by default).
You can use any of the available macros in the code. Template macros are documented in
the chapter Template Macros of this guide.
To open one template for editing:
1. Navigate to the template's node in the Directory tab of the Explorer and select it.
2. Right-click on the node and choose Edit on the speedmenu.
To open multiple templates for editing:
1. Navigate to a template node in the Directory tab of the Explorer and select it.
2. Right-click on the selected node and choose Edit in New Tab on the speedmenu.
3. Repeat 1 and 2 for additional templates as desired.

Applying source formatting

You can configure quite a number of source code formatting options in the Source Code
page of the Options dialog... indenting, comment format, treatment of spaces, etc. Once you
have edited a template to its final state, you can apply the currently configured source
formatting options to the code.

To apply source formatting options:

1. Select the source code node (not properties node) of the template in the Explorer.

2. Right-click and choose Format Source from the Speedmenu.

Using an external editor

You can configure Together to invoke any source code editor. If you prefer to edit templates
using another editor you can easily do so.

To edit template in an external editor:

1. Check to see that you have configured the external editor (Options dialog, Tools page).
2. Right-click on the template node and choose Tools | External Editor on the speedmenu.
See also

Using the Editor

Guide to the Options pages: Tools page

Guide to the Options pages: Source Code page

Template macros

- 280 -

Custom Code Templates

Custom Code Templates

Using Together you can create your own templates and groups of templates, either with an
expert or manually. You can also collect appropriate templates into groups, provide group-
level descriptions and customize the way the templates show up in the Pattern Chooser.

Creating custom code templates
With an Expert

Together provides a handy way to create custom code templates using the Code Template
Expert, which is invoked by the relevant command from the Too/s menu, or diagram object
speedmenu. Considering the selected language, the expert creates template and properties
files according to the rules described above.
In the expert you can:

- specify template properties

- edit template contents, using appropriate template macros.
The newly created templates show up in the Explorer pane. Now you can use them to create
classes, members and links by patterns.
There is a rigid dependency between the template type and contents of the inspector. For
the classes and interfaces a single control with the class name appears in the inspector. The
value of the class name replaces $Name% macro in the template.
For the Links the field "Name" is related to the %$Name$% macro, and the field "Link
destination" is related to $Dst % macro.
For the Members (attributes or operations) there is the field "Name" for $Name% macro,
and the field "Type" for $Type% macro.
If a certain macro is not included into the template body, the corresponding field does not
show up in the inspector. However, manipulations with the pre-defined macros require
special consideration, to avoid producing useless templates.

WARNING: The expert stands guard over the integrity of Together. Default templates used to create
one-click diagram elements, whose names start with "Default", may not be deleted by all means. That's
why, if you select any default template in the wizard tree, Rezove button will be disabled. However,
modification of the default templates is still possible.

Manually

If you so wish, you can modify the code templates by means of editing the relevant files in
Templates folder. In this case you are fully responsible for the correctness of created
templates.

According to the required template type (class, link or member) and language, create a folder
in the appropriate location. The name of this folder should be the same as the name of
template being created. Spaces in the folder name are not allowed and should be replaced
with underscores. Further, when this pattern is displayed in the Pattern Chooser panel, the
underscores in the folder name will be substituted with spaces. For example:
Templates\CPP\CLASS\My pattern.

In this folder create file %0Name%o.h (for C++), %Name%o.idl (for IDL) or %Name%o.java
(for Java), and optional properties file, whose name is the same as the template folder name.
Write your contents of these files. If you want your template to show up in the Pattern

- 281 -

Custom Code Templates

Chooser panel, do not include hideInChooseList=true in the properties file.

Tip : Even if you set this flag false, the Pattern Chooser panel still ignores the template. This line
should be omitted.

The newly created templates show up in Together's Explorer pane with the next start. Now
you can use the new templates to create classes and links by patterns.

Groups of templates

For more convenience, you can gather relevant patterns into folders and provide general
descriptions for the groups of patterns.

To create a folder, click New Folder button in the Code Template Expert and enter the desired
name. Further, using the Pattern Chooser you may want to see group-level descriptions.

To provide a description for a group of patterns, create file description.html under
the folder in reference, and write the necessary information. The description displays in the
Description area of the Pattern Chooser upon restart of Together.

Displaying custom template names

As mentioned eatrlier, templates are stored in folders with appropriate names. However, the
users might want to see more sensible names in the Pattern Chooser, with spaces, quotes
and apostrophes. To do that, add the following line to the template's * . properties file:
patternDisplayName=new name

The new name immediately shows up in the Pattern Chooser, but the actual name still
displays in the Templates node of the Explorer.

It is also possible to rename template folders in the Pattern Chooser. To do that, create file
folder name.properties in the upper-level directory. This file should contain the
only line:

patternDisplayName=new name

Upon restart of Together, the new name shows up in the Pattern Chooser.

Example:

Group of templates Robustness resides in $STGHS /templates/java/class. To
rename Robustness group into Robustness Diagram, create file
STGHS/templates/java/class/Robustness.properties and add line
patternDisplayName=Robustness Diagram

Restart Together, invoke Choose Pattern dialog and observe the new name in the Pattern
Chooser panel.

User-defined macros

In addition to the standard macros, unlimited amount of the user-defined macros are allowed for
all template types. The names of the user-defined macros follow the same syntax rules as the
template folder names (spaces not allowed). Inspector provides special control for each
macro with the name of this macro, and the underscores replaced with the spaces. Example:
Control "Custom Attribute Name" corresponds to the macro

SCustom Attribute Names.

- 282 -

Custom Code Templates

It is possible to assign default values to the user-defined macros. These values initialize
appropriate controls in the Choose Pattern dialog.

To do this, add line
default.sCustom Attribute Name$S=<defaultValue>

to the properties file of the appropriate template folder. The macros without pre-defined
default values are initialized with an empty string.
Choose Pattern - My Test Class

Patterns Parameters

E ;;;\ WWLE Marme | Walug

[E] EJB Cliert Matme Clazs
Bean Custom Attribute Mame |firstName|
ISP
Applet
hlain Clazs
My Test Class
Servlet
test2

| »

Presieyy

public class Class1 {
private String FCustom_Attribute_Mamed;

B

Dezcription

This 15 a test class teraplate

Finizh I | Cancel | | Help

- 283 -

Creating Templates from Diagram Elements

Creating Templates from Diagram Elements

You can create a template based on your existing classes, links or members. Create a class,
populate it with the necessary attributes and operations, and make a template from it.

To do this, select an element that will be a source for a new template, and choose Edit Code
Template command on the speedmenu. This brings in Code Template Expert.

Code Template Expert displays the second page, the language and category of the future
template being automatically assigned based on the selected element.

The treeview of the Templates folder shows only those templates that correspond to the
current category of elements. Press New Template button and specify template name.

Click on the created template name and press Next to proceed with the settings. On this
page of the Expert, press Edit Code Template button. This will bring in the template editor.
Press Insert element text button to enter the source code of the selected diagram element. Edit
the source code, using template macros, format source if needed, and press OK to complete.

1 Edit code template - Default Elnterface

L flacras
public interface 3Name% extends

net.espeak.jesi.E3Service { Sameds
public woid test() throws
net.espeak.infra.cci.exception.E3

WClass_Mameh

InvocationException;

H

jU=erDefinedd
| Eu:urmat Source |
| ik | | Cancel | | Help |

&
The newly created template appears in the appropriate location of the Templates folder.

284 -

Patterns

Patterns

Together delivers a unique capability to extend its functionality externally by using modules
and patterns. Modules are discussed in Developing Extension Modules. This topic explains
how to use the "pre-fab" patterns included with Togezber, and discusses the basic structure of
patterns and points you to information on how to deploy your own patterns.

About patterns

Together patterns are public Java classes that implement

com. togethersoft.openapi.sci.pattern.SciPattern interface.

Patterns are used to create frequently used elements, to modify existing elements, or to
implement useful source code constructions or solutions in your model.

Among the patterns provided with Together there are the Coad Components, GoF patterns
including Visitor, Observer, Singleton, a set of EJB classes for various specifications, a set of
Taglib patterns etc.

Some patterns work only with a specific language. Enterprise Java Bean patterns, for
example, can work only with the Java language. GoF patterns are currently available as
Universal. Other patterns can be applied to any language -
pattern.UNIVERSAL.MEMBER.Stub implementation pattern for example.
Together determines the target language for a pattern automatically, and identifies its
location in the installation. See details below.

Behavior of a pattern is defined by its properties set. The get Properties method
returns a com. togethersoft.util.propertyMap.PropertyMap instance
containing a set of all the properties for the pattern.

The SePattern interface defines the methods that you should implement in your pattern:
apply makes the pattern perform desired actions

canApply checks whether the pattern can be applied to the target object (objects) with the
current values of pattern's properties.

prepare checks if it is possible to apply this pattern to the target object (objects) at all, and
makes some startup preparations for the pattern. It returns true if everything is okay, and
false if the pattern cannot be applied to the target object (objects) at all.
getProperties returns a PropertyMap instance containing a set of all the properties
for the pattern.

Other information about pattern-related interfaces and pattern properties can be found in
the main API documentation (/doc/api folder in your Together installation).

- 285 -

Patterns

Using Patterns

Creating classes and links by patterns

Together makes it easy for you to apply patterns when creating classes or links. To create
classes or links during modeling, you can use the following icons on the Class Diagram
Toolbar:

Tool-tip Icon |Description

Class by Pattern | [ga| [Create a new class using selected pattern to define how code is
== |generated

Link by Pattern ﬂ Create a relationship link using selected pattern to define how code
is generated

Both icons launch the Choose Pattern dialog displaying the available patterns for the
respective operation. You can access Together's predefined patterns plus any that you
implement yourself. The dialog has an "expert" format.

To create a class or link from a pattern:

1. Click the appropriate toolbar icon.

2. If creating a class, click on the Diagram pane to display the Choose pattern dialog for
classes. If creating a link, drag it from the source class to the destination and drop it to
display the Choose pattern dialog for links.

3. Select the pattern you want for the new class or link.

4. If the Next button is enabled, there are properties or parameters for the pattern. Click
Next to display them. (If you know the pattern and want to accept the defaults, click Finish).
5. Set properties or parameters as desired and click Finish.

Note: Users of the Microsoft JVM should note that java . rmi classes, required for
compilation of the EJB pattern, are not present in this JVM.

Caveat

The result of applying a pattern to a class depends on the way it was invoked. If you are
going to create a new class by pattern, make sure you click on the Diagram pane, rather than
on a class shape. In the latter case, the class where you click is regarded as a container class,
and the newly created class by pattern is added as an inner class.

Invoking Choose Pattern command from the class speedmenu enables refactoring of the
class according to the selected pattern.

- 286 -

Patterns

Creating members by pattern

There is no toolbar button for this operation. Invoke class speedmenu and select New |
Member by Pattern. Choose Pattern dialog shows up, where you can select the desired
property pattern. Enter property name and type, and check the boxes for accessor methods
and attributes if necessary.

Choosze Pattern - Property - Pattern properties

Patterns Parameters
=] Patterns Matme Walle
Marme property
6 .
Main methad = int
et method [w]
Set methioo [#]
Attribute [¥]
[E

Description
Property patiern = |
Thiz pattern tmaltes a property skeleton in the specified class. -

| Finizh | | Cancel | | Help |

Choosing a pattern for a Member

You can also apply patterns to control the way implementation code is generated for an
attribute or operation.

To apply a pattern to a member:

1. Select an attribute or operation and select Choose Pattern from its speedmenu. The
Choose Pattern dialog is opened displaying available patterns for members

2. Select the pattern you want for the member. The resulting code displays in the Preview
box.

3. If the Next button is enabled, there are properties or parameters for the pattern. Click
Next to display them. (If you know the pattern and want to accept the defaults, click Finish).
4. Set properties or parameters as desired and click Finish.

The dialog's "Member" node displays patterns that can make the selected member an
attribute, an operation, or even regenerate the code for the property with get and set
method. The "Link" node displays patterns that make the selected member a link.

Note: The Choose Pattern command is enabled only if the selected element satisfies certain criteria that
make possible regeneration without losing significant code. Thus, if an operation already has some code
in its body, the command is disabled.

287 -

Patterns

Refactoring with patterns

You can also refactor existing classes or links replacing an existing pattern with a better one.
You can do this singly, or to multiple selected elements.

To refactor classes or links:

1. Select the element(s) in the Diagram pane. (E.g. select multiple classes).

2. Select Choose Pattern on the speedmenu of the selected element (or one in a group) to
display the appropriate Choose Pattern dialog.

3. As above, select the desired pattern for refactoring, set any properties or parameters, and
click Finish.

Tip: You can also access the Choose Pattern dialog from the speedmenus of Class diagram elements in the
Explorer.

Developing and deploying your own patterns

You can develop your own patterns and reuse them in Together. Patterns are implemented
using the SCI API. To develop your own patterns you will need to study the documentation
for the Together API. (For more information on the API documentation see Together Open
APL) You can also study examples of mature patterns in the

$TOGETHER HOMEs\modules\com\togethersoft\modules\patterns directory in your
installation. To deploy your patterns, you must place them in the proper package under this

directory. For more information and technical specifications for deployment, see the file
S$TOGETHER HOMEs\modules\com\togethersoft\modules\patterns\patternsReadMe
.html.

- 288 -

Java Beans

Java Beans

Java Beans provide a powerful means of reusability. Together enables creating Java Beans
from classes on the Class diagram.

To make the beans visible in diagrams, open the Options dialog, expand the [zew management
node and check the option Recognize Java Beans on the page Java Beans /| C++ Properties. When
this option is selected, the classes with specific bean properties display as Java Bean icons in
diagrams.

Creating a Java Bean from a Class

If you want to refactor a class into a Java Bean, open the Object Inspector and select the
Bean page. This page contains General, Bean Properties and Events tabs.

On the General tab you can check the Beanlnfo option to generate the BeanInfo class, and
choose Serializable to save and restore the bean's state. Alternatively, providing persistence is
full responsibility of the class itself.

On the Bean Properties tab you can create or delete properties using the .Add/ Remove buttons.
Checking appropriate flags for the selected property adds accessor methods and indexed
getter/setter methods to the bean. In addition, it is possible to create bound and constrained
properties.

The Events tab is designed for handling the bean event sets: choose between multicast or
unicast modes and create fire methods.

Properties of Class2 |
rEru:uper‘ties rﬂyperlink rEiew rgescriptiu:un rgavaduc rHIMdeu: rﬁequirements |/Elean|

Auded
Matme | Type | Getter | Setter | Attribute|Ind.Geﬂerhnd.Seﬁer | Bovncd |C|:unstrained
property it Elu v v o O M @

General | Bean Properties LEverrts |

As soon as a bean property is added, the class involved displays as a bean icon.

Recognizing Bean Properties

The Recognizing Java Beans option is applicable to the entire project. However, it is possible to
switch this possibility off for certain classes, or for particular methods of a class. To do this,
add the following comment to the source code next to the import statements:

/** @notBean */

In the same way, the comment /** @notProperty */ cancels recognition of a
method as a bean property.

Bound and Constrained events

Java Beans may have bound and constrained events, which are not accessible for
modification from the bean Inspector. If bound or constrained options are selected for a
certain property, propertyChange and vetoableChange event sets add to the bean. However, these
methods are not displayed in the bean icon and show read-only in the inspector (the Remove
button is disabled, and Uwicast/ Fire Methods flags are not available).

On the other hand, you can easily delete these methods from the source code in the Editor
pane. In this case, the content of the object Inspector changes appropriately.

- 289 -

Generating Project Documentation

Documentation Generation

Generating Project Documentation

Together delivers a wide variety of documentation generation options. Regardless of the
option you choose, your system documentation stays accurate and up to date.

In this chapter you will find detailed information about DocGen commands, features of the
Documentation Template Designer, and creating multi-frame documentation. In addition,
useful information about the internal variables and functions is provided in the sections
under DocGen and DocDesigner Reference in the Table of Contents.

Documentation Generation commands

Doc generation commands are available on the Tools menu:
- Generate HTML
- Print Documentation
- Generate using Template
- Design Template

Generate HTML documentation

HTML doc generation produces JavaDoc (tm) compatible output. The resulting
documentation is net-ready, complete and up-to-date. It is quick and easy to produce and
update. Selecting this command on the Tools | Documentation menu invokes a dialog
window. See Generate HTML topic for description of controls.

Print Documentation

This command displays Print Documentation dialog, that allows to select the range of
documents for printout, and the printout destination. You can choose between a printer and
PDF file.

Generate Using Template

Use this option to generate documentation based on an existing or specially designed
template. This command invokes Generate Documentation by Template dialog. It is
possible to choose the desired output format. In particular, generation by template allows to
produce documentation in RTF format. Doc Generation and Design module provides
mature templates for various diagram types, templates for multi-frame documentation etc.
You can find them under modules\gendoc\templates folder of your installation.

Design Template

Together provides a powerful and flexible tool to create the most sophisticated
documentation templates that can be further used for doc generation. Refer to the template
topics for detailed explanations and examples.

-290 -

Overview of GenDoc concepts

Overview of GenDoc concepts

This topic outlines the main notions of the documentation generator and designer. Template
Designer allows to create user-defined templates, which can be used to generate future
documentation. Template Designer produces a textual file *.tpl with html-type structure.
This file contains special tags describing all template parts and elements.

Zones and Areas

GenDoc divides a generated document into 5 major zones:

Document Header
Page Header
Details Zone

Page Footer
Document Footer

The Details Zone represents all the document data and breaks it up into a sequence of
document areas. When GenDoc generates a document, it produces a flow of areas and
writes them sequentially into the document's stream.

Report Header/Footer are the areas created only once per document. Page Header/Footer
are the areas created once per page.

Every document area in the generated document always has a prototype definition in the
GenDoc template, which is called the template area. Each template area describes the data to
be placed in the particular area of the report.

When GenDoc executes a template, it sets a flow of template areas by which it produces a
flow of appropriate areas in the generated document. All areas in the template are organized
into template sections.

Template structure

The GenDoc template contains a set of sections arranged in a particular order. Each section
plays the role of a specific command to the GenDoc's processor. Thus, when a template is
executed, GenDoc acts like a computer processor, but instead of machinery code
commands, it "executes" the template's sections that constitute section flow.

All sections in the template are organized in a number of ordered sequences, or sectzon scopes.
The Detail Zone of the template represents the rvof section scope. Sections of some types may
contain their own section scopes. Thus, the whole template may be represented as a tree of
nested section scopes. You can see this tree in the left panel of the GenDoc Template
Designer.

When processing a template at any particular moment, the GenDoc processor executes the
section scopes and consequently visits every section. It starts from the root section scope of
the template. If a compound section is encountered , GenDoc saves the current position in
the cutrent scope, enters the section's scope and after completing, returns to the pervious
one.

Not all visited sections are necessarily executed. Some sections may have a special condition
and can be skipped if the condition is not true. In addition, for any template section you can
define a special enabling condition which can dynamically switch this section on/off. Thus, it is
possible that no document areas are generated when section scope is processed. This
situation is called a section scope without ontput.

-291 -

Overview of GenDoc concepts

Section types

Sections differ in destination and their ability to contain other sections. Nested sections are
inserted in the current section and are located on a lower level than the current one. Sibling
sections are parallel to the current section. They are inserted on the same level as the current
section.

Static Section

Static Section is the simplest section type. It is intended for plain information output and
represents an atomic unit of output in the Template Designer.

Element Iteration Section

Element Iteration Section is similar to a loop in a programming language. It provides traversing
through all elements of a certain type. Static sections are used inside an element iteration to
produce output. The element iteration section can contain static sections, folder sections,
element property iterators, other element iterators and stock section calls.

Property Iteration Section

Property Iteration Section is used to iterate through the current model element's RWI-properties
and display their values. Along with the current model element, there is a current RWI1-property
which has a definite value inside the Property Iterator's section scope. Property Iteration
Section can only be used inside an element iterator and can contain stock sections, folder
sections and stock section calls. It cannot contain other element property iterators of
element iterators.

Actually, these section types are quite sufficient for most needs. However, to optimize the
template structure template design process, GenDoc introduces additional section types:

Folder Section

Folder Section structure is similar to that of Iteration Section. It contains a section scope and
may have header and footer areas. However, it doesn't change the current element inside its
section scope. When GenDoc enters a Folder Section, it always passes through the scope
only once. The Folder Section can be used to group several consequent sections into a
separate section scope. This allows to define a common enable condition for the entire
scope, and to insert header/footer areas if the internal section scope produces output.

Call to Stock Section

In order to optimize templates, some frequently used constructions (designed as Static,
Iteration or Folder Sections) can be defined only once and placed into the template's stock.
Such sections are called S7ock Sections.

Once defined, a Stock Section can be called from different places of the template. It behaves
like a procedure in conventional programming languages. To create a call to a Stock Section, the
Call to Stock Section should be inserted in a section scope and adjusted to the particular
Stock Section being called.

When GenDoc processes the template, the effect of this call is the same as if the called

Stock Section were present just at the position where it is called from. Stock Section allows
calls to itself inside its body. This feature enables a unique possibility to generate output for
model elements with recursive structure (like States on State Diagram, or Inner Classes).

-292 -

Overview of GenDoc concepts

Call to Template

This kind of section allows to start a separate generator for a different template without
terminating the current one. The root element passed to the generator is the current element
of the calling template. The new generator can be started in two different modes:

- To generate a separate document. This feature is especially important for generating

multi-frame HTML documentation consisting of separate HTML documents,

extensively linked together.

- To generate output into the common stream of the calling template. In such a case

the called template behaves like a Stock Section. (This feature is not implemented yet.)
Both features can be used simultaneously for the same called templates. This makes it
possible to construct a library of templates for generating documentation for particular
model elements (Class, Actor, UseCase, etc). Calling pre-designed library templates, you can
quickly construct templates for more general reports (like "ProjectReport”, "ClassReport",
etc) intended for both multi-frame HTML output and flat RTF printable documentation.

Controls

Controls are template elements that perform actual information output. These elements can
only be included in the static sections.

Label

Label represents a permanent text. For example, if you want "Class" text to be displayed
before the name of each class, use a label control.

Image

This control is used to insert images in the reports. There are two possible types of images:
static images (*.gif, *.jpg or other formats), and Diagrams. The latter type is specially
designed to insert the current diagram in the reports.

Panel
Container element that can include other controls.
Data Control

This is the most important control type because it contains information you need to see in a
report: documentation, name, stereotype, version, package, author etc. There may be two
different types of data source for this control:
Element property - In this case, a name of a specific element property should be set for
the control. When GenDoc executes this control it requests the "current" model
element for the value of property with the specified name.
GenDoc variable - Each variable represents specific GenDoc internal information. To
connect the data control with a specific GenDoc variable, the "variable" data source
should be selected and the appropriate variable name should be chosen from the list
of the variables available in this place.

Note: The information you can insert in the Data Control always depends on the Element Iteration
area you are working in. For example, you can't have stereotypes in a Page Header's data field.

-293 -

Overview of GenDoc concepts

Formula

Formula control is the most powerful information output facility. Using formulae makes it
possible to display data in a convenient way. For example, declaration of C++ classes and
members is displayed in the java format. However, a specially constructed formula can show
a correct C++ declaration.

Refer to the topic DocGen functions in formulae expressions for detailed information.

Meta Model

Metamodel describes how diagrams and elements are organized on the RW1I level:

- which ShapeTypes correspond to which elements

- which elements can be contained in a particular model element

- which properties an element can have
Metamodel for GenDoc is represented by the configuration file MetaModel .mm under
modules\com\togethersoft\modules\gendoc\templates folder of your
installation. This file contains a tree of all possible elements and their properties. The root of
this tree is a Model that contains so-called metatypes. Each metatype has a special
description arranged according to the following scheme:
<metatype>

name=PACKAGE -->> metatype name
extends=ELEMENT -->> parent metatype name

rwi entity=package -->> related RWI element
full name="Package" -->> name displayed in the Template Designer
properties = -->> properties available for this metatype
{ $fullName; -->> RWI property
$package; -->> GenDoc property
stereotype; -->> other properties
alias }
contained metatypes = { PACKAGE; -->> possible child metatypes
CLASS;
INTERFACE;

ASSOCIATION LINK;
DEPENDENCY LINK;
CLASS DIAGRAM;
STATE DIAGRAM;
INTERACTION DIAGRAM;
ACTIVITY DIAGRAM;
COMPONENT DIAGRAM;
DEPLOYMENT DIAGRAM;
USECASE_DIAGRAM;
BUSINESS PROCESS DIAGRAM;
ER DIAGRAM }
</metatype>

294 -

Using the Documentation Template Designer

Using the Documentation Template Designer

Main menu

Documentation Template Designer's main menu contains four commands.

File provides usual file operations (creating new templates, opening or re-opening existing
templates, saving changes). Options command invokes Templates Options dialog, which
allows to define template settings.

Obyject is only enabled when en element iteration section is selected in the scope pane and
provides operation with the current section. Properties command displays the properties of
the currently selected section. Commands Insert Sibling / Nested section allow to insert
section parallel or lower level section in
relation to the currently selected one. Besides
that, you can delete, copy and move the

Documentation Designer - [... [l{[=] E3

File Ohject Stock Help

current section, and add header or footer to |

the section for the sake of better readability. —|Fage Header

Stock command provides operations with stock

sections. —|Report Header

Help shows up this topic.

To start Documentation Template Designer, =|Elemert iteration [feration by "Package” -
choose Tools | Documentation | Design

Template on the main menu, or press Design -
button in the Documentation Generator. You “TRenort Footer 1 4 L] I

can create a new template (File | New) or |
modify an existing one (File | Open).

Note: If you launch the Template Designer by the Design button, the project must be already opened.
Template Designer will automatically open the project specified as default in the Template name field.

Template Settings

Creation of a template starts with setting
up the template parameters. File |

Options command invokes a dialog with
a set of tabbed pages. FEEE SIEE (1]

Page Type: | Letter ™ | WMidth: |85

Template Options
Formatting Styles rTempIate Parameters |
Genersl |T Page Settings [

i

General tab allows to specify template Height: [11
name, select root object, and toggle the
usage of headers and footers. On the

Page Settings tab you can specify paper Lett [1. Right:
size and type, page orientation, and Top: li Bottom:

margins. Formatting Styles tab serves to
define own styles. The notion of styles is Page Oriertation

similar to that of MS Word. This @ Portrat () Landscape
involves font style, size and color,

paragraph settings, and border type. |

Page Marging in.)

DD

Ok | | Cancel

- 295 -

Using the Documentation Template Designer

Template elements

Element Iteration

The next step is to determine the sections of the new template. Properties command on the
section speedmenu displays section properties dialog.

The most important is the MezaType tab, Elme: s
which enumerates all available metatypes. Sorting |/Output Style |/Other |
The metatypes included in this list are MetaTvpe ||/ Scope Cptions |

defined in the Metamodel file. To provide
the most general iteration, it is advisable to
select iteration by Package, or Diagram
(generic) as the main section.

Activity Diagram
Business Process Diagram
Class

Class (Deneric)

Class Diagram
Component Diagram
Deployment Diadram
Diagrarm (generic)
ER-Diagram

Element faenerich

[C] Al contained MetaTypes

Sorting and Scope Options tabs allow to set up
sorting and filtering modes. The most
common way suggests to sort elements by
type, and within a certain type sort them by
name. The elements are always sorted in
ascending order.

On the Owtput Style tab you can define the
way of presenting information in the
resulting report. Possible options are: | ok | | Carcel |
paragraph, text or table.

1]

Paragraph : new paragraph is created for each new element

Delimited Text Flow: all elements are included in the same paragraph. In this case
delimiter type should be specified.
Table: each element occupies a separate row in the table. The title row is located in the
Header section.
The tab Other is also very important. Proper setting of the left indent spares you from further
headaches about indents for controls. The left indent is calculated in relation to the container
section indent, rather than to the physical paper border. Enabling condition is a type of filter

that defines if an iteration will be displayed or skipped. If a whole section needs to be
skipped, check the flag Disabled.

- 296 -

Using the Documentation Template Designer

Element Property Iteration

Having created an element iteration section, we can organize iteration by element properties.

The tab Izeration Scope allows to select the range of iteration from the dropdown list. Possible
options are:
Set of Properties is the most commonly used
mode. It is possible to select one or
several propetties to be iterated. [teration Scope |[Output Style | Other |

All User-Defined Properties mode is used for | Seope: ||Set of Properties vl

the properties that are not described in

Element Property Iterator

A) Alias All Uzer-Defined Propetties
the metamodel. If this mode is selected, — ,
. Annot of Propetties
the dialog shows two checkboxes. The . A
] ’ oty nEtances of Single Property
tlag Eixclude already iterated properties allows = =
to omit properties that were already Documentation =hardcoded=
iterated for the current element. The flag Fullname =hardcoded=
Iterate only unknown properties includes those Hyperlinks to Elements <hardcoded=
properties only that were not included in Hypetlinks to URL
the metamodel. Mame =hardcodeds=
Instances of a Single Property is a very useful ShapeType =<hardcodeds=
tool for the properties that can have
multiple values, for example, @see or el | | e
@author.

Using Stock Sections

As mentioned in the Documentation Designer Overview, stock sections help present the
information that is repeated for various elements. Szoc& command of the Template Designer
main menu provides operations with the stock sections.

Create
To create a stock section, choose Stock | New on

the Template Designer main menu. It is possible to
create an element iterator, a folder section, or to

Documentation Desi... [l[=] E3

File Ohject Stock Help

insert a copy of a stock section from clipboard. ([E2] <Mename= [& Constructor |
Each new stock section adds a tab to the Element iteration | fteration by "Constr| a
Documentation Designer window, and joins the list | =|Header '
of available stock sections.
Egtat“: SEI ‘\\.\\\\\\\\\\
Pt e o
| =|Faater

297 -

Using the Documentation Template Designer

Edit / Delete / Copy / Paste

Stock | Edit command on the Template Designer main menu displays the list of existing
stock sections.
Stock Sections
Class (denetic)

Constructor
Copied Class section

Eclit Delete Copy Close

Edit button displays selected stock section in its tab. De/ete button removes selected stock
sections from the list, and deletes their tabs from the Template Designer window.

Copy / Paste operations can significantly speed up the process, when you have to create
similar sections. Select the source stock sections from the list and press Copy. Thus, they are
placed to the clipboard. Paste adds copies to the list of stock sections with automatically
generated names (for example, Class - Class1).

Call

Once the stock section is created, it can be called from the template. To do so, right-click on
the section where the call should be placed, and choose Insert Nested / Sibling Section |
Call to Stock Section on the speedmenu.

Show / Hide

There is no need to show all stock sections at once in the Template Designer Window.
Right-click on the stock section tab name and select Close to hide this tab. To display a stock
section, right-click on the call to the desired stock section and select Show Stock Section on the

speedmenu.
Label Control E

rLabeI |/F-:|r|t |/C|:|I|:|r rEDrder rHyperLink |/Other |

Inserting and Formatting Data

Actual data output is performed by
the Static sections where certain Biatang w | |[1d = | Mo Undetline -
controls are inserted. To insert data,
right click on the background of a v Bold [] talic [] Strikethrough

static section, header or footer and Test Slignment
choose Insert Control on the

speedmenu. This command lets you :H:
create an element exactly at the
position where the box appears.

Insert Control command shows up a
dialog with a number of tabs,
depending on the control type, that
enable flexible formatting of the
tield. You can also right click on a

data field and choose Properties
command on the speedmenu. Example Text

| 2k || Cancel |

- 298 -

Using the Documentation Template Designer

Font

Select font family, style and size, and text alignment. All settings are applied to the entire text
in the field.
Note: After you finished, click Ok to apply formatting to the field

Color

Pick the desired color and using the left/right mouse button, change the text color/fill with
selected color.
Note: If the background color in the text window is hatched, it means that background color of this
field is transparent. To specify a colot, first uncheck the Transparent option.

Border

Here you can set the border color and thickness of the label border lines one-by-one or all
together. This features will help you when you want to highlight an element which is
important for you.

Note: Use the "Preview box", which reflects your selections, to synchronize all changes you make with
the typed text.

Displaying Custom Properties in Generated Documentation

The information included in the generated documentation may cover object properties. One
possible way to include custom properties in the generated output requires to add these

properties to the metamodel of an object. Data Control =
Thus properties become visible in Somre tab | i >

of the Data Control dialog. In case of need, Calar |/Elnrder rHYPEVLin |/0lher |
you can use regular procedure of inserting Source Font |
data to iterate by certain properties. Fti Sy | B e e e -
For example, you can add a property as ST
. -
described in Customizing Properties —
. Steraotype
Inspector section, add same property to the _
. . Versioh
appropriate section of the MetaModel.mm visibility
isibili

file, and see this property in the list of

available properties abstract =boolean, hardcoded=

final =hoolean, hardcoded=
myTestProperty B
persistent =hoolean=

public =hoolean, hardcoded=

The other way doesn't require any hacking to
the metamodel, but instead suggests using
DG functions in formulae expressions. The

function get Property (name) allows to static <hoalean, hardcaded= -
obtain any property, where it is included in i
the metamodel or not. Ok | | Cancel

-299 -

Using the Documentation Template Designer

Tips and Tricks

Moving sections up/down

Every section is being inserted according to the place of your clicks and right-clicks in the
Scope pane. If the current order of sections doesn't fit your requirements you may delete the
section and insert it again into another place or use "Move up/down" options. These actions
are available on the speedmenu of the target section

Setting attributes

To set attributes like type, color, label, etc., of an element, choose Properties on the
element's speedmenu. Even if you select more than one element can set the properties of
only one element.

Aligning elements

If you want to align a set of elements, e.g. make them centered or left-aligned, etc. select the
elements you want to align, and choose one of the alignment options: Left Side, Right Side, Top
Side, Bottom Side. There are three more options in this menu: Make same width, Make same height
and Make same size. Use them for a more confined form of the zone.

Enabling Conditions

This option is used when the user wants to hide a section (it may be done by checking
"Hidden" box) for one session only. For example: in your created template, right-click on
the first Static section of the Element Iteration section, and select Properties. In the Enabling
Condition field you'll see the value < ! $fullName="'" >. It means, that the root
package name (in this situation) will be not printed, though for all other packages (except
"root"), this option will be ignored.

Resizing fields

To re-size a zone/area, position the cursor over its split bar. After the cursor takes the shape
of an arrow, click the left button and drag and drop the split bar to its desired position.

Collapse/Extend zones and sections

After you finished working with a zone, for a better navigation in the left pane, Collapse
(click on sign "+") or Extend (click on sign "-") located in the upper-left cornet of each zone
or section.

Multiple items selection

To select more than one item (labels, data controls, images) from pop-up lists or sections,
keep "Ctrl" key pressed.

Note: Sometime, you'll need to have Scope option set to "Set of properties".

- 300 -

How To Create Custom Documentation Template

How To Create Custom Documentation Template

Start Template Designer, create a new file and save it as ecm. tpl. This name displays on
the template tabbed page.

Page Header (first zone)

Right click on the white background of the Header to add elements. Select Insert Control |
Label and enter "Page". This adds Page field, which will appear within the header zone.
Select Insert Control | Data Control. Make sure that Data Source is set to Document Field.
Choose Page Number to prints numbered pages.

Repeat the above steps to add "of" Label and a Data Control field Nuwmber of pages .

Note: You can insert Page Number control in either the Page Header or the Page Footer zone, but not
in any other zone.

EIF'agE: Header
——————— M T A e e o et et
11 1 1

Save Changes. Don't forget use File | Save command of the main menu when you are
finished making adjustments to your template. Otherwise all changes will be lost.

Report Header (second zone)

Add a Label containing a Project Name. In the Color tab of the Properties dialog choose
background and text colors.

Select Insert Control | Data Control, making sure that Data Soutce is set to Generator's
variable. Choose Pryject name and Current date/ tine.

F-:EeF:u:nr't Header

Element Iteration (third zone)

Right click on the Element Iteration zone of the Scope pane and choose Package in the
Properties | Metatype. This creates an Iteration by Package, which means that all
documentation will be built by packages. Number of iterations will be equal to the number
of existing packages.

Note: when creating a new template, "Iteration by Package" is set by default.
In the Static Section field, create a panel (Insert Control | Panel). After re-sizing the panel
window and setting background color, right click within the panel, add a Label and enter the
name "Package". Now your report will write the word "package" for every encountered
package.
To make the report write each package name, add Data Control, select Element Property as the
Data Source, and choose Fu/l Name from the list of element properties. You can specify a
Default text, in case a package has no name, or you can leave this field empty. Click Ok, re-
size, then choose the position within panel when you want the data will appear. The report
will write a full name for each package.

Note: You will not see the root package, so this will be the first shown and without name.

- 301 -

How To Create Custom Documentation Template

—|Element iteration | teration by "Package" -

Creating Property iteration section

Insert a Sibling Section for the Static Section. To do so, right click on the Static section in
the Scope pane and select Insert Sibling Section | Element Property Iterator. Choose
Documentation in the Iteration Scope tab of the Properties. This name will appear in the
beginning of this section.

To add data, right click on the Static section field and select Insert Control | Data Control |
Source | Documentation.

Creating Folder section

It is advisable to create a Folder Section, which will be used to include brief contents of
project diagrams in your report .

To create a Folder Section, right click on the Property Iteration and select Insert Sibling
Section | Folder Section. This section goes next to the Property Iteration section.

Note: If you decide to create the Folder Section through Element Iteration, the section will be created
behind all other sections.

Insert all sections for which you want to have brief information. All subsequent iterations
should occur within the Folder Section. Hence, you can add each element iteration in two
ways: by inserting a Sibling Section for the Static Section, or by inserting a Nested Section
under the Folder Section. It strongly recommended to put diagrams first, before any other
elements.

Suppose you created a Class Diagram first. First of all, insert a Header to delimit one
element iteration from another. Click on Element Iteration in the Scope pane and select Add
Header. In Header's field, insert a Label called "Class Diagram". Next, right click on the
Static section's field in the Area pane and insert an image.

Note: Make sure that Image type is static.

Same way add a Label called "Diagram" and a Data Control for it (Name in the Data Source
| Element Property by default). For a better design, arrange element positions in this field.
Perform same steps for State, Interaction, Activity, Component, Deployment, Use Case,
Business Process diagrams, and also with Subpackages, Classes, Interfaces.

Note: For subpackage, class and interface, use Full Name instead Name in Data Control settings.
Delete the first Static Section within Folder Section since it's empty. For this, click on it in
the Scope pane and select Delete.

Add more Element Iterations in the Folder Section. Use Cut, Copy and Paste for increasing
speed.

- 302 -

How To Create Custom Documentation Template

Iteration by Class Diagram

Within the first Element Iteration (Iteration by "Package"), after Folder Section, you have to
create Element Iteration sections for each diagram and diagram element. These fields will
display information about classes, attributes, and interfaces, depending of the diagram type.
Our example goes as far as only the class diagram.

Relative to the last created section (Folder Section), create a new Element Iteration section
(Insert Sibling Section | Element Iteration) for Class Diagram. First, add a Header section
with a Label called "Class Diagrams".

Same way as for the Class Diagram in Folder Section, insert a static image, a Label called
"Class Diagram" and a Data Control called "Name". Use the copy / paste optlons

[=|Falder Section [Falder Section -
|_Elemer|t ite |rterat||:|n b‘:.-' "&ctivity Diagram'
EHeada
i s
i i
LooActivity Diagram o1 1 Full nane
i i
[R g A i b e o
— | Static §
—|Elemerit ite teration by "Class Diagram" -
|: H = d = S i s i 5 Q'\."\.'\."\.'\.'\.'\.'\.'\.'\.'\."\.\\\\\\\\\\\\\\\\\\\'\\\\\
: |
i LI
! Claszs Diagram P E Nizie
\
i B
e e e e - ,\\\.\..\.\..\.\..\.\..\.\..\.\..\.\..\.\..\.\..\.\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\\\\-\\\\\\\\\\\\\\\\-\\\\\

Creating "Diagram description" stock section

Next, you have to describe the diagram e.g. to parse it. For that, you can write a Stock
section, actually the best way to insert data into template. A stock is used when you have
some diagrams with similar configuration, so you don't have to design them twice. It's
enough to call a Stock section containing the description.

Select Stock | New | Folder Section from the Main menu and enter "Diagram description"
in the New Stock Section dialog. In the Area pane right-click on the Folder Section and
select Properties. You'll see a pick-list of all possible elements used in Together where you
should choose Diagram (generic), as the most common description of a diagram. New tab
"Diagram Description" adds to the Template Designer window.

In the first Stock static section, insert an image with "Diagram" as Type. This will add the
class diagram image into the section.

Under the first Static section, add a Sibling Section | Element Property Iterator. Right-click
on the split bar and choose Properties | Documentation to select a name for this area. For
data, click with the right mouse button on this area, and select Insert Control | Data Control
| Documentation. Re-size.

To obtain more information about parsed diagram, you have to insert another Element
Property Iterator section, which will contain your specified data. Suppose your area name is
"Stereotype, Alias".

Note: To select more than one element in Element Property Iterator pop-up dialog, make sure that
Scope option is set to "Set of properties". The multi-select is activated by pressing "Ctrl".

- 303 -

How To Create Custom Documentation Template

For data, you have to add two corresponding fields. First, make sure that in Data Label pop-
up window, Data Source option is set to "Variable". Click on "Full name of current
property"” to select first field, and "Value for current property" for the second. Re-size.

Add an empty Footer to better separate the stock section.

Return to the eo.#p/ tab and right-click on last Static Section of the Scope pane to insert a
Sibling Section | Call to Stock Section. Complete pick-list of all available Stock sections
shows up. Select the last created one and click Ok.

Creating "Diagram Contents Summary" folder section

Now you may want to insert a brief content of the class diagram. To add a new Folder
section within this diagram, follow the same steps as for the whole project. For example, let's
create the first element iteration. Name it "Iteration by package reference". First, create a
Header, and insert into it a Label, named "Package nodes". Then, create a Static section and
as Data control, select "Full name" of the element property.

Continue with Class, Interface, Object, Actor and Use Case. Now you have a brief
description of all elements of the Class diagram so you can describe each of them, one-by-
one. This is how it's done:

Creating "lteration by "Package reference""

Create a new Element iteration section. For that, right-click on last created Folder section (in
the Scope pane) and choose Insert sibling section | Element iterator | Package reference. In
this section, you'll be able to describe every founded package in a Class diagram.
1. Add a Header for this new created section containing one Label Control named:
"Package Node Detail". Recommendation: For a better design, choose a color and fill
it. Re-size.
2. In the Static section, insert a Label Control (right-click on its area and select Insert
control | Label control). Call it: "package". Then, add the corresponding Data control
by selecting "Full name" in the Element Property box. Recommendation: for a better
design, insert a small image at the beginning of the area.
3. In the Scope pane, click on Static section and insert one Property iteration section.
This will be used for describe all package documentation so in this section area, click
on Property iteration, select "Properties”" and choose "Documentation”. Then, insert a
Data control (). Set Data source option to "Variable" and choose "Value of current
property".
4. Create one more Property iteration section. In the Element properties pop-up
window, select all items except Documentation, Name and Full name. Note: Make
sure that Scope option is set to "Set of properties".
5. Then, add two Data controls: "Full name of current property", and the second one:
"Value of current property". Note: Make sure that Data Source option is set to
"Variable".
0. In the Class diagram, packages may be connected with other elements through
relationships. So, you need to describe all possible links (related to packages) too. Very
often, those links you'll have to use in other diagrams, that's why it makes sense to
create for them Stock sections. This is the optimal method, though you can choose the
slowly one: Click on one Property iteration section, select Insert sibling section |

Element iterator and one from those three links will appear.
Note: You have to perform these steps every time you have to add a link description. Below, we'll
continue with the first method.

304 -

How To Create Custom Documentation Template

First, you have to create a Link description stock section which describes the basic features
of a link: destination and source. Using that, you'll be able to create another stock section,
for all links just by adding theirs particular characteristics to the basic ones.

Creating "Link description" stock section

1. Select Stock | New | Folder section. Enter "Link description" in the pop-up dialog,.

2. In the Area pane, right-click on Folder section and select "Properties”. From the
pop-up list, choose "Link (generic)". Note: "generic" means, that this is the basic
description for a link.

3. Right-click on section area and insert two Data controls: "Shape type of link
destination" and "Name of link destination"; Note: make sure that Data source option
is set to Element property.

Creating "Generalization links" stock section

1. Select Stock | New | Element iterator | Generalization link.
2. Add a Header and within it a Label. Name it : "Generalization link".
3. Insert a Call to stock section. Choose "Link description" from the pop-up box.

4. Add a Property iteration section. Select "Documentation” from the pop-up box.
Then, add two Data controls: "Full name of current property", and the second one:

"Value of current property". Note: Make sure that Data Source option is set to
"Variable".

Creating "Association links" stock section

1. Select Stock | New | Element iterator | Association link.

2. Add a Header and within it a Label. Name it : "Association link".

3. Insert a "Call to the stock section". Choose "Link description” from the pop-up
box.

4. Add a Property iteration section. Select all items from the pop-up dialog except
these ones: "FullName of link destination/source", "Name of link
destination/source", "Shape Type of link destination/source". Note: Make sure that
Scope option is set to "Set of properties".

5. Add two Data controls: "Full name of current property", and the second one:

"Value of current property". Note: Make sure that Data Source option is set to
n : n
Variable".

Creating "Dependency links" stock section

1. Select Stock | New | Element iterator | Dependency link.

2. Add a Header and within it a Label. Name it : "Dependency link".

3. Insert a "Call to stock section". Choose "Link description" from the pop-up box.
4. Add a Property iteration section. Select next all items from the pop-up: "Client
Role", "Documentation", "Stereotype", "Supplier Role". Note: Make sure that Scope
option is set to "Set of properties".

5. Add two Data controls: "Full name of current property", and the second one:

"Value of current property". Note: Make sure that Data Source option is set to
n : n
Variable".

- 305 -

How To Create Custom Documentation Template

Creating "lteration by "Class

1. This section will be used for describing any founded class in a Class diagram. There
are only three sub-sections used here:

2. A Header: within it, insert a Label Control and name it: "Class Node Detail";

3. A Static section: first, add a Label Control, named "Class". Then, insert a Data
control. Select "Full name" from pop-up window.

Note: make sure that Data Soutce option is set to "Element property".
Creating "Class Node Description" stock section

1. Select Stock | New | Folder section. Enter "Class node Description"” in the pop-up
dialog.

2. In the Area pane, right-click on Folder section and select "Properties". From the
pop-up list, choose "Class".

3. Right-click on Folder section in the left pane and select Insert Nested Section |
Element property iterator. Then right-click in the Area pane on the created Property
iteration and select Properties | Documentation. Next, right-click on this section area,
and add a Data Control named "Value of current property".

Note: Make sure that Data Source option is set to "Variable".

4. Add one more Property iteration section. Click on it in the Area pane, and choose
next items from "Properties": "Author", "Author's URL", "Deprecated", "Note", "See
Also", "Since" and "Version".

Note: Make sure that Scope option is set to "Set of properties".

5. Add two Data controls: "Full name of current property", and "Value of current
property".

Note: Make sute that Data Source option is set to "Variable".

0. In the Scope pane, delete the empty Static section, created by default by the Stock
section.

7. Now you have to add all possible links for a class. Since you have created Stock
sections for all of them , it will be easy to insert them. Just right-click in the Scope
pane on the Folder section, and select Insert Nested Section | Call to Stock Section.
Follow these steps, when adding "Generalization links", "Association Links",
"Dependency Links" and "Implementation Links" stock sections.

Note: To create "Implementation Links" stock section see "Creating "Generalization links" stock
section”.

Creating "lteration by "Interface

This section is similar to "Iteration by Class" except for the Label name from the Header,
which is "Interface Node Detail".

Creating "lteration by "Object (of Class Diagram)

1. In the Scope pane, right-click on the last created "Element Iterator" section, and
select Insert Sibling Section | Element Iterator | Object (of Class diagram). Note:
Notice that a Static section was created by default.

2. Add a Header with a Label Control within it. Name this Label: "Object Detail".

- 306 -

How To Create Custom Documentation Template

Creating "Object Description" stock section

1. On the Main Menu choose Stock | New | Folder section and enter "Object
Description" .

2. Open Folder section properties, and from the pop-up list select "Object (generic)".
Note: This is the most common description for a object.

3. In the created Static section, add an "Object" Label Control and "Name" Data
Control. Note: When inserting Data Control, make sure that Data Source option is set
to Element Property.

4. Right-click in the Scope pane and insert a Property Iteration section. From its
Properties select "Documentation". Then, in its Static section, insert a Data Control.
From the pop-up window, choose "Value of current property". Note: Make sure that
Data Source option is set to "Variable".

5. Create one more Property Iteration section. From its Properties pop-up window,
select all items except "Documentation" and "Name". Note: Make sure that Scope
option is set to "Set of properties".

0. In the Static section, add two Data controls: "Full name of current property", and
the second one: "Value of current property". Note: Make sure that Data Source option
is set to "Variable".

7. Add a Footer.

8. Add a "Call to Stock Section". Choose "Object Description".

9. Repeat this step to add two more calls for stock sections: "Association Links" and
"Dependency Links". Note: they already have been created.

10. Delete the empty Static section which was created by default (see above).
Creating "lteration by "Actor""

1. In the Scope pane, right-click on the last created "Element Iterator" section, and
select Insert Sibling Section | Element Iterator | Actor. Note: Notice that a Static
section was created by default.

2. Add a Header with a Label Control within it. Name this Label: "Actor Detail".
Creating "Actor Description" stock section

1. On the Main Menu choose Stock | New | Folder section and specify "Actor
Description".

2. Select "Actor" from the Folder section properties.

3. In the created Static section, add an "Actot" Label Control and "Name" Data
Control.

Note: When inserting Data Control, make sure that Data Source option is set to Element Property.
4. Right-click on the Scope pane and insert a Property Iteration section. From its
"Properties" select "Documentation". Then, in its Static section, insert a Data Control.
From the pop-up window, choose "Value of current property". Note: Make sure that
Data Source option is set to "Variable".

5. Create one more Property Iteration section. From its Properties pop-up window,
select all items except "Documentation" and "Name". Note: Make sure that Scope
option is set to "Set of properties".

- 307 -

How To Create Custom Documentation Template

0. In the Static section, add two Data controls: "Full name of current property”, and
the second one: "Value of current property". Note: Make sure that Data Source option
is set to "Variable".

7. Add a Footer.
8. Add two calls to Stock sections: "Generalization Links" and "Communicates Links".
9. Add calls to next Stock section: "Extends Links" and "Includes Links".

Creating "Extends Links" stock section

1. Select Stock | New | Element Iterator from the Main Menu. In Title field, enter
"Extends Links", and choose "Extends Link" from the pop-up list.

2. Add a Header with one Label Control. Enter "Extends links" in the Label text field.
3. Add a call to the "Link Description" Stock section.

4. Add a Property Iteration section. Click on it in the Area pane and next two items:
"Label" and "Documentation". Note: Make sure that Scope option is set to "Set of
properties".

5. In the Property Iteration's static section, add two Data controls: "Full name of
current property", and the second one: "Value of current property". Note: Make sure
that Data Source option is set to "Variable".

Creating "Includes Links" stock section

Follow the same steps as for creating "Extends Links" Stock section.
1. Add a call to "Association Links" stock section.
2. Add a "Call to Stock Section". Choose "Actor Description".
3. Delete the empty Static section, which was created by default (see above).

Creating "lteration by "UseCase

1. In the Scope pane, right-click on the last created "Element Iterator" section, and
select Insert Sibling Section | Element Iterator | UseCase. Note: Notice that a static
section was created by default.

2. Add a Header with a Label Control within it. Name this Label: "UseCase Detail".

Creating "UseCase Description" stock section

1. See "Creating "Actor Description" stock section". Replace "Actor" with "UseCase"
where this is necessary.

2. Add a "Call to Stock Section". Choose "UseCase Description".

3. Hide Page footer and Report footer by unchecking them in Setting Resource
options box.

- 308 -

Creating Multi-Frame HTML Documentation

Creating Multi-Frame HTML Documentation

Multi-Frame Documentation Basics

Multi-frame documentation normally contains:

1. Frameset file, i.e. an HTML file with only a description of the frame windows structure.
Normally, this file is the starting point for viewing the documentation.

2. Set of HTML documents with actual information, designed to be viewed in the
appropriate frame windows.

3. Hypertext links, some of which are adjusted for loading the referred HTML-document
into the corresponding frame window

Generating multi-frame documentation involves creating a set of templates. The major one
is the FrameSet Template. This is the starting point from which GenDoc begins to generate
multi-frame documentation.

FrameSet Template consists of two important parts:

FrameSet Structure definition;

Template body which looks like an ordinary Document Template, but unlike the former
doesn't produce any output file. Instead, it contains calls to the Document Templates, which
are template set members, who produce the informative HTML documents.

Every Document Template is designed for a particular type of model elements (i.e.
MetaType) for which it can produce specific documentation. For example, it can be a
template specially designed for a Class or UseCase or a State on the States Diagram.

In brief, the process of multi-frame doc generation involves the following steps:

1. First, GenDoc starts with FrameSet Template (File | New | Frameset Template).

2. Next, according to the template body, GenDoc traverses the model and calls appropriate
Document Template for each encountered model element. Thus, GenDoc produces
separate document files for the model element.

3. Finally, when executing FrameSet Template body is completed, GenDoc produces special
HTMI-file with the frameset definition, that corresponds to the FrameSet Structure
specified in FrameSet Template. This HTML-file has same name as the FrameSet Template
and should be started whenever you wish to view generated documentation.

Creating Hypertext Links

Multi-frame documentation cannot work without hypertext links. Every hypertext link
consists of two parts: /Jnk reference and link destination (or target). The link reference is
associated with a particular text in the HTML document, whereas the link destination is a
location in the HTML document.

Both parts have appropriate definitions in GenDoc template:

Link reference is described in the Hyperlink tab of the template control and produces the link
reference's text.

Link destination is described in Hypertext Target tab of the template area, and defines the
document area you wish to reference by this link.

GenDoc provides two ways to bind both definitions to produce a hypertext link.

One obvious way is to assign a particular name to the link target. Then, when defining the
link reference, you can specify this name (and the document file name, if the reference and

- 309 -

Creating Multi-Frame HTML Documentation

target are in different documents). This is the universal method for creating hypertext links.

However, this approach engenders some complications, since one reference / target
definition produces a lot of actual hypertext links. Hence, you have to make sure that the
name of generated link target is unique for every associated part of the documentation. Also,
normally few Document Templates produce lots of HTML files with the names generated
according to the model elements described by the document. So, when defining a link
reference in a template, in most cases you must provide an expression calculating destination
file name.

To avoid these complications GenDoc provides a different approach. In most cases a
hypertext link is based on a particular model element. The link connects element's full
documentation and the reference to it from the place where this element is mentioned. For
example, documentation that describes a link on a diagram, mentions the diagram elements
this link connects, and refers to complete documentation for these elements.

To make use of this idea, let us introduce the notion of Element's Main Docunsentation.
Normally, this is an HTML document (or a part of some HTML file) with complete
information about 2 model element.

To specify location of the element's main documentation, select "Start of the current
element's specific documentation" check-box on the Hypertext Target tab of the template area
properties dialog. (Later it will be explained, why this check-box designates element's
"specific" documentation rather than "main".) It means that when GenDoc passes this
template area and generates appropriate document area, it inserts a hypertext target tag, the
name of the target being automatically generated. Then, this hypertext target's name,
together with the name of the document file, is remembered as the Main Documentation
destination for the current model element.

Once the location of element's main documentation is defined, you can specify hypertext
references to it for any template control in the same template or in a different one:

1. Go to the Hyperlink tab on the control's Properties dialog

2. Choose Link to Element's specific Doc radio-button

3. Specify Expression for RW1-element in the Link Settings.

The expression should return the RWI-element of the model element whose Main
Documentation you make hypertext reference to. If your control belongs to the template
section iterating through the model elements and you wish to create hypertext links to their
main documentations, you can use a simple expression

getDGRwiElement ("curElement") , which returns the current iterated element.
Expressions can be rather complicated, for example:

findElement (getDGRwiProperty ("curPropertyInstance") -
getSubproperty ("SreferencedElement")).

FrameSet Template

As it was explained earlier the FrameSet Template is the major template of the Multi-Frame
Documentation Template Set. It is intended to define the structure of frame windows for
viewing documentation and to spawn Documentation Templates, which create HTML
documents to be viewed in frame windows

To create a FrameSet Template, choose File | New | New Frameset Template. Once
created, the FrameSet Template cannot be changed into a Document Template or vice versa.

- 310 -

Creating Multi-Frame HTML Documentation

Defining FrameSet Structure

Having created the FrameSet Template, go to Template Options Dialog and choose FrameSet
Structure tab. The FrameSet is represented as tree on the left panel. This tree can contain two
kinds of nodes: FRAMESET nodes and Frame nodes.

FRAMESET node represents a container window for child windows. The child windows

can be arranged in columns or rows, which is specified in Layout property of the
FRAMESET node. For every child window the window size is assigned. The size is defined
as percent of the parent window's space occupied by the child window.

Frame node represents a particular frame window where some HTML document can be

displayed.

Template Options

rGeneraI rFrameSet Structure rTempIate Parameters |

[ROCT FRAMESET (COLS) Frame Mame; |diagramFrame |

= [FRAMESET (ROWS)
El Frame "packageliztFral
D Frame "packageFrame”| | Source File Mame Expression:

= O] FRAMESET (ROiws) | |
D Frame "dizgramFrame"

D Frame "clazzFrams"

Percent Size: "%

Enable Condition:

|getDGOptiDn("includeDiagrams"j =="yaz" |

Delete

1|E: :§:| | »

| Ok || Cancel |

Frame name has to be assigned for each Frame node. This name can be specified in the
reference target frame property, when defining hyper-links. Thus, the referenced document
will be loaded in the frame window assigned for that reference.

Source File Name Expression can contain a name of HTML document to be initially loaded in
the frame.

Enable Condition expression makes a node to be skipped or included when the resulting
FrameSet HTML file is generated. This feature allows to configure frame windows structure
dynamically, depending on parameters the passed to the doc generator. For example, the
FrameSet considered here allows to switch on/off the frame displaying a diagram chatt
depending on the option "Include Diagrams" in the GenDoc launching dialog.

Linking document templates with "Call to Template" Sections

Having created FrameSet Template and defined FrameSet Structure, the next step is to
describe how the actual informative documents should be created.

To do this, you have to create the template body. Template body is organized in the same
way as one in an ordinary Document Template. It can contain any number of Iteration
Sections (i.e. Element Iterators and Property Iterators), Folder Sections and Stock Section
Calls. Prohibited are Static Section, and header / footers for Folder Sections and iterators.
This limitation stems from the fact that FrameSet template's body produces no output file.
Instead of Static Sections, Call to Template sections are inserted.

- 311 -

Creating Multi-Frame HTML Documentation

When GenDoc processes the template and meets a Ca// to Template section, it suspends the
current template execution, loads the linked template, and processes it, which produces
separate HTML document. The root element for the called template will be the current
model element of the calling template. After processing of the linked template is finished,
execution of the calling one resumes.

Thus, Multi-frame Documentation Template Set is organized so that the FrameSet Template
describes traversing the model and visiting necessary elements, whereas the other templates
are design for particular model elements.

The other possible way is to call document templates from the other document templates. In
this case, the FrameSet Template will have rather simple body, consisting just a few calls to
sophisticated templates that perform all other calls. This approach is possible and perhaps
works faster, but the template set looks more intricate and less clear.

Important features for designing multi-frame documentation

Name of the generated document

Name of the generated document should be specified in Owutput File Name Expression
property. (Please notice, this expression should return pure document name rather than the
file path.) If a particular call of a document template is to be iterated many times and should
produce multiple documents, the output document name should be derived from the
properties of the current model element, which is valid in course of this section processing.
For example, you can use expression get Property ("S$name").

If the Output File Name Expression is not specified, the name of the called template will be
used for the generated document.

Output directory

Output Directory Expression property defines path to the destination directory for the generated
document. This path is always relative and should be defined according to the following
rules:

1. If the calling template is a FrameSet Template, the path is relative to the destination
directory for the whole documentation

2. If the calling template is a Document Template, then the path is relative to the
location of the document being currently generated by the calling template

3. The name-separator character used in the path should always be the right slash "/"
All intermediate subfolders in the path will be created if not existed before

For example, suppose you design some documentation to be generated by a model and
would like to maintain the documentation directory structure according to the structure of
packages in the model. Then, you can create a template designed for a particular package,
organize iteration by packages within FrameSet Template and call the package template with
the path expression replace (getProperty ("$fullName"), ".", "/")

Sample Multi-Frame Documentation Template

Let us study template structure of a sample documentation that presents the list of all
packages and classes in a model, and detailed information about each package and class. The
browser window should be divided into four frames. The upper row contains two frames
with the list of packages and a diagram of the selected package. The lower row contains
frames with the list of classes and detailed information for the selected class. You can find
the sample under gendoc\Templates folder of your installation.

-312 -

Creating Multi-Frame HTML Documentation

1. Start GenDoc Template Designer and load ClassReportFrames.tpl template.
2. Choose File | Options to invoke Template Options dialog. On the General tab of the

dialog the root element meta-type of the template is defined as the entire model.
Template Options

rGeneraI rFrameSet Structure rTempIate Parameterz |

Template Type: FRAMESET TEMPLATE

Template Deszcription: | |

Repart Title Expression: |"CIassRepnrt: "+ getDizvariakle MprojectMame™) |

Rioot Chject MetaType: MCDEL v
Ok | | Cancel |

3. Select FrameSet Structure tab. The Frameset Structure defines the following frame windows:
packagel istFrame displays package index
packageFrame displays detailed information about selected packages
diagramFrame displays diagram for the selected package
classFrame displays detailed class information

Template Options

rGeneraI rFrameSet Structure rTempIate Parameters |

Q0T FRAMESET (COLE
Ijh (:I| Layout:) Columns () Rows
= Ij FRAMESET [(ROWS)

El Frame "packageliztFrame"

D Frame "packageFrame"
=] FRAMESET (ROWS)

|j| Frame "disgramFrame"

D Frame "clazzFrame"

Add Frame Add Frameset

Ok || Cancel |

4. Root section scope of the template body consists of 2 calls to templates: overview-
summary.tpl, allclasses-frame.tpl.

Documentation Designer - [D:A\T ogether5_Flex\modulestcomitog... =] E3
File Stock Help

(ClazzReportFrames tpl |

Call to templste
Call to template

Call to template: allclazzes-frame gl -
Call to template: overviewe-frame tpl -

- 313 -

Creating Multi-Frame HTML Documentation

5. Right click on the Call to template: overview-£frame. tpl and choose Properties on
the speedmenu to see template settings.

Call to Template

zeneral rParameters |/Other |

Template: | hersoftmodules\gendoctemplatesWClassReportF ramesioverviessy -frame gl
—output Setting

Output Type: 8 Separate File O Commaon Stresm

Ot File Mame Expression:

Output Directory Expression:

Output Image Subdivectory Expression:

[Don't creste file with empty output

Ok || Cancel |

0. Choose Open template on the speedmenu. This opens overview-£frame.tpl fileina

new template window. This template also contains calls to other templates, each of them
being available in the separate frame:

Documentation Designer - [D:ATogether5._.. [H[=] B Documentation Designer - [D:ATogether5.._. [=] E3
File Ohject Stock Help File Stock Help
|/ overyiew-frame tpl | 5] package-frame tpl |
—|Report Headsr ﬁfh_l_ealﬁl_fi_?]_ﬁ:éf Hi‘l?lj&_“ﬂ'““] Call ta template Call to template: package-summary tpl
: : _ - Call to tetnplate Call to template: package-diagram tp
—|Static Section —[Static Section
|=|Element iteration —|Element iteration
EHeader EHeader
EStatic Sectior f_l.l-ll_r_u.;r_n_e """""""" i = Static Sectior tended class namwe E
______________________ 1
- —| S e e —|Focter
[=|Static Sectior edetallts o] [=[Element iteration
|Call 1o template; package-frame tol EHeader
—|Folder Section | [Falder Section for "Class Disgram” metatyfh : e
Call to template [Callto template: class-diagram tpl - [=|Static Sectior [E.4znd2d clas name ;
1] [» 4] [»
| Call to template: On\Togethers Flexmodules'comtogethersoftmo.. |

7. We can now have a look at the package-frame.tpl template. It contains two

iteration sections: iteration by interface and iteration by class. Data control Extended class
name produces class names with references to the relevant documentation for each class.

314

Creating Multi-Frame HTML Documentation

8. To see how the hyper-references are defined, choose Properties on the control
speedmenu and choose Hyperl ink tab.

Data Control

rSn:nurn::e |/Fn:|r|t |/C|:|I-:|r |/Eln:-rder H':.fperLink |/O‘ther |

Type: (&) Link to Element's specific Doz (! File Link {_ URL Link

—Link =etting
Expreszsion far RWl-element:
|getDGRWiEIement ["curElement") |

Exprezsion for Documentation Subject Selector:

Target Frame Mame Expression:

"clazsFrame" |

Add HyperLink2

Exgniohe Texi

| Ok || Cancel |

Type of the link is specified as Link to Element's specific Doc, which means that we refer to the
documentation associated with the particular model element (the Element's Main
Documentation in our case).

Expression for RWI-element tield specifies which model element is considered. In our case it is
the current model element of the iterator.

Expression for Documentation Subject Selector field is empty. It means that we refer to the
Element's Main Documentation but not any other types of documents associated with that
model element (see Referencing to element's "specific" documentation for more details).
Target Frame Name Expression field specifies into which frame window the document should
be loaded when reference is clicked (see Assigning target frame to a Hyper-Reference for
more details).

9. To study the structure of Class.tpl template, you have to open template
AllcClasses. tpl, and invoke Open Template command on the Call to template: Class.tpl
section.

10. Choose File | Options to invoke Template Options Dialog. Rooz Object MetaType
combobox on the General tab is set to "Class (generic)" meta-type, which means that

template is designed to generate output file for the elements pertaining to the "Class
(generic)" meta-type only.

- 315 -

Creating Multi-Frame HTML Documentation

11. The structure of this template is rather complicated. However, now we are concerned
about the notion of Element's Main Documentation as it is applied here. Main
documentation of a class is a file generated by Class.tpl template. Thus, a certain
template area should be marked as the starting point of the Main Documentation.

Documentation D esigner - [D:AT ogether5. Flex\modules\com\togethersoftsmodule. .. [l[=] E3

File Ohject Stock Help
2| Clazs tp
Claz=s tpl
=|Falder Section Folder Section
[=|Falder Sectiol [Falder "case of Class" b
=|Static =ec |l =~ Pl T R e S e e -
D Class (| Exlended class name |
=| Static Sec
Callto stock :
[=|Falder Sectiol
[=| Static Sec
| =|Static Sec
Call to stock :
+|Falder Se
+|Folder S&
(SISt SeEtor o 33 saosnt 5 0oRE NOMRSNNY BROEY AT R .‘u
EFDIder Sectiol
=|Header
jF‘rnper‘ty [|F‘ru:uper‘ty iteration: Extends =
Stetic Sei | 't findBement(yat [5G RwiPropert yi curFraperty Instance”s >get Subpropertyr $refe
| = &,
=|Falder Sectio | Falder "implemerts"
=|Heaser fimplements;
|=|Property i |Pru:uper‘t':.-' teration: Implements -
Static Se If_(?iﬁaEléﬁ'u_e_nt_@n;t_l:l_l_“;ﬁujiﬁFoT:EFt{rE'EL_lr_FHpEFt'_g.rInstance"}>get5uh|:-n:-|:nert1,r("$ref§
= s
ﬂF‘ererw tera Property iteration: Documentation
Call to stock sec Callto ="See" property2= -
+|Property itera Property terstion: <Al user-defined properies:=
= |Folder Sectio Folder "class contents summary”
|| Folder Sectio Folder "class contents detail" =
1 | ®

- 316 -

Creating Multi-Frame HTML Documentation

Expand Folder section "Class Contents detail", invoke Area Properties dialog on the Static
Section "Name" and choose Hypertext Target tab. The checkbox "Start of the current
element's specific documentation" is selected. It means that this point is the target of hypet-
references defined in the ClassReportFrames. tpl template.

E-Fulder Section [Falder "class carterts deta
[=|Elemert fteration [teration by "Atributs"
EHeader
| Fiald Datail
=|Static Section 000 e
—|Static Section ™ Rieeme = .
SR Name i Area Properties
1 1
o i rSeﬁings Hypertext Target rO‘[her |
—|Static Section A Frepemyi® L1 %
= T asFoRetiC® RE@ Evpression for Target Bookmark Selector:
EPropeﬂy iteration
Static Section
Call to stock section cal v Start of the currert element's specific documentstion
[=|Property teration Pro Expression for Documentation Subject Selector:
Call to stock section
e |

=+ |Element teration

=+ |Element teration

ltetation kb

Ok | | Cancel

317 -

Creating Multi-Frame HTML Documentation

Creating Hypertext Links (advanced)

Assigning target frame to a Hyper-Reference

By default, if no target frame for a hyper-reference is defined, the referenced document is
loaded into the same frame window, where the current document is displayed. It is possible
to change this behavior and direct the referenced document to a different frame. To do this,
specify the Target Frame Name Expression property in the hyper-reference definition. The
expression should return the name of one of the frame windows defined in the FrameSet
Structure.

Referring to element's "specific" documentation

In the discussion above it was explained how to simplify creating hypertext links using the
notion of element's Main Documentation. The useful advantage of this approach is that
GenDoc makes by itself all necessary calculations and markups for the hyper-references
defined in such a way.

However, sometimes along with the main documentation, it might be necessary to provide
hyper-references to some different documents (or locations in HTML files) created with the
same model element. For example, along with the main documentation file created for a
package, there may be a different HTML document with only a list of all classes in this
package. This special document can be displayed in a separate frame window as an index for
this package. When the package is selected on a diagram (or in some more general index),
the file containing package's index should be loaded and displayed in the appropriate frame.
To provide hyper-references to different documentation locations generated by the same
model element, you can mark each location with the appropriate Documentation Subject Selector.
All steps are the same as when you define location of element's main documentation: Invoke
properties dialog for the template area starting the location. Then, choose Hypertext Target
tab, select Start of the current element's specific documentation check-box, and enter an expression
calculating the documentation subject selector.

After this, you can define hyper-references to such specific element's docs same way you do
it for element's main documentation, but in addition, in the Link Settings you should specify
Expression for Documentation Subject Selector, that calculates the subject selector of the element's
specific documentation.

Thus, in our previous example, to make hyper-references to the package's index document
we should mark the first area of the template for this document as the "Start of the current
element's specific documentation" with the subject selector, say, "packagelndex", and then,
provide this subject selector when we define hyper-references to this document.

Note: It can seem that Main Documentation of an element is but an element's specific documentation
with empty subject selector. This is not quite so, because only element's Main Documentation can be
referenced from JavaDoc hypet-references (e.g. @link JavaDoc tag) imbedded in the text returned by
some RWI-properties. You cannot specify subject selector for these references!

Hyper-Links from Image Elements of a Diagram

To include an image of a diagram in the generated document, put Image Control (image type
= diagram) in the appropriate template area. Template area should be located so that the
current model element represented one of the diagrams contained in the model, when
GenDoc processes it.

- 318 -

Creating Multi-Frame HTML Documentation

Same as the other controls, Image Control has Hyperl ink tab. When control generates an
ordinary image, this tab specifies an ordinary hyper-reference associated with it. However,
when Image Control specifies the image of a diagram, the same definition in Hyperl ink tab
can create hyper-references for all model elements depicted on the diagram.

To adjust this, all expressions in the hyper-reference definition should be relative to RWI-
element returned by the call get DGRwiElement ("diagramMapElement").
When GenDoc generates the image of a diagram, it creates image map, which includes all
model elements depicted on the diagram. While doing this, it iterates through diagram
elements, substitutes diagramMapElement variable with every diagram element,
calculates hyper-reference for it, and then, inserts it into the image map.

Creating compound Hyper-References

When you design the multi-frame documentation, you may find that sometimes, when
clicking on a hypertext reference, it would be nice to reload two HTML documents into
different frames simultaneously. This feature may be useful when, for example, diagram
element represents a package (or a shortcut to a different diagram). Clicking on this element
would load image of the new diagram represented by this element in the place of the
previous one. At the same time, some other frame would be updated with the document
associated with this new diagram (for example, alphabetically sorted index of elements
contained in it).

To program such behavior an additional hyper-reference should be defined along with the
primary hyper-reference. To do this, click .Add Hyperlink2 button on the Hyperl ink tab.
Hyperl ink2 tab adds to the control Properties dialog, where you can specify the second
hyper-reference.

JavaDoc Hyper-References

JavaDoc References (or JDRefs) are the expressions provided with certain JavaDoc tags
(such as {@link}, @see, etc.) used to define hyper-text references inside documentation text
({@link}), and with some other documenting tags. DocGen enables converting JDRefs into
real hyper-text links.

Each JDRef should conform to some rules described in JavaDoc documentation provided
with any JDK. There are 3 types of JavaDoc references.
1. "element" reference is the type that refers to an element of the model (method,
attribute, class, package).
General form: package.class#member label
where package.class#member identifies the referenced model element; and
label is optional text to be displayed with the hyper-link (if omitted, the name of
the referenced element is displayed).
DocGen can convert each element reference into a real hyper-link basing on the
notion of Element's Main Documentation. Thus, if such conversion is specified, each
element JDRef is replaced with a hyper-link to the main documentation of the
referenced element.
2. "utl" reference represents a hyper-text link to a relative or absolute URL.
General form: label.
3. "text" reference has the form "string" (i.e. a text string in double-quotes). Actually,
such reference doesn't represent any hyper-link and may have only informative
meaning.

- 319 -

Creating Multi-Frame HTML Documentation

How to convert JDRefs into hyper-links

A JDRef appears in one of two forms:

1.inside {@link} tags imbedded in documentation text (it is the value of $doc

property and the values of some other Javadoc element's properties)
2. as the value of some Javadoc element's properties (e.g. see property)
DocGen provides appropriate techniques for both cases.

Converting {@link} tags

B2 Data control

Since any documentation r

. i Other
text can be printed only
by one of the text Tormatting Style
controls (i.e. Label Heading 3
Control, Data Control
and Formula Control), Default Text:

all you have to do to |

automatically convert

{ @link } tags is to Delimiter for multiple values:

select Render embedded New Line -
JavaDoc tags check-box in

the properties of the [_] Render embedded HTML tags

approptiate control. ¥l Render embedded JavaDoc tags

[_| Eliminate empty space if no data
Converting element's

property value ..

Exarmpie Taxt
If a JDRef is a value of

an element's property, its
conversion into a hyper- OK Cancel

link is more complicated.
It requires using the functions getfDRefType(), getf DRefDisplayName(),
get]DRefElement(), get/ DRefURLY().

The following example shows how to display the value of see property with any and all

hyper-links involved.

EF‘erer‘w itersl |F‘ru:uperw teration: See Also -
= |Header e =
D bl th I
W et IDEE fDisplayHane (getDGVariable ("cwrbropsrtyinstance’]] |
|=|Static Sec | et iDhe fhicplayiaus |gatbiVariabis | curbropercyinctance’s) |

|| Static Sec et IDRefbizplayNane (getDiVariable (“curbropercylnstance’)) |

Since see property can have multiple values, it is advisable to use the Property Iterator,
which iterates through the instances of the property see. The iterator's Output Style is

Delimited Text Flow, with comma delimiter. Inside the Property Iterator there are 3 Static
Sections that correspond to the three types of JavaDoc references. Each static section has its

own Enable Condition, which activates it for the appropriate JDRef.

- 320 -

Creating Multi-Frame HTML Documentation

To activate the first Static Section for "element" type JDRefs only, the following Enable
Condition is used:

getJDRefType (getDGVariable ("curPropertyInstance")) ==
"element"

Section area contains the only Formula Control that produces a text, generated by the
following expression:
getJDRefDisplayName (getDGVariable ("curPropertyInstance")).
This is the text to be displayed in the documentation. To create a hyper-link to the
referenced element, choose Hyperlink tab in the properties dialog of this control, and fill in
the field Expression for RWT element as shown below:

Formula Control x|

Type: (@) Link to Element's specific Doc 0 File Link 7 URL Link

—Link Setting
Expression for FMv-element:
|get-.lDRefEIement [getD&variakle (M"ourPropertylnstance™)) |

Expression for Documentation Subject Selectar:

Target Frame Mame Expression;

Add HyperLink2

Exauple Text

| Ok || Cancel |

Function get]DRefElement() returns an RWI-element referenced by JDRef. As you can see,
the link's target will be the element's main documentation.

The second Static Section is activated when JDRef's type is "url". It is similar to the first one
with the only difference that hypetlink in Formula Control is a "URL link" and its
"Expression for URL" is:

getJDRefURL (getDGVariable ("curPropertyInstance")).

The third Static Section is activated for JDRefs of "text" type. It differs from the previous
two in that its Formula Control has no hyperlink definition. Actually, it can be combined
with the first static sections, because since such a JDRef doesn't refer to any element, the
function getf DRefElement() always returns null which produces no hyperlinks.

- 321 -

DocGen and DocDesigner Reference

DocGen and DocDesigner Reference

When using the Documentation Designer to develop custom documentation templates for
Documentation Generator building block (DocGen), you have to reference the internal
variables and functions to specify formulae expressions, and provide section flow control.

DG Internal Variables

When the DG (Documentation Generator) executes a template and generates a report, it
produces some specific internal information, which may be interesting to include in the
report. This includes project name, current date/ time etc.

Moreover, there are special internal temporary data that appear when DG executes some
particular parts of the template.

DG variables enable access to this information and its insertion in the report. Each variable
has specific name and represents some particular kind of internal DG information available
at any particular moment.

Internal variables are not all accessible at any instant. Most of them appear only in special
areas or inside special sections.

DG variables belong to one of the following types: String, RwiElement,
RwiProperty. Access to these variables is provided by appropriate functions in formula
expressions:

getDGVariable, getDGRuwiElement, getDGRawiProperty.

Variable Availability Accessible via

curltemNo : String inside any Property Iterator and oetDG Variable

) o] Element Iterator
The current iteration item number (starting

with 1)

curPropertyName : String inside Property Iterator getDG Variable

Name of the current property

curPropertyFullName : String inside Property Iterator getDG Variable

Full name of the current property (specified
in DG MetaModel File)

curPropertyType : String inside Property Iterator getDG Variable
Type of the element property.

Since RWl-interface doesn't provide property
types, they should be specified in DG
MetaModel File

Possible values: "string™", for String
property; "boolean", for boolean

property

curPropertyl alne : String inside Property Iterator getDG Variable

value of the current property

-322 -

DocGen and DocDesigner Reference

Variable Availability Accessible via

curPropertylnstance : RwiProperty inside Property Iterator getDGRwiProperty
while iterating by instances

‘The RwiProperty object of the current property of the specified property

instance.

This variable is useful when you have to get a
subproperty of the current property instance.

For example:

Let the current model element be a class node, and
you need to list information about all interfaces
implemented by this class.

You have to create a template section that iterates by
instances of IMPLLEMENTS property of the current
class element.

After that, within this iteration section you can use
curPropertylnstance variable to access the subproperty
REFERENCED_EI.EMENT , which allows to
obtain all information about the implementing class.

Let one needs to get the full names of the
implemented interfaces. Then the required
expression should be:

findElement (getDGRwiProperty
("curPropertyInstance") ->

getSubproperty ("SreferencedElement
")) ->

getProperty ("$fullName")

See also DG Functions:

getDGRwiProperty, getSubproperty,

findElement, getProperty

curPropertylnstance : String inside Property Iterator getDG Variable
while iterating by instances

value of the current property instance of the specified property

curBlement : RwiElement inside Element Iterator getDGRwiProperty

the current model element

\prevElement : RwiElement inside Element Iterator getDGRwiProperty

previous element in the current iteration
scope.

Possible values: null, if it is the beginning of
the scope

diagramMapE lement : RwiElement Inside Image Control getDGRwiElement

This variable should be used to create hyper-links
from image elements of a diagram chart.

- 323 -

DocGen and DocDesigner Reference

parameter of the stock section call

Variable Availability Accessible via
projectName : String in teport / page getDG Variable
. header / footer areas
The Project name
nowDateTime : String in report / page getDGVatiable
) header / footer areas
The current date/time
outputFormat : String in any place oetDG Variable
returns output type of the generated documentation.
Use this variable to control behavior of your
templates depending on the output format type
selected for the generator.
Possible Values: "RTF", "HTML", "TXT"
reportScope : String any place getDG Variable
shows the specified report scope.
Possible values:
"all model™ - the scope is the whole model
"current package" - the scope is the current
package only
"current package recursive™" the scope
is the current package with subpackages
"current diagram" - the scope is the current
diagram only
stockParam : String inside stock sections getDG Variable

324

DocGen and DocDesigner Reference

DG functions in formulae expressions
This chapter gives brief description of the major functions used in the doc generation
module.
getDGVariable
String getDGVariable (String variableName)
returns the specified DG variable of String type
Parameter: name of the variable

Returns: value of the variable or an empty string, if the variable is not defined in the
given place

getDGRwiElement
RwiElement getDGRwiElement (String variableName)
returns the specified DG variable of RwiElement type
Parameter: name of the variable
Returns: value of the variable or null, if the variable is not provided in the given
place

getDGRwiProperty
RwiElement getDGRwiProperty (String variableName)
returns RwiProperty type DG variable with the specified name
Parameter: name of the variable
Returns: value of the variable or null, if this variable is not in place

getDGOption
String getDGOption (String optionName)
returns the specified DG option.
Parameter: name of the option
Returns: value of the option or empty string, if such option is not defined
Features:
The option can be specified for an object of Report Generator (descendant of the
class . .gendoc.docgenerator.Generic.GnrReportGenerator, for
example: class . .gendoc.docgenerator. txt.TXTReportGenerator)

using the method: addReportOption (String optionName, String
optionValue)

Default values for some options can be defined in the template file. This definition
persists even though TemplateDesigner subsequently modifies the template. However,
method addReportOption overwrites the options values.

Example:

default values for the options inclSubpackages", "inclDoc", "DTLAdapter"

DEFAULT OPTIONS={inclSubpackages='yes';inclDoc="'yes' ;DT
LAdapter='com.togethersoft.modules.doorslink.DTLAdapter
)

}

- 325 -

DocGen and DocDesigner Reference

getParam

String getParam(String paramName)

Returns value of specified template parameter.

Parameter: parameter name

Warning:

The requested parameter should be declared in the Template Parameters tab of Template

Properties. If parameter declaration is not defined, call to this function will cause an
error message and stop the generator.

Since: Together 5

invokeForName

String invokeForName (String className, String
methodName)

String invokeForName (String className, String
methodName, String paraml)

String invokeForName (String className, String

methodName, String paraml, String param2)

invokes specified method of the user-provided class.

Parameters:

className
tully-qualified name of the user-provided class. This class should not be
abstract.
DG creates an instance of className class and calls the method
methodName with this instance. Note that this instance object is created
for each entry of invokeForNamecall within each particular expression
of template where this function is used.
However, the object is created only during the first call from such an entry,
and will be used for the next calls, unless parameter className is
changed.
methodName

name of the method in the class to be executed. The method should have
the following signature:
String methodName (..gendoc.api.GenDocContext)
Parameter is an instance of . .gendoc.api.GenDocContext. Class
. .gendoc.api.GenDocContext provides the following methods:
RuwiReference getRawiReference
returns RwiReference, if the current DG iteration element is an
RWI-reference within a diagram. Otherwise the method returns null.
RuwiEzlement getRwilE lement
always returns the RwiElement. If the current DG iteration element is
an RWl-reference then returned element is
rwiReference.getElement (). Otherwise, returned element is the
current DG iteration RWI-element.

- 326 -

DocGen and DocDesigner Reference

String getParameter ()

returns the value of the first optional parameter passed to
invokeForName function, or null, if the parameter is omitted.

String getParameter?()

returns the value of the second optional parameter passed to
invokeForName function, or null, if the parameter is omitted.

The method methodName should return String value it calculates.
Returns: value calculated by the user-provided method methodName .

getContainingDiagram

RwiDiagram getContainingDiagram()
returns the RWI-diagram containing the primary reference to the current element.

Possible call in an expression is
rwiElement-> getContainingDiagram/()

Returns: RWI-diagram containing the primary reference to the current element

isDiagram
boolean isDiagram()
Tests if the current RWI-element is a diagram. Call this function to test any RWI-
element accessible in your expression.
For example:
rwiElement->isDiagram()
getDGRWIElement ("diagramMapElement") ->isDiagram ()
This function may be useful when you design a Multi-Frame documentation and need
to program some special behaviour when clicking hyper-links. For example, if a hyper-
link references to a diagram you may want when clicking it to reload one frame with a
document describing the diagram and another frame with the graphic chart of this
diagram. Whereas, if the hyper-link references to any other model element only
document frame should be reloaded. See also: Creating compound Hyper-References.

Returns: true, if the element is a diagram; £alse otherwise

isimported

boolean isImported()
Checks if the current element in the diagram is presented by a shortcut.

Returns: true, if the element is a shortcut; £alse, if the element is not a
shortcut

327 -

DocGen and DocDesigner Reference

getSubproperty
String getSubproperty (RwiProperty rwiProperty, String
subpropertyName)
The function returns the value of subproperty subpropertyName contained in the
RWI-property rwiProperty. See description of curPropertylnstance DG variable
for an example of using this function. Possible call is:
rwiProperty->getSubproperty (subpropertyName)
Parameters:
rwiProperty the element property
subpropertyName the name of its subproperty
Returns: value of the specified subproperty

hasSubproperty
String hasSubproperty (RwiProperty rwiProperty, String
subpropertyName)
Checks if the RWI-property rwiProperty contains the subproperty
subpropertyName.
Possible call is: rwiProperty->hasSubproperty (subpropertyName)
Parameters:
rwiProperty the element property
subpropertyName the name of subproperty to be checked
Returns: true, if the property has the specified subproperty; £alse otherwise

getJDRefType
String getJDRefType (String jdref)

Returns type of the JavaDoc Reference specified as the parameter.

Returns: "element", if jdref references to a model element, i.e. if it has the form
package.class#fmember label

"url", if jdref references to a URL, i.e. if it has the form: label

"text", if jdref has the form "string"

Since: Together 5

getJDRefDisplayName
String getJDRefDisplayName (String jdref)

Returns a text to be displayed in place of the specified JavaDoc Reference.
Returns: if jdref is an "element" reference (i.e. it has the form:
package.class#member label, where package.class#member
represents some model element) the returned text is 1abel. If the label is omitted,
returns the name of the referenced element.

if jdref is a "url" reference (i.e. it has the form: label) the returned text is label.

if jdref is has the form "string", the returned text is string

Since:Together 5

- 328 -

DocGen and DocDesigner Reference

getJDRefElement

RwiElement getJDRefElement (String jdref)

If the specified JavaDoc Reference is an "element" reference (i.e. it has the form
package.class#member label, where package.class#member
represents some model element) and referenced element exists in the model, the
function returns this element, otherwise returns null.

Since: Together 5

getJDRefURL

String getJDRefURL (String jdref)

If the specified JavaDoc Reference is a "url" reference (i.e. it has the form: label) the function returns the text URL#value;
otherwise, returns an empty string

Since: Together 5

findElement

RwiElement findElement (String unigueName)
passes the call to the RwiModel . findElement () method which finds an
element by its unique name.

Parameter: string with the unique name of an RWI-element that needs to be found
Returns: an element found by its unique name

getCodeElement

Object getCodeElement (RwiElement rwiElement)

Passes the call to rwiElement .getCodeElement () method declared in
com. togethersoft.openapi.rwi.RwiElement interface.

This function is used in the template expressions together with one of the following
functions: findMember (), findNode (), findLink(),
findPackage ().

Since: Together 5

getCodeElements

Enumeration getCodeElements (RwiElement rwiElement)

Passes the call to rwiElement .getCodeElements () method declared in
com. togethersoft.openapi.rwi.RwiElement interface.

This function is used in the template expressions together with one of the following
functions: findDocumentedMember (), findDocumentedNode (),
findDocumentedLink (), findDocumentedPackage (). These
functions may be helpful when you need to provide hyper-links from some specific
elements on a diagram chart.

For example, if you have set Recognize Java Bean | C++ properties option in Togethet's
View Management, each JavaBean/C++ property is presented by a single element on

- 329 -

DocGen and DocDesigner Reference

a class diagram, whereas actually, it consists of 3 elements: property's attribute, and
setter/getter methods. When you generate the documentation for such a class you will
get for every JavaBean/C++ property all those 3 elements documented (or at least,
docs for accessor methods if you have specified to skip private members).
Corresponding element on the diagram chart associates with a certain RWI-element,
and you can obtain this RWI-element via diagramMapElement variable (see
also: create hyper-links from image elements). But actually, this RWI-element is a
kind of a proxy. It will not be identical to any of those 3 elements your
JavaBean/C++ propetty consists of, those elements which you can see in Java/C++
code and which will be documented by template's iterators.

Thus, in case of JavaBean/C++ property you cannot directly use the RWI-element
representing it on the diagram to establish a hyper-link to anything contained in the
generated documentation. Instead of this, you should use the following expression:
findDocumentedMember (getCodeElements (getDGRwiElement ("d
iagramMapElement"))).

Function findDocumentedMember () returns one of the RWI-elements
associated with the JavaBean/C++ property and which is definitely presented in the
generated documentation.

Since a diagram contains ordinary elements as well, your expression for diagram hype-
links connecting RWI-element should be a bit more complicated:

if (getDGRWIElement ("diagramMapElement") -
>hasPropertyValue ("$shapeType", "BeanProperty") ,
findDocumentedMember (getCodeElements (getDGRWIElement ("d
iagramMapElement"))),

getDGRWIElement ("diagramMapElement"))

Since: Together 5

findMember

RwiElement findMember (Object codeElement)

Passes the call to
com.togethersoft.openapi.rwi.RwiModel. findMember () method.
This function should be used together with function getCodeElement ().

Since: Together 5

findNode
RwiElement findNode (Object codeElement)

Passes the call to
com. togethersoft.openapi.rwi.RwiModel.findNode () method.
This function should be used together with function getCodeElement ().

Since: Together 5

- 330 -

DocGen and DocDesigner Reference

findLink

RwiElement findLink (Object codeElement)

Passes the call to
com. togethersoft.openapi.rwi.RwiModel. findLink () method.
This function should be used together with function getCodeElement ().

Since: Together 5

findPackage

RwiElement findPackage (Object codeElement)

Passes the call to

com. togethersoft.openapi.rwi.RwiModel.findPackage ()
method. This function should be used together with the function
getCodeElement ().

Since: Together 5

findDocumentedMember
RwiElement findDocumentedMember (Enumeration
codeElements)

RwiElement findDocumentedMember (Enumeration
codeElements, String subjectSelector)

This function should be used together with the function getCodeElements(). It utilizes
method com. togethersoft.openapi.rwi.RwiModel . findMember ()
and seeks the model for an RWI-element that matches the following conditions:

- it is associated with the passed codeElements
- it is an RwiMember

- it will definitely be presented among all generated documents by its Main
Documentation or, if subjectSelector specified, by its "specific”
documentation associated with the passed subjectSelector.
Returns: found RwiElement, or null, if the requested element doesn't exist in
the model

Since: Together 5

findDocumentedNode

RwiElement findDocumentedNode (Enumeration codeElements)

RwiElement findDocumentedNode (Enumeration codeElements,
String subjectSelector)

This function should be used together with function getCodeElements(). It utilizes
method com. togethersoft.openapi.rwi.RwiModel . findNode ()
and seeks the model for an RWI-element that matches the following conditions:

- it is associated with the passed codeElements
- it is an RwiMember
- it will definitely be presented among all generated documents by its Main

- 331 -

DocGen and DocDesigner Reference

Documentation or, if subjectSelector specified, by its "specific"
documentation associated with the passed subjectSelector.

Returns: found RwiElement, or null, if the requested element doesn't exist in
the model

Since: Together 5

findDocumentedLink

RwiElement findDocumentedLink (Enumeration codeElements)

RwiElement findDocumentedLink (Enumeration codeElements,
String subjectSelector)

This function should be used together with function getCodeElements(). It utilizes
method com. togethersoft.openapi.rwi.RwiModel.findLink ()
and seeks the model for an RWI-element that matches the following conditions:

- it is associated with the passed codeElements
- it is an RwiMember

- it will definitely be presented among all generated documents by its Main
Documentation or, if subjectSelector specified, by its "specific"
documentation associated with the passed subjectSelector.
Returns: found RwiElement, or null, if the requested element doesn't exist in
the model

Since: Together 5

findDocumentedPackage
RwiElement findDocumentedPackage (Enumeration
codeElements)
RwiElement findDocumentedPackage (Enumeration
codeElements, String subjectSelector)
This function should be used together with function getCodeElements(). It utilizes
method
com.togethersoft.openapi.rwi.RwiModel.findPackage () and
seeks the model for an RWI-element that matches the following conditions:
- it is associated with the passed codeElements
- it is an RwiMember
- it will definitely be presented among all generated documents by its Main
Documentation or, if subjectSelector specified, by its "specific"
documentation associated with the passed subjectSelector.
Returns: found RwiElement, or null, if the requested element doesn't exist in
the model

Since: Together 5

- 332 -

DocGen and DocDesigner Reference

findDocBySubjectSelector

String findDocBySubjectSelector (String
subjectSelectorList)

Returns the first generated document that contains an area marked with one of the
specified subject selectors from the list.

This is how it works: the function takes the first passed subject selector from the list
and checks if there are any generated documents that contain areas marked with this
subject selector. If such documents exist, the function returns the one that has been
generated the first. Otherwise, it iterates to the next subject selector from the list and
repeats examination. When all subject selectors are passed and no document found,
the function returns an empty string.

Parameter: List of subject selectors separated with semicolons.

Note: blank subject selector is allowed and will refer to the Main Documentation of
an element.

Returns: Path of the found document relatively to the documentation's root directory.
Subdirectories are delimited with slash "/". If no document found, returns an empty
string.

Example:

findDocBySubjectSelector ("package-summary; summary")
returns the fist generated document for one of the subject selectors: "package-
summary", "summary"

Warning:

This function can be used only inside the Source File Name Expression of the node in
FrameSet Structure definition.

Since: Together 5

findDocByTemplate

String findDocByTemplate (String templatelist)

Returns the first generated document produced by one of the specified templates.
This is how it works: the function takes the first passed template name and checks if
there are documents generated by this template. If such documents exist, it returns the
one which has been generated the first. Otherwise, it iterates to the next template
from the passed list and repeats examination. When all templates are passed and no
document found the function returns an empty string.

Parameter: List of template names (without file name extensions) separated with
semicolons.

Returns: Path of the found document relatively to the documentation's root directory.
Subdirectories are delimited with slash "/". If no document found, returns an empty
string.

Example:

findDocByTemplate ("all-classes;all-diagrams")

returns the fist document produced by one of the templates: "all-classes.tpl" and "all-
diagrams.tpl"

- 333 -

DocGen and DocDesigner Reference

Warning:

This function can be used only inside Source File Name Expression of the node in
FrameSet Structure definition.

Since: Together 5

checkStockSectionOutput
boolean checkStockSectionOutput (String
stockSectionName, RwiElement rwiElement)
Tests if a Stock Section with the name stockSectionName will produce a non-
empty output, provided that it is invoked from a Stock Section Call and rwiElement is
passed to it as the current model element. When calling this function no actual output
is produced.
Parameters:
stockSectionName - name of the Stock Section to be tested. If no Stock
Section with the specified name is found in the template, the function call issues an
error message and stop the generator.

rwiElement - RWlI-element passed to the Stock Section as the current model
element.

Returns: true, if the tested Stock Section would have a non-empty output; false,
otherwise

Example:

checkStockSectionOutput ("Included Diagram List",
getDGRwiElement ("curElement"))

Since: Together 5

getPropertyExt
String getPropertyExt (String propertyName)
This function gets any element property available in DG for the metatype to which this
element belongs. It includes the properties provided by RWI and the properties
calculated only by DG (names of such properties start with %. See file
MetaModel.mm).
Possible call is: rwiElement->getPropertyExt (propertyName) . In
this case, the RWI-element whose property should be obtained, is specified before
arrow.
Parameter: name of the required property
Returns: value of the property or empty string if the element has no such property
See also: getProperty()

[Utility functions provided by DG |

substring
String substring(String str, int beginIndex)
String substring(String str, int beginlIndex, int
endIndex)

Returns a new string that is a substring of the string str. Parameters are the same as
in the standard Java String. substring () methods.

334

DocGen and DocDesigner Reference

replace

String replace(String str, String oldStr, String
newStr)

Returns a new string produced by replacing all occurrences of 01dStr in the string
str with newStr. Operation is case sensitive.

Example:
replace ("str-oldStr-newStr", "Str", "S")
returns: "str-oldS-newS"

This function is especially helpfull when you create a Call to Template section and
location of the document, generated by the called template, should be derived from
some properties of the current model element (for example, from the full nume of the
package where the current element belongs). In such a case you can write in the field
"Output Directory Expression" something like this:

replace (getContainingPackage () -

>getProperty ("$fullName"), ".", "/")

See also: Linking document templates when designing Multi-Frame documentation.

Since: Together 5

duplicate

String duplicate(String str, int num)

Returns a new string resulting from duplication of the specified string str num
times. If num is 0, returns an empty string.

Example:

duplicate("abc", 3)

returns: "abcabcabc”

Since: Together 5

length

str

val

int length(String str)
Returns the length of string str.

String str (Numeric N)
Converts numeric value to a string.

Numeric val (String str)
Converts numeric value represented as String into Numeric format. If conversion is
impossible, returns 0.

- 335 -

DocGen and DocDesigner Reference

The following functions, commonly provided in Together formulae queries, are also very
useful in DG expressions.

getProperty

String getProperty (String rwiPropertyName)
Returns the value of the specified RWI property the current element has.

Possible callis rwiElement->getProperty (rwiPropertyName) . In this
case, the RWI-element, whose property should be obtained, is specified before arrow.

Parameter: name of the required property
Returns: value of the property or empty string if the element has no such property
See also: getPropertyExt()

hasProperty

boolean hasProperty (String rwiPropertyName)

Checks if the current element has the specified property.

Possible call is: rwiElement->hasProperty (rwiPropertyName)

In this case, the RWI-element, whose property should be checked, is specified before
arrow.

Parameter: name of the property being checked

Returns: true, if the element has such property; £alse, otherwise

hasPropertyValue

boolean hasPropertyValue (String rwiPropertyName,
String value)

Checks if the current element has the property with the specified value.

Possible call is: rwiElement->hasPropertyValue
(rwiPropertyName, value)

In this case, the RWI-element, whose property should be checked, is specified before
arrow.

Parameter:

rwiPropertyName name of the property being checked

value required property value
Returns: true, if the element has specified property with the required value;
false, otherwise

type if (boolean condition, type valuel, type value2)
If the parameter condition is true, the function returns valuel. If the
conditionis false, the function returns value2.

The type can be any data type allowed in queries.

- 336 -

Launching DocGen from the command line

getContainingNode

RwiNode getContainingNode ()
returns the RwiNode element that contains the current element. Can be called for
RWI member or node current element.
Possible call is: rwiElement->getContainingNode ()
Example:
the following expression calculates visibility modifier for the class/interface
member:
if (hasProperty("S$private"), "private",
if (hasProperty("Sprotected"), "protected",
if (hasProperty ("$public") &&
lgetContainingNode () -> hasProperty ("sinterface"),
"public", n u)))
In this case, the public modifier is printed only when the containing node is
not an interface, since all interface members are public implicitly .

Launching DocGen from the command line

You can launch the documentation generation system from the command line using the
following syntax. Note that this does not presently run fully in console mode... the Generate
Documentation dialog will appear to set required options.

Usage:

TgStarter -script:com.togethersoft.modules.gendoc.GenerateDocumentation
PrjName

Where:

Win 32 TgStarter = $TgHome%\bin\Together.bat or
$TgHome%\bin\TogetherCon.exe or
$TgHome%\bin\Together.exe -con

Other OS [TgStarter = $TgHome%\bin\Together.sh

PrjName = fully qualified project name, e.g.
$TgHome%\samples\java\CashSales\CashSales.tpr

- 337 -

Automated Doc Generation

Automated Doc Generation

If you have a nightly or other periodic automated build process, you can update your
documentation as part of it by having your process script call Together's HTML or RTF
docgen facility through the command line interface. Together provides the possibility to
generate documentation without actually opening Together window. You can use one of the
launchers shipped with Together: STGHS \bin\Together.exe,
STGHS\bin\TogetherCon.exe, or S$TGHS\bin\win32\umldoc.exe (for
Windows users only).

Together.exe and TogetherCon.exe allow you to choose between RTF and
HTML documentation, while umldoc .exe produces HTML documentation only. On
the other hand, TogetherCon.exe and umldoc.exe bypass Together window, while
Together. exe starts the shell and brings you through the entire doc generation
procedure.

The syntax rules are outlined in Command Line Parameters.
Examples

Together. exe for gen HTMI
Together.exe -
script=com. togethersoft.modules.genhtml.GenerateHTM
L - sourcepath d:\Together\Samples\java\CashSales
d:\Together\Samlpes\java\CashSales.tpr
Together . exe for gendoc
Together.exe -
script=com. togethersoft.modules.gendoc.GenerateDocu
mentation
d:\Together\myprojects\CashSales\CashSales.tpr
TogetherCon.exe for genHTMI
TogetherCon.exe -
script=com. togethersoft.modules.genhtml.GenerateHTM
L -browser -d d:\out
d:\Together5\myprojects\CashSales\CashSales.tpr

- 338 -

Automated Doc Generation

iD: \oul} Far =] E |

user_interfacehznclass—useZ\PO5Frame_About
user_interfacehclass— use\POSFrame Tableln Name
user_ 1nter‘face\package —tree.html.
utilNIDString. html. class—use
wutilsutil.cl.html. data management
utilsdoc—Fileshuti 'I l:'l html.
utilypackage—summary .html.
utilypackage—frame.html.
utilypackage—use.html.
utilyclass—usenNIDStri ng htm'l
utilypackage—tree.html.
overwview—tree. html. Requirements
OVErvi ew—Ssummary . htm'l - Server
deprecated-Tist.html. user_interface
index. html. UserInterface
overview—frame. html. util

about. html
overview-—frame.html... Architecture_View.cl.ht
stylesheet.css.
about. hhtml.
help-doc. htm'l

model-treeymodel . tree. IHakeCashSa'l e.html
: problem_domainmydoc—f1i 'I es\Tota'I D'F Salefindex. html

: doc—FileshyArchitecture_View.cl. index—all.html

: problem_domainydoc— 'F1'Ies\Co'I'IabDr'at10n navigation.jar

: doc-files\Component.cm.gif

: doc—Files\Dbject_Wiew.cl.

: data_managementbdoc—Fi 1es\data managem
= doc-—files\OpenFirst.cl.

= Requi rements\duc f11es\l2|:|bustness Diag
: doc-FTileshydefault_cl.

= Reguirementsidoc- f11es\Sa1e _Actiwity.-a

System_Owverwview_cl._html

: Requirementshdoc-filesyMake_A Sale.uc.
: doc—TFTileshSystem_Overview.cl_gi

TogetherCon. exe for gendoc
TogetherCon.exe -
script=com. togethersoft.modules.gendoc.GenerateDocu
mentation -d d:\out
d:\Together\myprojects\CashSales\CashSales.tpr

D:\TogetherS, S\binserateDocumentation -d d:\out d:\TogetherS. 5\Samples\java\CashSales\CashSales. tpr
[364] Launching Together

[70%] Launching Together

[1008] Launching Together

[95%] Opeming project

-- Starting GenDoc..,

[Warmng] No template specifred, Default ‘Projectfeport’ template 15 used
[Warmng] No output format specified. RTF output will be generated

[1008] Gpemng project

Generatang d:\out\ProjectReport. rtf

-~ Genoc successfully fimshed,

umldoc. exe:

umldoc.exe -d d:\out
d:\Together\myprojects\CashSales\CashSales.tpr

- 339 -

Metrics and Audits

Quality Assurance
Metrics and Audits

Together provides Quality Assurance features to unobtrusively help you enforce company
standards and conventions, capture real metrics, and improve what you do.

QA module is activated by default, and Quality Assurance command node is available on the
Tools menu.

When you invoke QA commands from the Tools menu, the entire project is processed. On
the contrary, QA invoked from the model tree or diagram speedmenu, deals with the
selected classes, packages or diagrams.

You can create, save, and reuse custom sets of Metrics and Audits. Together ships with a
pre-defined saved Audit set for the Sun Code Conventions for Java which you can load and use
in place of the default Audit set, or any custom sets you create. For more information, see
Creating and Using Saved Metric/Audit Sets later in this topic.

Availability of Quality Assurance features depends on the project language. Java projects
support full scale of metrics and audits, while for the other languages only limited sets are
available.

You can find full description of each metric or audit rule in the appropriate sections of
Metrics Reference and Audit Reference under the Table of Contents.

It is worth mentioning that both Audit and Metrics are only valid for the compilable source
code. If your source code contains errors, or some libraries and paths are not included, QA
can produce bizarre results.

How to perform metrics analysis

QA Metrics module evaluates object model complexity to support quality assurance. From
the resulting table, it is possible to navigate directly to diagram or source-code.

This how it's done:

1. Open a project.

2. Make sure that Quality Assurance module is activated (Options | Activatable Modules).

3. Choose Quality Assurance | Metrics on the Tools menu (also present on diagram element
and Explorer speedmenus).

4. Select the desired metrics from the list as described in the Metrics dialog and click S7arz.

5. In the QA output, select any element and choose Oper from its speedmenu.

How to perform audit analysis

QA Audit module automatically checks for conformance to some standard or user-defined
style, maintenance and robustness guidelines. From the resulting tables, one can navigate
directly to diagram or source-code.

This how it's done:

1. Open a project.

2. Make sure that Quality Assurance module is activated.

3. Choose Quality Assurance | Audit on the Tools menu, diagram element or Explorer
speedmenu.

4. Select the desired audits from the list as described in the Audit dialog and click S7arz.

5. In the QA output, select any element and choose Oper from its speedmenu.

- 340 -

Metrics and Audits

QA output

Audit and Metrics features display resulting reports of analysis in the appropriate tabs of the
Message pane. Metrics resulting report displays a table of classes, packages or diagrams,
included in the analysis, with the values of selected metrics. Audit resulting report represents
a list of selected audits for the diagram elements, included in the analysis. Refer to the
description of resulting reports' speedmenus for both Audit and Metrics modules.

The results of both Audit and Metrics analysis are tightly connected with the source code.
From any line of the resulting table, you can navigate to the appropriate location both in the
Diagram pane, and in the Editor. To do this, select the desired Audit or Metric table row,
and double click on it, or choose Open on the speedmenu. Same functionality is available on
the graphic output.

Exporting analysis results

Speedmenus of both result reports contain Export command that allows to copy the
description files of metrics and audits to the desired location.

/ tem | acl cc| worm| RFC|wmpct e
B B =defautt= 44 55 83 412 55 73
Datatdanagement Open 0 1] 1 1 2
= ProblemDomain 23 33 27 o 33 25
CazhSale Expand &7 33 27 51 33 27

CashSaleDetail Expand All Children 10 ¥ 1 g 7

Bl MakecashSale | colapse all Children 0 1 0 1 1

InsUffPaymentEs " N 0 2] 19 2
ProductDesc = 26 22l 13 300 22 28
ProductPrice Select Al 32 16 2 18 16 7
Requirements Copy 7 4 1] 4 4 B
= zerinterface Retrash 100 36 73 393 36 29

=y ETres

CashSalesipp 1 5 10 12 5 3
POSFrame il 172 3\ 73 393 36 29
PioSFrameshout Expiort] The Whale Takle a3] B
salel) Print... Selected Rows 54 z &
data_management - Croste HTML Renart 53 11 14
problem,_domain Kiviat Graph... reste eport... =7) PR
SErVer Sort... 14 25 29 a3) 73
uzer_interface ¥ Sort Ascending 142 45 bt 412 45 34
util [Sart Descending 4 13 1 11 13 16
E IMakeCashZale 1] 1 n 1 1 1

341 -

Metrics and Audits

In the Export Results to File dialog you can specify target file location and select export format
from the Output Type dropdown list:

Export Reszults to File
ot File
Report directary: (0iTogetherstoutimetrics

—Html Option:

[w| Copy description files [Standard location

Destination D:'I.Tu:ugetherﬁﬁ.nuti'|| |:|
HTML reference |descripti-:uns |
Ok Cancel

Possible output formats are:

- HTML format
- Text format separated with tabs
- Text format aligned with spaces

Copy Description Files
When HTML format is selected, Copy Description Files option is enabled that allows including

descriptions of the audits and metrics to the exported result report.

In the Generate HTML. File mode, the headers of the result table are interpreted as hyperlinks
to the descriptions of the relevant audits and metrics. By default, these hyperlinks refer to
the description files under $TGH% \modules\ga.

Selecting Copy Description Files option sets target location for the description files, and the
hyperlinks in the tables headers change accordingly. This feature is very handy when you
need to put quality assurance results to the network.

Linked HTML Report for Metrics

Metrics report in HTML format is generated as a set of linked HTML files.

The set of files representing the result of metrics analysis includes separate files for each
package and class involved in the analysis, a file that covers results for all packages, and a file
for all classes. All these files are hyperlinked with each other. It makes possible to navigate
through the project tree model.

Graphic output of Metrics result report

Metrics module provides the possibility of graphic output. Speedmenu of the result report
includes two commands, Kiviat graph and Bar graph.

Kiviat graph

This graph demonstrates the analysis results of a certain class or package for those metrics
that have pre-defined limiting values. The metrics results are laid off along the axes that
originate from the center of the graph. Each axis has special scale, selected in such a way that

342

Metrics and Audits

all limiting values are equidistant from the
center. Thus, the limiting values represent a
red circle, and the actual metrics show up as a CR DAC
star. The dot that falls out of the circle means

that relevant metric is exceeded.

Kiviat graph for <default>

. FO
The following notation is used in the Kiviat

graph: CBO
- Green dots represent the normal values
- Blue dots represent the values below the

.. ML
lower limit

- Red dots represent the values over the WP C
upper limit.
- Scale marks are displayed as clockwise RFE LoRM
directional ticks perpendicular to the Kiviat
ray. Low limit labels are displayed as anti- O :
. . .] i | _Autn:- Lipdste | Prirt... | Cloze
clockwise directional blue ticks perpendicular | y

to the Kiviat ray.
Bar graph

This graph displays selected metric for all classes and/or packages. Color of the bars reflects
conformance to the limiting values of the metric in reference. If metric for a certain class
falls within the permissible range, the appropriate bar is green, exceeding metric is red. Blue
bars represent the value that

are lower than the minimal CEOD
permissible value. (Elar graph rDescriptiDn |

You can use dropdown list
to change metric in the same
dialog window. Checkbox DataManagement
Selected rows only allows to
display metrics result for the
highlighted rows of the FroblemDomain
result table.

Set Auto update checkbox to
enable re-drawing of the IMake CashSale | O
graph while you browse
through the result table.

“default=

SalaDM

Usearlnterface

Double click on a bat, or [[Selected raws anly
right click and Open
command on the bar CHO Coupling Between Objects -
speedmenu navigates to the
appropriate package or class Prirt... Cloge
of the source code, both in y
the Diagram pane, and in the
Editor pane.

343

Metrics and Audits

Print graphic results

Both Kiviat graph and Bar graph enable printout. Pressing the Print button invokes Print
dialog, which is quite similar to the other print dialogs of Together. The dialog window
displays preview and provides the choice of preview and printing scales.

Printing =cale

Fit page wicth -

FPrewview

CEBO - Coupling Between Objects
= cherbanl 1=
Dol kton apomonl
Pricbdim Dicmain
Llsiof Inilior e

Nkl sehEaa | 4

a0% - Page 1 of 1

Print Page Setup Cancel

Automatic Correction

Some of the Audit rules allow automatic correction. Presently these rules are:

Audit Group Abbreviation [Description
Coding Style RFDI Replacement For Demand Imports
Documentation TC Transparent Collections
Declaration Style CPAMBF Constant Private Attributes Must Be Final
Possible Errors MFDCSF Method finalize() Doesn't Call super.finalize()
Superfluous Content |DID Duplicate Import Declarations
DIPSFBT Don't Import the Package the Source File Belongs To
EIOJLC Explicit Import Of the java.lang Classes
IIMBU Imported Items Must Be Used
UOOIM Use Of Obsolete Interface Modifier
UOUIMM Use Of Unnecessary Interface Member Modifiers

344

Metrics and Audits

This is how it's done... Fixing is always enabled for these rules. In course of audit analysis,
information required for correction is collected. Further, you can request correction from
the result report.

The leftmost column Fix in Audit result report displays correction status for the audits that
allow automatic

Fiz | Severity £ Abbreviation Explanation
CAOTTT e TIUTTET G O TSR DINECy

F |High Cic Duplicate Import Declarations

F |High Cic Duplicate Import Declarations

F [em= Must Be Used

Open

v |Mormal] ftemns Must Be Used
Ly) Select &l Class Members Declaration
Ly) Cony Class Members Declaration
Ly i Class Members Declaration
Ly) Refresh Class Members Declaration
Ly) Restart Class Members Declaration
Ly lazs Members Declaration
Ly o Auto Correct Clazs Members Declaration

Select the desired rows and choose Auto Correct command on the speedmenu.
Confirmation dialog shows up, where you can select the scope of automatic correction.

Auto Comect

Fix thiz wiolation’?
iolation

DID - Duplicate Import Declarations
Irterfacel java
import java.io®,

Aszume this answer for
im0 thiz violation only
i1 all of this type
i1 all zelected violations

es Mo Cancel

2

Corrected source code displays in the Editor pane, and fixing status appropriately changes in
the Fix column.

Note

On the large-scale, and even medium-size projects, Audit is a rather time-consuming
procedure. To make it work faster, the Autofix option is turned OFF by default.

Creating and Using Saved Metric/Audit Sets

The Metrics dialog and the Audits dialog display the set of all available Metrics and Audits
respectively. These atre specific to the project's target programming language. When you
open a project, a default subset of all available Metrics and Audits for the language is active
in each dialog. If you open one of the dialogs and click Szar#, all of the active metrics/audits
are processed. Active metrics/audits are indicated by a checkmark in the Choser field of the
respective dialog.

345

Metrics and Audits

You will probably find that you don't want to run every metric/audit in the default active set
every time, but rather some specific subset of available metrics/audits. Together enables you
to create saved sets of active metrics and audits that can be loaded and processed as you
choose. You can always restore the default active set using the Sez defaults button in the
dialogs.

You can use the default active Metrics/Audits set, or any saved set as the basis for creating a
new saved set. For example, you could load the saved audit set SunCodeConventionsfor]ava.adt
and create a new saved Audits set based on it.

The default location for saved Metrics/Audits sets is:

STGHS /modules/com/togethersoft/modules/ga/config.

To create a saved set of active metrics/ audits:

1. Open the relevant dialog (Metrics or Audits) as described eatrlier in this topic.

2. If you want to base your new saved set on the default set, click Sez Defaults. 1f you want to
base it on a previously created custom set, click Ioad sef, navigate to and select the desired
saved set file (.adt for Awudits, .mts for Metrics).

3. Go through the individual metrics/audits and select those you want to include in the set
by checking the Chosen column next to each item. (You can select all the items in a group by
checking the group name.)

4. When you complete your selection, click Save set as and specify the location and filename
for the saved set file. (The default location is recommended just to keep things simple.)

Tip: You might want to include the .adt and .mts files in your backup routine.
To open a saved set of active metrics/ andits:
1. Open the relevant dialog (Metrics or Audits) as described eatlier in this topic.
2. Click Load set and navigate to the saved set file you want to use.

Additional Information Sources
Shyam R. Chidamber and Chris F. Kemerer, 'A metrics suite for object oriented design',
IEEE Transactions on Software Engineering, 20(6), pp476-493, 1994.

Thomas J. McCabe, Complexity Measure, IEEE Transactions on Software Engineering,
Volume 2, No 4, pp 308-320, December 1976

Arthur H. Watson and Thomas J. McCabe, Structured Testing: A Testing Methodology
Using the Cyclomatic Complexity Metric, Computer Systems Laboratory, National Institute
of Standards and Technology, Gaithersburg, MD 20899-0001, September 1996

Halstead, Elements of Software Science, New York, Elsevier North-Holland, 1977

Brian Henderson-Sellers, Object-Oriented Metrics : Measures of Complexity,Prentice Hall,
December 1995

Object-Oriented Metrics: an Annotated Bibliography:
http://dec.bournemouth.ac.uk/ESERG/alpha.html

Note: QA plugins reside in $STGHS /modules/com/togethersoft/modules/ga. You can
find detailed API for the QA plugins in
STGHS /modules/com/togethersoft/modules/ga/doc.

See also
QA Audit/Metrics Command Mode

- 346 -

Metrics and Audits

Refactoring

Refactoring is a technique used to improve the design of existing source code so that it is
easier to understand and maintain, and easier to modify.

Refactoring a system should not alter its external behavior, but rather be an "invisible"
improvement to the internal workings of the system. In general, it can even be thought of as
a way to "clean up" the code - however, following a set of rules that keeps the code changes
under control.

A software system may start with a good model and design. Over time, many people, who
are often not the original authors, modify the design, which can (and usually does) result in
degraded design and code quality. If you start to sense that code changes in one spot of your
application begin to affect seemingly unrelated code in another spot, you have discovered a
system that is no longer a good design. Congratulations! This is a good chance to try out
refactoring.

Presently, Together provides a tool to support refactoring at the source code editor level and
on the diagram level. In particular, it is possible to extract new operation from possibly
repeated chunks of code in existing methods, and to rename a class, an attribute or an
operation. So doing, all links and references are also updated.

Extract Operation

This is how it's done... In the Editor pane highlight the fragment of code, which you
consider to be worth extracting to a separate method, and invoke the editor speedmenu.
Choose Refactoring/ Extract Operation command. This brings in Extract Operation dialog,
where you can specify new method name, comments etc.

Note that Extract Operation only applies to a semantically completed piece of code that
complies with certain conditions. When doing selection, take into consideration the
following issues.

Together analyses parameters and local variables involved in the selection. If referred, they
become the parameters of the newly created method. If some variables are immediately
initialized in the selection, then there is no need to pass them as parameters - on the
contrary, they are declared as local variables in the new method.

If a certain local variable declared before the selection, is modified therein, then the newly
created method uses it as a return value. When the selection is replaced with the created
method, return value of the method is assigned to this variable, except for the situations
when this variable is not referred to anymore after the selection.

If there is more than one such variable, it is impossible to extract a method, and an error
message comes out.

Together also analyses exceptions thrown in the selection. The list of encountered
exceptions is used in the new method signature.

If a chunk of code is repeated in several locations, it is the user's responsibility to replace
these fragments in the other places with appropriate method calls.

347 -

Metrics and Audits

Example:

int someOperation(int a, int b) {
int i = 1;

1 =a + b;

synchronized (this)

if(attr < 0) {

attr = 1i;

}
}

return 1i;

)

will be converted into

int someOperation(int a, int b) {
int 1 = 1;

i = newMethod(a, b);

return i;

}

private int newMethod(int a, int b){
int 1;

1 =a + b;

synchronized (this)

if (attr < 0) {

attr = 1i;

}

}

return 1i;
The variable 1 is immediately assigned in the selection. That's why it is declared as a local
variable in the new method, rather than passed as a parameter.

Renaming

Select class icon, attribute or operation on the Diagram pane and right-click to display the
speedmenu. Refactoring node contains appropriate command Rename class | attribute | operation,
that invokes Rename dialog. The dialog window provides text area to enter the new name
and displays treeview of usages to be renamed. When each specific node is selected, the
relevant piece of code displays in the right frame.

Reference

The primary reference is Martin Fowler's book:

Fowler, Martin. Refactoring - Improving the Design of Existing Code. Reading, MA:
Addison-Wesley, 1999.

See also

Extract Operation dialog

Renaming dialogs

348 -

Language-Specific Metrics and Audits

Language-Specific Metrics and Audits

Metrics and Audits for the languages other than Java are not fully supported. This can be
explained by the lack of deep parsing in C#, Visual Basic and VBNet. Deep parsing in C++
is also insufficient. That's why these languages support declaration-based metrics and do not
support the ones that require deep parsing. For the same reason the audits are not
supported, since deep parsing is involved in neatly every audit.

The sets of metrics for C++, C# and VBNet are almost similar. VB6 lacks inheritance, and
thus all metrics related to inheritance and polymorphism are not available.

Metrics and Audits Support for C++

Some of the metrics included in the Metrics analysis are available for C++ classes. These are:

AC Attribute Complexity

AHF Attribute Hiding Factor

AIF Attribute Inheritance Factor

CR Comment Ratio

DAC Data Abstraction Coupling
DOIH Depth Of Inheritance Hierarchy
LOC Lines Of Code

MHF Method Hiding Factor

MIF Method Inheritance Factor
MNOP Maximum Number Of Parameters
NOA Number Of Attributes

NOAM Number Of Added Methods
NOC Number Of Classes

NOCC Number Of Child Classes

NOM Number Of Members

NOO Number Of Operations

NOOM Number Of Overridden Methods
NOCON Number of constructors

PF Polymorphism Factor

PPrivM Percentage of Private Members
PProtM Percentage of Protected Members
PPubM Percentage of Public Members
TCR True Comment Ratio

WMPC2 Weighted Methods Per Class 2

349 -

The Audits supported for C++ are:

Language-Specific Metrics and Audits

ACVFCD Avoid Calling Virtual Functions from Constructors and Destructors
AHIA Avoid Hiding Inherited Attributes

AHISM Avoid Hiding Inherited Static Methods

APAPA Avoid Public and Package Attributes

AUVC Always Use "Virtual" keyword

CDPMD Call Delete on Pointer Members in Destructors

HON Hiding of Names

MVDWSN Multiple Visible Declarations With Same Name
ONAMWAM Overriding a Non-Abstract Method with an Abstract Method
OWS Overloading with a Subclass

UvVD Use Virtual Destructor

Metrics Adapted for VB6
Metrics adapted for VBG6 are:

AC Attribute Complexity

AHF Attribute Hiding Factor

CR Comment Ratio

DAC Data Abstraction Coupling
LOC Lines Of Code

MHF Method Hiding Factor

MNOP Maximum Number Of Parameters
NOA Number Of Attributes

NOC Number Of Classes

NOCC Number Of Child Classes
NOM Number Of Members

NOO Number Of Operations
PPrivM Percentage of Private Members
PPubM Percentage of Public Members
TCR True Comment Ratio

WMPC2 Weighted Methods Per Class 2

- 350 -

Language-Specific Metrics and Audits

Metrics supported for C#

The following metrics that do not require deep parsing of the code, are supported in C#

projects:

AC Attribute Complexity

AHF Attribute Hiding Factor

ATF*+* Attribute Inheritance Factor

CR Comment Ratio

DAC Data Abstraction Coupling
DOIH Depth Of Inheritance Hierarchy
LOC Lines Of Code

MHF Method Hiding Factor

MIF** Method Inheritance Factor
MNOP Maximum Number Of Parameters
NOA Number Of Attributes

NOAM Number Of Added Methods
NOC Number Of Classes

NOCC Number Of Child Classes
NOCON Number Of Constructors

NOM Number Of Members

NOO Number Of Operations

NOOM Number Of Overridden Methods
P Polymorphism Factor

PIntM * Percentage of Internal Members
PPIntM * Percentage of Protected Internal Members
PPrivM Petcentage of Private Members
PProtM Percentage of Protected Members
PPubM Percentage of Public Members
TCR True Comment Ratio

WMPC2 Weighted Methods Per Class 2
Notes:

*This metric is specific for C# only.

** SCI can't work with compilation units. Therefore, if a project consists of several compilation units, and
some members have znternal ot internal protected access modifier, this metric will produce wrong result.

- 351 -

Metrics Adapted for VBNet
Metrics adapted for VBG6 are:

AC Attribute Complexity

AHF Attribute Hiding Factor

AIF Attribute Inheritance Factor

CR Comment Ratio

DAC Data Abstraction Coupling
DOIH Depth Of Inheritance Hierarchy
LOC Lines Of Code

MHF Method Hiding Factor

MIF Method Inheritance Factor
MNOP Maximum Number Of Parameters
NOA Number Of Attributes

NOAM Number Of Added Methods
NOC Number Of Classes

NOCC Number Of Child Classes
NOCON Number Of Constructors

NOM Number Of Members

NOO Number Of Operations

NOOM Number Of Overridden Methods
PF Polymorphism Factor

PPrivM Petcentage of Private Members
PProtM Percentage of Protected Members
PPubM Percentage of Public Members
TCR True Comment Ratio

WMPC2 Weighted Methods Per Class 2

Language-Specific Metrics and Audits

- 352 -

Audits Reference

Audits Reference

Section ACEV through AUVK
ACEYV - Avoid Constants with Equal Values

This rule catches constants with equal values. Presence of different constants with equal
values may result in bugs in case if these constants have equal meaning.

Wrong

final static int SUNDAY = O;
final static int MONDAY = 1;
final static int TUESDAY = 2;

final static int WEDNESDAY 3;
final static int THURSDAY = 4;
final static int FRIDAY = 5;
final static int SATURDAY = O;

// This method would never return "Saturday"
void getDayName (int day) {
if (day == SUNDAY)
return "Sunday";

else if(day == SATURDAY)
return "Saturday";

ACIUCFL - Avoid Complex Initialization or Update Clause in For Loops
When using the comma operator in the initialization or update clause of a for statement,
avoid the complexity of using more than three variables.

Wrong

for (1 = 0, j=0, k=10, 1=-1 ; 1 < cnt;

i++, J++, k--, 1 += 2) |
// do something

Tip: If needed, use separate statements before the for loop (for the initialization clause) or at
the end of the loop (for the update clause).

Right
1 = -1;
for (i = 0, j=0, k=10; i < cnt;
iv+, J++, k--) |
// do something
1 += 2;

- 353 -

Audits Reference

ACVFCD - Avoid Calling Virtual Functions from Constructors and
Destructors

C++ only

In a constructor, the virtual call mechanism is disabled because overriding from derived
classes hasn't yet happened. Objects are constructed from the base up, "base before
derived".

Consider:

#include< strings>

#include< iostream>

using namespace std;

class B {

public:

B(const string& ss) { cout << "B constructor\n"; f(ss);

}

virtual void f (const string&) { cout << "B::f\n";}

}i

class D : public B {

public:

D(const string & ss) :B(ss) { cout << "D
constructor\n"; }

void f (const string& ss) { cout << "D::f\n"; s = ss; }
private:

string s;

}i

int main ()

{

D d("Hello");

}

the program compiles and produces the following result:

B constructor
B::f
D constructor

Note that it is 7oz D::f. Consider what would happen if the rule were different so that D::f()
was called from B::B(): Because the constructor D::D() hasn't run yet, D::f() would try to
assign its argument to an uninitialized string s. The result would most likely be immediate
crash.

Destruction is done "derived class before base class", so virtual functions behave as in
constructors: Only the local definitions are used - and no calls are made to overriding
functions to avoid touching the (now destroyed) derived class part of the object.

Source: Bjarne Stroustrup's C++ Style and Technique FAQ

354

Audits Reference

ADVIL - Avoid Declaring Variables Inside Loops

This rule recommends declaring local variables outside the loops. The reason: as a rule,
declaring variables inside the loop is less efficient.

Wrong

int good var =0;

for (int i = 0; i < 100; i++) {
int varl = 0;
//

}

while (true)

——

int var2 = 0;
//

do {
int var3 = 0;
//

} while (true);
Tip: Move variable declarations out of loop

Right

int good var =0;

int wvarl;

for (int i = 0; i < 100; i++) {
varl = 0;

//

int var2;

while (true) {
var2 = 0;
//

}

int var3;
do {
var3 = 0;

//

} while (true);

AECB - Avoid Empty Catch Blocks

Catch blocks should not be empty. Programmers frequently forget to process negative
outcomes of a program and tend to focus more on the positive outcomes.

When 'Check parameter usage' option is on, this rule also checks, whether code does
something with the exception parameter or not. If not, violation is raised.

You can also specify the list of exceptions, which should be ignored. For example, for
PropertyVetoException catch block usually is empty - as a rule, the progam just
does nothing if this exception occurs.

- 355 -

AHIA - Avoid Hiding Inherited Attributes

Detects when attributes declared in child classes hide inherited attributes.

Wrong

class Elephant extends Animal ({
int attril;
// something...;

class Animal {
int attril;

Tip: Rename child class attribute.
Right

class Elephant extends Animal ({
int elphAttrl;
// something...;

class Animal {
int attril;

AHISM - Avoid Hiding Inherited Static Methods

Detects when inherited static operations are hidden by child classes.
Wrong

class Elephant extends Animal ({
void operl () {}
static void oper2() {}

class Animal {
static void operl () {}
static void oper2() {}

}

Tip: Rename either ancestor or descendant class operations
Right

class Elephant extends Animal ({
void anOperl () {}
static void anOper2 () {}

class Animal {
static void operl () {}
static void oper2() {}

Audits Reference

- 356 -

Audits Reference

AIPR - Avoid Implementation Packages Referencing

This rule helps you to avoid referencing packages, which normally shouldn't be referenced.
For example, if you use Facade or AbstractFactory patterns, you might verify that nobody
uses direct calls to underlying classes' constructors.

In this case you might divide your packages into interface and implementation ones and
ensure that nobody ever references implementation packages - only interface ones.

You can set two lists - allowed (interface) and banned (implementation) packages. For each
class reference in source code, this rule verifies, whether the package this class belongs to is
in allowed and is not in banned list.

Package names in list may be

o - any package is allowed (banned)
package name - this package is allowed (banned)
package name postfixed by '*' - any subpackage of the given package is

allowed (banned)

In the case of conflict, narrower rule is stronger. For example, if you specify a/lowed list as
*

com.mycompany .openapi. *
and banned list as

com.mycompany . *
than all subpackages of com.mycompany package would be banned except for those
belonging to com. mycompany . openapi subpackage.

ANFSA - Avoid Non Final Static Attribute

This rule helps you avoid non final static attributes.
Wrong

protected static ArrayList InterfacelListeners = new
ArrayList () ;

Right

protected final static Arraylist InterfacelListeners = new
ArrayList () ;

- 357 -

Audits Reference

AOSMTO - Access Of Static Members Through Objects

Static members should be referenced through class names rather than through objects.
Wrong

class AOSMTO1 {

void func () {
AOSMTOl objl = new AOSMTO1 () ;
AOSMTO2 obj2 = new AOSMTO2 () ;
objl.attr = 10;
obj2.attr =
objl.oper () ;
obj2.oper ()
this.attr++;
this.oper () ;

}

static int attr;

static void oper () {}

}
class AOSMTO2 {
static int attr;
static void oper () {}

}

Tip: Always reference static members via class names
Right

class AOSMTO1 {
void func () {
AOSMTOl objl = new AOSMTO1 () ;
AOSMTO2 obj2 = new AOSMTO2 () ;
AOSMTOl.attr = 10;
AOSMTO2 .attr = 20;
AOSMTO1 .oper () ;
AOSMTO2 .oper ()
AOSMTOl.attr++;
AOSMTO1 .oper () ;
}
static int attr;
static void oper () {}
}
class AOSMTO2 {
static int attr;
static void oper () {}

- 358 -

Audits Reference

APAPA - Avoid Public And Package Attributes

Declare the attributes either private or protected and provide operations to access or change
them.

There might be one exception when some class is used just as struct in C language: it just
holds some values, and thus has no methods. Formally option regulates whether to raise
violations for such classes. When formally option is off, violations are not raised.

Wrong
class APAPA {

int attril;
public int attr2;

Tip: Change visibility of attributes to either private or protected.
Provide access operations for these attributes.
Right

class APAPA {
private int attril;
protected int attr2;
public int getAttrl() {
return attril;
}

public int getAttr2() {
return attr2;

public void setAttr2 (int newVal) {
attr2 = newVal;
}

ASL - Avoid String Literals

If your project can be internationalized you must avoid hard coded string and character
literals and keep them in external resource. The rule helps to find such unsafe literals.

You can customize the filter by entering the list of appropriate literals separately for strings
and for characters and by checking the "ignore white spaces" and "ignore digits" options.

- 359 -

Audits Reference

ASWEB - Avoid Statements With Empty Body
As far as possible avoid statements with empty body.

Wrong
StringTokenizer st = new StringTokenizer (classl.getName(),
nom, true) ;
String s;
for(s = ""; st.countTokens () 2;
S = 8 + st.nextToken());

Tip: Provide statement body or change the logic of the program (for example, use while
statement instead of £or statement)

Right

StringTokenizer st = new StringTokenizer (classl.getName (),
"o, true) ;

String s = "";

while(st.countTokens () 2) {

s += st.nextToken () ;

}

ATFLYV - Assignment To For-Loop Variables
For-loop variables should not be assigned to.

Wrong

for (int i = 0; i < charBuf.length; i++) {
if (Character.isWhitespace (charBuf [i]))
i++;

}

Tip: Use continue operator or convert for-loop to while-loop.

Right
for (int i = 0; i < charBuf.length; i++) {
if (Character.isWhitespace (charBuf[i]))
continue;

- 360 -

Audits Reference

ATFP - Assignment To Formal Parameters
Formal parameters should not be assigned to.
Wrong

int oper (int param) ({
param += 10;
return ++param;

}

Tip: Declare internal variable and use it instead of formal parameter
Right

int oper (int param) {
int result = param + 10;
return ++result;

ATLF - Avoid Too Long Files

According to Sun Code Conventions for Java, files longer than 2000 lines are cumbersome
and should be avoided.

ATLL - Avoid Too Long Lines

According to Sun Code Conventions for Java, lines longer than 80 characters should be
avoided, since they're not handled well by many terminals and tools.

- 361 -

Audits Reference

ATSWL - Append To String Within a Loop

Performance enhancements can be obtained by replacing String operations with StringBuffer
operations if a String object is appended to within a loop.

Wrong

public class ATSWL {
public String func () {

String var = "var";
for (int i = 0; i < 10; i++) {
var += (" " + 1);

}

return var;
}
J
Tip: Use StringBuffer class instead of String
Right

public class ATSWL {
public String func () {
StringBuffer var = new StringBuffer ("var");
for (int i = 0; i < 10; i++) {
} var.append (" " + 1i);

return var.toString() ;

- 362 -

Audits Reference

AUVK - Always Use ‘Virtual' Keyword
C++ only

It is advisable to mark all virtual functions with virtual keyword. This makes code more

readable, since one doesn't need to go through the entire class hierarchy to understand that a
certain function is virtual.

Wrong

class Shape {

public:

virtual void draw() ;
//

}i

class Circle : public Shape {

public:

void draw(); // Circle::draw() 1s virtual but not marked as
virtual

//
¥

Right

class Shape {

public:

virtual void draw() ;
//

}i

class Circle : public Shape {
public:

virtual void draw () ;

//

}i

- 363 -

Audits Reference

Section BLAD through DVIOSE
BLAD - Badly Located Array Declarators

Array declarators must be placed next to the type descriptor of their component type.

Wrong
class BLAD {
int attrl[];
int oper (int param([]) [] {
int var/[] [];
// do something

}

Right
class BLAD {
int [] attr;
int []1 oper (int[] param) {
int [] []1 wvar;
// do something

BTIJDC - Bad Tag In JavaDoc Comments

This rule verifies code against accidental use of improper JavaDoc tags.

Wrong
package audit;
/** Class BTIJDC
* @BAD TAG 1
* @version 1.0 08-Jan-2000
* @author TogetherSoft
*
/
public class BTIJDC {
/**
Attribute attr
@BAD TAG 2
@supplierCardinality 0..*
* @clientCardinality 1
*/
private int attr;
/** Operation oper
* @BAD TAG 3
* @return int
*/
public int oper () {}

* X X

Tip: Replace misspelled tags. Or if your JavaDoc tool (doclet, etc.) uses some non-standard
tags, add them to the list of valid tags.

364 -

Audits Reference

CA - Complex Assignment

Checks for the occurrence of multiple assighments and assignments to variables within the
same expression. Too complex assignments should be avoided since they decrease program
readability.

If 'strict' option is ¢ff; assighments of equal value to several variables in one operation is
permitted. For example the following statement would raise violation if 'strict' option is oz,
otherwise there would be no violation:

Wrong

// compound assignment
1 *= J++;
k=3 = 10;
1 =3 += 15;
// nested assignment
i = j++ + 20;
i = (j = 25) + 30;
Tip: Break statement into several ones.
Right

// instead of 1 *= j++;
J++;

io%= 5

// instead of k
k = 10;

j = 10;

// instead of 1
j += 15;
1=j’

// instead of i = j++ + 20;
J++;

i =3 + 20;
// instead of 1
j = 25;

i =3 + 30;

10;

Il
(R
Il

+= 15;

Il
.

25) + 30;

Il
—
(R

Il

- 3065 -

Audits Reference

CDPMD - Call Delete on Pointer Members in Destructors

C++ only

The audit looks for classes, which have any pointer members, and checks for cleaning up the
members in the destructor.

Right

class Image (
ImageBuffer* buffer;

~Image () {
delete buffer;

}
//

}i

CLE - Complex Loop Expressions

Avoid using complex expressions as repeat conditions within loops.
Wrong

void oper () {

for (int i1 = 0; i < vector.size(); i++) {
// do something

int size = vector.size();
for (int i = 0; i < size; i++) {
// do something

}

Tip: Assign the expression to a variable before the loop and use that variable instead.
Right
void oper () {
int size = vector.size();
for (int i = 0; i < size; i++) {
// do something
}

int size = vector.size();

for (int i = 0; i < size; i++) {
// do something

- 3066 -

Audits Reference

CNMMIFN - Class Name Must Match Its File Name
Checks whether top level class and interface has the same name as the file in which it
resides.

Wrong

// File Audit_ CNMMIFN.java
class CNMMIFN ({}

Tip: Rename either class or file
Right

// File Audit CNMMIFN.java
class Audit CNMMIFN {}

CPAMBF - Constant Private Attributes Must Be Final

Private attributes that never get their values changed must be declared final. By explicitly
declaring them in such a way, a reader of the source code get some information of how the
attribute is supposed to be used.

Wrong

class CPAMBF (
private int attrl = 10;
private int attr2 = 20;

void func () {
attrl = attr2;
System.out.println(attrl) ;
}
}
Tip: Make all private attributes, which are never changed final.
Right
class CPAMBF {
int attrl = 10;
private final int attr2 = 20;
void func () {

attrl = attr2;
System.out.println(attrl) ;

- 367 -

Audits Reference

CQS - Command Query Separation

Prevents methods that return value from modifying state. The methods that you use to
query the state of an object must be different from the methods you use to perform
commands (change the state of the object).

Wrong

class CQS {
int attr;
int getAttr () {
attr += 10;
return attr;

CVMBF - Constant Variables Must Be Final

Local variables that never get their values changed must be declared final. By explicitly
declaring them in such a way, a reader of the source code get some information of how the
variable is supposed to be used.

Wrong

void func () {
int varl = 10;
int var2 = 20;
varl = var2;

System.out.println(attrl) ;

}

Tip: Make all variables, which are never changed, final.

Right
void func () {
int varl = 10;
final int var2 = 20;
varl = var2;

System.out.println(attrl) ;

- 3068 -

Audits Reference

DBJAOC - Distinguish Between JavaDoc And Ordinary Comments

Checks whether the JavaDoc comments in your program ends with "**/' and ordinary C-
style ones with "*/".

Wrong
package audit;

/**
* JavaDoc comment
*/
public class DBJAOC {
/*
* C-style comment

**/

private int attr;

/**

* JavaDoc comment
*/
public void oper () {}
}

Right
package audit;

/**

* JavaDoc comment

**/
public class DBJAOC ({
/*
* C-style comment
*/
private int attr;

/**

* JavaDoc comment

**/
public void oper () {}

- 369 -

Audits Reference

DCFPT - Don't Compare Floating Point Types
Avoid testing for equality floating point numbers: floating-point numbers that should be
equal are not always equal due to rounding problems.

Wrong

void oper (double d) {
if (d 1= 15.0) {
for (double f = 0.0; £ < d; £ += 1.0) {
} // do something

}
J
Tip: Replace direct comparison with estimation of absolute value of difference

Right

void oper (double d) {
if (Math.abs(d - 15.0) < Double.MIN VALUE * 2) {
for (double f = 0.0; d - £ > DIFF; £ += 1.0) {
// do something
}

DCNCD - Don't Code Numerical Constants Directly

According to Sun Code Conventions for Java, numerical constants (literals) should not be
coded directly, except for -1, 0, and 1, which can appear in a for loop as counter values.

Tip: Add static final attributes for numeric constants.

DID - Duplicate Import Declarations
There should be at most one import declaration that imports a particular class/package.
Wrong

package audit;

import java.io.*;
import java.io.*;
import java.sgl.Time;
import java.sqgl.Time;

class DID {

}

Tip: Delete duplicate declarations

- 370 -

Audits Reference

DIPSFBT - Don't Import the Package the Source File Belongs To
No classes or interfaces need to be imported from the package that the source code file
belongs to. Everything in that package is available without explicit import statements.

Wrong

package audit;
import java.awt.*;
import audit.*;

public class DIPSFBT {

}

Tip: Delete unnecessary import statement.

DPMSSL - Don't Place Multiple Statements on the Same Line

According to Sun Code Conventions for Java, each line should contain at most one
statement.

Wrong

if (someCondition) someMethod() ;
144 J++;

Tip: Place each statement on the separate line.
Right

if (someCondition)
someMethod () ;

i++;

J++;

DUNOF - Don't Use the Negation Operator Frequently

The negation operator slows down the readability of the program, so it is recommended that
it should not be used frequently.
Wrong
boolean isOk = verifySomewhat ()
if (!isOk)

return 0;
else

return 1;
Tip: Change your program logic to avoid negation.
Right
boolean isOk = verifySomewhat ()
if (isOk)

return 1;

else
return 0;

371 -

Audits Reference

DVIOSE - Declare Variables In One Statement Each

Several variables (attributes and local variables) should not be declared in the same
statement.

'Different types only' option can weaken this rule. When it is o7, violation is raised only when
variables are of different types, for example:
int foo, fooarray[]; // definitely wrong

Wrong

class DVIOSE ({
int attril;
int attr2, attr3;
void oper () {
int wvarl;
int var2, wvar3;

}
}

Tip: declare variables in one statement each
Right

class DVIOSE {
int attril;
int attr2;
int attr3;
void oper () {
int wvarl;
int var2;
int var3;

372

Audits Reference

Section EBWB through EOOBA
EBWB - Enclosing Body Within a Block

The statement of a loop must always be a block. The then and else parts of if-statements
must always be blocks. This makes it easier to add statements without accidentally
introducing bugs due to forgetting to add braces.

Wrong

if(st == null)
return;

while(st.countTokens () 2)
s += st.nextToken() ;

Tip: Always enclose body within a block
Right

if(st == null) {
return;
}

while(st.countTokens () 2) {
S += st.nextToken() ;
}

EIAV - Explicitly Initialize All Variables

Explicitly initialize all variables. The only reason not to initialize a variable where it's declared
is if the initial value depends on some computation occurring first.

Wrong

void func () {
int varo0;
int varl = 1, var2;
// do something.. }

Right
void func () {

int var0 = 0;

int varl = 1, var2 = 0;

// do something.. }

EIOJLC - Explicit Import Of the java.lang Classes
Explicit import of classes from the package java.lang' should not be performed.
Wrong

package audit;
import java.lang.*;
class EIOJLC {}

Tip: Delete unnecessary import statement.

- 373 -

Audits Reference

EJB_CL - Don't create a class loader

According to Sun EJB specifications, the enterprise bean must not attempt to create a class
loader; obtain the current class loader; set the context class loader; set security manager;
create a new security manager; stop the JVM; or change the input, output, and error streams.

These functions are reserved for the E]B Container. Allowing the enterprise bean to use these functions conld
compromise security and decrease the Container's ability to properly manage the runtime environment.

EJB_CONSOLE - Don't use console output

According to Sun EJB specifications, the enterprise bean must not attempt to output
information to a display.

Most servers do not allow direct interaction between an application program and a keyboard/ display attached
to the server system.

EJB_FDESCR - Don't attempt to directly read or write a file descriptor
According to Sun EJB specifications, the enterprise bean should not attempt to directly read
or write a file descriptor.

Allowing the enterprise bean to read and write file descriptors directly conld compromise security.

EJB_FILES - Access files and directories is restricted
According to Sun EJB specifications, an enterprise bean must not use the java.io
package to attempt to access files and directories in the file system.

The file system APIs are not well-suited for business components to access data. Business components should
use a resource manager AP, such as [DBC API, to store data.

EJB_IO - Don't use AWT, SWING and the other Ul APIs

According to Sun EJB specifications, an enterprise Bean must not use the AWT
functionality to attempt to output information to a display, or to input information from a
keyboard.

Most servers do not allow direct interaction between an application program and a keyboard/ display attached
to the server system.

EJB_JDBC - Don't use JDBC API from Session Beans

It's a wrong solution to work with persistent data using Session Beans that should represent
business processes. Using Entity Beans is better.

Entity Beans are persistent objects that can be stored in permanent storage.

EJB_NATIVE - Don't load a native library

According to Sun EJB specifications, The enterprise bean must not attempt to load a native
library.

This function is reserved for the E]B Container. Allowing the enterprise bean to load native code would create
a security hole.

374

Audits Reference

EJB_REFL - Don't use Reflection.

According to Sun EJB specifications, the enterprise bean must not attempt to query a class
to obtain information about the declared members those are not otherwise accessible to the
enterprise bean because of the security rules of the Java language. The enterprise bean must
not attempt to use the Reflection API to access information that the security rules of the
Java programming language make unavailable.

This function is reserved for the EJB Container. Allowing the enterprise bean to load native code would create
a security hole.

EJB_SEC - Don't obtain the security policy information

According to Sun EJB specifications, the enterprise bean must not attempt to obtain the
security policy information for a particular code source.

Allowing the enterprise bean to access the security policy information wonld create a security hole.

EJB_SECOBJ - Don't use the security configuration objects

According to Sun EJB specifications, the enterprise bean must not attempt to access or
modify the security configuration objects (Policy, Security, Provider, Signer, and Identity).

These functions are reserved for the E]B Container. Allowing the enterprise bean to use these functions conld
compromise securit).

EJB_SFACT - Don't set the socket factory

According to Sun EJB specifications, the enterprise bean must not attempt to set the socket
factory used by ServerSocket, Socket, or the stream handler factory used by URL.

These networking functions are reserved for the E]B Container. Allowing the enterprise bean to use these
Sfunctions conld compromise security and decrease the Container's ability to properly manage the runtinze
environment.

EJB_SOCKET - Don't listen on a socket

According to Sun EJB specifications, an enterprise bean must not attempt to listen on a
socket, accept connections on a socket, or use a socket for multicast.

The EJB architecture allows an enterprise bean instance to be a network socket client, but it does not allow it
to be a network server. Allowing the instance to become a network server would conflict with the basic
Sfunction of the enterprise bean- to serve the E]B clients

EJB_SUBST - Don't use the subclass and object substitution features

According to Sun EJB specifications, the enterprise bean must not attempt to use the
subclass and object substitution features of the Java Serialization Protocol.

Allowing the enterprise bean to use these functions could compromise security.

- 375 -

Audits Reference

EJB_THREADS - Don't manage threads

According to Sun EJB specifications, the enterprise bean must not attempt to manage
threads. The enterprise bean must not attempt to start, stop, suspend, or resume a thread; or
to change a thread's priority or name. The enterprise bean must not attempt to manage
thread groups.

These functions are reserved for the EJB Container. Allowing the enterprise bean to manage threads would
decrease the Container's ability to properly manage the runtime environment.

EOOBA - Equality Operations On Boolean Arguments

Avoid performing equality operations on boolean operands. You should not use 'true' and
'false' literals in conditional clauses.

Wrong

int oper (boolean bOk) ({
if (bOk) {
return 1;
}

while (bOk == true) {
// do something

return (bOk == false) ? 1 : 0;
}
Right
int oper (boolean bOk) {
if (bOk) {

return 1;

}

while (bOk) {
// do something

return (! bOk) 2 1 : 0;

- 376 -

Audits Reference

Section GOWSNT through NOEC
GOWSNT - Group Operations With Same Name Together

Enforces standard to improve readability.
Wrong

package audit;
class GOWSNT {
void operation () {}
void function () {}
void operation (int param) {}
J
Tip: Group operations that differ only by their parameter list together. Good to order from
least number of parameters to most.

Right

package audit;

class GOWSNT {
void operation () {}
void operation (int param) {}
void function () {}

377 -

Audits Reference

HON - Hiding Of Names

Declarations of names should not hide other declarations of the same name. The option
'Formally' regulates whether hiding of names should be detected for parameter variable, if
the only usage of it is to assign its value to the attribute with the same name.

Wrong

class HON ({
int index;
void func () {
int index;
// do something

void setIndex (int index) {
this.index = index;
}
}

(Note that the second violation would be raised only if 'Formally' option is switched on.)
Tip: Rename variable, which hides attribute or another variable.
Right
class HON ({
int index;
void func () {

int index1;
// do something

}

void setIndex (int anIndex) {
this.index = anIndex;

378 -

Audits Reference

ICOMM - Inaccessible Constructor Or Method Matches

Opverload resolution only considers constructors and methods are visible at the point of the
call. If however, all the constructors and methods were considered, there may be more
matches. This rule is violated in this case.

Imagine that ClassB is in a different package than ClassA. Then the allocation of ClassB
violates this rule since the second constructor is not visible at the point of the allocation, but
it still matches the allocation (based on signature). Also the call to oper in ClassB violates
this rule since the second and the third declarations of oper is not visible at the point of the
call, but it still matches the call (based on signature).

Wrong

public class ClassA {
public ClassA (int param) {}
ClassA (char param) {}
ClassA (short param) {}
public void oper (int param) {}
void oper (char param) {}
void oper (short param)

}

Tip: Either give such methods or constructors equal visibility or change their signature.
Right

public class ClassA {
ClassA (int param) {}
public ClassA (char param) {}
public ClassA (short param) {}
public void oper (int param) {}
void doOper (char param) {}
void doOper (short param) {}

- 379 -

Audits Reference

ICSBF - Instantiated Classes Should Be Final

This rule recommends making all instantiated classes final. It checks classes, which present
in the object model. Classes from search/classpath are ignored.

Wrong

class ICSBF {
private Classl attrl = new Classl();
// something...

class Classl {
// something. ..
}

Tip: Make all instantiated classes final.
Right

class ICSBF {
private Classl attrl = new Classl();
// something...
}
final class Classl {
// something...

IIMBU - Imported Iltems Must Be Used

It is not legal to import a class or an interface and never use it. This rule checks classes and
interfaces that are explicitly imported with their names - that is not with import of a
complete package, using an asterisk. If unused class and interface imports are omitted, the
amount of meaningless source code is reduced - thus the amount of code to be understood
by a reader is minimized.

Wrong

import java.awt.*;
import java.util.Dictionary;
import java.util.Hashtable;
import java.util.Stack;
import java.util.Vector;
class IIMBU {
Dictionary dict;
void func (Vector vec) {
Hashtable ht;
// do something

}

Tip: Delete unnecessary imports.

- 380 -

Audits Reference

IIMBU - Imported Items Must Be Used

It is not legal to import a class or an interface and never use it. This rule checks classes and
interfaces that are explicitly imported with their names - that is not with import of a
complete package, using an asterisk. If unused class and interface imports are omitted, the
amount of meaningless source code is reduced - thus the amount of code to be understood
by a reader is minimized.

Wrong

import java.awt.*;

import java.util.Dictionary;

import java.util.Hashtable;

import java.util.Stack;

import java.util.Vector;

class IIMBU {

Dictionary dict;

void func (Vector vec) {

Hashtable ht;

// do something

}
}

Tip: Delete unnecessary imports.

LAPAPMF - List All Public And Package Members First

Enforces standard to improve readability. Methods/data in your class should be ordered
propetly.

Wrong

class LAPAPMF
private int attr;
public void oper () {}

Tip: Place public and package members first, before protected and private ones.

Note: this rule is rather argnable. On the other hand, grouping members by functionality rather than by
scope can also mafke understanding the code easier.

Right

class LAPAPMF
public void oper () {}
private int attr;

- 381 -

Audits Reference

MFDCSF - Method finalize() Doesn't Call super.finalize()

As it is mentioned in book "The Java Programming Language' by Ken Arnold and James
Gosling, calling of super.finalize() from finalize() is good practice of programming, even if
base class doesn't define finalize() method. This makes class implementations less dependent
from each other.

Wrong

void finalize () {

}

Tip: Always call super.finalize ()
Right

void finalize () {
super.finalize() ;
}

MLOWP - Mixing Logical Operators Without Parentheses

An expression containing multiple logical operators together should be parenthesized
propetly.

Wrong

void oper () {
boolean a, b, c;
// do something
if (a || b & ¢) |
// do something
return;

}
}

Tip: Use parenthesis to clarify complex logical expression to reader.
Right
void oper () {
boolean a, b, c;
// do something
if (a || (b & c)) {
// do something
return;

- 382 -

Audits Reference

MVDWSN - Multiple Visible Declarations With Same Name

Multiple declarations with the same name must not be simultaneously visible excepting for
overloaded methods.

Wrong

class MVDWSN
void index () {
return;

void func () {
int index;
}
}

Tip: Rename either of members (or variables) with clashing names.
Right

class MVDWSN
void index () {
return;

void func () {
int anIndex;
}

NAICE - No Assignments In Conditional Expressions
Use of assignment within conditions makes the source code hard to understand.
Wrong

if ((dir = new File(targetDir)) .exists()) {
// do something
}

Right

dir = new File(targetDir) ;
if (dir.exists()) {
// do something
}

- 383 -

Audits Reference

NC - Naming Conventions
Takes a regular expression and item name and reports all occurrences where the pattern does
not match the declaration.

Wrong

package audit;
class AuditNC {
void operationl (int Parameter) {
void Operation2 (int parameter) {
int variable;
)

int my attribute;
final static int constant;

}

Tip: Rename packages, classes, members and so on in correct manner.
Right
package audit;
class AuditNC {
void operationl (int parameter) ({

void operation2 (int parameter) {
int variable;

int myAttribute;
final static int CONSTANT;

NOEC - Names Of Exception Classes

Names of classes, which inherit from Exception, should end with Exception.
Wrong

class AuditException extends Exception {}
class NOEC extends Exception {}

Tip: Rename exception classes
Right

class AuditException extends Exception {}
class NOECException extends Exception {}

384 -

Audits Reference

Section OCMD through TMSSC
OCMD - Order of Class Members Declaration

According to Sun Code Conventions for Java, the parts of a class or interface declaration
should appear in the following order
1. Class (static) variables. First the public class variables, then the protected, then
package level (no access modifier), and then the private.
2. Instance variables. First the public class variables, then the protected, then package
level (no access modifier), and then the private.

Constructors
4. Methods

»

OMNBU - Operator '?:' Should Not Be Used

The operator '?:" makes the code harder to read, than the alternative form with an if-

statement.

Wrong

void func (int a) {
} int b = (a == 10) ? 20 : 30;

Tip: Replace '?:' operator with the appropriate if-else statement.

Right
void func (int a) {
if (a == 10)
b = 20;
else
b = 30;

}
ONAMWAM - Overriding a Non-Abstract Method With an Abstract Method

Checks for the overriding of non-abstract methods by abstract methods in a subclass.
Wrong
class Animal {
void func () {}
}

abstract class Elephant extends Animal ({
abstract void func () ;
}

Tip: Perhaps this is just an coincidence of names - then just rename your method. If not,
either make given method abstract in ancestor or non-abstract in descendant.
Right
class Animal {
void func () {}

abstract class Elephant extends Animal ({
abstract void extFunc () ;

- 385 -

Audits Reference

OOAOM - Order Of Appearance Of Modifiers

Checks for correct ordering of modifiers.

For classes: visibility (public, protected or private), abstract, static, final.

For attributes: visibility (public, protected or private), static, final, transient, volatile.

For operations: visibility (public, protected or private), abstract, static, final, synchronized,
native

Wrong

final public class OOAOM
public static final int attrl;
static public int attr2;

}

Tip: Change the order of modifiers
Right

public final class OOAOM
public static final int attril;
public static int attr2;

OPM - Overriding a Private Method

A subclass should not contain a method with the same name and signature as in a superclass
if these methods are declared to be private.

Wrong

class Animal {
private void func () {}
}

class Elephant extends Animal ({
private void func () {}
}

Tip: Rename descendant class' method
Right
class Animal {

private void func () {}
)

class Elephant extends Animal ({
private void extFunc () {}
}

- 386 -

Audits Reference

OWS - Overloading Within a Subclass

A superclass method may not be overloaded within a subclass unless all overloadings in the
superclass are also overridden in the subclass. It is very unusual for a subclass to be
overloading methods in its superclass without also overriding the methods it is overloading.
More frequently this happens due to inconsistent changes between the superclass and
subclass - i.e. the intention of the user is to override the method in the superclass, but due to
the error, the subclass method ends up overloading the superclass method.

Wrong

public class Elephant extends Animal ({
public void oper (char c) {}
public void oper (Object o) {}

class Animal {
public void oper (int i) {}
public void oper (Object o) {}

}

Tip: Overload other methods too.
Right

public class Elephant extends Animal {
public void oper (char c) {}
public void oper (int i) {}
public void oper (Object o) {}

class Animal {
public void oper (int i) {}
}

PCPTCE - Parenthesize Conditional Part of Ternary Conditional Expression

According to Sun Code Conventions for Java, if an expression containing a binary operator
appears before the ? in the ternary ?: operator, it should be parenthesized.

Wrong

return x = 0 ? X : -X;
Right

return (x = 0) ? X : -X;

- 387 -

Audits Reference

PDOBB - Put Declarations Only at the Beginning of Blocks

Sun Code Conventions for Java recommends to put declarations only at the beginning of
blocks. (A block is any code surrounded by curly braces "{" and "}".) Don't wait to declare
variables until their first use; it can confuse the unwary programmer and hamper code
portability within the scope.
Wrong
void myMethod ()
if (condition) {
doSomeWork () ;
int int2 = 0;
} uselInt2 (int2) ;
int intl = 0;
uselIntl (intl) ;

}

Tip: Move declarations to the beginning of the block.
Right
void myMethod ()
int intl = 0; // beginning of method block
if (condition) {
int int2 = 0
doSomeWork ()
uselInt2 (int?2

; // beginning of "if" block
)
}

useIntl (intl); }

PFC - Provide File Comments

According to Sun Code Conventions for Java, all source files should begin with a c-style
comment that lists the class name, version information, date, and copyright notice:

/*

* Classname

* Version information

* Date

* Copyright notice

*/
This audit rule verifies whether the file begins with a c-style comment. It may optionally
verify whether this comment contains the name of the top-level class given file contains.

- 388 -

Audits Reference

PIIFS - Provide Incremental In For-Statement or use while-statement
Checks if third argument of the for-statement is missing.

Wrong

for (Enumeration enum = getEnum(); enum.hasMoreElements() ;
) |

Object o = enum.nextElement () ;

doSomeProc (o) ;
Tip: Either provide incremental part of the for-structure or cast the for-statement in to a
while-statement.

Right

Enumeration enum = getEnum() ;

while (enum.hasMoreElements()) {
Object o = enum.nextElement () ;
doSomeProc (0) ;

PJDC - Provide JavaDoc Comments

Checks whether JavaDoc comments are provided for classes, interfaces, methods and
attributes. Options allow to specify whether to check JavaDoc comments for public,
package, protected or all classes and members.

"Sun Code Conventions for Java" also recommends that @param tags order should
correspond operation parameters order and @chrows (or @exception) tags should be
sorted alphabetically. Turning each of 'ordered' checkbox on makes audit to check tags
order.

PMFL - Put the Main Function Last

Tries to make the program comply with various coding standards regarding the form of class
definitions.

Wrong

public class PMFL {
void funcl () {}
public static void main (String argsl[]) {}
void func2 () {}

}

Right

public class PMFL {
public static void main (String argsl[]) {}
void funcl () {}
void func2 () {}

- 389 -

Audits Reference

PPCF - Place Public Class First

According to Sun Code Conventions for Java, the public class or interface should be the first
class ot interface in the file.

Wrong

class Helper ({
// some code
}

public class PPCM {
// some code
}

Tip: Place public class or interface first
Right

public class PPCM {
// some code

class Helper ({
// some code

- 390 -

Audits Reference

RFDI - Replacement For Demand Imports

Demand import-declarations must be replaced by a list of single import-declarations that are
actually imported into the compilation unit. In other words, import-statements may not end
with an asterisk.

Wrong

import java.awt.*;
import javax.swing.*;
class RFDI {
public static JFrame getFrame (Component com) {
while (com != null) {
if (com instanceof JFrame)
return (JFrame)com;
com = com.getParent () ;

}

return null;
}
}
Tip: Replace demand imports with a list of single import declarations
Right

import java.awt.Component;
import javax.swing.JFrame;
class RFDI ({
public static JFrame getFrame (Component com) {
while (com != null) {
if (com instanceof JFrame)
return (JFrame)com;
com = com.getParent () ;

}

return null;

- 391 -

Audits Reference

SBCCS - Supply Break or Comment in Case Statement

According to Sun Code Conventions for Java, every time a case falls through (doesn't
include a break statement), a comment should be added where the break statement would
normally be. The break in the default case is redundant, but it prevents a fall-through error if
later another case is added.

Wrong

switch(¢) {

case 'n':
result += '\n';
break;

case 'r':
result += '\r';
break;

case '\'':
someFlag = true;

case '\"':
result += c;
break;

// some more code...

}

Tip: Add /* falls through */ comment where the break statement would
normally be.

Right

switch(¢) {

case 'n':
result += '\n';
break;

case 'r':
result += '\r';
break;

case '\'':
someFlag = true;
/* falls through */;

case '\"':
result += c;
break;

// some more code...

SSSIDC - Switch Statement Should Include a Default Case.

According to Sun Code Conventions for Java, every switch statement should include a
default case.

-392 -

Audits Reference

TC - Transparent Collections

For Java language, Together allows users to visualize "transparent" collections in a simple
manner. That is, upon reverse engineering legacy code, Together can identify and display
associations based on collections without requiring the users to inspect their own code and
to then have to manually insert the Together @association tag so that the proper
diagram link is drawn. T'C is auto fix audit and it can put for you association tag into the
code.

Here is example of TC results on simple class.

Before TC:
import java.util.¥*;
class A {

private Vector v = new Vector();
public void addElement (String element)
v.addElement (element) ;

)

After TC:
import java.util.*;
class A {
/* *
* @assoclates String
*/

private Vector v = new Vector();
public void addElement (String element) ({
v.addElement (element) ;

}

TC audit can be adjusted for any set of collections.

The collections are listed in the Classes tab of the table in the options panel. To define a
collection, press Add before or Add after buttons, and enter fully qualified name of the
collection class (for example, java.util. Vector). Each collection can be disabled.

It is also possible to delete collections from the set, using Delete button.

For the selected collection you can switch to the Operations tab of the table. This tabbed
pane enumerates the signatures of operations that add objects to the collection, and the
number of parameter that encapsulates the object being added.

By default this table contains fully qualified names of all classes and interfaces of java.util
package.

TMSSC - Too Many Switch Statement Cases

Switch statements should not have more than 256 cases.

Some processors have specialized hardware instructions that can take advantage of the
presence of less than 256 switch cases to optimize code. It is useful to use this rule therefore.

- 393 -

Audits Reference

Section UAAD through UVD
UAAO - Use Abbreviated Assignment Operator

Use the abbreviated assignment operator in order to write programs more rapidly. Also
some compilers run faster when you do so.

Wrong

void oper () {
int 1 = 0;
1 =1 + 20;
i =30 * 1i;

}

Right

void oper () {
int i = 0;
1 += 20;
1 *= 30;

UC - Unnecessary Casts

Checks for the use of type casts that are not necessary.
Wrong

class Animal {}
class Elephant extends Animal
void func () {
int 1i;
float £ = (float) 1i;

Elephant el;
Elephant e2 = (Elephant) el;

Animal a;
Elephant e;
a = (Animal) e;

}
}

Tip: Delete unnecessary cast to improve readability.

394 -

Audits Reference

UCVN - Use Conventional Variable Names

One-character local variable or parameter names should be avoided, except for temporary
and looping variables, or where a variable holds an undistinguished value of a type.
Conventional one-character names are:

b for a byte

¢ for a char

d for a double

e for an Exception

f for a float

i, j, k for integers
1l for a long

o for an Object

s for a String

To avoid potential conflicts please change the names of local variables or parametes that
consist of only two or three uppercase letters and coicide with initial country codes and
domain names, which could be used as first components of unique package names.

Wrong

void func (double d) {
int i;
Object o;
Exception e;
char s;
Object f;
String k;
Object UK;

}

Tip: Give all local variables conventional names.
Right

void func (double d) {
int i;
Object o;
Exception e;
char c;
Object o;
String s;

- 395 -

Audits Reference

UEIOE - Use 'equals' Instead Of r=='

The '=="'operator used on strings checks if two string objects are two identical objects.
However, in most situations, one likes to simply check of two strings that have the same
value. In these cases, the 'equals' method should be used.

Wrong

void func (String strl, String str2) ({
if (strl == str2) {
// do something
}

}

Tip: Replace '==' operator with 'equals' method.

Right

void func (String strl, String str2) {
if (strl.equals(str2)) {

// do something

- 396 -

Audits Reference

UIOE - Unnecessary 'instanceof' Evaluations

Checks that the runtime type of the left-hand side expression is the same as the one specified
on the right-hand side.

Wrong

class UIOE {
void operation () {
Animal animal;
Elephant elephant;
if (animal instanceof Animal) {
doSomethingl (animal) ;
}

if (elephant instanceof Animal) {
doSomething?2 (elephant) ;
}

}
}
class Animal {}
class Elephant extends Animal {}
Tip: Remove unnecessary checks
Right
class UIOE {
void operation () {
Animal animal;
Elephant elephant;

doSomethingl (animal) ;
doSomething2 (elephant) ;

}

class Animal {}
class Elephant extends Animal {}

ULIOL - Use 'L' Instead Of 'I' at the end of integer constant

It is difficult to distinct lower case letter 'I' and digit '1'. As far as letter '' can be used as long
modifier at the end of integer constant, it can be mixed with digit. It is better to use
uppercase 'L,

Wrong

void func () {
long var = 0x00011111;

Tip: Change trailing 'I' letter at the end of integer constants with 'L".
Right
void func () {
long var = 0x0001111L;
}

- 397 -

Audits Reference

ULVAFP - Unused Local Variables And Formal Parameters
Local variables and formal parameters declarations must be used.
Wrong

int oper (int unused param, int used param) {
int unused var;
return 2 * used param;

}

Tip: Get rid of unused local variables and formal parameters.

UOOIM - Use Of Obsolete Interface Modifier

The modifier 'abstract' is considered obsolete and should not be used.
Wrong

abstract interface UOOIM {}

Tip: Remove unnecessary 'abstract' modifier.

Right

interface UOOIM ({}

UOSM - Use Of the 'synchronized' Modifier

The 'synchronized' modifier on methods can sometimes cause confusion during
maintenance as well as during debugging. This rule therefore recommends against using this
modifier and instead recommends using 'synchronized' statements as replacements.

Wrong

class UOSM {
public synchronized void method () {
// do something

}

Tip: Use synchronized statements instead of synchronized methods.
Right

class UOSM {
public void method () {
synchronized (this) {
// do something
}

- 398 -

Audits Reference

UOUIMM - Use Of Unnecessary Interface Member Modifiers

All interface operations are implicitly public and abstract. All interface attributes are
implicitly public, final and static.

Wrong

interface UOUIMM ({
int attril;
public final static int ATTR2;
void operl () ;
public abstract void oper2 () ;

Tip: Get rid of superfluous interface member modifiers
Right
interface UOUIMM ({

int attril;

final static int ATTR2;

void operl ()
void oper2 ()

r
A

UPCM - Unused Private Class Member

An unused class member might indicate a logical flaw in the program. The class declaration
has to be reconsidered in order to determine the need of the unused member(s).

Wrong

class UPCM ({
private int bad attr;
private int good attr;
private void bad oper () {
// domething...;
}

private void good operl () ({
good _attr = 10;
}

public void good oper2 () ({
good operl() ;

}

Tip: Examine the program. If given member is really unnecessary, remove it (or at least
comment it out).

- 399 -

Audits Reference

URSP - Unnecessary Return statement Parentheses

According to Sun Code Conventions for Java, a return statement with a value should not use
parentheses unless they make the return value more obvious in some way. Example:

Wrong

return;
return (myDisk.size());
return (sizeOk ? size : defaultSize);

Right

return;
return myDisk.size() ;
return (sizeOk ? size : defaultSize);

USAI - Use of Static Attribute for Initialization

Non-final static attributes should not be used in initializations of attributes.

Wrong
class ClassA {
static int state = 15;
static int attrl = state;
static int attr2 = ClassA.state;
static int attr3 = ClassB.state;

}

class ClassB {
static int state

Tip: Either make static attributes used for initialization final, or use another constants for
initialization.
Right

class ClassA {
static int state = 15;
static final int INITIAL STATE = 15;
static int attril INITIAL STATE;
static int attr2 ClassA.state;
static int attr3 ClassB.state;

25;

class ClassB {
static final int state = 25;

- 400 -

Audits Reference

UTETACM - Use 'this' Explicitly To Access Class Members

Tries to make you use 'this' explicitly when trying to access class members. Often, using the
same class member names with parameters names makes what you are referring to unclear.

Wrong

class UTETACM {
int attr = 10;
void func () {
} // do something

void oper () {
func () ;
attr = 20;

Right
class UTETACM {
int attr = 10;

void func () {
// do something

void oper () {

this.func() ;
this.attr = 20;

~ 401 -

Audits Reference

UVD - Use Virtual Destructor

C++ only

When should we declare a destructor virtual? Whenever the class has at least one virtual
function. Having virtual functions indicate that a class is meant to act as an interface to
derived classes, and when it is, an object of a derived class may be destroyed through a
pointer to the base. For example:

class Base {

//

virtual ~Base() ;

}i

class Derived : public Base {

//

~Derived() ;

}i

void £ ()
{
Base* p = new Derived;

delete p; // virtual destructor used to ensure that ~Derived
is called

}

Had Base's destructor not been virtual, Derived's destructor would not have been called -
with likely bad effects, such as resources owned by Derived not

Source: Bjarne Stroustrup's C++ Style and Technique FAQ

402 -

Metrics Reference

Metrics Reference

AC - Attribute Complexity
Defined as the sum of each attribute's value in the class.

You can set up weights for types and its arrays separately. Use "*" to define types of a
package with all its subpackages. For example, "java.lang.*" means that the row defines all
classes of the java.lang package and its subpackages. To process all types not listed in the
table specify the last row as "*". The row order is important, because checking of attributes
goes from the top of the table downward up to the first coincidence.

AHF - Attribute Hiding Factor

This measure is from the MOOD (Metrics for Object-Oriented Development) suite. It is
calculated as a fraction. The numerator is the sum of the invisibilities of all attributes defined
in all classes. The invisibility of an attribute is the percentage of the total classes from which
this attribute is not visible. The denominator is the total number of attributes defined in the
project.

AIF - Attribute Inheritance Factor

This measure is from the MOOD (Metrics for Object-Oriented Development) suite. It is
calculated as a fraction. The numerator is the sum of inherited attributes in all classes in the
project. The denominator is the total number of available attributes (locally defined plus
inherited) for all classes.

CBO - Coupling Between Objects

Represents the number of other classes to which a class is coupled. Counts the number of
reference types that are used in attribute declarations, formal parameters, return types,
throws declarations and local variables, and types from which attribute and method
selections are made. Primitive types, types from java.lang package and supertypes are not
counted.

Excessive coupling between objects is detrimental to modular design and prevents reuse.
The more independent a class is, the easier it is to reuse it in another application. In order to
improve modularity and promote encapsulation, inter-object class couples should be kept to
a minimum. The larger the number of couples, the higher the sensitivity to changes in other
parts of the design, and therefore maintenance is more difficult. A measure of coupling is
useful to determine how complex the testing of various parts of a design is likely to be. The
higher the inter-object class coupling, the more rigorous the testing needs to be.

CC - Cyclomatic Complexity

This measure represents the cognitive complexity of the class. It counts the number of
possible paths through an algorithm by counting the number of distinct regions on a
flowgraph, i.e. the number of if, for and while statements in the operation's body. Case labels
of switch statement are counted optionally.

CF - Coupling Factor

This measure is from the MOOD (Metrics for Object-Oriented Development) suite. It is
calculated as a fraction. The numerator represents the number of non-inheritance couplings.
The denominator is the maximum possible number of couplings in a system.

403 -

Metrics Reference

CDBC - Change Dependency Between Classes
The Change Dependency Between Classes metric (CDBC) is a metric for the measure of
coupling. It determines the potential amount of follow-up work to be done in a client class
(CC) when the server class (SC) is being modified in the course of some maintenance
activity.
Definition. CDBC between client class CC and server class SC is defined as:

1. nif SC is a super class of CC,

2. nif CC has an attribute of SC,

3./ if SC is used in j methods of CC as local variable or parameter of CC method or
reference to SC method.

where 7 is a number of methods in CC.

Note 1. You can qualify single class, classes list, package or package list which contain sever
classes.

For example the list:

java.lang.String

java.awt.*

contains String class and all package classes of java.awt including classes in sub packages.

Note 2. If a class satisfies items 2 and 3 (or 1 and 3) of the metric definition, then CDBC
equals n.

Note 3. Unused local variables will have no impact on CDBC.
CR - Comment Ratio

Counts the ratio of JavaDoc and ordinary comments to total lines of code including JavaDoc
and ordinary comments. Blank lines may be optionally interpreted as code ones.

DAC - Data Abstraction Coupling

Counts the number of reference types used in the attribute declarations. Primitive types,
types from java.lang package and supertypes are not counted.

DOIH - Depth Of Inheritance Hierarchy

Counts how far down the inheritance hierarchy a class or interface is declared. High values
imply that a class is quite specialized.

FO - FanOut

Counts the number of reference types that are used in attribute declarations, formal
parameters, return types, throws declarations and local variables. Simple types and
supertypes are not counted.

HDiff - Halstead Difficulty

This measure is one of the Halstead Software Science metrics. It is calculated as (Number of
Unique Operators' / 'Number of Unique Operands’) * (‘Number of Operands' / "Number of
Unique Operands").

HEff - Halstead Effort

This measure is one of the Halstead Software Science metrics. It is calculated as 'Halstead
Difficulty' * 'Halstead Program Volume'.

404 -

Metrics Reference

HPLen - Halstead Program Length

'This measure is one of the Halstead Software Science metrics. It is calculated as "Number of
Operators' + 'Number of Operands'.

HPVoc - Halstead Program Vocabulary

'This measure is one of the Halstead Software Science metrics. It is calculated as "Number of
Unique Operators' + 'Number of Unique Operands'.

HPVol - Halstead Program Volume

This measure is one of the Halstead Software Science metrics. It is calculated as 'Halstead
Program Length' * Log2('"Halstead Program Vocabulary').

LOC - Lines Of Code

This is the traditional measure of size. It counts the number of code lines. JavaDoc and
ordinary comments as well as blank lines may be optionally interpreted as code ones.

LOCOM1 - Lack of Cohesion of Methods 1

Takes each pair of methods in the class and determines the set of fields they each access. If
they have disjoint sets of field accesses increase the count P by one. If they share at least one
field access then increase QQ by one. After considering each pair of methods:

RESULT = (P > Q) ? (P - Q) : O

A low value indicates high coupling between methods, which indicates high testing effort
because many methods can affect the same attributes and potentially low reusability. The
definition of this metric was provided by Chidamber and Kemerer in 1993.

LOCOM2 - Lack Of Cohesion Of Methods 2

Counts the percentage of methods that do not access a specific attribute averaged over all
attributes in the class. A high value of cohesion (a low lack of cohesion) implies that the class
is well designed. A cohesive class will tend to provide a high degree of encapsulation,
whereas a lack of cohesion decreases encapsulation and increases complexity.

LOCOMS3 - Lack Of Cohesion Of Methods 3

Measures the dissimilarity of methods in a class by attributes.
Consider:

m - number of methods in a class

a - number of attributes in a class

mA - number of methods that access an attribute

EmA - sum of mA for each attribute

Then:

RESULT = 100*(EmA/a-m)/(1-m)

The definition of this metric was proposed by Henderson-Sellers in 1995. Low value
indicates good class subdivision implying simplicity and high reusability. High lack of
cohesion increases complexity, thereby increasing the likelihood of errors during the

development process.

- 405 -

Metrics Reference

MHF - Method Hiding Factor

This measure is from the MOOD (Metrics for Object-Oriented Development) suite. It is
calculated as a fraction. The numerator is the sum of the invisibilities of all methods defined
in all classes. The invisibility of a method is the percentage of the total classes from which
this method is not visible. The denominator is the total number of methods defined in the
project.

MIC - Method Invocation Coupling

Definition (MIC) MIC is the (relative) number of other classes to which certain class sends
messages.

MIC,,.., = mamc / (N -1)

where N is the total number of classes defined in the project, and nuc is the number of
classes to which messages are sent.

Viewpoints. These viewpoints summarize the impact that coupling has on some external
attributes.

* Maintainability. The maintenance of a strongly coupled class (high MIC value) is
more difficult to do because of its dependency on the classes it is coupled to.

* Comprehensibility. A strong coupled class is more difficult to be understood as its
understanding implies a partial (or sometimes total) understanding of the classes it is
coupled to.

* Error-prone and Testability. Error-prone for a class is direct proportional with
the number of couples to the other classes. Consequently high coupling has a
negative impact on testability.

Observations

* The proposed definition of MIC is obviously a normalized one. Although this has
advantages, still for some viewpoints, like maintainability, it is more important to
operate on the absolute values, i.e. the number of classes to which it is coupled.

* For some viewpoints it might be important to count only the couplings of the
system to user-defined classes, i.e. exclude the library classes.

Source: Ing. Radu Marinescu. Az Object Oriented Metrics Suite on Coupling. Universitatea
"Politehnica" Timisoara, Facultatea de Automatica si Calculatoare, Departamentul de
Calculatoare si Inginerie Software. September, 1998.

MIF - Method Inheritance Factor

This measure is from the MOOD (Metrics for Object-Oriented Development) suite. It is
calculated as a fraction. The numerator is the sum of inherited methods in all classes in the
project. The denominator is the total number of available methods (locally defined plus
inherited) for all classes.

MNOL - Maximum Number Of Levels

Counts the maximum depth of if, for and while branches in the bodies of methods. Logical
units with a large number of nested levels may need implementation simplification and
process improvement because groups that contain more than seven pieces of information
are increasingly harder for people to understand in problem solving.

MNOP - Maximum Number Of Parameters

Displays the maximum number of parameters amongst all class's operations. Methods with
many parameters tend to be more specialized and so are less likely to be reusable.

- 406 -

Metrics Reference

MSOO - Maximum Size Of Operation

Counts the Maximum size of the operations for a class. Method size is determined in terms
of cyclomatic complexity, i.e. the number of if, for and while statements in the operation's
body. Case labels of switch statement are counted optionally.

NOA - Number Of Attributes

Counts the number of attributes. Inherited attributes may be counted optionally. If a class
has a high number of attributes, it may be wise to consider whether it would be appropriate
to divide it into subclasses.

NOAM - Number Of Added Methods

Counts the number of operations added by a class. Inherited and overridden operations are
not counted. Classes without parents are not processed. The large value of this measure
indicates that the functionality of the given class becomes increasingly distinct from that of
the parent classes. In this case, it should be considered whether this class should genuinely
be inheriting from the parent or if it could be broken down into several smaller classes.

NOC - Number Of Classes
Counts the number of classes.

NOCC - Number Of Child Classes

Counts the number of classes, which inherit from a particular class, i.e. the number of classes
in the inheritance tree down from a class. Non-zero value indicates that the particular class is
being re-used. However, the abstraction of the class may be poor if there are too many child
classes. It should also be stated that the high value of this measure points to the definite
amount of testing required for each child class.

NOCON - Number Of Constructors

Counts the number of constructors. You can specify whether to count all constructors or
only public, or protected, and so on.

NOIS - Number Of Import Statements

Counts the number of imported packages/classes. This measure can highlight excessive
importing and can also be used as a measure of coupling.

NOM - Number Of Members

Counts the number of members, i.e. attributes and operations. Inherited members may be
counted optionally. If a class has a high number of members, it may be wise to consider
whether it would be appropriate to divide it into subclasses.

NOO - Number Of Operations

Counts the number of operations. Inherited operations may be counted optionally. If a class
has a high number of operations, it may be wise to consider whether it would be appropriate
to divide it into subclasses.

NOOM - Number Of Overridden Methods

Counts the number of inherited operations, which a class overrides. Classes without parents
are not processed. High values tend to indicate design problems, i.e. subclasses should
generally add to and extend the functionality of the parent classes rather than overriding
them.

- 407 -

Metrics Reference

NOprnd - Number of Operands

This measure is used as an input to the Halstead Software Science metrics. It counts the
number of operands used in a class.

NOprtr - Number of Operators

This measure is used as an input to the Halstead Software Science metrics. It counts the
number of operators used in a class.

NORM - Number Of Remote Methods

Processes all methods and constructors and counts the number of various remote methods
called. Remote method is defined as a2 method, which is not declared in the class itself or in
its ancestors.

NUOprnd - Number of Unique Operands

This measure is used as an input to the Halstead Software Science metrics. It counts the
number of unique operands used in a class.

NUOprtr - Number of Unique Operators

This measure is used as an input to the Halstead Software Science metrics. It counts the
number of unique operators used in a class.

PF - Polymorphism Factor

This measure is from the MOOD (Metrics for Object-Oriented Development) suite. It is
calculated as a fraction. The numerator is the sum of overriding methods in all classes. This
is the actual number of possible different polymorphic situations. A given message sent to a
class can be bound, statically or dynamically, to a named method implementation. The latter
can have as many shapes (morphs) as the number of times this same method is overridden in
that class's descendants. The denominator represents the maximum number of possible
distinct polymorphic situations for that class as the sum for each class of the number of new
methods multiplied by the number of descendants. This maximum would be the case where
all new methods defined in each class would be overridden in all of their derived classes.

PIntM - Percentage of Internal Members

Counts the percentage of internal members in a class.

PPIntM - Percentage of Protected Internal Members
Counts the percentage of protected internal members in a class.
PPkgM - Percentage of Package Members

Counts the percentage of package members in a class.

PPrivM - Percentage of Private Members

Counts the percentage of private members in a class.

PProtM - Percentage of Protected Members

Counts the percentage of protected members in a class.

PPubM - Percentage of Public Members

Counts the proportion of vulnerable members in a class. A large proportion of such
members means that the class has high potential to be affected by external classes and means
that increased effort will be needed to test such a class thoroughly.

TCR - True Comment Ratio
Counts the ratio of JavaDoc and ordinary comments to total lines of code excluding
JavaDoc and ordinary comments. Blank lines may be optionally interpreted as code ones.

- 408 -

Metrics Reference

TRAP - Total Re-use from Ancestors Percentage

RAP - Reuse from Ancestors Percentage

The RA Metric

Definition 1 (Reuse of Ancestor-class - RA) The RA metric between a class C and one of
its ancestor classes A is formally expressed as:

7= 1.

RA(C; A) = y RDA(mth ; A)/n.

=1
where mth, (1 = 1; n,) represent the methods defined in class C.
Explanations The RA metric quantifies the reuse from a super class by totalizing this reuse
from all of its methods. The degree to which a method reuses an ancestor class is variable.
We consider that the way this reuse degree is calculated depends on the goals of the
measurement. Consequently we decided to "parameterize" the metric with a family of
metrics called Reuse Degree of Ancestor-class (RDA), that evaluates this reuse degree. A
description of this family of metrics is presented below.

The RDA Metrics

Definition 2 (Reuse Degree of Ancestor-class) A function expressing the measure of
reuse of an ancestor class A in method mth, of class C is called Reuse Degree of Ancestor-
class A in method mth;,.

RDA : SMF. X SAC. — [0; 1]

where SMF_. is the set of all member functions (methods) in class C and SACis the set of
ancestors classes A for class C.

Percentage RDA - RDA, ., The Percentage Reuse Degree of Ancestor-class is defined as:

erc

nAz';ﬁp nAz'ﬂl
uses(m,””; +(1-k,) Uses(m,";
2 mth,) Z mth)
i=1 i=1
RDA,, (mth;
A) =

n,” +(1-ky n 7
where m;™ (i = 1; n ") represent the usable class members of A belonging to the
implementation of the class and m™ (j = 1; n ;") represent the class members of A

belonging to the interface of the class. Function uses is defined as:

in

uses(m ; mth,) = 1 if class member m , is used
{ in method mth,

0 if not

- 409 -

Metrics Reference

Stability Factor is defined as follows. A class A is stable if most of the changes to the
implementation of A can be performed without affecting its interface. Thus, we define a
stability factor kA , kA [0; 1], as the quantitative expression of the stability of class A.
Observations: Because the stability of the ancestor-class plays an important role from the
perspective of the client class, we proposed this definition of RDA that also considers the
stability of ancestors interface.

The Total RA Metric - TRA

As we have seen the RA metric has two parameters: a particular class and one of its ancestor
classes. We think that it is necessary to have also a metric that expresses the total reuse (from
all the ancestors) for a given class. We will base the definition of this new metric, on the
definition of the already defined RA metric.

Definition 3 (Total Reuse from Ancestors - TRA) The Total Reuse from Ancestors
metric for a class C is defined as the sum of all RA values between class C and its
superclasses. This can be formally expressed as:

i=n,

TRA(C) = 5 RAGA)

=1
where n , represents the number of ancestor-classes for class C, and A, is the iterator of its

ancestor classes.

Source: Ing. Radu Marinescu. Az Object Oriented Metrics Suite on Coupling. Universitatea
"Politehnica" Timisoara, Facultatea de Automatica si Calculatoare, Departamentul de
Calculatoare si Inginerie Software. September, 1998.

- 410 -

Metrics Reference

TRAU - Total Re-use from Ancestors Unitary

RAU - Re-use from Ancestors Unitary
Reuse of Ancestors

The RA Metric

Definition 1 (Reuse of Ancestor-class - RA) The RA metric between a class C and one of
its ancestor classes A is formally expressed as:

i=n

RA(C; A) = y RDA(mth ; A)/n.

=1
where mth, (1 = 1; n,) represent the methods defined in class C.
Explanations: The RA metric quantifies the reuse from a super class by totalizing this reuse
from all of its methods. The degree to which a method reuses an ancestor class is variable.
We consider that the way this reuse degree is calculated depends on the goals of the
measurement. Consequently we decided to "parameterize" the metric with a family of
metrics called Reuse Degree of Ancestor-class (RDA), that evaluates this reuse degree. A
description of this family of metrics is presented below.

The RDA Metrics

Definition 2 (Reuse Degree of Ancestor-class) A function expressing the measure of
reuse of an ancestor class A in method mthi of class C is called Reuse Degree of Ancestor-
class A in method mth;,.

RDA : SMF. X SAC.. -- [0; 1]

where SMF_. is the set of all member functions (methods) in class C and SACis the set of
ancestors classes A for class C.

Unitary RDA - RDA

unit

The Unitary Reuse Degree of Ancestor-class is defined as:

RDA,,(mthg A) = 1 if method mth uses at least
{ one member of class A

0 if method mthuses no
member of class

The Total RA Metric - TRA

As we have seen the RA metric has two parameters: a particular class and one of its ancestor
classes. We think that it is necessary to have also a metric that expresses the total reuse (from
all the ancestors) for a given class. We will base the definition of this new metric, on the
definition of the already defined RA metric.

S411 -

Metrics Reference

Definition 3 (Total Reuse from Ancestors - TRA) The Total Reuse from Ancestors
metric for a class C is defined as the sum of all RA values between class C and its
superclasses. This can be formally expressed as:

i=n,

TRA(C) = 5 RAGA)

=1
where n , represents the number of ancestor-classes for class C, and A, is the iterator of its

ancestor classes.

You can see not only the total sum of the metric for a class, but also summands for all
ancestors classes of the class in reference. The table of summands is available from the
metrics results table by clicking right mouse button. If there are any ancestors for this class
the results table speedmenu will include RAu command

Source: Ing. Radu Marinescu. Az Object Oriented Metrics Suite on Coupling. Universitatea
"Politehnica" Timisoara, Facultatea de Automatica si Calculatoare, Departamentul de
Calculatoare si Inginerie Software. September, 1998.

TRDP

Reuse in Descendants

The RD Metric

Definition 1 (Reuse in Descendant-class - RD) The RD metric between a class C and
one of its descendant classes D is formally expressed as:

= ne

RD(C; D) = 5 RDD@;D) / nc

i=1
where mi (i = 1; n,) represent the usable class members of C.
Explanations The RD metric quantities the totalized reuse of all the members of a class C,
in one of its descendant classes. The degree to which a particular member is reused in a
descendant class is variable. We consider that the way this reuse degree is calculated depends
on the goals of the measurement. Analogous to RA we decided to "parameterize" the metric
with a family of metrics called Reuse Degree in Descendant-class (RDD), that quantities this
reuse degree. A description of this family of metrics is presented below.
The RDD Metrics

Definition 2 (Reuse Degree in Descendant Class)A function expressing the measure of
reuse of a class member m class C in a descendent class D is called Reuse Degree of m, in
Descendant-class D.

RDD : SM. X SDC-> [0; 1]
where ¢ is the set of all members in class C and SDC_ is the set of descendant classes D for
class C.

~412-

Metrics Reference

Percentage RDD - RDD

as:

The Percentage Reuse Degree in Descendant Class is defined

perc

i=np

RDD,,, (m D) = y uses(mymth,”) /n,,

i=1
where n, is the number of methods in class D. Function uses is defined as:

uses(m ; mth,) = 1 if class member m , is used
{ in method mth,

0 if not
The Total RD Metric - TRD

In the previous sections we defined the RD metric with two parameters: a particular class
and a descendant of that class. In the same way we defined TRA we also considered that it is
necessary to define a metric that expresses the total value for the reuse of a class by all its
descendants.
We considered following two viewpoints for the interpretation of this metric.
1. Maintainability. A high TRD value for a class indicates that a change in that class
has a high impact on the underlying class-hierarchy, i.e. its descendants.
2. Degree of Member Reuse. A high TRD for a class indicates that the very most of
its members are reused in the sub-classes.
In proposing these two viewpoints, we observed that because their focus is strongly different
it would be quite impossible to have a single definition for TRD. So we proposed a
definition for each one of the two viewpoints:
Definition 3 (Descendants-based Definition of TRD) The Total Reuse in Descendants
metric for a class C is defined as the sum of all RD values between class C and its
descendants. This can be formally expressed as:

z'—np

TRD(C) = 5 RD(CD)

i=1
where nj, represents the number of descendant-classes for class C, and D, is the iterator of
its descendants.

Source: Ing. Radu Marinescu. Az Object Oriented Metrics Suite on Coupling. Universitatea
"Politehnica" Timisoara, Facultatea de Automatica si Calculatoare, Departamentul de
Calculatoare si Inginerie Software. September, 1998.

413

Metrics Reference

TRDU

Reuse in Descendants

The RD Metric

Definition 1 (Reuse in Descendant-class - RD) The RD metric between a class C and
one of its descendant classes D is formally expressed as:

= n¢

RD(C; D) - Z RDD(m;D) / n.

i=1
where mi (1 = 1; n.) represent the usable class members of C.
Explanations The RD metric quantities the totalized reuse of all the members of a class C,
in one of its descendant classes. The degree to which a particular member is reused in a
descendant class is variable. We consider that the way this reuse degree is calculated depends
on the goals of the measurement. Analogous to RA we decided to "parameterize" the metric
with a family of metrics called Reuse Degree in Descendant-class (RDD), that quantities this
reuse degree. A description of this family of metrics is presented below.
The RDD Metrics

Definition 2 (Reuse Degree in Descendant Class)A function expressing the measure of
reuse of a class member m_ class C in a descendent class D is called Reuse Degree of m, in
Descendant-class D.

RDD : SM, X SDC.--> [0; 1]

where (is the set of all members in class C and SDC, is the set of descendant classes D for
class C.

Unitary RDD - RDD

unit

The Unitary Reuse Degree in Descendant-class is defined as:

RDD,,(m; D) = 1 if m, is used in at least one
{ method of class D

0 if m_ is not used at all in
class D

The Total RD Metric - TRD

In the previous sections we defined the RD metric with two parameters: a particular class
and a descendant of that class. In the same way we defined TRA we also considered that it is
necessary to define a metric that expresses the total value for the reuse of a class by all its
descendants.

We considered following two viewpoints for the interpretation of this metric.

1. Maintainability. A high TRD value for a class indicates that a change in that class
has a high impact on the underlying class-hierarchy, i.e. its descendants.
2. Degree of Member Reuse. A high TRD for a class indicates that the very most of
its members are reused in the sub-classes.
In proposing these two viewpoints, we observed that because their focus is strongly different
it would be quite impossible to have a single definition for TRD. So we proposed a
definition for each one of the two viewpoints:

414 -

Metrics Reference

Definition 3 (Descendants-based Definition of TRD) The Total Reuse in Descendants
metric for a class C is defined as the sum of all RD values between class C and its
descendants. This can be formally expressed as:

i=np

TRD(C) = 5 RD(GD)

i=1
where n), represents the number of descendant-classes for class C, and D, is the iterator of
its descendants.

Source: Ing. Radu Marinescu. Az Object Oriented Metrics Suite on Coupling. Universitatea
"Politehnica" Timisoara, Facultatea de Automatica si Calculatoare, Departamentul de
Calculatoare si Inginerie Software. September, 1998.

VOD
Law of Demeter

Definition 1 (Client) Method M is a client of method f attached to class C if inside M
message f is sent to an object of class C or to C. If f is specialized in one or more subclasses,
then M is only a client of f attached to the highest class in the hierarchy. Method M is a
client of some method attached to C.

Definition 2 (Supplier) If M is a client of class C then C is a supplier to M. In other words,
a supplier class to a method is a class whose methods are called in the method.

Definition 3 (Acquaintance Class) A class C1 is an acquaintance class of method M
attached to class C2, if C1 is a supplier to M and C1 is not one of the following:

1. the same as C2;
2. aclass used in the declaration of an argument of M
3. aclass used in the declaration of an instance variable of C2

Definition 4 (Preferred-acquaintance Class) A preferred-acquaintance class of method M
is either:

1. aclass of objects created directly in M, or

2. aclass used in the declaration of a global variable used in M.

Definition 5 (Preferred-supplier class) Class B is called a preferred-supplier to method M
(attached to class C) if B is a supplier to M and one of the following conditions holds:

* Bis used in the declaration of an instance vatiable of C,
* Bis used in the declaration of an argument of M, including C and its superclasses,
* B is a preferred acquaintance class of M.
The class form of Demeters Law has two versions: a strict version and a minimization
version. The strict form of the law states that every supplier class of a method must be a
preferred supplier.
The minimization form is more permissive than the first version and requires only to
minimize the number of acquaintance classes of each method.

415

Metrics Reference

Observations

The motivation behind the Law of Demeter is to ensure that the software is as
modular as possible. The Law effectively reduces the occurrences of certain nested
message sends and simplifies the methods.

The definition of the Law makes a difference between the classes associated with
the declaration of the method and the classes used in the body of the method, i.e.
the classes associated with its implementation. The former includes the class
where the method is attached, its superclasses, the classes used in the declarations
of the instance variables and the classes used to declare the arguments of the
method. In some sense, there are an 'automatic' consequence of the method
declaration. They can be easily derived from the code and shown by a browser.
All other supplier classes to the methods are introduced in the body of the
function, that means these couples were created at the time of concretely
implementing the method. They can only be determined by a careful reading of
the implementation.

Violations of Demeters Law - VOD

The definition of this metric, is based on the minimization form of the Law of Demeter.

Based on the concepts defined there, and remembering that the minimization form of
Demeters Law requires that the number of acquaintance classes should be kept low, we
define the VOD metric.

Definition 6 (VOD Metric) Being given a class C and A the set of all its acquaintance

classes,

VOD(C) = |A|
Informally, VOD is the number of acquaintance classes of a given class.

Keeping the VOD value for a class low offers a number of benefits, enumerated below:

1.

3.

Coupling control. A project with a low VOD values is the sign of a minimal "use"
coupling between abstractions. That means that a reduced number of methods can
be invoked. This makes the methods more reusable.

Structure hiding. Reducing VOD represents in fact the reducing of the direct
retrieval of subparts of the "part-of" hierarchy. In other words, public members
should be used in a restricted way.

Localization of information. A low VOD value also means that the class
information is localized. This reduces the programming complexity.

Source: Ing. Radu Marinescu. Az Object Oriented Metrics Suite on Coupling. Universitatea
"Politehnica" Timisoara, Facultatea de Automatica si Calculatoare, Departamentul de
Calculatoare si Inginerie Software. September, 1998.

416 -

Metrics Reference

RFC - Response For Class

The size of the response set for the class includes methods in the class's inheritance
hierarchy and methods that can be invoked on other objects. A class, which provides a larger
response set, is considered to be more complex and required testing efforts than one with a
smaller overall design complexity. This measure is calculated as "Number of Local Methods'
+ 'Number of Remote Methods'.

WMPC1 - Weighted Methods Per Class 1

This metric is the sum of the complexity of all methods for a class, where each method is
weighted by its cyclomatic complexity. The number of methods and the complexity of the
methods involved is a predictor of how much time and effort is required to develop and
maintain the class. Only methods specified in a class are included, that is, any methods
inherited from a parent are excluded.

WMPC2 - Weighted Methods Per Class 2

This metric is intended to measure the complexity of a class, assuming that a class with more
methods than another is more complex, and that a method with more parameters than
another is also likely to be more complex. Only methods specified in a class are included,
that is, any methods inherited from a parent are excluded.

417 -

QA Audit/Metrics Command Mode

QA Audit/Metrics Command Mode

It is possible to run QA audits or metrics from the command line. This is useful for
including QA information as part of an automated daily build or other process. This topic
documents the command-line syntax and options.

Usage:

The following syntax runs QA modules in console mode (i.e., no GUI)
TgStarter -script:com.togethersoft.modules.ga.QA [options]

PrjName [switch]
Where:
TgStarter is:

$TgHome%\bin\Together.bat, $TgHome% \bin\TogetherCon.exe

or

$TgHome%\bin\Together.exe -con

PrjName is a fully qualified project name, e.g.
$TgHome%\samples\java\CashSales\CashSales.tpr

[switch] 1s an optional switch -

con for Together . exe (Windows only) to suppress

GUI and redirect output to console
Note: Specify paths above using either " \ " or " / " as required by your operating

system.
Options:
Name Description
-?,-h,-help Print this usage message and exit

-audit [out:file] [sort:[-]colummn)| [cfg:optsef]

Run audit process with specified parameters

file = output file (default $TgHome% /out /audit)

colunn = [column name. If the column name is prefixed by "-", it

specifies the reverse order.

severity

abbreviation (default)
explanation

element

item

file

line

optset = file containing the previously saved set of options (default
is current.adt).

-metrics [out:file] [sort:[-]column] [ctg:optsed]

Run metrics with the specified parameters
file = output file (default is $TgHome% /out /metrics)

it

non
)

colunn = [column name]. If the column name is prefixed by
specifies the reverse order.

abbr (metric abbreviation)

item (default)

418 -

QA Audit/Metrics Command Mode

Name

Description

optset = file containing the previously saved set of options (default
is current.mts)

-pkg [pkgl [pkg2 [...]]]

Process specified package(s) only

—ClS [ClSl [CISZ []]]

Process specified class(es) only

-dcpy:|directory) Target folder where the description is copied. This option is only
valid for HTML format.
-dref:[btml-ref] Reference to this folder in HTML file. This option is only valid for

HTML format.

-fmt:[tab| align| html| repord]

Output format:

tab = separate columns by tabs (default)

align = align columns with spaces

btml = generate HTML file

report = create HIML report (for the Metrics only)

Sets of options have the default extensions: * . adt for the Audit, and * .mts for the
Metrics. If no path is specified for the options file name, it is sought for in the current
folder, and then in the default folder where the settings are stored
(3TgHome%\modules\com\togethersoft\modules\ga\config) . This path
is specified absolutely, or relatively to the default location of the settings.

419 -

XP Test Support

XP Test Support

Together integrates JUnit to provide a universal testing tool, which allows to write tests for
the code, pinpoint bugs, catch them with tests, and fix them. You can iterate through this
bug-hunting process as long as necessary to produce spotless code.

XP support is implemented as an activatable module XPTest, and thus requires to be
checked in the list of Activatable modules on the Options menu.

Together's XPTest allows to easily create the test incremental case templates, edit them and
fill in with the specific business logic. Every time the source code changes, you can refactor
the relevant test cases. You can generate a test suite, extend it as necessary and keep it
running.

Presently, testing only applies to Java projects. In future, it is planned to extend this feature
to the other languages.

Using JUnit integration

To make use of XPTest, you have to select this command in the list of Activatable modules.
Being activated, the module adds STGHS/1ib/junit/junit.jar and
STGHS/1lib/junitx/junitx. jar paths to the Search/Classpath of the Java project,
XPTest node to the Options dialog, and XP node to the Too/s menu and the diagram
speedmenu. This node contains the following commands:

- Test

- Create test case

- Create test proxy

- Create test package

- Configure

Note that testing only applies to a compiled code. Hence, choose Rebuild Node command on
the Tools speedmenu, or use keyboard shortcut CTRL+SHIFT+FS.

Configuring the testing environment

In order to set up the testing environment according to the specific demands of your case
choose XP node in the Options dialog. Refer to Configuring XP Test for details.

Creating test cases and test suites

Create test case command allows to generate test class for the selected class on the diagram.
Together generates a test case and stores it to the package defined in the configuration
dialog.
Note: It is possible to open the test folder in a new tab: right click on the test package icon and choose
Open in New tab to view the diagram of test classes.
If the Boolean property Acess Private is checked, test proxy is generated together with the
test case and special test methods are added to provide access to the private and protected
methods of the tested class.
Switch to the test diagram, generated by Create test case command. On the speedmenu of the
test case choose Create test package command to generate a so-called test suite that combines
all classes to be tested in a single object.
There is an alternative way to create test cases:

1. With XPTest module activated, choose Class by Pattern on the diagram toolbar and click on
diagram to invoke Choose Pattern dialog.

420 -

Configuring XPTest

2. Expand XP node in the pattern treeview. The possible options are TestCase,
3. Select the required pattern, make

Running the test

It is essential that testing only applies to a compiled code. Having rebuilt the node, you can
start actual testing. Tess command launches JUnit environment. Refer to JUnit
documentation for usage details.

Configuring XPTest

Use the Options dialog to create the necessary XPTest configuration for the Default, Project
or Diagram level. This is how it's done.

Make sure that XPTest module is activated. This adds XPTes? branch to the end of the
options tree. Open your project and invoke Options dialog from the main menu.

Set the required values in the XPTest branch and its sub-branches, or accept the defaults.
The options are briefly described below.

Expand the XPTest node to see the options:

Project options
b Text Editar sl Mame | Walle
qp- Generate HTML Wirtual machine DeTogethers 1 binwvin32wistart exe -normal -+ -0 "CATE. . ﬂ
= FunDehug Virtual machine parameters
Databaze
WekServices 2| | Force Junit compstitility [¥]
4p Tools Default test location | Parallel hierarchy i |
= EJB
& Builder Test package name test
dp- Wersion Cortral Defautt GUI | Swving LI il |
= JUnit jar file locsti Cr\Togethers 1 ikuunitjuni j =]
TestCase it jar file location STogethers. 1 dikdunitjuni jar =
TestPackage JUnit® jar file location Cr\Togethers 1 Nibjunit:junitx jar @
At Runner

| De=cription

== Levels | Ok | | Cancel | | Apply | | Help
2

Virtual machine - location of java.exe ot javaw.exe that will be used to launch JUnit. Together
uses ozstart. tools launcher to launch external applications. In Windows environment the
default command for VM usually is:

$TGHS$\bin\win32\oistart.exe -normal -r -o <temp file 1> -e <temp file 2>
$java.nome$/bin/javaw

<temp file> parameters passed to oistart are the temporary files in the TEMP directory.
In Unix the following line is used:

java

The names of the temporary files are generated automatically.

|

Virtual machine parameters - parameters required for the launching of the Virtual
Machine

421 -

Configuring XPTest

Force JUnit compatibility - by default JUnit only generates test classes and methods for
public classes/methods. To access private classes/members switch this option off, this gives
you access to the menu options Create test proxy and Create test package
Default test location - here there are three choices:
Parallel hierarchy - at the top level of the project creates a package, the name of
which is set from the Test package name below. Beneath this package is a hierarchy
that matches the hierarchy of Class the Test Case is being created for.
Same package - create the Test Case in the same package
Subpackage - uses the Test package name below to create a package at the same
level as the Class, into which it places the Test Case.

Test package name - the name it should use when creating the test package
Default GUI - should it use the SwingUI or TextUI when launching JUnit
JUnit jar file location- the location of the junit.jar file

JUnitX jar file location- the location of the junitx.jar tile

Tip: If you don't want Junit/Junitx archives to be added to the Search/Classpath of your project,
replace the default values of archive file locations with empty strings ("").

This branch also contains TestCase and TestPackage branches:

Diagram options : : x|
ap- Diaaram Mame | Walle
= Wiew Managemert Creste pattern link [#]

SR TN
& Print Creste test methods [#]
= ¥PTest Create suitel)]
Cresate zetll
TestPackage reste setlipl) O
Create tearDown()]
Access private [w]
Create TestCase & TestedClass tags | [v]

Description |

== Lenvels | Ok | | Cancel | | Apply | | Help |

o

Create pattern link - creates a link between the Class being tested and the TestCase
Create test methods - creates test methods in the TestCase
Create suite() - this is a method defined in JUnit; returns an instance of TestSuite class

Create setUp() and Create tearDown() - to be checked if test methods from a TestCase
are used several times during testing an application

Access private - provides access to private methods to get them tested

Create TestCase & TestClass tags - with this option the Class gets the @testcase tag
and in the Test Class the @cestedclass tagis inserted

422

Configuring XPTest

Diagram options x|
¢ Diagram Matmne: Yalue
aF - Wiew Management Default classname |LocalTestPackage
qp A i
& Print Yisualsge support | [
= WPTest Create maing) | e |
TestCase
estPackage
Description |
== Lenvels || Ik | | Cancel | | | | |
L

Default classname - the default name of the Class that is created when Create test

package is selected

VisualAge support - adds a method to the generated Class that checks to see if VisualAge

for Java is running

Create main() - should it create a Main() method in the Class that it generates when Create

test package is selected?

Refer to www.junit.org for JUnit for more detailed descriptions of TestCase options.
PrivateTestCase, TestPackage, access private methods are supported by Andreas Heilwagen

www.extreme-java.de).
]

423 -

J2EE Support

J2EE Support. Rapid Development of Distributed
and eCommerce Applications

J2EE Support

Overview of e-Commerce development Features

Development of e-commerce applications is now one of the most promising trends in the
development of distributed client-server applications. Main requirements for such
applications are:

- Information security and safety;

- Rapid and safe client-server connection;

- Effective implementation of business logic;

- High-quality GUI design.
In order to address these issues, developers usually use EJBs to implement business logic,
and HTML pages, JSPs (HTML with Java code), servlets, or applets for the interfaces. Thus
software product can include E]Bs, servlets, JSPs, applets, HTML pages, GUI files, java-
classes etc. User application archive is placed to an application server that supports access,
connection and operation of the client.
The most time-consuming tasks involve creating Deployment Descriptor and performing
deployment process. Together makes these tasks nice and easy: now it is possible to generate
Deployment Descriptor *.xml file and to perform deployment automatically. For this
purpose Together provides three types of diagrams: E]B Assembler diagram, Web
Application diagram and Enterprise Application diagram.

Note: e-Commerce features are implemented as an activatable module. To make use of it, check
ecommerce option in the Options / Activatable modules menu.

J2EE Support

Together supports Java 2 Platform, Enterprise Edition (J2EE) specifications that enable
easy implementation of highly available, secure, reliable and scalable e-commerce
applications. You can familiarize yourself with J2EE specification at
http:/ /java.sun.com/j2ee.
Together efforts to create a standard application model for developing multi-tier, thin-client
services (J2EE Application Model), standard platform for hosting J2EE applications (J2EE
Platform), J2EE Compatibility Test Suite and J2EE Reference Implementation.
According to the J2EE specification, there are four application component types:
- Application clients (maybe GUI) running on a desktop computer,
- Applets or simple HTML pages typically running in a web browser, but sometimes in a
variety of other applications or devices that support applet programming model,
- Web components (Servlets and pages created with the use of JavaServer Pages
technology) that typically run on a web server and respond to HTTP requests from
web clients,
- Enterprise JavaBeans (E]B) components, which typically contain business logic for a
J2EE application and run in a managed environment that supports transactions.

424

J2EE Support

These application components are divided by J2EE specification into three categories:
- Components that are deployed, managed, and executed on a J2EE server (JavaServer
Pages, Servlets, and Enterprise JavaBeans),
- Components that are deployed and managed on a J2EE server, but are loaded to and
executed on a client machine (HTML pages and applets embedded in the HTML
pages),
- Components whose deployment and management is not completely defined by J2EE
specification (Application clients).

Together supports the projects that include the following components:
- Web files (HTML, GIF etc.);
- Servlets and JSPs;
- E]Bs;
- Classes required for the Servlets, JSPs and EJBs.

J2EE oriented diagrams

Together provides three types of J2EE oriented diagrams, with the business being realized
via Enterprise JavaBeans and the uset's interface being implemented via Web Applications:
Web Application Diagram enables visual creation of appropriate description and a Web
Application archive (WAR) that stores all JSPs', Servlets' and WebFiles diagram elements
(HTML, GIF, classes).

EJB Assembler diagram enables visual creation of a JAR archive that stores all EJBs (Entity,
Session and Message-driven Beans) and classes required for the E]Bs (exceptions, utility
classes, etc.).

Enterprise Application diagram is a general (plural) form of WAR and JAR modules. Enterprise
Application (EAR) diagram enables combining as many WARs and JARs, as the user wants
to include into the EAR. Enterprise Application diagram can be also used for modeling of
global security constraints (definition of the global Security Roles used among EJB/WAR
modules).

Support of References
According to J2EE specification, Together supports the following references:

- EJB references (references to another EJBs),

- Security references (references to possible users' groups) with different access rights,

- Resource references,

- Environment references (references to constants in the environment).
Information about the references is saved in the Deployment Descriptor. EJB can request
about the current status of transactions, security, links between EJBs etc via the descriptor
context. To use the references mechanism, the developer has to define the corresponding
reference as an additional attribute to the class, using Properties Inspector, or New | EJB
Reference command of the diagram speedmenu.

Each reference has its own name and value (in quotes). The value of the attribute is
something used in lookup, and the attribute name can be used instead of quoted string in
lookup statement. Together may have all properties of references as attribute properties .
Disadvantage of the approach is that the properties can vary in different bean
implementations. It is possible to define intermediate visual Reference elements for various
types of references.

425

J2EE Support

EJB Reference support

According to J2EE specification, the concept of EJB Reference is very useful for providing
connection between EJBs.

- One EJB can be regarded as a client with respect to another EJB, i.e. one EJB can

refer to one or more EJBs. The source EJB and destination EJB can reside in the

same jar file, or in different JAR files, but in the same J2EE block.

- Every EJB Reference has a set of its own properties. EJB Reference's properties can

be defined manually, or linking by graphical linking to the necessary EJB. In the latter

case all E]B's properties are passed to this EJB Reference.

- Two EJBs (one referring to another) can't be linked directly. For this purpose a

special visual component should be used, namely EJB Reference component, that

refers to the appropriate EJB and is used to access this EJB. In this case the first E]B

gets properties of the second EJB via the intermediate EJB Reference component.

- Using separate visual E]B Reference element, it is possible to redirect links among

EJBs.
Let us consider two EJBs: EJB1 and EJB2. E]B Reference from EJB1 to EJB2
is defined in the Class diagram. Then the shortcut to EJB1 is added to EJB
Assembler diagram. We can use an intermediate visual EJB Reference element
to redirect the link from EJB1 to some EJB3. Thus in this example, if
Deployment Expert is called from the Class diagram, there will be a reference
from EJB1 to EJB2, but if Deployment Expert is called from the EJB
Assembler diagram, there will be a reference from EJB1 to EJB3.

- It is possible to graphically draw EJB references, without having E]Bs in project at

all.
The user can develop a WebApplication and, instead of importing actual EJB
components to the diagram, create an EJB Reference element, specify
properties (home, remote interfaces, etc. in the object inspector) and draw a link
from Servlet to EJB Reference. This information will be stored in the
Deployment Descriptor.

Defining an EJB Reference via visual design element with own properties enhances

possibilities.
This element can be more flexibly used as a connection unit for establishing
references between EJBs. In this case same EJB-element can be used in
different applications without changes, but its properties can be modified
through the corresponding EJB Reference element.

Security Reference Support

J2EE specification states that "... the J2EE authorization model is based on the concept of
security roles. A security role is a logical grouping of users that is defined by an Application
Component Provider or Assembler. It is then mapped by a Deployer to security identities
(e.g., principals, groups, etc.) in the operational environment. A security role can be used
cither with declarative security or with programmatic security".

To provide control access to an E]B-method, the declarative authorization specified in the
Deployment Descriptor is used. In this case the necessary EJB-method is associated with a
Method-Permission element of Deployment Descriptor, which contains a list of methods
accessed by the users with certain security role. If the principal (or group) has the security

426 -

J2EE Support

role that allows access to this EJB-method, security system allows the principal to call and
execute this EJB-method. Same technique is used for Web resources' protection. J2EE
specification makes provisions for two variants of security realization:

Deployer maps security role to a user group in the operational environment, or
Deployer maps security role to a principal name in the security policy domain.

In the latter case the principal name of the calling principal is retrieved from its security
attributes. Therefore Principal and Security Role are defined as separate design elements in
Together. Principal is an Actor element separated from its security features. Principal can be
linked to Security Role.

Security Role Reference defined as one of EJB attributes can be used for linking Security
Role with Servlet/JSP. Security Role can be linked with EJB via Security Role Reference in
EJB implementation class.

Resource Reference Support

Resource Reference can be also defined as an EJB's attribute or as a separate design element
(Resource). This element has all properties of the referenced resource (for example, database
object). To define Resource Reference's, the developer should know JNDI-name of this
resource (res-ref-name in Together), resource type (res-type, i.e. which interface is used to
work with this resource), creation mode of the resource manager (res-auth, Bean managed or
Container managed). If the user creates a reference to a database resource, he/she will gain
access to the corresponding tables.

Resource Reference can be linked with an EJB via Resource Reference in EJB
implementation class. The user can change Resource's properties using special design
element without making any changes to EJB's properties.

Environment Reference Support

Environment References are actually static constants that cannot be changed after EJB's
deployment. Each Environment Reference has its type, value and name. In Together,
Environment Reference is defined as an EJB's attribute or as a separate design element -
Environment. This element has its own properties.

Environment Reference can be linked with EJB via Environment Reference in EJB
implementation class. The user can change Environment properties using special design
element without any changes in the EJB's properties.

Process overview

If you have business-logic implemented with E]Bs, you can create EJB Assembler diagram
and add EJB shortcuts. You can edit EJB Assembler diagram to allow for resources,
environment variables, security roles, links between elements and etc. You can also use the
J2EE Deployment Expert for generating Deployment Descriptor and deploying a JAR
archive.

If you have the user interface realized with JSPs and Servlets, you can create Web
Application diagram and add shortcuts to JSPs, Servlets and EJBs. You can create Enterprise
Application diagram and add shortcuts to the necessary Web Application and EJB
Assembler diagrams.

You can edit Enterprise Application diagram and use the Deployment Expert to generate
Deployment Descriptor and deploy archive EAR.

You can find a comprehensive real-life example in EJB Deployment Step by Step under
Server-Specific Examples section of this manual.

427 -

J2EE Module Import

See also

Creating diagrams in projects
Drawing diagram elements
Opening diagrams

Working with View Management
EJB Assembler diagram

Web Application diagram
Enterprise Application diagram

J2EE Module Import

Together extends reverse engineering to the archive files. It is possible to restore diagram
structure and source code based on the existing * . jar, *.ear or *.war file.
This is how it's done...
On the Tools menu choose J2EE Module Import command. This brings in the following
dialog:

[J2EE Module Import

=

aaa

J2EE module location: |D:'I.Tu:ugether'l.mypruje-:ts'l:tes’t;uru:-jeu:t

Extracted module [ocation: ||::'I.

aJa

| ik || Cancel |

&
Using the file chooser buttons, specify the archive file to be reverse engineered, enter the
target folder for the extracted module and click OK to complete operation. Together restores
appropriate diagram and generates source code.

The extracted module corresponds to the type of archive file. So doing, the structure of Web
Application and EJB Assembler diagrams included in an Enterprise Application diagram is
also restored.

Note: As of this writing, J2EE module import is subjected to certain limitations. In particular, Security
Constraints from *.war and Method Permissions from *.jar archives cannot be imported to diagram.

See also

EJB Assembler diagram
Web Application diagram
Enterprise Application diagram

428 -

Creating, Developing and Debugging Distributed Applications

Creating, Developing and Debugging Distributed
Applications

Using Together, you can perform full cycle of developing and debugging the distributed
applications.

Creating, Developing and Debugging Servlets

Servlets are used to implement client-server interaction. Normally, this is http-based
interaction between an Internet browser and a Web server. Any application capable of
creating http-requests can also play the role of the client, for example java applet or java
application.

A servlet is a java class on the server side, that implements standard interface for handling
http requests. It should be noted that there may be multiple classes on the server side to
handle http requests. However, the servlet only gets direct requests from the client.

Amount of servlets allocated on the server is not determined. A single servlet can cater for
one type of requests, or for multiple types. Hence, it is possible to create different
configurations: allocate one servlet on the server to handle all incoming requests, or allocate
numerous servlets for each request type. The solution is stipulated by specific task and
developer's preferences.

Together provides a convenient way to create servlets using patterns. To create a servlet, use
Class by Pattern command from the diagram toolbar or speedmenu. This invokes Choose
Pattern dialog.

There are two servlet patterns available in Together. ReferenceHtipServlet pattern generates a
skeleton of a basic servlet that extends HttpServlet. Serv/et pattern allows to generate three
types of servlets: Generic Servlet that extends GenericServlet class and can service any
request-response protocol; Http Servlet that extends HttpServlet class; and Custom Servlet
that directly implements the Servlet interface. This enables the user to create servlets in
accordance with the specific task.

Parameters of the Choose Pattern dialog allow to select the methods to be generated in the
body of the class. This spares the developers from tedious coding. It is also possible to
choose generation of the methods' bodies (flag Generate HTML).

429 -

Creating, Developing and Debugging Servlets

Choose Pattern - Servlet - Pattern properties

Patterns Parameters
= Patterns Mame Yalue
] Coad Components Maime TestServiet
F £ HP E Speak o . o .
| Coad Classes Description Thiz zervlet iz intended for testin...
] GoF Serviet type HTTP-zpecific -
[+ BEA WLE P
=) Generste HTML pages HTTP-specific
=1 EJB Cliert ——
Bl J2ee Implemert method init() Custom
£l Robustness
Implement method destray(| [

Bean

Serviet Implement method servicer) | [

Implement method doetl | [w]

Applet

Wain Class Implement method doPost(y | [

Reference HitpServiet Implement methad doPutt) | [

Implement method doDelet...| [
Description

Thiz pattern allows to create the following serwlet types:

[»

hitp-specific servlet that extends HitpServlet class

generic servlet that extends GenericBervlet class and can serwice any
request-responise protocol

#* customn servlet that directly implements the Servlet interface

| Finizh I | Cancel | | Help |
y

Checking the flag Generate HTMIL. pages adds code to the request-processing methods
(service, doGet, doPost, doPut, doDelete), that returns an empty html page. If a necessary
method is not selected when creating a servlet by pattern, it can be added later.

Debugging a Serviet

Jakarta Tomcat, the Reference Implementation for the Java Servlet 2.2 Technology, is now
used to debug servelts. This is how it's done:

1. Make sure that $TG_HOME% \bundled\tomcat\lib\servlet.jar is added to
the Search/Classpath of your project.

2. Select a servlet for debugging on the Class diagram and set breakpoints as required.

3. Choose Run Configuration command on the Tools menu, select Servlet/JSP tab and enter
the name of the servlet, or choose one using Browse button.

~ 430 -

Creating, Developing and Debugging Applets

4. Choose Tools | Run in Debugger and observe results in the Debugger pane, and in the

browser window.

Creating, Developing and Debugging Applets

To create an applet, use Class by Pattern command from the diagram toolbar or speedmenu.
This invokes Choose pattern dialog, with Applet pattern, suggesting default class name and

standard set of methods.
Choose Pattern - Applet

Patterns

Parameters

£ Coad Claszes

-

Mame

| Walue

] GoF
] BEA WILE
] EJB Client
= J2ee

Mame

Clazsl

FFFEEEE

£ Robustress
Bean

Preview

Serviet
Min Class =
My TestClas=Templste
[67] Reference HitpServiet

4]

uklic class Class! extends Spplet §

public waid init) §

Iwrite your code here

¥

|:§:§ | »

1]

Description

Applet pattern

This pattern creates the skeleton applet class for your application. You can edit its name in the "Mame" feld.

| Finish | | Cancel | | Help |
&
Enter applet class name and press Finish button to complete. Further you can edit the
source code in the editor to add the required functionality.
Having created an applet, you may try to run and debug it.
Arguments and parameters
Debugging an Applet -
gg g Configuration name: |Applet Test Cu:-nfig| |
Together provides a simple way to run [(Application | Applet [[ServistissP |
and debug applets.
Create a project for an applet: Select APPIELEIRSS: oraphicsTest Eo
New Project on the File menu. In the " ,
] ; pplet parameters: | |
Advanced mode, click Remove button in
the .Projm‘ Paths tab to delete the default “Wh options: |-|:Iassi|: |
project path.
Next, specify the required path for RELE aon| Height: [app
your project. Press '"Add Path' button
and select the required path (for | ol | | rancel |
example, y
Z

c:\jdkl.2.2\demo\applets\GraphicsTest). When ready, ht OK to complete

and close the New Project dialog.

Now you can debug your applet. Select Run/Debug command on the Tools menu. The
dialog contains "Applet" tab, where you must specify the name of the main class, parameters
passed to the applet and VM options (if any), and the dimensions of the applet frame.

431 -

Creating, Developing and Debugging Applets

Parameters are entered in the format "namel"="valuel" "name2"="value2" etc. Hit OK
when ready. The Debugger (or Runner) pane shows up, and the applet frame appears:

E‘-E’,%Elaphicﬂest =] ES [xféeraphicg'regtj

o Breakpaints B Start
T E Fae = LBER
nE}dl revil:uusl
Type Location Enabled| =h p
B0 Al uncaught .. [#]
|;:, D;’fg Debugger

432 -

Creating, Developing and Debugging JSPs

Creating, Developing and Debugging JSPs

Java Server Pages are created in the Web Application diagram using a toolbar icon or New |
JSP command on the diagram speedmenu. Having created a visual component, observe its
properties in the inspector.

Press File Chooser button in the [SP Source field, and select the desired *.jsp file that will be
loaded into the created visual component.

Properties of J5P1 x| Select a Path [x]

(JSF‘ Properties rHyperlink rServlet | 1 Togetherd 3 =
Mame | ‘allie [l =] Togetherd S —]
=] hin
] bundled
] config
] doc
1 help
£ jok
E lik
£ license
E] modules
El myprojects
=] out
=] zamples
E =] java
5 &
£ Datadanagemert
[Problembamain
£ Userinterface
D test j=p
] ecommerce

JSP source |

b

WEB Path

LN R = 2 = B e 2 R

-

File rarme: | |

Files of type: |jsp - |

@ Pre=s Ctrl+Enter to finish editing and close Inspectar | Cancel | | Heln |
2 2

Having created a JSP, you can edit it as required, add necessary code, run and debug. To
learn about editing JSP files, refer to JSP and HTML Editor section of the User's Guide.

433

Creating, Developing and Debugging JSPs

Debugging JSPs

Together provides various ways to debug JSPs. The most basic way to run a JSP in debug
mode requires appropriate settings to be done in the Run Configuration dialog.

Arguments and parameters E

Configuration name: |FUI'IJSF' |

[[Application | Applet | ServietissP |

Start pagesServiet name; |I|:|gin.html ||§E|

cery string: | |

Context parameters: | |

W options: |-|:Iassi|: |

| Ol || Cancel |

&
In theory, after that it is possible to run/debug a JSP. However, in most cases, JSPs are
intended for data presentation only, and as such, they need to be invoked by a servlet or a
html page. Hence, this type of debugging is mostly suitable for the servlets, rather than the
JSPs.
Together provides JSP debugging using Jakarta Tomcat 3.2, the official Reference
Implementation for the Java Servlet 2.2 and JavaServer Pages 1.1 Technologies.
One type of JSP debugging takes place when an EJB is deployed to a certain application
server. The client can be created as a JSP that allows to invoke EJB methods. For IBM
WebSphere 3.5, Weblogic 5.1 and Weblogic 6.0 it is possible to create a JSP client in the
debug mode. If this option is selected, the page "Simple JSP client generation" provides the
fields for starting the debugger session under Tomcat.

The most comprehensive way of debugging JSPs suggests integration with Web Application
Diagram deployment and use of the generated files and configurations as a background for
launching the debugger session under Tomcat.

This is how it's done... On the current Web Application diagram, which contains JSP visual
components, select the desired JSP, open it in the Editor pane, and set breakpoints in the
desired lines. After that, invoke J2EE Deployment Expert, choose Generic 1.1 server and
select the following tasks on the first page of the Expert:
- Compile classes from the selected diagram
- Generate WAR Deployment Descriptor
- Run Web Application under Tomcat in debug mode
After entering all necessary fields, on the page "Run Web Application under Tomecat in
debug mode" specify the root folder of the web application.

Notes:

If a JSP can address to an EJB, the libraries of the appropriate application server, where the client will
search for INITTAL_CONTEXT_FACTORY class, should be added the project classpath. Besides
that, JSP file should contain the lines for proper handling of InitialContext object.

434

How To Debug JSPs in the Web Application Diagram

It is vitally important to propetly specify the root catalogue. The jsp file being debugged should be the
actual root element. Otherwise, the debugger session will start, but with a wrong component.

Having successfully passed through all these obstacles, you can observe your JSP running in

the Debugger. To try JSP debugging hands-on, refer to the sample provided in the
documentation.

How To Debug JSPs in the Web Application
Diagram

This example, supplied with the Tomcat server, demonstrates how to debug JSPs using the
Web Application diagram.

Opening Project

Open the Project

$TG_HOMES%\samples\java\ecommerce\jsp\cal\cal. tpr, and choose the
tab of Web Application diagram.

Select the visual component JSP1 and open in for editing. Make sure that full path to this
component is specified in JSP source field of JSP properties.

Set breakpoint on the line 17 of the source code (table.processRequest).

- —m -
R - cal.TableBean . cal.Entry
:::JSP:::
| can | tahle:Hashtable
o 1 R
N JspCaldspCalendar [Entry j
J5P
S [TableBean))
cal2 processRequest hour:String
[) colorString
description: String
@ narme:String a
==ifebFiles== email:String
WebFiles1 date:String
entries Entries
processErrorboolean
F
cal.Entries cal.JspCalendar
-entries:Hashtable calendar.Calendar=null
time:String={"gam" "dam", "10 currentDate:Date
TiE [»
Source Previewl
JEP %[page language="java”™ import="cal.*" >
<t jepdirective <jzpiusebean id="table"” scope="sgeszion” clasa="cal.TahleEean"”
<ir jsprusebean
S jepscriptiet P
Ly SR Expression
<ir jsprscriptiet

if (tahle.mertProneasError it == falael [

How to set the Breakpoint

435

How To Debug JSPs in the Web Application Diagram

Debugging

Invoke J2EE Deployment Expert on the Tools menu and choose Generic 1.1 as the target
server. Make sure that the only checked fields are Compile classes from selected diagram, Generate
Deployment Descriptor and Run Web Application under Tomeat in debug mode.

On the Common Properties page, specify correct paths to JDK 1.2.2 and J2EESDK root
directory (e.g. c:\jdk1l.2.2,c:\j2sdkeel.2.1). Click Next to proceed.

On the next page, set Roo directory for Web Application which is deployed to
$TG_HOMES%\samples\java\ecommerce\jsp\cal\jsp, and click Finzsh.
Debug arguments and parameters dialog shows up:

Debug arguments and parameters Ed

Start pager=erviet name: | | =R
Query string: | start page
Zervlet name
Cortext parameters: | |
Wi options: |-|:Iassi-: |
| Ok | | Cancel |
S

Press selection button, and choose S7ar# page on the menu. This displays Select Start Page
treeview, where you have to choose
$TG_HOMES%\samples\java\ecommerce\jsp\call\jsp\login.html. Click
OK to continue.

Executing process stops at your Breakpoint (line 17 of the code). Now you can proceed
running your application Step-by-step with '8 key.

See also

Web Application diagram
JSP and HTML Editor

436 -

Developing EJBs

Developing EJBs

Together provides several productivity enhancing features especially for developers of
distributed applications using Enterprise JavaBeans ™ (EJB). For information about which
products provide EJB support, visit www.togethersoft.com or contact your Together
Distributor. This chapter describes how to use Together to create, develop, and deploy
EJBs.

It's beyond the scope of this documentation to teach EJB fundamentals. Documentation
assumes you are familiar with the concepts, terminology, and Java Enterprise APIs, and that
you have some experience developing EJBs. If you're just getting started with EJBs, a good
resource is Java Enterprise in a Nutshell (2nd edition) by David Flanagan ez a/, 1999 O'Reilly &
Associates. ISBN 1-56592-483-5.

Overview of EJB features

Together acts as a "control centet" for EJB development: with it you can model, implement,
compile, debug, document, and deploy your EJBs to an app server. Specifically, you can:
Create Together projects around existing EJBs. Together automatically reverse
engineers the code and generates a visual model from which you can easily generate up-to-
date documentation. Code and model remain synchronized at all times.

Create new Session or Entity EJBs with a single click. Together generates a default
skeleton that includes both the visual model and the basic source code, which serve as the
basis for further modeling and development. The skeleton includes home and remote
interfaces as well as implementation class and primary key class (for entity beans).

Create multiple implementations. You can share Home and Remote interfaces among
two or more EJB implementation classes enabling you to deploy different implementations
of the same interfaces on different servers.

Compile your EJBs and generate XML deployment descriptors. Create SDK 1.2
DTDs, either generic, or platform-specific for supported leading application servers. Handy
"expert" GUI simplifies the process.

Generation a JSP test client. During the deployment process you can optionally choose to
generate a simple JSP (Java Server Pages) that you can use to test a running EJB directly in
the server environment.

""Hot deploy" you E]JBs from the Together environment directly to supported application
servers.

Create E]JB Assembler, Web Application and Enterprise Application diagrams for
your remote applications showing what components are required, EJB container handling,
security roles and profiles, etc.

How Together simplifies EJB development

If you have developed EJBs before, then you know that the typical development process is
something like this:

- Model EJB in some CASE tool.

- Generate source code framework with CASE tool.

- Develop the EJB code using an IDE or code editor.

- Compile the EJB classes using IDE or JDK.

- Debug any errors with some debugger.

437 -

Developing EJBs

- Write deployment descriptor in XML (typically with a text editor) that describes
serialization and other properties of the EJB in the context of an application.
- Generate container-specific classes using tools from the application server vendor.

- Package everything into a JAR file using JDK utility or other tool.

- Deploy the EJB to the app server using tools from the application server vendor.

5
-
(=]
=]
~

e
Develop
coie

M
! T |

Compile

Gen

Gen

mianifest

container
classes

EDITOR

make
JAR file

=
m
=
=
=
=

TOOL

"

7

JOK

ke
JAR file

VENDOR'S
TOOL

Typical E]B development process & tools
As you can see, the typical process involves a great deal of work that has nothing to do with

actually developing business solutions. It adds the learning-curve overhead of a daunting array of
different tools that only results in slowing down your distributed application development.

438 -

Developing EJBs

Together's approach to EJB development

Together's E]B development features are designed to speed up the process, get your
distributed systems working sooner, and let you to focus on good design and development
and robust functionality.

A major benefit is that you don't have to write deployment
descriptors. Together stores bean properties right in the
model. You can put bean-specific info into a special
diagram type: the EJB assembler diagram, and at
deployment time Together packages up everything and
deploys to the server. With Together, the EJB Develop |,
development process looks like this: code |

- Model, code, and debug your EJB with Together's
modeling and development tools. The source code

framework stays in sync with visual model at all 7
times.
- Run Together's J2EE Deployment Expert. TR
The J2EE Deployment Expert is a time saver that P
automates many of the tedious post-development chores ‘ EJE
into a simple set of steps. The expert will: een E
- Compile your EJB classes Manifest | |
- Generate container-specific classes for any tﬂﬁt‘;‘:‘_ﬂ [|E
supported app server Classes
- Generate an XML deployment descriptor and Gen JAR
manifest files for the selected server platform i)
- Generate a JSP client that you can use to live test a | o L0y
deployed EJB
- Package everything up into a JAR file written to
any location you specify Together

- Connect to the app server and deploy.
Team Support is built right in

Togethet's approach fits seamlessly with team-based development. Because all bean
information is stored with the right granularity, each EJB contains its own information, so
that you can develop EJB's independently of one another. In the traditional approach there
is one monolithic file - the "dreaded DD" - and all developers have to work with it. It has to
be checked-in/out as a whole.

Configuring Together for EJB development

There are a number of configuration options that you may want to modify depending on
where you are in the development process. You may find you want to set options differently
depending on whether you are designing, implementing, or deploying an EJB.

Recognize JavaBeans

The Boolean config option Recognize JavaBeans controls whether or not Together recognizes
JavaBean classes. This options is set to Trz#e by default, meaning that Together treats classes
having methods that begin with gef or sez as JavaBeans. For EJB development, you should set
this option to True.

439 -

Developing EJBs

The main menu command Options | Recognize JavaBeans toggles this option. There is a
parallel icon on the Main Toolbar. The setting applies at the Default configuration level. (For
information on configuration levels, see User's Guide: Configuring Together: Multi-level
Configuration.

Diagram detail level

Depending on whether you are in the modeling/design or implementation stage, you may
want to change the view management option Diagram Detail I evel. The levels are Analysis,
Design, and Implementation. Each shows a greater level of detail in the class icons in Class
diagrams.

To set this options, choose Options | [lvel] - View Management - Diagram Detail Level
(where /eve/ is the menu command for the desired configuration level).

(For information on configuration levels, see User's Guide: Configuring Together: Multi-
level Configuration.)

EJB filtering options

You can set view management options that show or hide the following elements in the Class
diagrams that contain EJB classes/interfaces:
- EJB Home interfaces
- EJB Remote interfaces
- EJB Implementation classes
- EJB Primary Key classes
By default, on/y EJB classes are shown in Class diagrams. Any elements that are hidden by
these settings in diagrams still show up in the Model tab of the Explorer, so you can always
tell that they exist in your model and your code.
To modify EJB filtering options:
1. From the Main menu choose Options | [/ve] - View Management (where /eve/ is the
menu command for the desired configuration level).
2. Expand the iew Management node of the Options dialog, and choose Show.
3. The right pane of the Op#ons dialog displays the list of EJB show options. Check or
clear them as desired. Checking a box means the element should be shown in
diagrams... clearing the box means the element should be hidden in diagrams.

Other filtering options

While you have the Show options open, review the other options that apply to classes in
general to make sure that you can see what you want to see in your Class diagrams for EJBs.

~ 440 -

Developing EJBs

Configuring suffixes

In the EJB node of the Options dialog you can specify the suffixes for various types of EJB
classes. The suffixes help Together to propetly recognize E]B's. If a project is created
outside Together, class names may not follow the Together conventions. You can enter
specific suffixes for your EJB classes:

Project options

' Toals - | Marme: Walue

- EJB Entity Bean class Bean, Imgl, EJB
- E‘JE L S Session Bean class Biean, Impl, EJB
2 Generic 1.0
o Genetic 1.4 | | MessageDriven Bean clazs Bean, Impl, EJB
2 Generic 20 Hotme interface Hatme
2 Gemstones) o ;
o BM WiekSphere AE 3.02 Remate interface
@ IBMehSphere AE 33 [| Primary Hey class PK, Key, Primarykey
' |] (0 T PN N I —

[|
Description
The options on this page allow to edit EJB suffizes. These suffiszes are used for ‘v

== Levels I ik | | Cancel | | Apply | | Help |

Other configuration options

Before using Together for EJB development, you may want to review your entire
configuration, especially View Management's Show Beans options for Java (Options | [/vel] -
View Management).

If your license supports Together's advanced Editor features, and you will use this editor for
EJB development, you may want to configure the Editor as well. (For more information, see
User's Guide: Using the Editor.)

See also

Deploying Enterprise JavaBeans
EJB Assembler diagrams

Web Application diagram
Enterprise Application diagram

441 -

Developing EJBs

Creating EJBs in Together Projects

You create and develop EJBs in the context of a Together project. There are two ways you
can create EJBs in a project:
1. Create a Together project for existing EJB source code.
2. Create a basic model and code skeleton for a new EJB using the "one-click" EJB
feature in Class diagrams. You then specify E]B properties and add EJB fields,
methods, etc. in the EJB Inspector.
This section explains how to use each of these techniques. See also Overview of EJB
Features.

Creating a project using existing EJB code

If you have existing E]B source code, you can create one or more Together projects around
it. Together creates visual diagrams when it reverse engineers the code, and then keeps the
visual model synchronized with subsequent changes to the code, and vice versa. Once the
code is part of a Together project, you can quickly and easily generate up-to-date
documentation.
Creating a project from existing EJB code is no different from creating any other kind of
Java project. See:

Uset's Guide: Creating a Project from Existing Source Code

Creating and opening a project

Project basics
Before you create a project for existing E]Bs, read Developing and deploying EJBs:
Configuring Together for EJB development.

Creating "one-click" EJBs

When your Together license enables EJB support, three EJB icons display in the Class
diagram toolbar:

%3| Entity bean

Creates elements in the visual model, and generates the underlying source code, for a
default implementation of a persistent enzzty EEJB with skeleton declarations for:

EJB implementation class, with:

- Entity context attribute
- One default field (integer type)
- Default set of method declarations:

* set & unset context methods
* Activate & Passivate methods
* Remove method

* Store & Load methods

* Create & PostCreate methods
* findByPrimaryKey method

* getlield & setField methods

442

Developing EJBs

EJB Home interface, with:

- Create method signature
- findByPrimaryKey method signature

EJB Remote interface
EJB Primary Key class, with:

- default field (integer type)
- primary key, hash code, and equals methods

Dependency links
E Session bean

Creates elements in the visual model, and generates the underlying source code, for a
default implementation of a nonpersistent session EJB with skeleton declarations for:

EJB implementation class, with:

- Session context attribute

- setSessionContext method

- Activate & Passivate methods
- Remove method

- ejbCreate method

EJB Home Interface
EJB Remote interface

Ig MessageDriven bean

Creates elements in the visual model, and generates the underlying source code, for a
default implementation of a MessageDriven bean with skeleton declarations for:

EJB implementation class, with:

- MessageDriven bean context attribute
- setMessageDrivenContext method

- ejbCreate method

- ejpbRemove

- ejbActivate and ejbPassivate methods
- onMessage method

Note that MessageDriven beans are only used with 2.0 specification.
No properties or Business Methods are declared. There are several ways to add them:
- Add them visually in the diagram using the implementation class's New speedmenu.
- Add them visually using the EJB Inspector (speedmenu | Properties)
- Write the declarations in source code in the Editor pane when the implementation class
icon is selected.
Home and Remote interfaces are hidden in the diagram by default, but you can see them in
the Explorer (see Configuring for E]Bs for more information). The interface names are
automatically kept in sync with the name of the implementation class.

443

Developing EJBs

To create a "one-click" EJB:
1. Create or open a Together project and create or navigate to the desired package.
2. Create or open a Class diagram in the desired package.

3. On the Class diagram toolbar, click the Entity EJB icon o , Session EJB icon @ or

MessageDriven icon I% to create appropriate type.

4. Click the diagram background to generate the EJB elements as described above.
The resulting implementation icon displays the name of the created bean and its type,
compartments for the attributes, operations, home and remote interfaces, and primary key
class. Linked interfaces are listed under the bean name.
Use View Management's Show options to populate the diagrams with the necessary elements
only. You can opt to show or hide implementation classes, home/remote interfaces and the
primary key class. However, it is still possible to view the source code of the hidden elements
in the Editor pane: all elements, though hidden in the Diagram pane, are displayed in the
Explorer and can be opened for editing.

Customizing the default code for EJBs

The default code generated by one-click EJBs should be an adequate starting point for many
developers. However, the default code /s customizable by modifying the appropriate Code
Template. You can customize the templates for Entity Bean class, Session Bean class,
MessageDriven bean class, PrimaryKey class, Home Interface, and Remote Interface. For
information on moditying these templates, see Using Code Templates.

Configuring EJBs using EJB Inspectors

Once you have a skeleton created by the on-click feature, you can use the EJB Inspector to
edit its properties.
To use the EJB Inspector:
1. Select the EJB in the diagram or the Explorer.
2. Press Alt - Enter or choose Properties from the speedmenu to display the EJB
Inspector.

Using the EJB inspectors

You can develop EJBs visually using the EJB Inspector for bean classes (speedmenu |
Properties). The Inspector has pages common to all classes, but adds some specifically for
working with EJBs.

- For Entity E]Bs, pay attention to the Entity EJB page.

- For Session EJBs, pay attention to the Session EJB page.

- For MessageDriven bean, pay attention to the MessageDriven page
The type-specific pages display a lower tabset that provide the means of specifying general
properties, adding and removing business methods, defining references, and specifying bean
type specific properties. Inspector for Entity EJB also has pages for defining Create and
Finder methods.

444

Developing EJBs

Entity EJB Inspector

Properties of Entitp1Bean

Bean natme
Remote name

Hame narme
Pritnary key name

Primary keys
There are two ways to specify Primary key class for an EntityBean with container managed
persistence:

1. Primary key maps to a single field of the entity bean class

2. Primary key maps to multiple fields of the entity bean class

To create a primary key of the first type, set the flag Szmple Primary Key, which is enabled for
Container managed beans. This helps avoid wrapping of the simple type primary key (e.g.
String) into a user-defined class.

The second method is helpful for implementation of compound keys.

445

Developing EJBs

Session EJB Inspector
Properties of Session]Bean

Bean name | Seszion] Bean
Remote name Session =k
. L

Home name =eszsion1Home =

446 -

Developing EJBs

Sharing Home/Remote interfaces

You can optionally share the same set of home and remote interfaces between two or more
EJB implementation classes of the same type (Session or Entity). You may want such
capability in cases where you need to deploy differing implementations of the same
interfaces on different servers.

Creating a second implementation class

In a case of shared interfaces, you should develop one complete implementation with home
and remote interfaces. You can then create a second implementation class, refactor it into an
EJB implementation, and specify the home and remote interfaces from the first bean in the
properties of the new one.

To create a second implementation class:

1. Create or open a Class diagram to show the new class.
2. Create a new class in the diagram and name it as desired.

To refactor the class to an EJB implementation:

1. Right-click and choose Choose Pattern tfrom the speedmenu to display the Choose
Pattern dialog.
2. Locate the EJB Implementation folder and expand it.
3. Select the Session EJB implementation, Entity E|B Implementation or MessageDriven EJB
Implementation pattern and click Finish.
You can now begin developing the implementation, or you can proceed to specify the home
and remote interfaces for the new bean class using the home/remote interfaces from the
first implementation.

To reuse the first implementations home/remote interfaces:
1. In the properties Inspector for the new class, select the xxxE]B page (where xxx is
either Session or Entity depending on the type of EJB).
2. Choose the Do not synchronige names option button.
3. In the Remote Name field, click the browse button to display the Select Element
dialog.
4. Use the Model node of the treeview to locate and select the remote interface
belonging to the first implementation... that is, the remote interface that you want the
bean you are working on to share.
5. Click OK to accept the selection. Respond Yes to the Change Class? prompt.
0. Do the same thing in the Home Name tield, selecting the home interface for the first
implementation in the Select Element dialog.

Showing second implementation class in separate Class diagram

If the second implementation class in the same Class diagram as the first, Implementation
links are automatically drawn from the interfaces to the second implementation class. If the
two implementations are in different Class diagrams, you may want to show the second
implementation class in the Class diagram for the first implementation.
To show a linked second implementation class:
1. Select the remote interface for the first implementation class.
2. Choose Add Linked from the interface speedmenu. Linked elements are shown in
the Add Linked tab of the Message pane.

447 -

Developing EJBs

3. Select the second implementation class in the Message pane, right-click and choose
Add.
A Class icon for the second implementation class is added to the diagram. You can now
work on the second implementation class from either Class diagram.

Deleting implementation classes with shared interfaces

Normally, if you delete an EJB implementation class, home and remote interfaces are deleted
along with the implementation class, both in source code and in the diagram. In cases where
interfaces have been shared with another implementation class, deleting elements from the
diagram does not automatically result in deletion of the relevant source code files... only the
visual diagram elements are deleted.

You must explicitly delete implementation classes, and home/remote interfaces by selecting
them in the Model tab of the Explorer and choosing Delete from the speedmenu.

Note: you can find an animated demoguide at www.togethercommunity.com.
See also

Drawing diagram elements
Working with patterns

Verification and Correction of EJB's

Generated EJB's must comply with certain requirements, which include general
conformance with all EJB specifications and specific sine qua nons of EJB 1.0, 1.1 and 2.0.
Describing the interfaces to be implemented or methods to be overridden are beyond the
scope of this manual. Refer to the documentation at www.sun.com.

EJB's are verified according to the selected specification (E]B 1.0, 1.1 or 2.0). Subsequently,
it is possible to correct the encountered errors.

To make sure that certain methods or properties exist in an EJB, or to obtain their values,
it's necessary to scan the entire hierarchy of objects that comprise the EJB. The encountered
members are added to a Hashtable.

In order to support the OOP approach, the users have a good chance to develop classes for
customized verification and correction, using Open API.

Syntactic rules for verification are defined in the configuration file under

$TOGETHER HOMES%\modules\togethersoft\modules\ejb, in the folder for
the used EJB specification. It makes possible to easily adopt the ever changing requirements.
You can create customized syntactic rules by editing appropriate config files for the entity or
session beans. However, this bestows on you the full responsibility for the results of such
exercises.

Using verification and correction

To make use of this feature, select Ierify EJB command on the bean's speedmenu. The
encountered errors are corrected if the option Correct after verification is selected in the Options
| EJB | Verification. The process adds Verification tab to the Message pane. Two kinds of
messages display the results: the messages of the first type inform about the encountered
errors, and the messages of the second type inform that the errors were fixed.

448 -

Deploying Enterprise JavaBeans

Deploying Enterprise JavaBeans

This section provides an introductory overview of Together's EJB deployment support
features. Note that deployment support is not available in all Together products. Please visit
www.togethersoft.com for product information.

Overview

In Together products that come with EJB deployment support, you can use Together both
to develop EJBs, and also to deploy them to a supported application server. Together
compiles your EJBs, generates XML deployment descriptors (including manifest), generates
container classes, packages the EJB into a JAR file, and deploys the result to a location you
specify. On server platforms that support it, you can direct Together to "hot" deploy directly
to the app server. Also, for some servers, you can optionally generate a simple JSP (Java
Server Pages) client which you can use to test the deployed EJB running on the application
server.

Using Together, it is now possible to deploy complicated applications that contain multiple
EJBs, servlets, JSPs and other web files. Together provides tools for visual assembling of the
distributed applications for deployment.

Supported application servers and proxies

TogetherSoft directly develops deployment support for major application servers, and is
working with vendors to rapidly develop deployment support for more and more server
platforms all the time.
To see a list of the currently supported servers:
1. Open a project.
2. On the Main menu, choose Tools | [2EE Deployment Expert.
3. Activate the drop-down list of application servers to see the server platforms
currently integrated.

Note: The J2EE Deployment Expert is available for one of the following diagrams: Class diagram,
Enterprise Application diagram, EJB Assembler diagram, Web Application diagram.

Building Block Proxies

Some of the listed app servers may be proxies... that is, deployment support is available for
the listed server, but the vendor's Building Blocks for Together deployment support do not
ship with Together, and are not installed.

When you choose one of these proxy items in the server list, Together activates your Web
browser and takes you to the URL on the server vendot's website to download and install
the vendor's deployment support Building Block(s) for Together.

Generic server options

You can also choose the 'Generic" server options. Use these if you just want to generate
generic EJB 1.0, E]B 1.1, EJB 2.0 compatible deployment descriptors.

449 -

Deploying Enterprise JavaBeans

Visual Assembling and Deployment Tools

You can create E]B Assembler diagram in Together to map the assembly of various E]B
components into a distributed application. Assembler information is always in-sync with
provider information - no redesigning of Assembler deployment descriptors when EJBs are
changed.

Web Application diagram is used to collect all servlets, JSPs and other web files used in your
application into a single archive file.

If your application contains multiple EJB Assembler diagrams and Web Application
diagrams, you can create Enterprise application diagram to map your existing modules.

Requirements for deployment

In order to deploy your EJBs directly from Together, you need the following:
- An installation of Together with full EJB development and deployment support.
- An accessible installation of the target application server with appropriate access
rights
Note: You can deploy your J2EE application remotely to the selected Application Server, using
Together's plugins.
- An accessible installation of Java Enterprise Edition 1.2 or higher for compiling EJB
classes and interfaces
- An accessible installation of Java 2 SDK (JDK 1.2 or higher) for generating JAR file
- An accessible temp directory and sufficient disk space for temporary files generated
by the J2EE Deployment Expert
- An http-accessible location on the server for the generated JSPs (if generating a JSP
test client).

Note: Before deployment Together checks whether old jar file exists, and tries to delete it. If deleting is
not possible, the J2EE Deployment Expert doesn't start, and an etror message displays. This note is not
actual for Weblogic 6.0.

- 450 -

Deploying Enterprise JavaBeans

Using the J2EE Deployment Expert

Together provides the J2EE Deployment Expert... a convenient GUI that greatly simplifies
J2EE deployment process. In this dialog, you can specify:

- the target application server platform,

- what deployment-related actions you want to take place (compile, etc.),
- paths to the server, server tools, and the deployment output

- connection parameters for the application server

- optional generation of a simple JSP client for live-testing deployed EJB.

J2EE Deployment Expert af_f 5'

1 Select the application server platform for your deployinent process from the list of supported servers

Generic 2.0 -

2 You can optionally werityicarrect EJBs, compile claszes, generate Deployment Descriptors, and delete
temporary classes beforefafter deployment. For certain servers "haot" deployment iz availakble.

Process option

[¥] sferify andfor correct EJBs for the selected server

[w] Compile the classes referenced in the currertly selected disgram
[¥] Generate Deployment Descrigtorz)

[¥] Cpen ¥ML editar for the genersted Deployment Descriptor(=)

[¥] Pack modules for deployment

[w] Clear temparary folder before staring the deployment process

[¥] |Clear temporary folder after deplovinert is complete

Mewxt = | 1 | Cancel | | Help |

A

According to your option selections, Together can handle interaction with the compiler to
compile EJB classes, generate the XML deployment descriptors (including manifest) for the
target server, update the Bean's EJB specification conformity, generate container classes,
then package everything into a JAR (WAR, or EAR) file, and deploy the JAR to a location
you specify. On server platforms that support it, you can specify "hot" deployment directly
to the application server.
There are two scenarios for using the J2EE Deployment Expert:
For "fast track" deployment with default values for security and permissions, or for
deployment prototyping, run the J2EE Deployment Expert from an appropriate Class
diagram.
If you need "full featured" assembly information with control over security and
permissions, run the Expers from an EJB Assembler diagram, Web Application
diagram, or Enterprise Application diagram.

451 -

Deploying Enterprise JavaBeans

To run the [2EE Deployment Expert:
1. Open the project and the diagram containing the elements to be deployed (Class,
EJB Assembler, Web Application, or Enterprise Application diagrams).
2. On the Main menu, choose Tools | [2EE Deployment Expert to launch the expert
dialog.
3. Choose the target server platform and set the other options as desired. For example,
if the classes need to be compiled, check the Compile Classes option (if they are already
compiled, clear this option).
Note: All server platforms represented in the list of plugins are supported for Classes and EJB
Assembler diagrams.

Web Application diagram and Enterprise Application diagram support WAS 3.02/ WAS 3.5, WLS
5.1/6.0, Generic 1.1, Genetic 2.0, WebLogic 6.0, iplanet 6.0, but do not support Genetic 1.0.

4. If desired, check the option to generate a JSP client. (Note that this checkbox does

not appear for all servers. For more information, see Server-specific information
below.)

5. Click Nex? to advance through the page sequence of the Expert.
Note that the number of pages and content varies according to the selected server platform.
During the process you will specify such things as:
- the paths to the server, various server tools, and a temp directory.
- server host name, port number, and password (if you are going to "hot deploy" to
the server).
- output location and base URL for JSPs (if generating a JSP test client)

Starting WebLogic from within Together

If you are going to deploy your EJB's to WebLogic 5.1, or 6.0, you can enjoy a handy
possibility to launch the target application server from within Together. Presently, Together
provides two plugins: Start Weblogic Application Server 5.1 and Start Webl ogic Application Server
6.0. Use drop down menu of the field Select application Server platform... of J2EE Deployment
Expert to launch the required server.

Server-specific information and examples

The above procedure is intended as a basic guideline for running the expert. In order for the
expert to succeed, there are some things you need to set up in your project and/or your
environment. These are dependent upon the target application server. You can find some
examples under Server-Specific Excanmples:

How to deploy CMP bean from WebLogic 5.1, 6.0 to WebSphere 3.5
How to deploy session bean from WebLogic 5.1, 6.0 to WebSphere 3.5
How to create a servlet and deploy it on WebLogic 5.1, 6.0

How to create a servlet and deploy it on WebShpere 3.5

How to create a simple JSP client to test a deployed Bean

See most complete deployment example of a sophisticated real-life application in the section
EJB Step by Step.

See also

EJB Assembler diagrams

Enterprise Application diagram

Web Application diagram

J2EE Deployment Expert for WebLogic

J2EE Deployment Expert for WebSphere

452 -

Step by Step How To Create a One-Click EJB and a Client Creating a Session Bean

Step by Step How To Create a One-Click EJB and
a Client Creating a Session Bean

This section gives a brief step-by-step description of creating and EJB and a client. The
turther steps of deploying the bean, compiling and running the client are described in the
Sample Project for WebSphere 3.5.

Creating an EJB

Create a New Project (Main Menu | File | New Projeci). Enter "HelloWorld" as the project
name. As you won't need standard libraties, remove them from the project: click Advanced
button, select Search Classpath and make sure that checkboxes Include standard libraries and
Include Classpath are cleared. Click OK button.

Next, create a New Package. Set its name to "hello" and choose Open in New Tab from the
speedmenu.

In this package, click on Sesszon EJB icon and create a session bean, with the name He/loBean.
Create business method (New | Business Method on the bean speedmenu). Using in-place
editing, change the default method name to hello: String. In the Editor pane, add the
following code to this method:

public String hello(){ System.out.println("hello()"); return
"Hello World"; }

Note: Make sure that return types of hello () method in the "HelloBean" and in "Hello"
are identical (String).

The bean is now ready for deployment to WebSphere 3.5.

Then you can deploy EJB , or first create a client.

Creating a client

By now you have a project with He/lo Session bean, which is deployed to WebSphere 3.5.

Create a New Package on the default diagram and set its name to c/ent. Open this package in a
new tab (choose Open in New Tab on the package speedmenu).

Create main class in this package using Class by Pattern icon. Select Mazn Class pattern,
change name to He/loClient and press Finish button.

Add the following code to your main method:
public static void main(String[] argv) {

try
Properties props = System.getProperties();

props.put (Context .INITIAL CONTEXT FACTORY,
"com.ibm.ejs.ns.jndi.CNInitialContextFactory") ;
props.put (Context . PROVIDER URL,
"iiop://localhost:900"); Context ctx = new
InitialContext (props); HelloHome home =
(HelloHome) javax.rmi.PortableRemoteObject .narrow
(ctx.lookup ("hello/HelloHome") ,HelloHome.class) ;
Hello hello = home.create() ;
System.out.println(hello.hello());

453

How to Deploy the Bean to IBM WebSphere 3.5

hello.remove () ;
}catch (Exception e){ e.printStackTrace(); }
}
Add the following import statements:
import javax.naming.*;
import java.util.Properties;
import hello.*;

The client is now ready for compiling and running.
Then deploy EJB , if you did not deploy yet, compile and run the client.

How to Deploy the Bean to IBM WebSphere 3.5

This sample logically extends the previous topic in going step by step through deploying an
EJB to IBM WebSphere 3.5, compiling and running the client.
Opening the Project

Open the sample project HelloWorld. tpr under
$TOGETHER HOME%/Samples/java/ejb/WebSphere

‘ B2 websphere r‘f'_g AzzemblyDiagram |

B adefault= |/ B2 hello |/ 2 cliert |

+HelloBean |

Deploying an EJB

First, start WebSphere Server 3.5 services from Control Panel | Administrative Tools | Services.
Next, in Together, invoke J2EE Deployment Expert on the Tools menu.

Select IBM WebSphere AE 3.5 as the target server and make sure that all available
checkboxes, except for Generate start and compile file for the client, Generate simple JSP client,
Generate command file for deployment are set. Click Next to proceed.

Specify correct paths to WebSphere home directory and to IBM JDK 1.2.2 root directory

(e.g. c:/WebSphere/AppServer and c:/WebSphere/AppServer/jdk), and
click Next.

454 -

Sample Project for BEA WebLogic Server

Set the following parameters on the next page:

Parameter name Setting Comment

Admin Node Name Name of the Node to deploy Name of the computer
Application Server Name Your Application Server "Default Server" by default
EJB Container Name Your Container name "Default Containetr" by default
Target WebSphere server WebSphete home directory e.g. ¢: \WebSphere\AppServer
directory

Stop & Remove Beans(s), ON

Servlet(s) before deployment

Start Beans(s), Servlet(s) after ON

deployment

Launch setrver in debug mode OFF

Click Nextand Finish, to complete you work with J[2EE deployment expert. 1f you have checked
Hot Deploy check box, the last message in the Message Pane should be:

//WAS35: Finished with 0 Errors, 0 Warnings.

It means that the deployment process successfully completed.

Compiling and Running the Client

Provide resources, required for compilation and run. Invoke Options dialog on the Project
level. In the Run/Debug tab, specify path to jdk home as

$WAS Home%\AppServer\jdk.

In the websphere tab of the Diagram pane, select HelloClient class and choose Tools | Rebuild
Node on its speedmenu. The Message pane displays a message that the tool is completed.
Select Tools | Run/Debug | Run from the main menu and see "Hello World" message in the
Message pane and "hello()" in the server console.

Sample Project for BEA WebLogic Server

You can use the J[2EE Deployment Expert to compile your E]Bs and deploy them to BEA
WebLogic Application Server 4.5.1, 5.1, and 6.0

This section describes how to set up your Together project and your environment so that
you can use Together to compile both EJB clients and deploy to E]Bs to BEA WebLogic
5.1, 6.0.

Setting project properties and environment

To start BEA WebLogic Application Server: on the Together's main menu, choose Tools |
J2EE Deployment Expert. Select Start Webl_ogic Application Server 6.0 (or Start BEA Webl ogic
Application Server 5.1') as the target server from the dropdown list, if you want to use this
server. On the second page of the J2EE Deployment Expert set the root directory of the
WebLogic setver using the File/ Path Chooser button, and click Finish to complete.

Next, select the EJB Assembler diagram or Class diagram (with E]JB on it) to make this diagram
active, and choose J2EE Deployment Expert on the Tools menu. Select Webl ogic Application

455 -

Sample Project for BEA WebLogic Server

Server 6.0 (or Webl ogic Application Server 5.1') as the target server. Make sure to set the
following flags only (all the other flags should be unchecked):
ZE

J2EE Deployment Expert

1 Select the application server platform for your deployment process from the list of suppored servers

BEA WeblLogic Application Server 6.0 b

2 You can optionally verityicarrect EJBs, compile clazzes, generate Deployment Descriptors, and delete
temporary classes beforefafter deployment. For cettain servers "hiot" deployment iz available.

rProcess option

[¥] &dd libraries required for deploymert to the current project's SearchiClasspath
[¥] sferify andfor correct EJBs for the selected server

[¥] Compile the classes referenced in the currertly selected disgram

[v] Generate Deployment Descriptor(=)

[+] Cpen ¥ML editor for genersted Deployment Descriptars)

[¥] Pack modules for deployment

[#] Hat Deploy to server

[[] Generate a simple JSP client

[[] Generate a command line file swith instructions for deployment

[¥] Clear temparary folder hefore staring the deploymert process

[w] Clear temparary folder after deployment i= complete

Mext = | Cancel | | Help |

4

If you do not want to deploy immediately, Ho# Deploy should be unchecked.

Till this moment your actions were almost the same both for BEA WebLogic Application
Server 6.0, and BEA WeblLogic Application Server 5.1. Click Nex? to continue.

There is a difference between BEA WeblLogic Application Server 6.0 and 5.1 now:
For BEA WebLogic Application Server 6.0

On the next page of the J2EE Deployment Expert, set paths to jdk1.3 (e.g. c:\jdk1.3),
WebLogic (e.g. ¢:\bea\wlserver6.0), and paths to the resulting jar file and temporary files.
Click Nexz. Note that it is impossible to use jdk1.2.

456 -

Sample Project for BEA WebLogic Server

For BEA WebLogic Application Server 5.1

On the next page of the J2EE Deployment Expert, set paths to jdk1.2 or higher (e.g.
c:\jdk1.2), WebLogic (e.g. c:\bea\wlserver5.1), to the directory for compiled servlets (e.g.
c:\weblogic\myserver\servletclasses), and paths to the resulting jar file and temporary files.

Click Finish, if Hot Deploy checkbox was unchecked, i.e. WebLogic Server was not started.

You can choose Search/ Classpath tab from File | Project Properties to see additional classpaths
included automatically:

$WL_HOME%\weblogic.jar - for WebLogic 6.0
$WL_HOME%\lib\weblogicaux.jar - for WebLogic 5.1
$WL_HOMES%\classes

$JDK_HOME%\jre\lib\rt.jar

Where: %0WL_HOME% is the home directory of WebLogic Setver (e.g. c:\weblogic), and
%]DK_HOME% is the home directory of JDK (e.g. c:\jdk1.3 for BEA WebLogic
Application Setver 6.0 or c:\jdk1.2 for BEA WebLogic Application Setver 5.1).

IMPORTANT: weblogicaux.jar should always be the first in the list, ahead of even
standard libraries for BEA WebLogic Application Server 5.1 .

To edit Search/ Classpath:
1. On the Main menu choose File | Project Properties to display the Project Properties
dialog.
2. Click the Search/ Classpath tab.
3. Click the Add Path or Archive button to add a new path.
4. Click the Remove button to remove a path.

Deploying EJBs to BEA WebLogic Server

Click Next, it Hot Deploy checkbox was checked, i.e. WebLogic Server was started.

On the last page of the J2EE Deployment Expert, set server host (localhost), system
password that you've set for WebLogic (e.g. together) and port (usually it is 7001), and click
Finish to complete.

If the deployment process successfully completed, the Message Pane displays:
//WLS60: Finished with 0 Errors, 0 Warnings.//

Now we are ready to compile and run the client.

Deploying Hello World EJB sample to BEA WebLogic 6.0 Server

System requirements
This section shows you step-by-step how to compile an EJB, deploy it to the server, compile
an EJB client in the same project, and run it with the deployed EJB.

This example is based on BEA Webl ogic Server version 6.0 . 1t uses a simple example project
Hello World which is located in

$TOGETHER HOMES%/samples/java/ejb/WeblogicServer. To try it out, you
need the following:

- Together product with Java language support and EJB support

- An installation of Java2 Enterprise Edition (SDK 1.2 or higher)

- An installation of Java2 SDK 1.3 or higher (installed with Together)

- An installation of BEA Webl ogic Server version 6.0 (local or accessible remote host)

457 -

Sample Project for BEA WebLogic Server

Compiling and deploying the sample EJB

IMPORTANT: When deploying EJBs to BEA WebLogic 5.1, make sure your server
does not already contain a deployed EJB with the same name as the one you are
deploying (see [erifying deployment below). If it does, you should either restart
WebLogic server after each deployment, or give your EJB a different name.

In J2EE Deployment Expert for WebLogic 6.0, if you already have deployed EJB
with the same name, you should only check Update already deployed module checkbox in
Run-time deploy of EJB page:

8 BEA WeblLogic Application Server 6.0 - "Run-time Deploy o

Marme Yalue

"

System pazsword FRARRALE
Zerver part number payl
Server host name localhost

Update previously deployed module [

If it does, you must either restart WebLogic server after each deployment, or give your
EJB a different name.
1. Open HelloWorld.tpr project from
$TOGETHER HOME%/Samples/java/ejb/WeblogicServer/HelloWo
r1d/ (File | Open Project).
2. Open hello diagram. You should see HelloBean class. Open the Message pane, so you
can monitor process messages.
3. Check that the port number is correct, and password for WebLogic server is
available.
4. Launch the J2EE Deployment Expert on the Tools menu. Choose BEA Webl ogic
Application Server 6.0 as the default target server.
5. Make sure that all available check boxes are checked (including Hoz Deploy).
0. Even though it's the default, open the drop-down list and select BEA Webl ogic
Application Server 6.0 in the list to display server startup options.
7. In the server startup options, check Start BEA Webl ogic Server 6.0 (normal mode) and
uncheck S7art BEA Weblogic Server 6.0 (debug mode).
8. Click Next.
9. Specity the paths to:
- Java2 Enterprise Edition: ()
- Java2 SDK1.3: (e.g. c:\jdk1.3),
- WebLogic server(e.g. e:\weblogic)
- Destination folders for the generated jar file and temporary files.
10. Click Next.
11. Specify the server host name (e.g. localhost), system password, and port number.
Click Finish.
After that, Together does a number of things: starts WebLogic Server; invokes Java SDK
compiler to compile the Hello bean; generates the necessary deployment files for Weblogic
including deployment descriptor; invokes the SDK's JAR utility to package everything into a
JAR file; and communicates with the server to register the deployed EJB.

458 -

Sample Project for BEA WebLogic Server

Verifying deployment
Assuming you have checked Ho# Deploy in the J2EE Deployment Expert, the last message

lines in the Message pane should be:

//WLS51: Connecting to localhost, port 7001...Successfully
connected.//

//WLS51: Done deploying HelloWorld with
c:\temp\DEPLOYABLE HelloWorld.jar//.

//WLS51: Finished with 0 errors, 0 Warnings.//

The host name and port number values will match those you specified in the expert.

To be sure the generated JAR file was successfully deployed to the WebLogic server, you can
run the WebLogic Console. In the console window, check for:

EJB Home interface: 'hello. HelloHome' deployed bound to the INDI name: 'hello.HelloHonmse'.
This verifies that the bean is deployed.

Troubleshooting tips
If you have problems starting or running a WebLogic server, consult WebLogic

documentation and/or technical support.

If you have problems connecting to a remote WebLogic server, consult the server's
administrator or your network administrator.

Compiling and running the sample client
To test the deployed EJB, you need an EJB client to access it. The HelloWorld example
contains a client class that you can compile and run to test your deployed sample EJB.

1. In the Project Properties dialog, check that the Search/ Classpath specifications ate as
described in the project properties above. (File | Project Properties)

2. Open the HelloWorld.client .weblogic package in the Explorer and
open the weblogic class diagram containing the He/loClient class.

3. Right-click on the client class and select Tools | Make Node from the speedmenu.

4. When compilation is complete the Message pane displays a message notifying that
the tool is completed.

5. On the Main Menu choose Tools | Run/Debug | Run.

Your deployed EJB runs and outputs the string "Hello World". Together picks up this
output and displays it as a message line in the Message pane. The output also appears in the
server console.

Debugging the sample bean and client
This section contains an exercise that you can follow to learn how to debug a bean and a
client within the Together environment.
1. Close the running WeblLogic Server.
2. For debugging your bean you must restart the server in debug mode. To do this:
- On the Main Menu, choose Tools | [2EE Deployment Expert to launch the
deployment expert again.
- Choose Start Webl_ogic Application Server 6.0.

- Uncheck Start Webl ogic Server 6.0 (normal mode) and check Start Webl ogic Server
6.0 (debug mode). Click Next.

459 -

Sample Project for BEA WebLogic Server

- Set a root directory of WebLogic Server 6.0 and click Next.
- Set Remote process port address and remember it. Click Finish to start server
in debug mode.
3. Read instructions in J2EE Deployment Expert message window and follow them.
4. On the main menu choose Tools | Run/Debug | Attach to Remote Process.
5. In the subsequent dialog set the following values, then click OK:
- Host: 1localhost (or the name of your server host)
- Transport: dt _socket
- Address: <address>
- <address> - the value from the 2nd point above.
0. Deploy HelloBean to WebLogic Server as previously described.
7.Select hello () method of the HelloBean class in the diagram. In the Editor,
set a breakpoint on the first string in it (F5 or speedmenu | Toggle breakpoin).
8. Compile the HelloClient class.
9. In the Editor, set a breakpoint on the first string after #y statement in the main
method.
10. On the Main menu choose Tools | Run/Debug | Run in Debug. The process will stop
on the break point in the HelloClient class.

11. Use speed buttons to manage your process (Restart/ Resume program, Reset program,
step over, step in, etc. in the Debugger page of the process). Alternatively, you can use
hot keys (Step over - F8, Step in - F7). When passing the line that invokes the

hello () method, the debugger stops at the breakpoint in the Hel1oBean class.

12. When you have traced the whole hello () method, click the measure Program
speed button on the remote process page to continue running the WebLogic. As a
result you'll be stopped in the HelloClient class after the point at which the
hello () method of the bean was invoked.

13. Continue step by step debugging, or click the Resume Program to finish the
debugging process.

Deploying from an EJB Assembler diagram

In the previous sections we have deployed a bean described in a Class diagram. This
technique is fine for prototyping, but in real scenarios you want to specify such things as
container transaction attributes on classes and methods, security roles, and method
permissions. The EJB Assembler diagram enables you to do this, so you can run the
deployment expert against this type of diagram as well.

To deploy Hello World sample open Assembler Diagram as the current one, choose Too/s |
J2EE Deployment Expert, choose BEA Webl ogic Server 6.0 or 5.1, and then read instructions in
J2EE Deployment Expert message window and follow them.

For more information on this type of diagram and how to work with it see E]B Assembler
diagram.

- 460 -

How to Create a Simple JSP Client

How to Create a Simple JSP Client

Together's deployment support will, at your option, generate a simple JSP-based client
application to a location you specify in the J2EE Deployment Expert. You can use this client
to access a deployed EJB running on the server. This capability is currently available for
WebLogic Server 5.1 and 6.0, and WebSphere 3.5.

When you select Weblogic Server 5.1 and check the Generate Simple |SP Client checkbox in the
J2EE Deployment Expert, a Java Server Pages (JSP) client for Enterprise JavaBeans will be
generated during deployment processing. This client is a set of interrelated JSP and HTML
files which can be viewed in any Internet browser. The purpose of the JSP client is to
provide access to a remote EJB object through its open interfaces (i.c., "Remote" and
"Home"). Generally, the "Home" interface is intended for control over remote object life
cycles and the "Remote" interface is for calling remote object business methods. The simple
generated JSP client is able to perform these operations and save you the necessity to write
your own client program for testing purposes.

Some notes that are worth mentioning:

JSPs are "active" pages... you can view them only through the server (in this case -
through the WebLogic 5.1 or WebSphere 3.5).

The semantic information necessary to generate a JSP client comes from the Together
project's currently active diagram. Because this provides rather sparse information, it is
not practical to create a sophisticated, commercial-grade client program. Therefore
you need to consider the generated JSP client as universal testing facility.

Setting values on the JSP client page

When you check the JSP client generation option in the Deployment Expert, an additional
page is included in the page sequence. You fill in a number of fields on this page with
information to support JSP client generation.

Fields for the WebLogic 5.1 version

&l BEA WebLogic Application Server 5.1 - "Simple ISP Clis x|

- Meme Vale

Root path for JSP storage o wveblogicmyserveripublic _kbtml %
Subdirectory f.cur JEP files my =P

URL for brovesing JSP http: Mocalhost: 7001

Showy JZP client iﬁ.defaurt Internet brovwser 5]

Run JSP cli-ent under Tamcat in debugy mode] -

Local path ta the directary for JSP files far Tomcat CATogethers Ssamplesavalecommer ... @
WehL-:ugiI: JHDI service provider URL for Tomcat t3Mocalhost: 70018 .

The following fields are displayed in the Deployment Expert when WebLogic 5.1 is the
selected server:

Root path for JSP storage

The root of the WebLogic file hierarchy which can be accessed from outside. Thus if you
want to allow access to some HTML for JSP files, then you need to allocates it somewhere
here. By default the WLS public directory allocated at [WebLogic

home] /myserver/public_html.

_ 461 -

How to Create a Simple JSP Client

Subdirectory for JSP files

To avoid disorder in public directory it is desirable to allocate files by separated groups in
some subdirectory. You can assign the path to a subdirectory where your JSP files are to be
placed. This path is considered relative to root of the public directory. The subdirectory will
be created automatically if it does not exist (after confirmation).

URL for browsing JSP

In order to browse any remote resource it is of course necessary to specity its URL. Standard
Web URL includes protocol, host, port, web resource alias, and path. In this field you have
to set all necessary parts except for the pazh. During request processing, the server will
replace this base URL with the WeblLogic public directory in order to access the requested
web resource. If you make a typing error, or specify erroneous relativity to the WebLogic
public directory, your will get an access error when you try to load the JSPs in a browser. By
default, the base URLis http://localhost:7001/.

Show JSP client in default Internet browser

This field is a flag that indicates whether to show the start page after successful generation. If
you check it, the standard Internet browser will launch and show the start page.

Fields for the WebSphere 3.5 version

&l 16M Websphere AE 3.5 - "Simple 5P Client Generation x|
- Meme Value
Foot path for JSP storage d: WiebSphere\bppServerthostsdetault .. @
Subdirectory for JSP files my =P .
URL for bruwsiné J=P http: Mocalhostivebappiexamples
WebSphere JMD] :servin:e provider URL iiop: Mocalhost: 900
Showy JZP client in default Internet broveser [w]

The following fields are displayed in the Deployment Expert when WebSphere 3.5 is
selected:

Root path for JSP storage

This directory is the root of file hierarchy, which can be accessed from outside. Thus, if you
want to allow access to some HTML of JSP files, you need to allocate them accordingly.

Subdirectory for JSP files

To avoid disorder in public directory, it is desirable to allocate files in separate groups by the
means of a subdirectory. You can assign the path to the subdirectory where your files will be
placed. This path is relative to the root public directory. If the subdirectory doesn't exist, it
will be created automatically (after confirmation).

462 -

How to Create a Simple JSP Client

URL for browsing JSP

In order to browse remote WEB resource, you have to set URL. Standard Web URL
includes protocol, host, port, web resource alias, and path. In this field you have to set all
necessary parts except for the path. During request processing, server will substitute this
Web path to WebSphere document root directory in order to access the requested web
resource. If this field, or the root directory field, is wrong, an access error will be reported
when you try to load JSPs in a browser. By default root Web path is
http://localhost/.

WebSphere JNDI service provider URL

This field is required to establish connection between JSP client and EJB server. It is well
known that the client should first send request to the name service provider, in order to find
EJB service provider. This value appends to the JSP files in course of generation and is used
during execution. Normally, you do not need to change this field. Default value is
iiop://localhost:900.

Show JSP client in default Internet browser

This field is a flag that indicates whether to show the start page after successful generation. If
you check it, the standard Internet browser will launch and show the start page.

General considerations

WebSphere Application Server supports multiple document roots. Each root is associated
with a so called "Web Application". The field values on the current page should comply with
those of the Web application.
You can create new Web Application and automatically configure it in the "Process
Servlet(s)" step. Otherwise you are personally responsible for the existence of Web
Application.
If you manually configure Web Application, make sure that:
1. "JSP 1.0 support servlet" com. sun. jsp.runtime.JspServlet is
appended to your Web Application.
2. Servlet "Enables File Serving"
(com.ibm.servlet.engine.webapp.SimpleFileServlet)is
appended to your Web Application.
Note: If these servlets are not available, the corresponding options on the "Servlet
Properties" page of J2EE Deployment Expert should be checked.

3. Path to your deployed enterprise beans is added to the Web Application classpath.

463 -

How to Create a Simple JSP Client

Testing the deployed EJB using the JSP client

If you check the Show result after generation option, your browser opens and loads the html

index page at the location you specified as the path for JSP browsing. Altern
use your browser to open the index.html file at that location.

AJ Untitled Document - Microsoft Internet Explorer
|| He Edt Wew Favorkes ook Heb

« .= O fﬁ‘@ & t:3|@r
__Each Fonyard Stop Refresh Home |
| | agdress [@] http: flocathost: 7001 fmy Y5Pindes:, i

atively, you can

Web browser has
——been opened for
generated JSP
client

Linked list of

EJE: examples.ejb basic contamerhIanaged AccountBean
Finders:

Account fmdBvPrimarvEey { Strmg pnmaryFey)

Account findAccount { double balanceEqual)

Enumeration findBigAc counts { double balanceGreaterThan)
Enumeration findNulld e counts ()

EJBs, their
finders and
creators

Enumeration findByTvpe { String type)
Creators:
create accountld, double mibalBalance, St &
=l
2] Done [[B Local inkranet &

464 -

How to Create a Simple JSP Client

You can click to link to the ¢reate() method to launch another JSP that creates and instance of
the EJB object and enables you to access it's fields, as shown in the following figure.

F untitled Document - Microsoflt Internet Explorer

E R S | ﬁ|ﬁﬂ£§w%

Back Fonward Stop Pefresh Home

]Pd:ﬁ'ess [&1 terp:flocahost: 7001 fmy 5P Gens. beal

Run creator page
EJE Class name: examples.ejb. basic. containerhIanaged. AccomntBean

Creator: Account create [

Specify values for
new DB record
-

Mew record is
created in e.g,
MS-Access

| Parameter Tyvpe | Value /
laccountld Sting [2132131 T
|nutia]Ba1am:-: double |1 0o :
type Sting |DEM
I3
|&] Done

accountType

100 DEM

Of course, the field content and results of the interaction will vary with the design and
coding of the EJB... this interaction of an EJB running against an Access database is just an

example of how you can use the JSP client to test a running EJB.

465 -

How to Create a Simple JSP Client

To carry on with the example, you can use the client to test the Finder method on an EJB by
returning to the initial navigation page and running that method against a known value, as
shown below:

T untitled Docurment - Microsolt Intermek -.'.' |)
[t vou racams 1o wo [
. .0 @ A 7
| Back Ferward Stop Refresh Home | |
| Adddress [@) i fiocahwst: 7000 my FSPIGen1 1L ptpe =] 0768 |
= |
: | .
Entity bean page
- |
Run finder page | I
| examples ejb basic contamer Managed Account
EJTE Class “ﬂl:"-; A 1 ' Run Finder ¥
examples ojb basic contamerhlanaged AccommtBean | method, find
ibyvdun’n... _Ile _IDIII\I
Finder Enumeration findBEy Type | |
Bemote accesable operations:
double deposit (double
ST
| Valuefound double withdyaw (double
| Valuefound, so "
X geuomeles | e ialmced
| torun.. Strng acconntTyvpe ()
=il BackioMevigakonpege |
@] Dore E_I_Emwm 4l |
B T Bflecdivtanst P

In this example, the result of the operation proves that the Bean and its business logic is
functioning correctly:

T uintitled Bocuiment - Microsolt Intemet Explorer L £Lr _ '_'_.."QJ'E'IH
| Bl ES dew Faodes Tsck el
.2 2 RpamRIE s P |
Buk Forawd Shog Home | Sewth Favorbes Mty | Mal Pk Bt |
| Aress [bt fiocabost-7000iny KR iGendz. o CaleRur+ method =] P |
Operation call result page
Feaudt
100.0 =]
=
Back o baan I

=
[Elvee [Ewalerrs

- 466 -

Step By Step How To Create a Servlet and Deploy it to WebLogic 5.1

Step By Step How To Create a Serviet and Deploy
it to WebLogic 5.1

Creating a Servlet

Create a New Project (Main Menu | File | New Projeci). Enter "HelloWorld" as the project
name. As you won't need standard libraries, remove them from the project: click Advanced,
select Search Classpath and make sure that check boxes Inciude standard libraries and 1nclude
Classpath are cleared. Click OK.

Create a New Package, name it "hello" and choose Oper in New Tab from the speedmenu. In
this package, create a new servlet "HelloWorld" using Class by Pattern icon on the toolbar.
Edit doGetmethod of the servlet. Instead of the line "/ /Write your HTML
here",type out.println("Hello world") ;

Now you are ready to deploy this Servlet to WebLogic 5.1
Compiling and running the Servlet

First, you have to run the WebLogic Application server. Uncomment the line
#weblogic.httpd.register.servlets=weblogic.servlet.ServletSe
rvlet in the file weblogic.properties

Start WebLogic Server 5.1. To do this, use WebLogic Server starter plugin, provided in the
J2EE Deployment Expert. Select Start BEA Webl ogic Application Server 5.1 on the first page
of the Expert. Make sure that the flag Szart BEA Webl ogic Server 5.1 (normal mode) is checked,
and the flag Start BEA Webl ogic Server 5.1 (debug mode) is unchecked. Click Next.

On the next page of the Expert, set root directory of WebLogic Server 5.1 and click Finish to
start the server.

Note: Alternatively you can start WebLogic Server 5.1 from the Windows Szart | Programs | WebLogic
5.1 | WebLogic Server.

Next, you have to compile the servlet. Invoke J2EE Deployment Expert again and select
BEA Webl ogic Application Server 5.1 as the target server. Make sure that checkboxes Add
libraries required for...and Process Servlet(s) are checked, while the other check boxes are cleared.
Click Next.
Set paths to jdk1.2 (e.g. c: \jdk1. 2. 2), to WebLogic (e.g. ¢ : \wls51) and destination
paths for the resulting Servlet default (WL_HOMESmyserver\servletclasses)
and temporary files. Click Finish.
If the compile process successfully completed, the Message Pane should display the
following message:

//WLS51: Finished with 0 Errors, 0 Warnings.//
Open your browser and set address
http://localhost:7001/servliets/hello/HelloWorld. You should see
"Hello World".

467 -

Step By Step How To Create a Servlet and Deploy it to WebSphere 3.5

Step By Step How To Create a Serviet and Deploy
it to WebSphere 3.5

Creating a Servlet

Create a New Project (Main Menu | File | New Projeci). Enter "HelloWorld" as the project
name. As you won't need standard libraries, remove them from the project: click Advanced,
select Search Classpath and make sure that checkboxes Include standard libraries and Include
Classpath are cleared. Click OK.

Create a New Package, name it "hello" and choose Oper in New Tab from the speedmenu. In
this package, create a new servlet "HelloWorld" using Class by Pattern icon on the toolbar.
Edit doGetmethod of this servlet:

Find Replace

//Write your HTML here out.println("Hello world") ;

Now you are ready to deploy this Servlet to WebSphere 3.5

Compiling and running the Servlet

First, start WebSphere Server 3.5 services from Control Panel | Services. Next, in Together,
invoke J2EE Deployment Expert.

Select IBM WebSphere AE 3.5 as the target server and make sure that all available
checkboxes, except of Process Servlet(s), Hot deploy to IBM WebSphere, and Add libraries required
Jfor deployment to the current project's Search/ Classpath, are off.

Specify correct paths to WebSphere home directory and to IBM JDK 1.2.2 root directory
(e.g. c:/WebSphere/AppServer and c:/WebSphere/AppServer/jdk). Click
Next.

Set the following parameters on the EJB Deployment Properties page:

Parameter name Setting Comment

Admin Node Name Name of the Node to deploy Name of the computer
Dependent ClassPath Fully qualified path to WebSphere |Check if it refers to existing jars
Application Server Name Your Application Server "Default Server" by default
EJB Container Name Your Container name "Default Containetr" by default
Target WebSphere server WebSphere home directory e.g. ¢: \WebSphere\AppServer
directory

Stop server and remove existing ON

Beans/ Servlet before deployment

Start Beans/Servlets after ON

deployment

Launch server in debug mode OFF

~ 468 -

Step By Step How To Create a Servlet and Deploy it to WebSphere 3.5

Set the following parameters on the Servlet Deployment Properties page:

Parameter name

Setting

Comment

Virtual Host name

Your virtual host

"default_host" by default

Servlet Engine name

Your servlet engine

"Default Servlet Engine" by default

Web Application name

Your web application name

"Default_app" by default

Web Application document root

The WebSphere address accessible
through an Internet browser

Empty by default

Relative Path to Servlet

Your directory name

"/" by default

Relative Web Path to Servlet
directory

Web resource alias for your Web

application

"servlet" by default

All check boxes, except Load Servlet at StartUp and Serviet Enabled, are off. Click Finish when
all parameters are properly specified.
If you have also checked Ho# Deploy check box, the last message in the Message Pane is:

//was35:

Finished with 0 Errors,

Start your Internet browser, enter address
http://localhost/servliet/HelloWorldServlet, and observe "Hello

World" message.

0 Warnings.//

- 469 -

Step By Step How To Deploy CMP Entity Bean from IBM WebSphere 3.5 Samples to BEA WebLogic 5.1

Step By Step How To Deploy CMP Entity Bean
from IBM WebSphere 3.5 Samples to BEA
WebLogic 5.1

This topic shows you step-by-step how to deploy a CMP entity bean from IBM WebSphere
3.5 to BEA WebLogic 5.1 and run a client for it.

Creating CMP Entity Bean

Creating a project

First, provide sources for the project. Copy EJB-related files from
WebSphere\AppServer\EJBSamples\src\Increment into a directory
structure according to the package $TG_HOME%\Samples\java\ejb\WebSphere.
Thus, the example will reside in the same place with the beans.

Increment.java

IncrementBean. java

IncrementKey.java

IncrementHome. java

VisitIncrementSite.java
Start Together and create project in
$TG_HOME%\Samples\java\ejb\WebSphere\WebSphereSamples\Increm
ent.
Together automatically recognizes the structure of parent directories, so that the upper
folders correspond to the package statements. This helps avoid errors.

Editing the bean properties

Click on the Bean implementation class, invoke Inspector, go to EntityE]B and look at the
General tab. Together recognizes fully qualified names of the classes, interfaces etc.

Now, set JNDI name for the IncrementBean. In the Properties tab of EntityE5]B set [NDI name to
bind to to Increment (it is not recognized by Together since it is stored in XML file rather than
in the sources.).

In the Fields and Finders tab, set column property for count field to counts. This should be done
because the word "count" is reserved.

Select DB binding tab and make sure that table name is set to "Increment", pool name is set
to "demoPool", and Scheme name is set to "APP". EJB is now ready.

- 470 -

Step By Step How To Deploy CMP Entity Bean from IBM WebSphere 3.5 Samples to BEA WebLogic 5.1

Creating Database

Creating a table in the database

Let us create a table in the doudscape database. To do this, invoke Generate DDL Expert on
the Tools | Database Import/ Export, and select: Export from:Enterprise Java Bean. 1n the Expert,
choose Diagram name: Increment, and click Nexz. On the next page, choose Generate and Run
DDI.. Enter the settings listed below and click Next.

Field Value

Server type Cloudscape

Set class path $WL_HOME%/eval/cloudscape/lib/cloudscape.jar
Set Database $WL_HOME%/eval/cloudscape/data/demo

Make sure that Schema name is set to APP. Click Edit DDL. button and rename count tield to
counts. Change primaryKey type from VARCHAR(1) to NATIONAL CHAR
VARYING(10). Replace name IncrementBean with Increment.

Restart Together (The evaluation version of Cloudscape that ships with BEA WeblLogic
Server supports only one database connection at a time to a

cloudscape.system. home directory

http:/ /www.weblogic.com/docs51/techsupport/cloudscape.html##settingup)

Creating a Cloudscape pool

Ok, we're ready to take off! Now, start BEA WebLogic 5.1 application server (either
manually from the Start menu, or using our starter plug-in). Uncomment the following lines
in $WL_HOME%\weblogic.properties before you run the server:
"weblogic.httpd.register.servlets=weblogic.servlet.ServlietServlet"
This allows to run unregistered servlets from the servlet classpath.
"weblogic.allow.reserve.weblogic. jdbc.connectionbPool.demoPool=everyone"
"weblogic.jdbc.connectionPool.demoPool=\

url=jdbc:cloudscape:demo, \

driver=COM.cloudscape.core.JDBCDriver, \

initialCapacity=1,\

maxCapacity=2, \

capacityIncrement=1,\

props=user=none;password=none; server=none"

This creates a pool to work with Cloudscape.

Deploying the Bean to BEA WebLogic Server 5.1

In the J2EE Deployment Expert, make sure that all checkboxes are on, except for Generate a
simple |SP client, and Generate a command line file with instructions for deployment. Specify correct
paths / host / password / whatever required by the Expert, and click Finish.

In the XML Editor, make sure that description for the IncrementBean has been retrieved
directly from the sources, without any user's efforts! Check that EJBName is short
IncrementBean. Click Ok to continue.

In the XML Editor for weblogic-ejb-jar.xml go to weblogic-ejb-
jar/weblogic-enterprise-bean/ejb-name and make sure it is IncrementBean.
The associated JNDI name in weblogic-ejb-jar/weblogic-enterprise-
bean/jndi-name is Increment. It is taken from the propetties, specified in the previous

471 -

Step By Step How To Deploy CMP Entity Bean from IBM WebSphere 3.5 Samples to BEA WebLogic 5.1

step. Click Ok to continue.
After a while Together will display a message

BEA WebLogic Server 5.1: Finished with 0 Errors, 0
Warnings

BEA WebLogic Server 5.1 console displays a message like:
Fri Aug 25 12:06:44 GMT+02:00 2000: EJB home

interface:
'WebSphereSamples.Increment.IncrementHome' deployed
bound to the JNDI name: 'Increment'

Ok, deployment complete. Now let us make some changes to the client.

Creating the Client
Editing the Client

Now you have to edit the client class.

Location Find Replace
VisitIncrementSite |[incrementHome = incrementHome =
(IncrementHome) javax.r |[(IncrementHome) javax.rmi.
mi.
PortableRemoteObject. |PortableRemoteObject .narrow
narrow (homeObject,

IncrementHome.class) ;
((org.omg.CORBA.Object
) homeObject,
IncrementHome.class)

init () Hashtable env = new comment out
Hashtable () ;
env.put

(Context.PROVIDER_URL,
provider) ;
env.put

(Context.INITIAL_CONTE
XT_ FACTORY, factory);

init () InitialContext ctx = InitialContext ctx = new
new InitialContext () ;
InitialContext (env) ;

doGet() out.println("form out.println("<form
method=\"get\" method=\"get\"
action=\"/servlet/ action=\"/servlet/

WebSphereSamples.Incre |WebSphereSamples.Increment.
ment . VisitIncrementSite\">") ;

VisitIncrementSite\">"

) i

472 -

Step By Step How To Deploy Session Bean from IBM WebSphere 3.5 Samples to BEA WebLogic 5.1

Compiling and running the client

When all editing is complete, compile VisitIncrementSite and copy the compiled
class VisitIncrementSite.class into a directory structure according to the
package statements (e.g.
$WL_HOMES%\myserver\servletclasses\WebSphereSamples\Increment
).

Now you are ready to run the client. Start your browser, open
http://localhost:7001/servlets/WebSphereSamples/Increment/Vi
sitIncrementSite and observe "Increment a Counter....."

Note, that when we deploy a CMP Entity bean from IBM WebSphere 3.5 samples to BEA
WebLogic 5.1, the underlying java source code changes (from EJB 1.0 specification to
EJB 1.1 specification):

1. the returned value of ejbCreate method changes to primaryKey class in CMP
EJBs,

2. return statement is added,

3. transaction attributes are changed (we have no transaction
attributes in our sample)

Step By Step How To Deploy Session Bean from
IBM WebSphere 3.5 Samples to BEA WebLogic
5.1

This topic takes you step by step through creating a Session bean, deploying it to WebLogic
Server 5.1 and creating a client for it.

Creating and Deploying a Session Bean

Creating the project

To avoid compilation errors, create directory structure that corresponds to the package
statements of the WebSphere samples. Copy EJB-related files from
WebSphere\AppServer\hosts\default host\WSsamples app\servlet
s\WebSphereSamples\HelloEJB into
$TG_HOMES%\samples\java\ejb\WebSphere\HelloEJB\com\ibm\ejb\cb
\samples\hello\tier2. Thus, the is placed example close to our delivered ejb
samples:

Hello.java
HelloBean.java
HelloBeanResourceBundle. java

HelloHome. java
Start Together and create new project in
$TG HOME%\samples\java\ejb\WebSphere\HelloEJB\com\ibm\ejb\cb
\saﬁples\hello\tier2
Together automatically recognizes the structure of parent directories, so that upper folders
correspond to the package statements. This helps avoid errors.

473

Step By Step How To Deploy Session Bean from IBM WebSphere 3.5 Samples to BEA WebLogic 5.1

Modifying the Bean Properties

Now you are ready to edit the bean. Navigate to the Bean implementation class, go to
SessionEJB and look at the properties. Together recognizes fully qualified names of the
classes, interfaces etc.

Select HelloBean on the diagram and open its Object Inspector. On the SessionE]B page of
the Inspector, choose Properties tab and set [NDI namse to bind to - HelloHomse (it was not
recognized by Together since stored in XML file rather than in sources.)

Ok, we're now ready to take offl
Deploying to BEA WebLogic Server 5.1

Uncomment the string
weblogic.httpd.register.servlets=weblogic.servlet.ServletSer
vlet in $WL_HOMES%\weblogic.properties. This string allows to run unregistered
servlets from the servlet classpath.

Start WLS Server (manually from the Start menu, or using our starter plug-in).

Start deployment to BEA WebLogic Server 5.1. All checkboxes, except for Generate a simple
JSP client and Generate a command line file with instructions for deployment should be on.
Specify correct paths / host / password / whatever required by the Expert and click Finish.
Edit ejb-jar.xml in the XML Editor. Go to ejb-jar/enterprise-
beans/session/Description (*) and make sure that the description of
HelloBean is retrieved directly from the sources, without any user's intervention! Check that
EJBName is short "HelloBean". Click O to continue.
Next, edit weblogic-ejb-jar.xml. Do to weblogic-ejb-jar/weblogic-
enterprise-bean/ejb-name and make sure it is "HelloBean", and the associated
JNDI name in the field weblogic-ejb-jar/weblogic-enterprise-
bean/jndi-name is "HelloHome". This name is taken from the properties, which were
specified in step 3. Click Ok to continue.
After a while you'll see a message in Together's Message pane:
WLS51: Finished with 0 Errors, 0 Warnings
WLS console shows something like:
Fri Aug 25 12:06:44 GMT+02:00 2000: EJB home
interface:
"com.ibm.ejb.cb.samples.hello.tier2.HelloHome'
deployed bound to the JNDI name: 'HelloHome'

Ok, deployment is now complete. Let's make ourselves busy with the client.

Creating a Client

Copy client-related files into the proper directory structure (for example,
$TG_HOMES%\samples\java\ejb\WebSphere\HelloEJB\WebSphereSampl
es\HelloEJB).

Go to the Project Properties and add second source root path
$TG_HOMES%\samples\java\ejb\WebSphere\HelloEJB\WebSphereSampl
es\HelloEJB. Though our EJB and client files reside in different folders, it is very easy
to access the sources since source paths of our project point to the very end of hierarchy!

474

Step By Step How To Deploy Session Bean from IBM WebSphere 3.5 Samples to BEA WebLogic 5.1

Build the project (actually only the client has to be compiled). Make sure that

DEPLOYED togetherEJB. jar is added to the project classpath. If this jar file is
missing, open Project | Options dialog and modify the Classpath on the Builder page.

Go to the output directory and copy compiled client classes
(30UT_DIR%\WebSphereSamples\HelloEJB*.class) to the servet's
servletclasses folder
(3WL_HOME%\myserver\servletclasses\WebSphereSamples\HelloEJB)

Open
http://localhost:7001/servliets/WebSphereSamples/HelloEJB/Hel
loEJBServlet in your browser and observe "Hello from Hello EJB Sample!"

Step By Step How To Deploy CMP Bean from BEA
WebLogic 5.1 Samples to IBM WebSphere 3.5

This topic shows you step-by-step how to deploy a CMP bean from WebLogic 5.1 to IBM
WebSphere 3.5 and run a client for it. The sample resides in
$WL_ HOMES%\examples\ejb\basic\containerManaged.

Create a project and edit CMP bean
Creating the project

First, you have to provide the source files for the project. Copy all .java files from
$WL_HOMES%\examples\ejb\basic\containerManaged to
$TG_HOME%\myprojects\cmp\examples\ejb\basic\containerManaged.
Next, start Together, create a New Project and set its location to
$TG_HOMES%\myprojects\cmp. Enter 'cmp' as the project name. Since the standard
libraries are not required, you can remove them from the project. To do that, in the
Advanced mode, select Search / Classpath and make sure that checkboxes Include standard
libraries and Include Classpath are cleared. On the EJB tab select IBM WebSphere AE 3.5 as the
target server.

Modifying the Bean Properties
Now you are ready to edit the bean. Navigate to containerManaged node in the Explorer, select

Open Diagram on the speedmenu and open containerManaged package.

Select AccountBean in the diagram, and open its Object Inspector. Make the following
changes in the Entity EJB page of the Inspector.

On the General tab, choose Don't synchronige names. Next, create the Primary Key. Type
examples.ejb.basic.containerManaged.AccountPK in the field Primary Key
Name and click Enter. This will bring in a dialog, where you have to choose Create button to
create the Primary Key Class.

475 -

Step By Step How To Deploy Session Bean from IBM WebSphere 3.5 Samples to BEA WebLogic 5.1

Properties of AccountBean
(Pru:uper‘ties |/H\,-'perlink |/View rDescriptiu:un |/Ja\-'ad|:u: rHTMLch rﬁequirements |/Er|tit3-' EJB |

1 Synchronize names
EJB name
@ Do not synchronize names

Bean name AccourtBean

Remote name examples ejb basic containerhanaged . Account =E
Home name examples gjb basic containerianaged AccountHome =E

Primary key name examples ejh hasic cortainerManaged AccourtPK =R
Persistence management i) Beanmanaged # Caortainer managed

[simple Primary Key

—‘ General Create Methods L Business Methods |
Fields and Finders | References 1 LReferenc:es 2 LPru:uper‘ties EJB | OB Binding |

@ Prezsz Cirl+Erter to finizh editing and close Inspector

&

On the Fields and Finders tab, choose Accountld as the primary key. Next, set the 'finder query’
properties for finder methods as follows:

'findBigAccounts' : 'select * from accountbeantbl where
balance > ?°',

'findAccount': 'select * from accountbeantbl where balance =
21

'findNullAccounts': 'select * from accountbeantbl where

accountType is null '.
On the Properties tab, set JNDI name to AccountHome. Close the Object Inspector.

Editing the Bean
Select AccountBean in the Diagram pane and edit its source code. Comment out import
statement:

import.javax.ejb.NoSuchEntityException

Create two constructors in the AccountPK class, one being a default constructor, and the
other being a constructor with parameters. This is how it's done: select this class in the
model treeview and create two new constructors (New | Constructor from the speedmenu).
Open one of them in the text editor, add new constructor and edit methods as follows:
public AccountPK(String param) { accountId = param; }
As a result, we get constructors
public AccountPK(String param) { accountId = param; }
public AccountPK() { }
Edit hashCode () method in the Account PK:
public int hashCode() { return accountId.hashCode(); }

Edit equals () method in the Account PK:

476 -

Step By Step How To Deploy Session Bean from IBM WebSphere 3.5 Samples to BEA WebLogic 5.1

public boolean equals (Object other) ({
if (other instanceof AccountPK) {

AccountPK otherKey = (AccountPK) other; return
accountId.equals (otherKey.accountId) ;

} return false;

}
Now you are ready to deploy this bean to WebSphere 3.5

Editing the Client

Before passing to the deployment, we have to edit the Client class.

- Replace all locations of findByPrimaryKey (id) with findByPrimaryKey
(new AccountPK(id))

- In the main() method replace String url = "t3://localhost:7001"; with

String url = "iiop://localhost:900";

- In the getInitialContext () method replace

h.put (Context. INITIAL CONTEXT FACTORY,

"weblogic.jndi.initialContextFactory") ; with
h.put (Context .INITIAL CONTEXT FACTORY,
"com.ibm.ejs.ns.jndi.CNInitialContextFactory") ;

- In the 1ookupHome replace Object home = (AccountHome)

ctx.lookup ("containerManaged.AccountHome") ; with Object home =
(AccountHome) ctx.lookup ("AccountHome") ;

- In the findNullAccounts () method replace Enumeration enum =
(Enumeration) PortableRemoteObject.narrow(home.findNullAccounts(),

Account.class) ; with Enumeration enum = home.findNullAccounts () ;

- In the findNullAccounts () method replace Account nullAccounts=

(Account) enum.nextElement () ; with Account nullAccount= (Account)
PortableRemoteObject .narrow (enum.nextElement (), Account.class) ;

The client is now ready.
Deploying the Bean

Precondition

Start WebSphere server:

- Select Control panel | Services from Start | Settings menu.
- Select IBM WS AdminServer and click Start button.
Note: "IBM HTTP Administration" and "IBM HTTP Server" should be already started.

Deploying the bean

1. Run the J2EE Deployment Expert on the Tools menu.

2. Select "IBM WebSphere AE 3.5" as the target server and make sure that all available
checkboxes, except Process serviets, Generate WM jar for Bean,Generate start and compile file for
client, Generate simple JSP, Generate command file for deployment client are set. Press Next.

3. Set paths to WebSphere home directory and to IBM JDK 1.2.2 root directory (e.g.
"c:\WebSphere\AppServer" and "c:\WebSphere\AppServer\jdk"). Press
Next.

477 -

Step By Step How To Deploy Session Bean from IBM WebSphere 3.5 Samples to BEA WebLogic 5.1

4. Set the following parameters on the next page:

Admin Node Name Name of the Node to deploy Name of the computer

Dependent ClassPath Fully qualified path to Check if it refers to existing jars
WebSphere

Application Server Name Your Application Server "Default Server" by default

EJB Container name Your Container name "Default Container" by default

Target WebSphere server WebSphere home directory for example

directory c:\WebSphere\AppServer

Create Table for CMP EJBs ON

Stop & Remove Beans(s), ON

Servlet(s) before deployment

StartBeans(s), Servlet(s) after ON

deployment

Launch server in debug mode OFF

5. Press Next and Finish.

If you have checked Hot Deploy check box, the Message Pane will display a message about
successful deployment completion:

//WAS35: Finished with 0 Errors, 0 Warnings.

Compiling and running the client

To provide proper compilation, specify JDK Home location as

%WAS_Home%\ AppServer\jdk on the Run/Debug tab of the Project | Options dialog.
Select 'Client' class on the diagram and choose Rebuild Node on its speedmenu. The Builder
pane displays a message that the tool successfully completed.

Now, choose Run command on the Run/Debug menu and make sure that 'Class with main'
is set to examples.ejb.basic.containerManaged.Client. Click OK to start.

Observe the messages in the Run/Debug pane:

Beginning containerManaged.Client...

Starting Part A of the example...

Creating account 10020 with a balance of 3000.0 account type
Savings. ..

Account 10020 successfully created

Removing beans...
End Part B of the example...
End containerManaged.Client. .

Note, that when we deploy CMP Entity bean from BEA WebLogic 5.1 samples to IBM
WebSphere 3.5, the corresponding source java code changes appropriately (EJB 1.1
specification to EJB 1.0 specification):
1.EJB Exceptions are taken away;
2. The returned value of ejbCreate method changes to void in CMP EJBs,
3.return statementin the method's body is commented out,
4 .transaction attributes are changed (there are no transaction
attributes in our sample)

478 -

Step By Step How To Deploy Session Bean from BEA WebLogic 5.1 Samples to IBM WebSphere 3.5

Step By Step How To Deploy Session Bean from
BEA WebLogic 5.1 Samples to IBM WebSphere
3.5

This topic shows you step-by-step how to deploy a Session bean from WebLogic 5.1 to IBM
WebSphere 3.5 Samples and run a client for it. The sample resides in
$WL_ HOMES%\examples\ejb\basic\statelessSession.

Creating a project and editing Session bean and Client

Creating the project

Copy all *. java files from
$WL_HOMES%\examples\ejb\basic\statelessSession to
$TG_HOMES%\myprojects\session\examples\ejb\basic\statelessSes
sion.

In Together, create a New Project and set its location to
$TG_HOMES%\myprojects\session. Enter 'session' as the project name. As you
won't need standard libraties, remove them from the project: press Advanced button, select
Search/ Classpath tab and cleat the checkboxes 'Include standard libraries' and 'Include
Classpath'. On the EJB tab, select IBM WebSphere AE 3.5 server.

In the Explorer, navigate to statelessSession node, choose Open Diagram on its speedmenu
and open statelessSession package.

Modifying the Bean properties

In the Diagram pane, select TraderBean, and open its Object Inspector. Select Session EJB
page, that provides a number of tabs. In the Properties tab, set JNDI name to "TraderHome".
Next, in the General tab, select radio button 'Don't synchronize names'. Next, specify the
Remote name of the EJB as
examples.ejb.basic.statelessSession.Trader, and press Enter.

479 -

Step By Step How To Deploy Session Bean from BEA WebLogic 5.1 Samples to IBM WebSphere 3.5

Properties of TraderBean

Description rJavadu:u: |/HTr-.-1Ld|:u: rﬁequiremEMS |‘|"Sessinn E.JEI|
Properties |/ Hyperlink Wiewy |

i1 Synchronize names
EJB name
i Do not synchronize names

Bean name TraderBean
Remote name | examples ejb hasic statelessSession. Trader ﬂ

Home name | examples ejb basic stateleszSession TraderHome ﬂ
[] Stateful

Creste methods

hethod Signature

ejbiCreatel) void

—LGeneraI LEIusiness Methods LReferences*l LReferences 2 LF'ru:-per‘ties |EJEI

@ Press Cirl+Enter to finizh editing and close Inspector
s

Having entered the remote interface name, you have a choice to rename the existing one, or
to create a new one. Press Create button, to create the Remote interface for this session bean.

Editing the Bean source code

Edit constructor ejbCreate ():
Find Replace

try { tradeLimit = 300;
InitialContext ic = new InitialContext () ;
Integer tl = (Integer)

ic.lookup ("java:/comp/env/tradelLimit") ;
tradelLimit = tl.intValue() ;

}

catch (NamingException ne)

throw new CreateException("Failed to find
environment value "+ne) ;

}
You are now ready to deploy this bean to WebSphere 3.5

- 480 -

Step By Step How To Deploy Session Bean from BEA WebLogic 5.1 Samples to IBM WebSphere 3.5

Editing the Client source code

Select Client class on the diagram, and make the following changes in the Editor pane:

Location

Find

Replace

JNDI_NAME parameter

private static final

String JNDI NAME
"statelessSession.TraderHo
me";

private static final
String JNDI_ NAME
"TraderHome" ;

INITIAL CONTEXT FACTORY,
"weblogic.jndi.

WLInitialContextFactory") ;

main () String url = String url =
"t3://localhost:7001"; "iiop://localhost:900";
getInitialContext () |h.put (Context. h.put (Context.

INITIAL CONTEXT FACTORY,
"com.ibm.ejs.ns.jndi.

CNInitialContextFactory") ;

The client is now ready.

Deploying the Bean

Precondition

First, you have to start the WebSphere server:
- On the Start | Settings choose Control panel | Services command.
- Select IBM WS AdminServer and click Start button.
Note: IBM HTTP Administration and IBM HTTP Server should be already started.

Deploying the bean

In Together, invoke J2EE Deployment Expert from the Tools menu. Select IBM WebSphere AE
3.5 as the target server and make sure that all available checkboxes, except Process servlets,
Generate WM jar for Bean, Generate start and compile file for client, Generate simple |SP client and
Generate command file for deployment are set.

On the next page, set paths to WebSphere home directory and to IBM JDK 1.2.2 root

directory (e.g. c:\WebS

phere\AppServer" and

"c:\WebSphere\AppServer\jdk). Press Next.
Set the following parameters on the next page:

Parameter name Setting Comment
Admin Node Name Name of the Node to deploy Name of the computer
Dependent ClassPath Fully qualified path to WebSphere |Check if it refers to existing jars

Application Server Name

Your Application Server

"Default Server" by default

EJB Container name

Your Container name

"Default Container" by default

Target WebSphere server directory

WebSphere home directory

e.g. ¢: \WebSphere\AppServer

Stop & Remove Beans(s), Servlet(s) ON
before deployment

StartBeans(s), Servlet(s) before ON
deployment

Launch setrver in debug mode OFF

Press Next and Finish.

481 -

Step By Step How To Deploy Session Bean from BEA WebLogic 5.1 Samples to IBM WebSphere 3.5

If you have selected Hot Deploy option, you will see the message in the Message Pane,
which means that the deployment process successfully completed:
//WAS35: Finished with 0 Errors, 0 Warnings.

Now let us create a client for this bean.

Compiling and running the client

Set JDK Home to WAS_Home% \AppServer\jdk on the Run/Debug tab of the Options
| Project dialog.

For the 'Client' class on the diagram, choose Rebuild Node on its speedmenu. The Builder
pane displays a message that the tool is completed.

To tun the application, choose Tools | Run/Debug | Run. Make sute that Class with main is set
to examples.ejb.basic.containerManaged.Client. The following messages
appear in the Runner pane:

Beginning statelessSession.Client...

Creating a trader

Buying 100 shares of BEAS.
Buying 200 shares of MSFT.
Buying 300 shares of AMZN.
Buying 400 shares of HWP.
Selling 100 shares of BEAS.
Selling 200 shares of MSFT.
Selling 300 shares of AMZN.
Selling 400 shares of HWP.
Removing the trader

End statelessSession.Client...

482 -

Step By Step e-commerce: How To Create Web Application Diagram and Deploy it to an Application Server

Step By Step e-commerce: How To Create Web
Application Diagram and Deploy it to an
Application Server

This example shows how to use Web Application and Enterprise Application diagrams,
based on the example supplied with Tomcat.

Creating Project

You can find this example in
$TG_HOMES%\bundled\tomcat\webapps\examples.war.

Creating a Session Bean

Creating source directory structure

First, you have to create the source code directory structure. Extract the archive file
$TG_HOMES%\bundled\tomcat\webapps\examples.war to your work
directory, for example, to ¢ : \temp\examples (%EXAMPLES% macro is used to
designate this path). Next, create a directory structure, where the source files will be placed:
$TG_HOME%\myprojects\cal

$TG_HOMES%\myprojects\cal\cal for the java files.
$TG_HOMES%\myprojects\cal\jsp for the jsp files.
TG_HOMES\myprojects\cal\webfiles for the non-jsp files.

Next you have to copy all the necessary files to these directories. All jsp files should be
copied from $EXAMPLES%\jsp\cal to $TG_HOME%\myprojects\cal\jsp.
None-jsp files should be copied from $EXAMPLES%\jsp\cal to
TG_HOMES\myprojects\cal\webfiles. Alljava files should be copied from
$EXAMPLES%\WEB-INF\classes\cal to
$TG_HOMES%\myprojects\cal\cal.

When the source directories are ready, start Together and create New Project (Main Menu |
File | New Project) with the name cal. Specify location of the project as
$TG_HOMES%\myprojects\cal.

Make sure that $TG_HOMES%\bundled\tomcat\lib\servlet.jar is added to the
Search/Classpath of your project. It is important for jsp running and debugging.

Together displays the default project diagram:

22 cal |
]]
webfiles cal
+Entries
+Entry
—I +IspCalendar
- +TableBean
Isp

483 -

Step By Step e-commerce: How To Create Web Application Diagram and Deploy it to an Application Server

Creating Web Application and Enterprise Application diagrams

Create Web Application diagram (File | New Diagram | Together tab | Web Application). Set
Context Root property of this diagram to calendar.

Add shortcuts to all classes from ca/ package to the diagram. Create two JSPs and one
WebFile elements on the diagram.

Provide source codes for the created JSP and WebFile components. In the inspector, set [SP
Source for JSP elements to $TG_HOME% \myprojects\cal\jsp\call.jsp and to
TG_HOMES\myprojects\cal\jsp\cal2. jsp respectively. Set Webliles source
directory to $TG_HOME% \myprojects\cal\webfiles.

(E.E cal r{:ﬁ YWieh Application |
] cal Ertries | cal .TableBean EI] cal spCalendar
-antries:Hashtable tahbla:Hashtable calendar: Calendar=null
time: Sting[l="2am", "9am", "103 JzpCal:lsp Calendar current Date: Date
|: Entries j [Table Bean -: |: JspCalendar J
|: getindex J |: process Request _: - yearint
[processRequest .:] monith: 3tring
nam!e:ﬁtr.ing day:5tring
rowsint EI'I'|3I|23‘|:.I'II'|Q morith Init zint
entry : Entry [] date:String date: String
- entries: Bntries current Oate: String
Fprc-cessEch-r:b-:u:-Iean next Date - String
prewv Oate: String
- time: 5tring
bt Jet .
J5P1 J5P2 - cal Entry ::: g:rfl':':;“rhlr'ﬂm
week Of ¥ ear:int
week Ofhdonith:int
= [Entry) day O teek int
hiourint
WebFiles1 huur: String minute:int
calor: String zecond:int
description: 5tring eraint
d U5TimeZone: String
zone Dffset:int
DETOffzet:int
AhdPhat:int
Ll

Create Enterprise Application diagram and add shortcut to the created Web Application
diagram.

Now you are ready to deploy this application to the Server.

Preview of the Example in Tomcat

You can preview the created application using Tomcat, prior to actual deployment. To do

that, open your Web Application diagram, click Ru» button v in the main toolbar (or use
Ctrl+F5 hotkey), and observe Tomcat deploying your application and running it
automatically.

484 -

Step By Step e-commerce: How To Create Web Application Diagram and Deploy it to an Application Server

Deploying the created application

Start J2EE server. In Together, choose J2EE Deployment Expert command on the Tools
menu. Select Sun EE Reference Implementation as a target server and make sure that the
following options are only selected on the first page of the expert:

Add libraries required for deployment to the cutrent project's Search/Classpath

Compile the classes referenced in the currently selected diagram

Generate Deployment Descriptor(s)

Pack modules for deployment

Deploy to application server

Clear temporary folder before starting the deployment process
All other options should be cleared.
On the second page of the expert, specify correct paths to JDK 1.2.2 and to J2EESDK root
directory (e.g. "c:\jdk1.2.2" and "c:\j2sdkeel.2.1").

On the next page of the expert, set 'localhost' as the host name. Press Finish to start
deployment.

Running the application
Open your web browser and enter http://localhost:8000/calendar/login.html, Observe the

result on the screen:

Please Enter the following
information:

Name |
Email |
Subrnit |

Note: See the sample in $TG_HOME%\Samples\java\ecommerce\jsp\cal.

485 -

Step By Step e-commerce: How To Create and Use MessageDriven Bean

Step By Step e-commerce: How To Create and
Use MessageDriven Bean

This example shows how to create a message-driven bean in Together Class diagram and use it
as an asynchronous message consumer.

To a client, a MessageDriven bean is a JMS message consumer that implements some
business logic running on the server. The user accesses a message-driven bean through JMS
by sending messages to the JMS Destination (Quene or Topic) for which the message-driven
bean class is the MessageListener.

According to EJB 2.0 specification, MessageDriven bean has neither home nor remote
interface. Therefore Together generates only a skeleton of its implementation class.

Here you can see a very simple example with one message-driven bean and one client for
this E]JB. The client sends messages to the Destination (Topic), for which the
MessageDriven bean is the MessageListener. The MessageDriven bean initiates the output of
the message (String) to the screen of display.

Creating a MessageDriven Bean

Create New Project and enter MessageDriven as the project name. As you won't need standard
libraries, you can remove them from the project. Next, in the EJB tab choose BEA Webl ogic
Application Server 6.0 and click OK to create the project.

Create New Package (using Package icon on the toolbar or New | Package command on the
diagram speedmenu). Enter the name messagedriven and open in New Tab.
Click on Message Driven EJB icon and create MessageDriven bean in the messagedriven package.
Enter the name TogetherMessageDrivenBean.
Set the following properties for this MessageDriven bean :

Destination Type to javax.Jjms.Topic

Destination JNDI Name to TogetherTopic

Choose onMessage method in the bean shape. In the Editor pane, add the following code
to this method:

public void onMessage (javax.jms.Message msg)
try {

TextMessage tm = (TextMessage)msg;

String text = tm.getText () ;

System.out.println ("TogetherMessageBean : " +
text) ;

} catch (Exception ex) { ex.printStackTrace(); }

}

Add import statement javax.jms . TextMessage to the Java code generated for the
MessageDriven bean (after package messagedriven statement and before class
declaration)

Now you are ready to deploy this bean to BEA WebLogic 6.0

~ 486 -

Step By Step e-commerce: How To Create and Use MessageDriven Bean

Deploying the MessageDriven Bean

Precondition

Prior to deploying the MessageDriven bean, create a JMS server in WebLogic Server. This
requires adding the following statements to config/mydomain/config.xml file of
your server in the <domain> tag:

<JMSServer
Name="TogetherJMSServer"
Targets="myserver"

>

<JMSTopic
JNDIName="TogetherTopic"
Name="TogetherTopic"

/>

</JMSServers>

Start BEA WebLogic Server 6.0
To do this, choose Tools | EJB Deployment Expert, and select Start BEA Weblogic Application
Server 6.0.

Deploying to working server
To do this, choose Tools | [2EE Deployment Expert, and select BEA Webl ogic Application Server
6.0 as a target server. Make sure that the libraries required for deployment are added to the
project Search/Classpath, and the following flags are checked on the first page of the expert:
- Compile the classes referenced in the currently selected diagram
- Generate Deployment Descriptor(s)
- Hot deploy to server
- Clear temporary folder before starting the deployment process
Note: Other checkboxes should be unchecked.
Press Next to proceed to the second page of the Expert.
Set paths to jdk1.3 (e.g. c:\jdk1.3), to WebLogic (e.g. d:\bea\wlsetver6.0) and paths to the
destination folders for resulting jar file and temporary files. Click Nex? to proceed to the last
page of the Expert.
At the last step, specify server host (localhost), system password that you've set for
WebLogic (e.g. zogether) and port number (usually 7001). Click Finish to complete.

The Message Pane displays messages, the last two being:
//WLS60: Finished with 0 Errors, 0 Warnings.//

It means the deployment process completed successfully.

Creating the Client

In the MessageDriven project create New Package Client on the default diagram and open in
new tab.

In the Client package tab, create main class using Class by Pattern command on the diagram
speedmenu or a toolbar icon. Change name to Clent and press Finish. In the Editor pane,
add necessary code to your class. After changes your class should look like:

487 -

Step By Step e-commerce: How To Create and Use MessageDriven Bean

/* Generated by Together */

package client;

import java.rmi.RemoteException;
import java.util.Properties;

import javax.jms.JMSException;

import javax.jms.Message;

import javax.jms.Session;

import javax.jms.TextMessage;

import javax.jms.Topic;

import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSession;

import javax.ejb.CreateException;
import javax.ejb.RemoveException;
import javax.naming.Context;

import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;

public class Client {

static private String TOPIC NAME = "TogetherTopic";
private String myUrl = "t3://localhost:7001";
private Context myContext;

private TopicConnection myTopicConnection;

public Client () throws NamingException
try {

myContext = getInitialContext () ;

// Create the connection and start it

TopicConnectionFactory conFactory = (TopicConnectionFactory)
myContext .lookup ("javax.jms.TopicConnectionFactory") ;

myTopicConnection = conFactory.createTopicConnection() ;
myTopicConnection.start () ;

} catch(Exception ex) { ex.printStackTrace(); } }

public static void main(String[] args) throws Exception {
Client client = null;

try {

client = new Client () ;

} catch (NamingException ne) { System.exit(1); }

try {

client.sendMessage ("Together ControlCenter supports EJB2.0
and Message-Driven beans.");

488 -

Step By Step e-commerce: How To Create and Use MessageDriven Bean

} catch (Exception e) { log("Client failed to log remotely:
"+e); } }

public void sendMessage (String message) throws
RemoteException, JMSException, NamingException {

Topic newTopic = null;
TopicSession session = null;
try {

log("creating topic session");

session = myTopicConnection.createTopicSession(false,
Session.AUTO ACKNOWLEDGE) ;

log("looking up topic in JNDI : "+TOPIC NAME) ;
newTopic = (Topic) myContext.lookup (TOPIC NAME) ;
} catch(NamingException ex) {

log("topic : "+TOPIC NAME+" not found in JNDI.
Creating...");

newTopic = session.createTopic (TOPIC_NAME) ;

myContext .bind (TOPIC NAME, newTopic) ;

log("topic : "+TOPIC NAME+" bound to JNDI successfully.");
}

log("creating TopicPublisher") ;

TopicPublisher sender = session.createPublisher (newTopic) ;
log("creating TestMessage") ;

TextMessage tm = session.createTextMessage () ;

tm.setText (message) ;

log ("sending message to JMS Destination") ;
sender.publish(tm) ;

}

private Context getInitialContext () throws NamingException {
try {
Properties h = new Properties();

h.put (Context.INITIAL CONTEXT FACTORY,
"weblogic.jndi.WLInitialContextFactory") ;

h.put (Context .PROVIDER URL, myUrl) ;
return new InitialContext (h) ;
} catch (NamingException ex) {

log ("Error connecting to server.");

- 489 -

Step By Step e-commerce: How To Create and Use MessageDriven Bean

ex.printStackTrace (); throw ex;

}
}

private static void log(String s) {

System.out.println(s) ;

}
}

Now you are ready to compile and run the client
Compiling and running the Client

Add the following libraties to the project:: $WL_HOME%\lib\weblogic.jar and
home directory of WebLogic Server WL_HOME (e.g. ¢: \wlserver6 . 0). To do this,
choose File | Project Properties on the main menu and select Search/ Classpath page on the
Resource pane of the Project Properties dialog. Make sure that the classpath is empty.
Press Add Path or Archive button and add $WL_HOME%\lib\weblogic. jar. This
resource should be first in the list of available resources. Click OK to save the project
properties.

Note: weblogic.jar should be the first in the list of libraries.

Compiling
On the speedmenu of the Client class select Rebuild Node command and observe the message
notifying that rebuild is completed in the Message pane.

Running
With the Client class selected, choose Tools | Run/Debug| Run on the main menu and observe
the following events:
- creating topic session
- looking up topic in JNDI : TogetherTopic
- creating TopicPublisher
- creating TestMessage
- sending message to JMS Destination
- message in the message pane and "TogetherMessageBean : Together ControlCenter
supports EJB2.0 and Message-Driven beans." in the server console..

You can find this example in the
$TGH%\Samples\java\EJB20\messagedriven. tpr'

- 490 -

How to Use Taglibs in a Web Application

How to Use Taglibs in a Web Application

In this topic we shall consider a sample project that demonstrates usage of the Taglib
diagram for a web application development.

Creating a tag library

Create a new project with the name exampletag. Next, create fags package, open it and create a
new Taglib diagram. Add a tag Extends TagSupport and change its name to Suplelag.

Defining tag library properties

In order to identify the tag library we have to create its descriptor file. In the diagram
inspector open Tagl ib Properties page and set property TL.D File Name to

SPRJ DIRS$\SimpleTagTLD. t1d. This file doesn't exist and will be created after
uset's confirmation.

Accept default values for the other properties.

Editing the taglib class

In the object inspector of the taglib class open Tagl.zb Properties page and set the following
properties:

BodyContent = EMPTY

Tag Name = tcc_tag
Provide contents for doStartTag () method. In the Editor pane enter the following
code in place of "Write your code here..."

try {

JspWriter out = pageContext.getOut () ;

out.print ("Together's simple tag.");

} catch(IOException e) {

System.out.println ("Exception in SimpleTag: " + e);

}
Creating a Web Application diagram

Create a Web Application diagram. In the diagram inspector open Web Properties page and set
Module name property to TaglibWebApplication.

Now the taglib should be added to the Web Application diagram. Choose Tagl_7b button on
the diagram toolbar and click on the diagram pane. This invokes Select Tagl ib diagram dialog
in the form of Selection manager. Expand the Model node and choose TagLib diagram.

Creating a JSP

Add a JSP element to the Web Application diagram and change its name to
SimpleTagExample. In the [SP Properties page of the object inspector set [SP Source as
SPRJ DIRS\SimpleTagExample. jsp. This file doesn't exist and will be created
after confirmation.
Next, open JSP element in the JSP editor and enter the following code:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>

491 -

How to Use Taglibs in a Web Application

<%@ taglib uri="SimpleTagTLD.tld" prefix="tcc" %>

<TITLE><tcc:tcc_tag /></TITLE>

<LINK REL=STYLESHEET
HREF="JSP-Styles.css"
TYPE="text/css">

</HEAD>

<BODY >

<Hl><tcc:tcc _tag /></Hl>

<tcc:tcc_tag />

</BODY>

</HTML>

Deploying Web Application to BEA Weblogic Application Server
6.0

Now as the web application is ready, let us deploy it to WebLogic Server. Start J2EE
Deployment Expert and choose BEA Weblogic Application Server 6.0

Make sure to set the following flags on the first page of the expert:

-Add libraties required for deployment to the current project's Search/Classpath
-Compile the classes referenced in the currently selected diagram
-Generate Deployment Descriptor(s)
-Pack modules for deployment
-Hot Deploy to server (BEA Weblogic Application Server 6.0 should be started)
-Clear temporary folder before starting the deployment process
On the second page of the expert specify paths to WeblLogic Application Server 6.0 and to
jdk1.3 and click Finish to complete deployment.
To observe the result, open your registered browser and enter
http://localhost:7001/TaglibWebApplication/SimpleTagExample.
jsp.
You should see

Together's simple tag.

492 -

How to Debug EJB's in IBM WebSphere 3.5

How to Debug EJB's in IBM WebSphere 3.5

EJB's debugging in IBM WebSphere 3.5 is a rather complicated process that requires
preliminary preparation.

Note: Do not use debugging without urgent necessity, since it results in essential delay of IBM
WebSphete's work.

Installing JPDA for IBM WebSphere 3.5

To use IBM WebSphere 3.5 in the debugging mode, install Java Platform Debugger
Architecture (JPDA) extension for JDK 1.2.2 in such a way that the IBM WebSphere 3.5
server can be launched for remote debugging from the command line.

JPDA installation leaves the existing IBM JDK intact and uses a modified batch file to
launch the WebSphere Admin Server in a 'jpda enabled' mode.

Install JDK 1.2.2

IBM WebSphere 3.5 is installed with JDK directory $WS_HOME% \AppServer\jdk.
Create $WS_HOMES% \AppServer\jdk1.2.2 directory and install JDK 1.2.2 in it:

Only the program files need to be installed. Thus you have to check Program Files checkbox
solely:

Do not install Java 2 Runtime Environment:

Install JPDA Extensions
Unzip the jpdal O-win.zip into $WS_HOMES%\AppServer\jdkl.2.2\jre
Copy Files from IBM JDK

Copy the following, overwriting any existing files :
$WS_HOMES%\AppServer\jdk\jre\lib\ext*.jar to
$WS_HOMES%\AppServer\jdkl.2.2\jre\lib\ext*.jar
$WS_HOMES%\AppServer\jdk\jre\lib\orb.properties to
$WS_HOMES%\AppServer\jdkl.2.2\jre\lib\orb.properties

$WS_HOMES%\AppServer\jdk\jre\bin\ioserl2.dll to
$WS_HOME%\AppServer\jdkl.2.2\jre\bin\ioserl2.dll
$WS_HOMES%\AppServer\jdk\lib\tools.jar to
$WS_HOME%\AppServer\jdkl.2.2\1lib\tools.jar

WS_HOME%\AppServer\jdk\bin\rmic.exe to
$WS_HOMES%\AppServer\jdkl.2.2\bin\rmic.exe

Create batch files

Copy
WS_HOME%\AppServer\bin\setupCmdLine.bat
to

$WS_HOMES%\AppServer\bin\setupdJPDACmdLine.bat

Edit setupJPDACmdLine.bat and change the line
SET JAVA HOME=%WS_HOME%\AppServer\jdk

to
SET JAVA HOME=%WS_ HOME%\AppServer\jdkl.2.2

493 -

How to Debug EJB's in IBM WebSphere 3.5

Copy
WS_HOME%\AppServer\bin\debug\adminServer.bat
to

$WS_HOME%\AppServer\bin\debug\jpda adminServer.bat
Edit jpda_adminServer.bat and change the line
call ...\setupCmdLine.bat to call ...\setupdJPDACmdLine.bat

Change the line
%JAVA_HOME%\bin\j ava -DDER DRIVER_ PATH=%DER DRIVER PATH% -Xmx128m -
Xminf0.15 -Xmaxf0.25 com.ibm.ejs.sm.server.AdminServer -bootFile
$WAS_HOME%\bin\admin.config %restart% %1 %2 %3 %4
to
$JAVA HOME%\bin\java -Djava.compiler=NONE -
DDER _DRIVER PATH=%DER DRIVER PATH% -Xmx128m -Xminf0.15 -Xmaxf0.25
com.ibm.ejs.sm.server.AdminServer -bootFile
$WAS HOME%\bin\admin.config %$restart% %1 %2 %3 %4
To debug a running server use the following command line arguments:-
-Xdebug -Xnoagent -Djava.compiler=NONE -
Xrunjdwp:transport=dt_socket,server=y,address=8787,suspend=n

Check this in Avanced Administrative Websphere Console:

% WebSphere Advanced Administrative Conzsole

Console Wiew Help

@ » = B |MNE|
B WebSpheare Administrative Domain Application Server:MikesServer
+

3 g ovu |] o]

S JDBC Driver Application Server Mame: [MikesServer
[+ [} Default Senver

|»

= Remota Serdet Redirector EHian Stk
- i a 555 Desired State:
= Container S
W, HelloBean SIS
P Default DataSource Executable inuse:

e
+- 1 vhatevarvoulike
=-S5 Admin DB Driver
+.
+.

Command ling arguments: |-}~‘d ebug -Xnoagent-Djava.cor

& Oracle816

: Ervironment; Environment...
&3 defaull_host

Process ID:

Working directony: [

Standard input [
Standard input in usea:

sppy | mesat |

14/09/00 13:45 : Loading ...
14/09/00 13:46 : Conzole Ready.

Congols Messapes

Note: Command line arguments text field should be empty, if IBM WebSphere 3.5 is started in
the normal mode. So, clean this line after using IBM WebSphere 3.5 in the debugging mode.

The IBM Websphere server uses the 8787 port number for remote debugging by default.
Make sure that any other server, which you wish to debug (a servlet container, for example),
uses a different port number.

The Together's deployer automatically puts these parameters into the server attributes.
Now you are ready to deploy and debug EJBs.

494 -

How to Debug EJB's in IBM WebSphere 3.5

Debugging "Hello World" EJB sample

Start the IBM Websphere 3.5 service in debugging mode by running

jpda_adminServer.bat.

Open the sample project HelloWorld. tpr under

$TOGETHER HOME%/Samples/java/ejb/WebSphere and start up "Hello World"

EJB from Together, or using WebSphere console directly.

After deployment you have to point the deployed jar in Project Options | Builder | Compiler

options | Classpath and to change the working JDK to IBM WebSphere JDK in Project Options

| RunDebug | JDK Home edited field. Check that

$TOGETHER HOMES%/Samples/java/ejb/WebSphere path is setin Path to

Sources tield of WebSphere Advanced Administrative Console.

If this path is not set, stop the application server, set the necessary path in Pazh to Sources

field, click Apply and restart the server.

Set a breakpoint, for example, to the business method hello() in HelloBean.java source file:
public 3tring hellof){

o Spstemcout.println("hellon)™y:

return "Hello World™:
'
Then click A#tach to Remote Process command and use the default settings:

TIIUE“‘IEI 5 -- HelloW orld
File Ecit Ctject Search View Select Ogtions Toolz Help

LIEELELIE: EEE IR I TR

sl 1] = HelloClient .;'*:
e Hefoysiorid =
@ Favorites E . =

& | o [e | L
g . . o
- public Srring helloi){ u

AR

return "Hello World™: £
/ -

% =

-

y m ol P localHostE7ST (dt_socket) |

g Breskpoints i # Sp o

— L3 g - :

GV ;o ¥ e fed

ba b0 B[| Twe | Location |enabies| Stop | Lom |Pass .| Concdtion
REREE 1

sl tH w0 B a0 uncaught, W | Wl | v
& Line |Class hello HeloBean' = [l | ¥ N 1
i

a7 || cob1 |

Run the client application in the normal (not debugging) mode and wait, when the
breakpoint becomes active.

495 -

J2EE Step by Step

J2EE Step by Step

This section will take you through the process of creating , deploying and running an
application

using EJB Assembler, Web Application and Enterprise Application diagrams.

You can find the source files for this example in the

$TGH% /Samples/java/ecommerce/MagazineSrc.zip,

create a project around them, and try it out for training purposes.

The application consists of the existing CMP Entity beans, Session beans, servlets, JSPs and
utility classes:

= sampleproject
=l [E] entity
22 entity
E Magazine
MagazineBean
E MagazineHome
E Selection
SelectionBean
E SelectionHome
E Uszer
UzerBean
E UzerHome
= B e
&3 jsp
(= zerviets
B serviets
CheckLoginPassword
Mainzerviet
RegistrationServlet
sEEIiaon
B session
E ActionZeszion
ActionZessionBean
E ActionZessionHome
E UzerSession
UszerSessionBean
E UzerSessionHome
Ll
B uti
Magazinetem
ServerService

o
[+ [P

o
[+ [P

Creating the Application

We have to create a project with three diagrams: EJB Assembler diagram, Web Application
diagram, and Enterprise Application diagram

Creating the Project

Start Together and create a new project with the name Magazine around the code located at
$TG_HOME%\Samples\java\ecommerce\Magazine. Since the standard libraries
are not required, you can remove them from the project (in the Advanced mode, choose

- 496 -

J2EE Step by Step

Search | Classpath tab and make sure that checkboxes 'Include standard libraties' and 'Include
Classpath' are unchecked). In the EJB tab, choose BEA Webl ogic Application Server 6.0.

EJB Assembler diagram

Next, Create new EJB Assembler diagram (New Dzagram | Together | EJB Assembler). Add
shortcuts to the E]Bs listed above. To do that, choose .Add Shortent command on the
diagram speedmenu and select SelectionBean, ActionSessionBean, UserSessionBean, UserBean,
MagazineBean.

Add Shortcuts for: EJB Assembler
Available content Existing andior ready to add elements
= B Moded SelectionBean

database

= ctionSessionBean
=1 sampleproject

IserSessionBean

= B ertity
B0 entity UserBeaan
& Magazine MagazineBean
MaazineBean
E MaazineHome
E Selection | == Remaove all ==
SelectionBean
E SelectionHome
] User =

| Ok | | Cancel | | Help |
£
Observe the classes appearing on the diagram. Note that some of the classes contain EJB
references. These references should be linked with the appropriate beans. To do that, create
5 EJBReference elements (select EJBReference icon on the tool bar and click on the diagram
pane).
Tip: Create one EJBReference element and choose Clone command on its speedmenu to produce four
more 1mnstances.

Using Assembly Link icon IE on the diagram toolbar, create assembly links between the
following elements:
Source Destination

ActionSessionBean / selection_ejb_ref |1st EJBReference element

1st EJBReference element SelectionBean

ActionSessionBean / magazine_ejb_ref |2nd EJBReference element

2nd EJBReference element MagazineBean
UsetSessionBean / user_ejb_ref 3d EJBReference element
3d EJBReference element UserBean

4th E]BReference element ActionSessionBean

5th E]BReference element UserSessionBean

497 -

J2EE Step by Step

rEE =dlefault= |/ & EJB Assembler
[——
[n1] Gnldyde | O Sarranden [n1] Sarraadesn [n1] Gild P j=3] Gold e
(ATEEY Tas AT .3, Aot AL E .. SMEEa N, L e = <o AT, LT ATHEy MaTarTATIAT |
Tampiepat. il d. Sl on Tarron S onFarn TaTran L Farron ampiepvoye. mild . e 1| carplepoect. mild: e ,
ey, mild ;. Feled ot L P TaTplepoyed . mild . Loentors | | carpepomd. il iy, dagaoestior
b il 2 g i | mabgideg ||
FEER R 2. HorenConin) [1
. EnliyConiwe) b owe. o o comnl b e oo S o ol -2 EnliyConi el : 2 EnliyConiml |
|: a2l iy o) |: l Samr-oni) |: l Samoriooni) |: ml Erdid o) | |:u T 0
|: ‘uroe Endi yConi) |: mhicnale |: mhidrale |: Ll iy o) I |: ‘urod £y o) :
: [T	: [y ——	: [——	: [T :	: mhiciran
: T	: [T —	: [: [T	: [rr——
: [——	: ‘el St oo	: ‘el Lt Horm	: [T — :	: [T ——
: mHOR	: r— -	: moHOn]	: mHO 1	
H
‘mbload = oy |: ‘mblood | |:EI mblod :
adwhcnid Inbegur I: Cimin h s Inbegur : numguunuld Inbegur 1
f—— L [Chacklinlogn ot brrm S e |
mogarmidnl |: ol e on |: chachLoprFaxread paread Hing L [—— |
iy il p—r— = Inal Mo Hing || momn

et onCe Hing T |: ey ™ ™ o +
H =]]] |: =T [|: =T |
womin e u:’_ﬂ [P Dl _ : [o Tl _A
- BN
e : [nmmmmr |
R |: Iryiogn 0 |: Iy Fiom |
|: [T | | |: Irxial | :

rrE 0 Pl marcal [I s
|: T | |: el haarrm I
(i o |: [
R I: perTp—— | I: perrra— :
rri Pumeerr | el Lopnfarm Ny ifiam "
[P — : [i Fapefmim]
o |: e Fxorvad | |: il Fape o |
|: amiF u i Marrm i |: el Piom 1
|: eiF n2iMarm] |: =iFiom 1
K 1y o, 5!

e e

&7
"

Web Application diagram

Create a new Web Application diagram (New Diagram | Together | Web Application) and add
three JSP elements with the names /ogin, main and registration.

Now you have to provide source code for the created visual components. To do that, you
have to edit the properties of these components in the Inspector. On the [SP Properties tab of
the inspector, enter the following values in the JSP source field:

JSP name |JSP Source

login $PRJ_DIR%\sampleproject\jsp\index.jsp,

main $PRJ DIR%\sampleproject\jsp\main.Jjsp

registration $PRJ_DIR%\sampleproject\jsp\registration.jsp

On the diagram pane, add shortcuts to all servlets, home and remote interfaces, utility
classes, and to the E]BReference elements (UserBean, ActionSessionBean, UserSessionBean) from
the EJB Assembler diagram.

- 498 -

J2EE Step by Step

T EJBAssembler r{;ﬂ Wieh Application r@ Enterprize Application rgg =default=

=
|:':| Http Servlet

...CheckLoginPassword

-zession:Hitp Session
-ejb ref prefis:String="fava:comy

|: init
=
|: zarvice

zervletinfo: $tring

Http Serviet
..servlets Main Serulet

-zezzion:Hitp Session
-ejb ref prefix:Sting="java:comg

|:':| Http Senvlet

...zerdlets ReqistrationServlet

-zezsion:Http Session

-ejb ref prefix:String="java:comg

|: init

|: zervice

L
[

Senrice j

servletinfo: String

servletinfo: String

Finally, set Context Root property of the Web Application diagram to sample.

[d n a
Fe) Fe) fe)
|: action_ajb_raf |: action_ejb_ref |: user_ejb_ref j
|: usersession_ejb_ref
sampleproject.util Server Service Seralizable
— o o outil . Magazine fern
- i . " . +5ERVER USER: String="svystem"
ogin [|Man | registration | | sERVER USER PASSWORD:Str

+H 0 5T: Strng="localhost"
+HTTP PORT: $tring="7001"

ServerService
getInitial Contet
get Initial Coritet

get Initial Context FarS EE

e e e ™

- w1

Enterprise Application diagram

I: Magazine ftem
|: hagazine fkem

e

magazine ttem Id:Integer
striame: String

int Prize:int

int Page:int

int Quarntity int
selectionDate: String

A

<<EIB Reference:>

||_'l4_1|

UserBean

<<{EIB Reference::

u@

Aotion SessionBean

<<{EIB Reference::

@

UserSeszzionBean
L

Create a New Enterprise Application diagram. Add shortcuts to the Web Application and

EJB Assembler diagrams, using appropriate button on the diagram toolbar.

€3

e
(=}

rEE =default= |/ S EJB Assembler @ Enterprize Application rﬂﬂ Wb Application |

Weh Application

E.JB Assembler

+aampleptofect session Actionses
+aampleproiect sehvicts. CheckLog
+aampleptofect It Magazinaltem
+aampleproiect sehvicts MainSenid
+aampleproiect sehvicts Registratic
+aampleprofect LT SenerSendice
+aampleproiect entity UserBean
+aampleproiect session UsarSessi
lagin

main

registration

i

+aampleproject session ActionSes
+aampleproject entiy MagazineBe
+aampleproject entity. SelectionBed
+aampleproject entitly UserBean
+aampleproject session LaerSess)
EJBRefarence

ElBReference

ElBRefarence

ElBRefarence3

EJBReferanced
F

Now the application is ready to be deployed to BEA WebLogic Application Server 6.0

- 499 -

J2EE Step by Step

Deploying the Application

If you are working on a Windows platform, you will use ODBC data source. For the other
platform, Cloudscape is used.

Before proceeding with the deployment, we have to create the database pool on the
WebLogic server, and provide ODBC or Cloudscape data source.

Creating the database pool

To create a database pool, some editing of the config.xml file of your server is
required:

<!--This is a connection pool for ODBC:-->

<JDBCConnectionPool

/>

CapacityIncrement="1"
DriverName="gsun.jdbc.odbc.JdbcOdbcDriver"
InitialCapacity="1"
MaxCapacity="2"
Name="togetherPool"
Properties="user=none;
password=none;

server=none"

Targets="myserver"
TestConnectionsOnRelease="true"
TestConnectionsOnReserve="true"
TestTableName="UserLogin"
URL="jdbc:odbc:SampleBase"

<!--This is a connection pool for Cloudscape-->

<JDBCConnectionPool

/>

CapacityIncrement="1"
DriverName="COM.cloudscape.core.JDBCDriver"
InitialCapacity="3"

LoginDelaySeconds="5"

MaxCapacity="10"

Name="togetherPool"
Properties="user=none;password=none; server=none"
Targets="myserver"
URL="jdbc:cloudscape: $PROJECT DIR%/database/SampleBase"

<JDBCTxDataSource

JNDIName="TxTogetherPool"

- 500 -

J2EE Step by Step

Name="TxTogetherPool"
PoolName="togetherPool"
Targets="myserver"

/>

<JDBCDataSource
JNDIName="MyTogetherPool"
Name="MyTogetherPool"
PoolName="togetherPool"
Targets="myserver"

/>

Here %PROJECT_DIRY refers to the absolute project folder path.
Note that the Targets property in xml files should be same as your WebLogic server
name.

Creating OBDC datasource

This section refers to ODBC only. If you use Cloudscape, you can just skip it.

Now you have to provide an ODBC datasource, using the system Control Panel. Click S7arz
and choose Seztings | Control Panel | ODBC DataSources. Press Add in the opened dialog and
choose Microsoft Access driver. Set DataSource name to SampleBase, click Select and choose

db . mdb. Click OK to complete.

Setting connection parameters

Select sampleproject.util.ServerService class and make sure that user name,
password and port number are specified properly.

Connection parameter Default value
HOST localhost
SERVER_USER system

SERVER_USER_PASSWORD together

HTTP_PORT 7001

Deployment

First, we have to launch WebLogic Server 6.0 and set its root directory. Keep in mind that
WebLogic 6.0 is delivered with the library ejb20 . jar that provides J2EE support.
However, by default this library is not specified in the launcher startWeblogic.cmd.
Hence, you have to add this library to the classpath. Add the following line to the launcher:

set
CLASSPATH=.; .\lib\weblogic sp.jar;.\lib\weblogic.jar;.\samples\eval\clou
dscape\lib\cloudscape.jar;.\lib\ejb20.jar

On the Together's main menu, choose Tools | J2ZEE Deployment Expert. Select Start BEA

Webl ogic Application Server 6.0 from the dropdown list. On the second page of the Expert, set
the root directory of the WebLogic server using the File/Path Chooser button, and click
Finish to complete.

- 501 -

J2EE Step by Step

Next, select Enterprise Application diagram to make it active, and choose J2EE Deployment
Expert on the Tools menu. Again, choose the BEA Webl ogic Application Server 6.0 is the
target server. Make sure to set the following flags only (all the other flags should be
unchecked):

J2EE Deployment Expert X

1 =Select the application server platform for your deployment process from the list of supported servers

BEA WeblLogic Application Server 6.0 -

2 You can optionally verityicorrect EJBs, compile classes, generate Deployment Descriptors, and delete
temporary classes beforefafter deployment. For certain servers "hiat" deployment is availakble.

—Process option

[i] &dddd libraries reguired for deployment to the current project's SearchiClasspath
[¥] “erify andior correct EJBs for the selected server

[v] Compile the claszes referenced in the currently selected diagram

[¥] Generste Deployment Descriptaris)

[Open ¥ML editor for genersted Deployment Descrigtar(s)

[#] Pack modules for deployment

[¥] Hot Ceploy to server

[zenerste a simple JSP client

[@enerste a command line file with instructions for deployment

[#] Clear temporary folder before staring the deployment process

] |Clear temporary folder after deploviment is complete

Mt = Fimizh | Cancel | | Help |

4

On the next page of the Expert, set paths to jdk1.3 (e.g. c:\jdk1.3), WebLogic (e.g.
d:\bea\wlserver6.0) and paths to the resulting jar file and temporary files. Click Next.

On the last page of the Expert, set server host (Iocalhost), system password that you've set
for Weblogic (e.g. together) and port (usually it's 7001), and click Finzsh to complete.

- 502 -

J2EE Step by Step

If 'Hot Deploy' checkbox was checked, and the deployment process successfully completed,
the Message Pane displays:
//WLS60: Finished with 0 Errors, 0 Warnings.//

Now we are ready to compile and run the client.
Running the Application

Open your browser on http://localhost:7001/sample/index.jsp. The
following screen shows up:

Login page

Login: |

Password: |

subanit | subanit |

Enter fogether as a login and password. Click /gin. This will bring you to the Main Page:

Main page

Name Page Price Quantity Date

subtrt | Magazine:
I jl submitl

subrmt |

On this page you can add magazines to the magazines' list (Add Magazine), or add/remove
magazines that the user wants to buy.

- 503 -

Together Open API

Extensibility and Advanced Customization

Together Open API

Together is highly extensible through an open Java APIL. You can extend Togethet's
capabilities by developing Building Blocks that plug into the Together Platform as zodules.
Some of Togethet's features... Rose Import/Export and Documentation Generation, for
example... are implemented as Building Block modules via the API (these are called System
modules). You can view and run modules using the Modules tab of the Explorer.
This powerful API delivers the capability to externally use Together's internal functionality.
The three main groups composing API are :

com. togethersoft.openapi.ide package and its subpackages

com. togethersoft.openapi.rwi package and its subpackages

com. togethersoft.openapi.sci package and its subpackages
The API is composed of a three-tier interface that enables varying degrees of access to the
native infrastructure. The top tier represents the highest degree of constraint and the lowest
tier the least degree of constraint. The interfaces are very simply named:

IDE
Read-Write Interface (RWI)
Source Code Interface (SCI)

IDE (Together's IDE)

|

|

|

|
e

RWI (sources+diagrams, links, etc.)

SCI (sources)

Basic Together API architecture
IDE

This is the API you need in order to generate custom outputs based on information
contained in a Together model. It is a read-only interface, meaning that you can extract
information from the model but not change the model (accidentally or otherwise). IDE
group provides the functionality related to the model's representation in Together's IDE and
interaction with the user. Each package composing the IDE group has a description
highlighting the areas of applicability of this specific package.

504 -

Together Open API

RWI

This API enables you to go deeper into the Together architecture. You can both extract
information from, and write information to your models, and you can do some extensions of
Together's capabilities. RwiElements can represent more than packages, classes and members.
In a RWI model they may represent different diagrams (class diagrams, use case diagrams,
sequence diagrams and others), links, notes, use cases, actors, states etc.

SCI

As the name implies, the Source Code Interface takes you down to the source code level.
This API is the most granular enabling even manipulation of single bytes. An SCI model is a
set of sources (for Java, .class files are allowed) organized into packages. The SCI packages
represent the Java packages (which can be stored even in .zip or .jar files) or directories for
other languages. SCI model can contain parts written in different languages.

SCI allows you to work with the source code almost independently of the language being
used. For example, a SciClass object can represent a class in both Java and C++.

API Technical reference

Complete technical reference documentation for the Together API is provided separately
from Help documentation. See $TOGETHER HOMES /doc/api/index.html. To
learn how to use Open API documentation, refer to

$TOGETHER HOMES$/doc/api/help-doc.html.

See also
Working with Modules

- 505 -

Extension Modules

Extension Modules

Together is highly extensible by means of an open Java API that enables you to write Java
programs that use model information from Together and/or interact with Together itself to
extend its native capabilities. Such programs are called the building blocks or modules. Many of
Together's own features are implemented this way, and the architecture makes it possible for
Together to include modules developed by strategic partners or other third parties.

Module development can take two forms:

Compiled: Written in Java and compiled using a Java compiler. Such modules use the same
JVM as Together at runtime.

Written in TCL (or JPython): Such modules, referred to as seripts are interpreted by
appropriate Together subsystems at runtime.

Compiled modules deliver better performance and more depth because you have the full
capabilities of the Java language at your disposal. This topic addresses the basic concepts of
module development.

Types of Modules

All modules are defined by their language, invocation time and type of deployment. By the
time of invocation, the module are categorized into the following groups: User, User with
pre-initialization, Startup, Activatable (OnDemand).

User module is added to the modules tree as an icon and can be invoked later from a popup
menu (Run) of this icon.

User with pre-initialization is the same as “User”, but differs with an additional feature
that initialization method of such module executes before the first run of the module. This
type makes sense for JAVA modules only and is assigned by default.

Startup modules are not added to the modules tree and always run on Together startup.
Activatable (OnDemand) module combines the advantages of both User and Startup
types. Activatable modules are added both to the modules tree and to the list in

Options | Activatable Modules menu.

To change Activatable module state, one can use main menu instead of browsing modules
tree. Main menu command Options->Activatable Modules contains submenu where all
existing Activatable modules are presented by checkboxes. State of a checkbox reflects the
current state of an Activatable module. Checking a box activates a module, unchecking
makes it deactivated.

State of an activatable module is persistent between Together sessions. Being activated, such
module behaves as a startup module. By default activatable modules are deactivated.

Interfaces implemented by the Modules

Modules are Java classes that implement the IdeScript, IdeStartup,or
IdeActivatable interfaces.

Modules of the User type implement IdeScript interface that provides the method
run (). Startup modules implement the interface IdeStartup that provides

autorun () method. The modules that should provide the possibility of on-demand
invocation and deactivation, implement the interface IdeActivatable that extends
IdeStartup with shutdown method. If a module is supposed to be used both as startup

- 506 -

Extension Modules

and user module, it should implement IdeScript and IdeStartup interfaces, while
startup module with the possibility of on-demand invocation, should implement both
IdeScript and IdeActivatable interfaces.

All these interfaces are provided in the Together API.
Viewing and running Modules

Viewing modules

Modules are stored in the subdirectories under
STOGETHER HOMES$\modules\com\togethersoft\modules. You can navigate
to the modules using the Modules tab of the Explorer. This tab displays several folders:

System: contains all the modules that are part of Together itself
Sample: contains sample modules and scripts (including some source files)

Early access: contains modules that are "in the works"...cither not fully implemented,
undocumented, or both.

The following table shows how modules are represented in the Modules tab.

Java source file for a module. Can be compiled on the fly from speedmenu "Run" if a compiler is configured.

[T] |Compiled Java module

[T] |TCL script. "Run" executes the script in interpreted mode.

For more information about the Modules tab, see Explorer: Modules tab.
Running modules

The modules from the System folder are incorporated into the Together menu system or run
from dialogs. Some modules are activated through the list of Activatable Modules on the
Tools menu. The others are available on the objects' speedmenus.

You can run any module (or script) from the Modules tab speedmenu. For modules or
scripts that refer to or handle model information (as most will), you should open a Together
project before running.
To run a module (or script):

1. Navigate to and select the desired module or script

2. Right-click on the node and choose Run.

If you have defined a Java compiler in the Tools configuration options (Options | Default -
Tools), you also can compile Java source code for a module "on the fly" when you choose
run on the speedmenu.

You can also run modules using the command line interface. For more information, see
Command Line Parameters.

For more information see Basic Guidelines for Developing Modules and Frequently Asked
Questions.

- 507 -

Basic Guidelines for Developing Modules

Basic Guidelines for Developing Modules

You can write your own modules that access model information to generate model and code
documentation in custom formats, export to different file formats, or develop patterns and
experts.

If you create your own modules and save them to the relevant folders under
./modules/com/togethersoft/modules. Newly created appear in the Modules
tab and can run from there. You can also add commands for launching your own modules
to the menu system by creating a Tool definition in the Options dialog (Options | Default |
Tools), or by customizing the . /config/menu.configand/or
./configaction.config file.

Naming Conventions

Together's modules are classes implementing either IdeScript or IdeStartup
interfaces, or both. The names of modules use mixed case: GenerateDocumentaion,
ImportFiles etc.

Naming methods

Methods should be named using a full English description, using mixed case with the first
letter of any non-initial word capitalized. It is also common practice for the first word of a
method name to be a strong, active verb.

Examples:

processModel ()
printCurrentDiagram ()
recheckAllNames ()
iterateCurrentNode ()

This convention results in methods whose purpose can often be determined just by looking
at the name. Although this convention results in a little extra typing by the developer,
because it often results in longer names, this is more than made up for by the increased
understandability of your code.

Getters

Getters are methods that return the value of an attribute. You should prefix the word ‘get’ to
the name of the attribute, unless it’s a Boolean attribute and then you prefix ‘is’ to the name
of the attribute instead of ‘get.’

Examples:

getFirstName ()
getAccountNumber ()
getLostEh ()
igsPersistent ()
isAtEnd ()

By following this naming convention you make it obvious that a method returns an attribute
of an object, and for boolean getters you make it obvious that it returns true or false.

- 508 -

Basic Guidelines for Developing Modules

Setters
Setters are methods that modify the values of an attribute. You should prefix the word ‘set’
to the name of the attribute, regardless of the attribute type.

Examples:

setFirstName (String aName)
setAccountNumber (int anAccountNumber)
setReasonableGoals (Vector newGoals)
setPersistent (boolean isPersistent)
setAtEnd (boolean isAtEnd)

Following this naming convention you make it obvious that a method sets the value of an
attribute of an object.

Naming attributes

You should use a full English descriptor to name your attributes to make it obvious what the
attribute represents. Attributes that are collections, such as arrays or vectors, should be given
names that are plural to indicate that they represent multiple values.

Documenting the module

Okay to use phrases instead of complete sentences, in the interests of brevity. This
holds especially in the initial summary and in @param tag descriptions.

Use 3rd person (descriptive) rather than 2nd person (prescriptive). The description is
in 3rd person declarative rather than 2nd person imperative.

Gets the label. (preferred) Get the label. (avoid)

Method descriptions begin with a verb phrase. A method implements an operation, so it
usually starts with a verb phrase:

Gets the label of this button. (preferred) This method
gets the label of this button. (avoid)

Add description beyond the name. The best names are "self-documenting", meaning they
tell you basically what the method does. If the doc comment merely repeats the method's
name in sentence form, it is not providing more information. For example, if method
description uses only the words that appear in the method name, then it is adding nothing at
all to what you could infer. The ideal comment goes beyond those words and should always
reward you with some bit of information that was not immediately obvious from the name.
Avoid - The description below says nothing beyond what you know from reading the

method name. The words "set", "tool", "tip", and "text" are simply repeated in a sentence.

/**
* Sets the tool tip text.

*

* @param text The text of the tool tip.
*/

public void setToolTipText (String text)

- 509 -

Basic Guidelines for Developing Modules

Preferred - This description more completely defines what a tool tip is, in the larger context
of registering and being displayed in response to the cursor.

/**
* Registers the text to display in a tool tip. The text
displays when the cursor lingers over the component.

*
*
* @param text The string to display. If the text is null,
*
*

the tool tip is turned off for this component.

/

public void setToolTipText (String text) {

Order of Tags

Include tags in the following order:

* @author (classes and interfaces only, required)

* @version (classes and interfaces only, required)

* @param (methods and constructors only)

* @return (methods only)

* @exception (@throws is a synonym added in Javadoc 1.2)
* @see

* @since

* @deprecated

Deploying the module

For now, a module defines its own subpackage with the name matching to name of the
module, located in the modules package. For example:

package modules.InsertTags;

import com.togethersoft.openapi.ide.IdeContext;
import com.togethersoft.openapi.ide.IdeScript;
public class InsertTags implements IdeScript{

public void run(IdeContext context)

}
}

- 510 -

Modules FAQ

Modules FAQ

What is a module?

The module is a Java class that implements the IdeScript or the IdeStartup
interface, or both. (You can find these interfaces in the

com. togethersoft.openapi . ide package).

When implementing the IdeScript interface, you must define the

run (IdeContext) method; when implementing IdeStartup interface, you must
define the autorun () method.

What is the difference between these interfaces (and modules
implementing them)?

The IdeStartup interface defines a module whose autorun () method will be invoked
automatically during Together startup process. This method should perform some module-
specific actions such as registering a menu command item with an appropriate listener. After
it finishes executing, the autorun () method will not be invoked again during the current
Together user session.

The IdeScript interface defines a module that can be invoked at any time, and any
number of times during a user session by calling its run (IdeContext) method. An
IdeContext (com.togethersoft.openapi.ide.IdeContext) instance
being passed to the run method, contains information about selection at the moment you
ran the module.

What's the difference between a module and a script?

The difference is mostly semantic. Both modules and seripts can use the Together API to
interact with Together or access model information and process it. In Together
documentation, #odule refers to a program written in Java and compiled using a Java
compiler and executed using the same JVM as Together at runtime. Script refers to a
scripting code that is interpreted by appropriate Together subsystems at runtime. Currently
TCL and JPython are supported as scripting languages, but this support may become
deprecated in the future. For long-term compatibility, using Java is recommended.

Where should my modules be located?

At this moment, a module defines its own subpackage with a name matching the name of
the module, and located in the module package. For example:

package module.InsertTags;

import com.togethersoft.openapi.ide.IdeContext;
import com.togethersoft.openapi.ide.IdeScript;
public class InsertTags implements IdeScript{

public void run(IdeContext context)

}
}

- 511 -

Modules FAQ

How do | register a module?

- Compile a module. (Let's say you have compiled the InsertTags module shown above)

- Make a manifest file for your module. A manifest file is a simple text file which allows
Together to identify the kind of a module.

The extension of a manifest file is . def, and the file name is the name of 2 module. It must
be located in the classpath according to the package of the module. (For example,
InsertTags's manifest file is
New"%root%/modules/com/togethesoft/modules/inserttags/Insert
Tags.def)

A manifest file consists of only one string:
For IdeStartup modules:
Startup=true
For IdeScript modules:
Script=true
(For example, since InsertTags is an IdeScript, it contains Script=true)

How do | run a module?

Startup modules implementing the IdeStartup interface: you can't run these manually.
Together automatically invokes them during the session startup.

Modules implementing the IdeScript interface: use the modules tab of the Explorer
pane. Navigate to the script, right-click on it, and choose Ru#z from the speedmenu.

How about an example?

Here are two example modules for writing Hello world;.
Startup script. This script writes the message at Together's startup process.
package script.HelloWorldAutorun;

import com.togethersoft.openapi.ide.IdeStartup;
public class HelloWorldAutorun implements IdeStartup {
public void autorun () {

System.out.println("Hello world from HelloWorldAutorun
script!!tim);

}
}

After compilation compose the file
$root%//script/HelloWorldAutorun/HelloWorldAutorun.def with the
line Startup=true init.

-512 -

Modules FAQ

Script implementing IdeScript interface.

package script.HelloWorld;

import
import
public
public

System.

}
}

com. togethersoft.openapi.ide.IdeContext;
com.togethersoft.openapi.ide.IdeScript;
class HelloWorld implements IdeScript ({
void run (IdeContext context) {

out.println("Hello World!!!");

After compilation compose the file
root%//script/HelloWorld/HelloWorld.def with the line Script=true
in it. Now open a project and locate this script in the Modules tab of the Explorer. Right-click
on it and select R#z command.

- 513 -

Modules FAQ

Module development "hands-on"

This section describes the full process of writing and deploying extension modules. We'll
compose a simple module and show how to make Together recognize it. Finally, typical
errors are outlined, and troubleshooting procedures described.

Let us develop a simple module, which can be used as a startup and as a regular module.
This time we are not very interested in the module's functionality, so it will display just a
short message, for the sake of simplicity.

There are two major steps in the module development. First, write the module source code.
Second, declare this module. Module declaration and source code must comply. For
example, if a module is declared OnDemand, but the main class of this module implements
IdeScript interface, then this module will not work.

Source code for the module
Since we need to run the module as a startup and as a regular Together module, we must

implement both interfaces: com. togethersoft.openapi.ide.IdeScript and
com.togethersoft.openapi.ide.IdeStart

To output messages to the Together Message pane, we must use the interfaces:
com.togethersoft.openapi.ide.message.IdeMessageManagerAccess
and

com. togethersoft.openapi.ide.message.IdeMessageType

(Refer to the API documentation in TGH/doc/api)

Important: Fach new module must define its own package in the
com. togethersoft.modules package.

The only thing left is the name of the module. Let's name it MyFirstModule. Below is the
source code listing. If you want to try this out, create a directory

$TOGETHER HOME%\modules\com\togethersoft\modules\myFirstModu
le

and save the following code as
MyFirstModule.java : //the MyFirstModule.java file

package com.togethersoft.modules.myFirstModule;
import com.togethersoft.openapi.ide.IdeContext;
import com.togethersoft.openapi.ide.IdeScript;
import com.togethersoft.openapi.ide.IdeStartup;
import

com.togethersoft.openapi.ide.message.IdeMessageManagerAccess

import com.togethersoft.openapi.ide.message.IdeMessageType;

public void run(IdeContext context) {

514

Modules FAQ

//regular modules perform this method
IdeMessageManagerAccess.printMessage (IdeMessageType . INFORMAT
ION,

"This is my first module called as a regular Together
module.") ;

}

public void autorun(){ //startup modules perform this method
IdeMessageManagerAccess.printMessage (IdeMessageType . INFORMAT
ION, "

This is my first module. It was called as a startup
module.") ;

//this will appear in the Message pane when Together is
loaded

System.out.println("This is my first module, called as a
startup module.");

//this will appear in the console window at startup

}
}

Declaring a Module

If you run Together now and open Modules tab of the Explorer, you will see that
MyFirstModule is not shown. This is because we haven't informed Together about what we're
going to do with the module.

The most important thing that one should keep in mind writing a module is the set of
properties that should be used for module declaration. Module declaration should cover
module type (by invocation time), name, location in the modules tree, dependencies,
additional libraries and other important properties. We do this through a text manifest file.
A manifest file is a Manifest.mf file or a file with the .def extension. It contains
information about the usage of a module.

Declaring a module in Manifest.mf file
Below is the list of all properties available for the modules.
Main-Class (MainClassName)

This property is mandatory for all types of JAVA modules declared in Manifest.mf file
(except for JAVA modules declared in the *.def files). Name in brackets is the alternative
property name that should be used when module is declared in *.def file.

The class specified as a value of this property should exist and should implement Java
interface that corresponds to its type (IdeScript, IdeStartup or IdeActivatable)

- 515 -

Modules FAQ

Excample of property declaration in Manifest.mf file

Main-Class: com.togethersoft.modules.ejb.EJB

Excample of property declaration in *.def file:

MainClassName=com. togethersoft.modules.helloworld.HelloJava

Name

This property specifies the module name to be used in the modules tree, in “Options-
> Activatable Modules” submenu (for “Activatable” modules) and in “Help->Modules”
submenu (for HTML modules). Value of this property is case-sensitive.

Example:

Main-Class: com.togethersoft.modules.ejb.EJB

Name: “EJB Support”
Or

Name: “XPTest Support”
HelpFile: index.html

Folder
This property specifies module location in the modules tree. It makes sense only for User,

User with pre-initialization and Activatable module types. If this option is not specified, then
Early Access folder is used by default. Value of this property is case-sensitive.

Example:
Name: “XPTest Export”

Folder: “System/XP/XPTest Export”

As a result of the declaration above, module XPTest will be found in the modules tree in All
modules->System->XPTest and module node(s) will be named XPTest Export.

Time

This property defines module type by invocation time. It is mandatory for the JAVA
modules. Value is case-sensitive.

Examples:

Time: User

Declares the module as User or User with pre-initialization (depends on the main class of the
module).

Time: OnDemand
Declares the module as Activatable.

Time: Startup
Declares the module as startup.

- 516 -

Modules FAQ

Script, Startup, OnDemand
These properties are alternative for the Time property and are now deprecated.
ActivatedByDefault

This option can be used for Activatable modules only. Available values are true and false. By
default this option is false. Setting this option to true means that if an Activatable module
were not explicitly deactivated, it is in activated state.

Services

This property should be used when module allows to be used by some other modules.
Services' names (case-sensitive) should be specified as property values. Other modules will in
turn specify these names as the names of the services they depend on.

Example:
Name: EJB

Time: Startup
Main-Class: com.togethersoft.modules.ejb.E]B

Services: EJB, EJBClassDiagram

This declares that services EJB and EJBClassDiagram are available and modules that depend
on them will be loaded.

DependsOn

This property is closely related to the above. It declares services that should be available to
load this module. If at least one of the specified services is not available, module will not be
loaded and an error message will be generated.

Example (module “A” depends on module “B”):1
Name: “A”"

Main-Class: com.togethersoft.modules.a.A
Time: User

DependsOn: B

Name: “B”
Main-Class: com.togethersoft.modules.b.B
Time: User

Services: B, ExtendedB

If module B is not deployed, then module A won't load.

517 -

Modules FAQ

Class-Path (ClassPath)

This property specifies additional class libraries (jar archives or folders) that are used by this
module. The value of this property can be either fully qualified path, or relative path to this
module home directory. It is also possible to use “TGH” macros. Property name in
brackets should be used while declaring module using *.def file.

Example:

Class-Path:

libInHomeFolder.jar; $STGHS\1ib\1lib.jar;C:\1libs\1libl.jar
Classes from the above-mentioned libraries are available for the module at runtime.

HelpFile

This property allows to add Help menu item to the module’s popup menu in the modules
tree. Path to the help file must be fully qualified.

Example:
Main-Class: com.togethersoft.modules.bolero.Bexport
Name: XP Test

HelpFile:
STGHS\module\com\togethersoft\modules\xp\doc\index.html

Options

This option adds Options popup menu item to the module node in the modules tree. Value of
this property is the name of the properties page, same as used in
IdeConfigManager.showConfigEditor method.

Example:

Main-Class: com.togethersoft.modules.bolero.Bexport
Time: User

Name: XP Test Export

Options: “XP Test Options”
For “Activatable” modules this item shows when the module is in activated state only.

Known problem: only default level options can be shown this way. If options page with the
specified name doesn’t exist, empty dialog appears.

Hidden
Enables hide (true) or show (false) the User or Activatable modules in the modules tree.

Declaring a module in a def file

Specifying if a module is a startup module

Startup modules are modules that load when Together starts. If your module is intended to
be a startup module, the manifest must contain the line:

Startup = true

For regular (i.e. non-startup) modules the manifest must contain the line

Script = true

- 518 -

Modules FAQ

This should be the first line of the manifest file. Each manifest file must have a minimum of
one line... either Startup = trueor Script = true . You can put both lines if you
want the module to run automatically on startup and you want to be able to run it during the
Together session.

The manifest file can contain some other lines that provide additional information to
Together so that the module appears in, and is accessible from Together UL

Defining a visible name for the module
You can specify a visible name for the module by adding this line to the manifest file:

Name = Visible Name

The string after the equality sign will be displayed as the name of the module in the Modules
tab of the Explorer. In this example exercise, we'll specify a Visible Name.

Specifying the Modules tab location

You can specify where your module should appear in the Explorer's Modules tab. For
example, you can display it in the existing Sazple folder, or you can cause a new folder to
appear. To specify the Modules tab location, add this line to the manifest file:

Folder = "<Folder name>"
"<Folder name>" can be anything you want. Examples:

Folder = "Sample" (module appears in the existing Sample folder node of the Modules tab)

Folder = "My first module" (module appears in a new folder "My first module" in the
Modules tab)

Adding the module name to menus for classes, interfaces, and members

You can cause the module to be displayed in the Modules submenu of the speedmenu for
classes, interfaces, attributes and operations. Add the line:

PopupMenultem = true

Adding the module name to menus of elements with specific shapetype

You can cause the module to show up in the Modules submenu of the speedmenus of
elements having a specific shapetype (see the explanation of this term in the documentation
for the property RwiProperty.SHAPE TYPE in the API documentation).

Briefly, by optional addition of a constraint using the shapetype parameter, you can make the
module appear in the "Modules" submenu only for operations, or only for attributes, or only
for classes and interfaces. Two lines are required to accomplish this:

PopupMenulItem = true

PopupConstraints="shapeType=<shapetype identifier>"
Examples
Only for operations:

PopupMenultem = true
PopupConstraints = "shapeType=Operation"

- 519 -

Modules FAQ

Only for attributes:

PopupMenultem = true
PopupConstraints = "shapeType=Attributes"

Only for classes and interfaces:

PopupMenultem = true
PopupConstraints = "shapeType=Class"

Note that since classes and interfaces have the same shapetype (i.e. Class), you can't
selectively limit the appearance of a module to just interfaces via the manifest file. Do not
worty, this can be done, but you will have to do a little more work in the module. To learn
how to do it, refer to the module in

$TOGETHER HOME%\modules\com\togethersoft\modules\tutorial

Only for actors:

PopupMenultem = true
PopupConstraints = "shapeType=Actor"

Tip: The possible shapetypes are defined in the RwiShapeType interface (see the API
documentation).

Rules for the manifest file

The manifest file must satisfy the following conditions:

- Manifest file name must be exactly the name of the module's main class (the class
implementing IdeStartup or IdeScript interfaces).

- Manifest file location must be somewhere under the directories specified in
STOGETHER _HOMES/config/scriptloader.config file.

This file defines two possible root directories for manifest files:

1. $TOGETHER_HOMES%\modules\com\togethersoft\modules

2. $TOGETHER HOME%\classes\com\togethersoft\modules

Since MyFirstModule can be used as both kinds of modules (startup and runnable during
session), we will use both of the module declaration lines (Script = true, Startup
= true). Invoke your text editor and create the manifest file now. Add the following lines:

Script = true

Startup = true

Name = My First Module

Folder = "MyFirstModuleFolder"

Save the file as:

STGHS\modules\com\togethersoft\modules\myFirstModule\MyFirst
Module.def

- 520 -

Modules FAQ

Compiling and storing the module

Now you have to compile the module's source code. You can do so using Together, or your
favorite Java compiler. Make sure to include the

$TOGETHER HOME%\lib\openapi. jar file containing API classes in your
compiler's classpath.

Where to store the compiled class

Keep module's .class file(s) in the same directory where the manifest file and sources reside.
If you keep .class files somewhere else, make sure that their relative path matches the path of
the manifest file counting from one of the following two directories:

$TOGETHER HOMES%\modules\com\togethersoft\modules

$TOGETHER HOMES%\classes\com\togethersoft\modules.

For example, if your manifest file is
modules\com\togethersoft\modules\coolModule\CoolModule.def,
then your .class files must be somewhere in the classpath under the directory
com\togethersoft\modules\coolModule\ .

Once again, especially for your first modules, it is recommended to keep *.class files in the
same directory as the manifest (.def) file and the sources. The best way is to keep them all
together in a separate directory under

$TOGETHER HOME%\modules\com\togethersoft\modules.

Evaluating the Results

Once you have compiled the module, run Together (if you compiled the module using
Together, re-start). If the console window is on, you should see the module's startup
message that marks when it was called at the startup, and when it performed autorun
method.

Note, that although autorun method contains two output commands, only one console
message appears. When Together is loading, its message pane is not visible, so all the
messages written to it at the startup will be displayed only after Together finishes loading.
When Together is loaded, select the Modules tab in the Explorer. Expand the All modules
folder. You should see the MyFirstModuleFolder node with the My First Module
files. One file is the module's source, another is the compiled .class file. Select either file,
right-click, and choose "Run" (for the source file this command will cause Together to try to
compile and run it. If you wish to use your home-brewed compilation results, select the
.class file). If the message pane is open, you should see the module's message.
Congratulations, you have just deployed your first Together module!

It is strongly recommended to sequentially comment out each line of the manifest file to feel
that this makes the module work in only one mode. Try it:

Script = true

;Startup = true

Name = This is my first module.

and

;Script = true

Startup = true

Name = This is my first module.

(Restart Together after each change in the manifest file to
see the difference)

-521 -

Modules FAQ

Troubleshooting

The declaration and .java files of the module described in
this document are not provided with Together... that's to
make you create your own first module :-). Once you create
it, deploy it, and run it, you will find it a matter of
minutes to create new modules.

After you successfully deploy and run this example (please
do it. If you are going to write modules, this will save you
a lot of time later), look through the sample modules
located in the

$TOGETHER HOMES%\modules\com\togethersoft\modules directory.
Pay attention to the Tutorial folder, which contains a set
of sample modules demonstrating the usage of Together's open
APT.

Try to take something from the first lesson modules in the
tutorial folder, and use it in a new module (or, simply
rename a tutorial's lesson to be your second module) .

If you get some compilation errors, please check that you:

- import all the required API interfaces/classes

- added all the required libraries to the compiler's
classpath

- use API methods properly. See API documentation in
STGHS /doc.

Also, you may face these common problems:

Everything compiles without errors, but you can’t find your module in Together's Modules
tab

Almost certainly, you didn't compose a .def file at all, or
didn't place it under the directories specified by the
scriptloader.config file.

By default, they are specified as

$TOGETHER HOME%\modules\com\togethersoft\modules

$TOGETHER HOME%\classes\com\togethersoft\modules

Everything compiles without errors, and .def file is located okay, but you still can't find
your module in Together's Modules tab

Most likely, you made a spelling error in the lines Startup
= true or Script = true in the .def file.

Or, the name of the manifest file is not identical to the
name of the module. In this case Together's Message pane
will display something like "The manifest file

c:\together\modules\com\togethersoft\modules\coolModule\Cool
Sript.def

exists but Together either cannot find or cannot read its
associated module filesg™".

- 522 -

Modules FAQ

Everything compiles without errors, you see your module's folder in the Modules tab, but
there are only Java sources (assuming you want to see and run the compiled module)

Make sure module's .class files are located in the right
place so that Together can find them. It was discussed in
this document earlier (if you keep .class files where the
.def file is, you won't encounter such a problem).

Everything compiles without errors, you see the module's compiled class in the Modules
tab, but your module doesn't seem to work

We strongly recommend to mark the start and finish of each
of your modules (regular and startup) with appropriate
messages in the Message pane. This instantly clarifies
whether your module was actually running or not. For
example:

IdeMessageManagerAccess.printMessage
(IdeMessageType.INFORMATION, "MyCoolModule:started") ;//start
IdeMessageManagerAccess.printMessage

(IdeMessageType.INFORMATION, "MyCoolModule: finished") ;//finis
h

- 523 -

Advanced customization

Customizing System and Ul

Advanced customization

This section is intended for administrators or managers who need to create shared custom
configurations and/or modify Together itself in order to meet corporate standards. Power
users interested in delving into the low-level customization capabilities of Togezher may also
be interested in this information. The most commonly-needed customizations of the
configuration properties can be done from the Options menu with the Options dialog.

The advanced topics cover several common low-level customizations. These are by no
means the full range of customization possibilities. If you are interested in some
customization that is not covered here, scan the underlying configuration files located in the
. /config directory of the installation. The names of these files can give you an idea of
what kinds of properties they contain, and viewing the files and their comments can show
you what, if any, customizations you can do through them. Customizations that are not
possible through configuration properties may still be possible programmatically through the
Together API. If you don't see any way to do the customization you want, contact a
Together sales or support center.

User Interface customizations

Altering the user interface requires editing of some of the underlying configuration
properties files. These are located in the . /config directory of the installation.
Configuration files have a . config extension.
It may also be necessary to edit the resource files referenced by lines in the configuration
files. These are located in the . /1ib/i18n directory and have . properties extension.
The files in this directory are of particular interest if you want to localize Together
installation, as they contain Ul strings that would need to be translated to another language.
IMPORTANT: Before modifying any of the configuration or resource properties files, make a backup
of the original.

Section topics:

Creating a shared multi-user configuration

Customizing property Inspectors

Customizing View Management's Show options (filtering)

Customizing patterns: See User's Guide: Working with Patterns: Developing and deploying
your own patterns

See also

Configuring Together
Common customizations

524

Customizing View Management's Show options (filtering)

Customizing View Management's Show options
(filtering)

The Show options on the zew Management node of the Options dialogs surface configuration
properties contained in the filters.config file. These properties control what kinds
of things are elided (hidden) in diagrams. By default, nothing is elided.

At the properties level, Together essentially defines 'filters' that remove the defined elements
from view when the option is activated (hence the filename filters.config). The
default state of the filters is gff, meaning that the defined elements are nof filtered... that is, they
are shown. At the Ul level, when a filter in the properties file is ¢ff; then the option's value
("Show") is #rue and the option displays in the checked state in the Options dialog.

The Show options are all fully user-definable, not just those labeled "User Defined".
However, the pre-defined filtering plus your customization of the "user-defined" options are
usually sufficient for most needs.

Changing the display text of a Show option

You might want to change the name of the options that appear in the Options dialog... to
accommodate international users for example. By default, the names of the options are
extracted from a resource file. Thus, in the following line from the filters.config file:

optionsEditor.item.View
Management.item.Filters.item.A.item.shortName.name =
["filters/filter shortName"]

...the text shown in blue is a reference to a string in a resource file. To change the name that
displays in the Options dialog, you must either edit it the resource file, or replace the
[reference] in the configuration file with a string literal in double-quotes.

To edit the resource file:

1. Open the resource file STOGETHER HOME/lib/il8n/filters.properties
in a text editor.

2. Search for the name of the option... "All Packages" for example. The search should turn
up a line similar to this: all packages=All Packages.

3. Edit the name (shown in blue above) as desired.

4. Save and close the properties file.

The changes take effect the next time you start Togezher. Administrators with international
users may want to make copies of the resource file for different language and replace the
English default file in the installations of non-English speaking users.

Removing a Show option in the Options dialog

If you do not want to use one of the predefined options and do not want it to appear in the
Options dialog, comment out all lines of the option's section (e.g. "All Classes") in the
filters.config file. Update the sequential information (as described in the next
section) to compensate for the removal of the commented section from the file's section
sequence.

- 525 -

Customizing View Management's Show options (filtering)

Adding a Show option in the Options dialog

Conversely, you can create a new option and display it in the Options dialog by copying any
of the existing sections and modifying the lines as necessary to get the elision you want.
Note that the sections in the properties file are arranged sequentially and contain sequential
information imbedded in the lines. When you add a section, you must modity this
information throughout the section so it is the last in the sequence.
For example, the section for the All Packages option is the first section and contains the
following lines:

filter.a = hasProperty("$physicalPackage")

optionsEditor.item.View Management.item.Filters.item.A.order = 10

The file as shipped has 12 sections. So the above lines in the last section read as follows:
filter.l = hasProperty("$physicalPackage")

optionsEditor.item.View Management.item.Filters.item.L.order = 120
Suppose you copy the first section and paste it at the end of the file to create a 13th section.*
You would need to modify the lines as follows:

filter.m = hasProperty("$physicalPackage")

optionsEditor.item.ViewManagement.item.Filters.item.M.order = 130
Then, in all other lines in the section you would need to replace occurrences of .a with .m
and occurrences of .A with .M. Then the sequential information in the section will be the
highest in the alpha and numeric sequence.
Next, you need to customize the filter definition in the first several lines of the section
(filter. [seq]). The filter expression is contained in the first line of the section, e.g.:
filter.m = hasProperty("$physicalPackage")
Text in blue is the filter expression. This is usually a call to hasProperty() or hasPropertyl alue.
Study the other filter expressions and observe their construction before coding your own
filter expression.
For the remaining lines in this section, you can either use a reference to a resource...
filter.m.name = ["filters/my new filter options"]
...in which case you must add the property my new filter to the
filters.properties file. Or you can use a literal instead:
filter.m.name = "My New Filter Options"]
Finally, you can update the other lines in the with references to resources or literals as
required.

- 526 -

Customizing Properties' Inspectors

Customizing Properties' Inspectors

Properties' Inspectors are flexibly customizable. You can create custom tab pages, add new
fields, change field names, add new stereotypes etc. There are several ways to do that. First,
you can use Together Open API and do some coding job. The other option provides a
handy way of visual customization, using the Custom Properties module. Finally, you can
opt to enable config-based inspector, as in the eatlier versions of Together.

Overview of the Inspector model

The new abstract model represents properties of an object in a structured way. Inspector
varies its content depending on the IDE context that contains information about the
selected element. For example, if you look at the Inspector for a regular Java class and an
EJB implementation class, the content displayed is quite different.

Inspector consists of several components, each representing a group of properties, their
names, and values. The model and the UI representation are independent of one another.

Adding custom pages and fields to the Inspector

Customizing Inspector by means of the Custom Properties Module

It is possible to visually customize inspector for a particular object. This is done by means of
the Custom Properties module. Each new property added to the selected object adds
appropriate tag to the source code. However, these changes apply to the object in reference
only. Other objects of the same type are not affected.

1. Make sure that the module Custom Properties is activated. If this module is not activated,
check the box Custom Properties on the menu Options | Activatable Modules.

2. Invoke the Inspector for the selected object. Additional tab Custom Properties appears in the
Inspector:

Properties of <default>

Requirements |’Cus¢nm Properties |’t:ow| oL |/c0RE|A IoL |
Properties |/ Hyperlink |/ Description |/ HTMLdoc |

Al

Marme | W alle

custom property 1 value

Create New Custom Froperty |

[atme: |.3u31.:.m property? |

alle: |va|ue |

Ok || Cancel |

Press Ctrl+Enter to finish editing and close Inspector

527 -

Customizing Properties' Inspectors

3. Press add property button and specify property's name and value in the dialog window. Hit
Enter to confirm. Add as many properties as required, and in the end press Control+Enter
to apply the changes and close the Inspector.

4. Use the button remove property to delete selected properties. Press Control+Enter to apply
the changes and close the Inspector.

APIl-based inspector customization

If you wish to create your own page or add new properties in an existing inspector, you can
use Inspector API. Inspector is a startup module located in
$TGH%\modules\com\togethersoft\modules\, and does not display in the
Modules tab of Together. If you need to customize the inspector, you have to edit
appropriate manifest files and classes. Updated startup module activates upon restart of
Together

Classes that enable adding new page and fields to the Inspector are not included in the
Inspector module, but reside in
%TGH%\modules\com\togethersoft\modules\inspector\examples.

This is how it's done:

1. Open appropriate manifest file (*.def) in
$TGH% \modules\com\togethersoft\modules\inspector\examples and
uncomment the lines
MainClassName =
com. togethersoft.modules. inspector.examples.MainClassNam
e
Time = Startup

2. Create a Together project with the desired classes AddPageTolnspector.java (or
AddFieldsTolnspector.javay.

3. Create a backup copy of the class .AddPageTolnspector.java (or AddFieldsTolnspector.java) and
edit source code, specifying the desired page and field names:

IdeInspectorProperty property;
// Replace "myPage" with the custom page name

property = new RwilnspectorStringProperty (rwiElements,
"taskDescription") ;

// Specify custom name to be shown in the UI
property.setName ("Task manager") ;
page.addProperty (property, null);

// Replace "myBooleanProperty" with the custom name of a
boolean property

property = new RwilInspectorBooleanProperty (rwiElements,
"isReady") ;

// Specify custom name to be shown in the UI

property.setName ("Is the task completed") ;

page.addProperty (property, null);

// Replace "myStringProperty" with the custom string
property name

property = new RwilnspectorStringProperty (rwiElements,
n raten) ;

// Specify custom name to be shown in the UI
property.setName ("Select rate from the list");

- 528 -

Customizing Properties' Inspectors

// Specify custom names for the drop-down list
SwingComboBoxEditor editor = new SwingComboBoxEditor (
new DefaultComboBoxModel (

new String[] { ‘"ratel", "rate2", "rate3" }

)

4. Compile the code. By default, the compiler puts class files to the Destination directory
$TGH% \out\classes\$PROJECT NAME%. Specify same location for the class file as
for the source file on the Options | Project(Default) | Tools | Destination directory.

5. Restart Together. Now invoke class speedmenu and observe customized inspector:

Properties [AddPageT olnzpector] B3
Description rJavadu:uc |/Htmld|:u: |/Req |/Eleans rCust-:um properties |
Properties |’ CIOM IDL |’ CORBA IDL |’ Task manager |’ Hyperlink |’ View |

ame | Walue

Task description

Iz the task completed [
Select rate from the list | ||
Bonus for good resutt pate

pates

Fates

Cirl+Ernter applies changes and closes the Inzpectar

0. If you don't need additional Inspector page any more, all you have to do is to comment
out MainClassName and Time lines in the manifest file and restart Together.

More Documentation

The best way to learn how to write an inspector is to study the source code of the Inspectors
delivered with Together. Together's open API provides some technical documentation of
the key classes and interfaces, and a commented example of how to do a simple Inspector
customization. Refer to the documentation for

com. togethersoft.openapi.ide.inspector through the

$TGH% /doc/api/index.html.

- 529 -

Customizing Properties' Inspectors

User-defined inspector customization

General tab of the Options dialog provides "Support user-defined inspector" flag, which
toggles on and off building inspector pages from config entries, and enables visual creation
of additional user-defined pages. When this flag is set, Tools menu displays Inspector
Property Builder command, that invokes Inspector Property Builder dialog.

New page with the specified property name adds to the inspector for the selected elements.
Together writes relevant entries to the file changes.config under $TGH%/config
directory. See detailed description in the Inspector Property Builder topic of the Context
Help.

Compatibility with the older versions

Presently, inspector customization through API is preferable. However, users of the versions
3.x can refer to $TGH% \config\inspector.config that provides detailed
information on inspector customization. Besides that, uncommenting the line

HelpFile = "TGH\doc\guides\fcta.html"

in
$TGH%\modules\com\togethersoft\modules\inspector\examples\he
lp.def allows the help module "How to Create Custom Inspector” activate upon the
next start of Together. This module becomes available on the menu Help | Modules.

See also

Advanced customization
Configuring Together

- 530 -

Configuring the New Diagram Dialog

Configuring the New Diagram Dialog

The New Diagram dialog by default provides two tabbed pages, the first one with the
standard UML diagrams, and the second with the Together modules' specific diagrams. You
can edit %TGH% \config\diagram group.config file to create your own pages
with the customized set of diagram shapetypes.

Diagram shapetypes allocated in the same page form a group. A page is characterized by its
group id, group name, weight and mnemonic:
Group id is a unique identifier for each group
Group name is a string that shows up as the page title.
Weight is a double value that defines the order, in which tabbed pages show up in the
dialog (the page with the smallest weight is the first to get the focus when the dialog is
invoked).
Mnemonic is a letter from the group name, not used by the other controls, that can be
used for shortcut definition.

All diagrams that don't belong to a certain group, belong to the default group. To create a
new page for the dialog, you have to define a new group with its properties, and specify the
list of shapetypes you wish to add to the new page, conforming to the following syntax rules.
The changes take effect on new start of Together, or on choosing Reload command from
the Options menu.

Syntax
Element Syntax
Default group diagram group.default = <group name>

Default group weight [diagram _group.default.weight = <double

value>

Default group diagram group.default.mnemonic = <characters

mnemonic

Custom group diagram group.group.<group id> = <group
name>

Custom group weight [diagram_group.<group id>.weight = <double
value>

Custom group diagram group.<group id>.mnemonic =

mnemonic <characters>

Diagram shapetype |[diagram group.<diagram shape_type>.group =
for a group <group id>

Example

The lines in the diagram_ group.config file
diagram group.group.fav = My Favourite Diagrams

- 531 -

Configuring the New Diagram Dialog

diagram group.fav.weight = 0.5

diagram group.fav.mnemonic = F

diagram group.ComponentDiagram.group = fav
diagram group.DeploymentDiagram.group = fav
diagram group.BusinessProcessDiagram.group = fav

produce the following result:
Hew Diagram E3

|/r-.-13,-' Favourite Diagrams |’gML rIDgether |

% 2 O

Business Process Component Deployment

Dizgram rEme: |Elusiness Process |

Packade Name. |zgefaufts =R

] include in current diagram

Description:

Presz Ok to create a newy diagram.

Ok || Cancel || Help |

- 532 -

Defining Custom Diagram Types

Defining Custom Diagram Types

Together supports the currently-defined UML diagram types, plus Business Process and
Entity Relationship diagrams, but it doesn't confine you to using on/y those types. Togethet's
Pixie m) technology lets you define your own custom diagram types.

Basic procedure for defining custom diagram types

1. Create icon images to display in the Togethet's user interface

2. Create a folder to store the custom diagram icons and add it to the paths in
Together.bat file.

3. Create a new configuration file in % TGH% \config for each custom diagram type

4. In the configuration file, define the diagram entity and name, and create references to the
icons

5. Define the diagram elements for the new diagram

Step 1: Creating diagram configuration file
To define a new diagram type, create a new file {file_name}.config in the folder

%TGHY% \config that stores all configuration properties files.

This file contains at least one line, which defines a new diagram type:
model.diagramType.{diargam_unique_ID}={diagram_unique_name}
Where:

diagram_unique_ID is any word or number which will be used to sort diagram icons in
"New diagram" dialog box. If number is used it has to be greater than 9, because numbers
from 1 to 9 are reserved for standard UML diagrams.

diagram_unique_name is any word which will be used to refer to this new type diagram
model.diagramType is a predefined construction to define new diagram type
Example:

model .diagramType.htd=Heffalump Trap Diagram

Step 2: Creating icons and icon references for Ul

Two icons are required for each diagram type to be represented in Together UI: a small one
for the Explorer treeview, and a big one for the New diagram dialog.

Editing Together.bat

Add path to the folder where the icons are stored to -cp variable of Together . bat file.
Example:

-cp "%$TGH%\images;...".

Specifications for graphical icon images

Icon Pixel Dimensions File format
small (treeview) 16 x 16 GIF (transparent bg)
large (dialog) 32x 32 GIF (transparent bg)

- 533 -

Defining Custom Diagram Types

Referencing images in the config file
Add the following lines to config file:

resource.element. {diagram unique name}.name = "{diagram name 1}"

resource.element. {diagram unique name}.diagramName = "{diagram name 2}"
resource.element. {diagram unique name}.icon.small = "{path to the icon}"
resource.element. {diagram unique name}.icon.large = "{path to the icon}"

Where:

diagram_name_1 is a name used for the new diagram

diagram_name_2 is a name used in the "New diagram" dialog box.

path_to_the_icon is a path relative to the folder specified in -cp variable of Together.bat.
resource.element is a predefined construction to denote resources: icons, names, buttons.
Example:

resource.element .Heffalump Trap Diagram.name = "Heffalump
Trap Diagram"

resource.element .Heffalump Trap Diagram.diagramName =
"Heffalump Trap Diagram"

resource.element .Heffalump Trap Diagram.icon.small
"small icon.gif"

resource.element .Heffalump Trap Diagram.icon.large
"big icon.gif"

Defining element types for the custom diagram

Step 1: Defining treeview icons
First, define icons for the new diagram elements displayed in the Model treeview. This
requires to create special line for each newly created diagram type in the configuration file:

resource.element.{element_unique_name}.icon.small = "{path_to_icon}"
Where:

element_unique_name is a word denoting the new element type

Example:

resource.element.sdEntity.icon.small = "Treeviews/tv-
sdEntity.gif"

resource.element.sdAttribute.icon.small = "Treeviews/tv-
attrib.gif"

Step 2: Defining toolbar icons

Toolbar icon buttons are dynamically constructed through their button definitions. Each
button represents one element. Definition of each button has the following format:
diagram.toolbar.button. {diagram unique name}.{element toolba

r name} = \ node = createNode ("{element unique name}")
diagram.toolbar.button. {diagram unique name}.{element toolba
r name}.condition = "{enabling condition}"

diagram.toolbar.button. {diagram unique name}.{element toolba
r name}.icon = "{path to icon}"

534

Where:

element_toolbar_name is a unique name of a toolbar button
path_to_icon is a Path to the icon of the button
node is a Variable that stores the new element

Defining Custom Diagram Types

createNode is an internal function that creates new node (entity). To create new association

(link) use "createLink" function.

enabling_condition is any valid boolean expression that defines availability of the button
diagram.toolbar.button is a predefined construction to define new button on toolbar.

Example::

diagram.toolbar.button.Heffalump Trap Diagram.Deep Pit

node = createNode ("Deep Pit")

diagram.toolbar.button.Heffalump Trap Diagram.Deep Pit

$DEFAULT LANGUAGE% != "idl"

I
-

diagram.toolbar.button.Heffalump Trap Diagram.Deep Pit.icon

= "toolbar icon 2.gif"
Mew Diagram
[UL hc.gether |

o

Business Process

1§

Hetfalump Trap Diagram

FEY)
= =

Enterprize Application EJB Azzembler

Custom diagram added to the New Diagram dialog

h-I* (ﬁ Hetfalump Trap Diagram |

g ogic o
+ |- . Heffalump I
& ol Fl Ao ———R . L
":El:‘,ﬂera'ﬁons e
- ° |- - -
i e r— . .

New buttons added to the toolbar

- 535 -

Defining Custom Diagram Types

Defining Viewmaps
In order to create new elements in a diagram, it is necessary to describe graphical
presentation of each one in the .config file for the new diagram type. A construction similar

to that shown below must be added to the config file of a new diagram type. This section
presents each step on the base of the sample config file

Step 1

Define graphical presentation starting from the header:
view.map.*.{element_unique_name}.isTopLevel() =

Where:

view.map.* is a predefined construction

element_unique_name is an element name, defined in the previous section

isTopLevel(): This construction mean that all following operations are performed if the
element is on the diagram top level.

For example:
view.map.*.sdEntity.isTopLevel() =

Step 2

Define the shape of the new element:

\ setGraphicObject(' {shape_name}");

\ setLayoutConstraints({parametet}, [parametet], ...);
Where:

setGraphicObject: Function that sets "shape_name" of an element. The predefined shapes
are:
Cube, RectangleVisible, Circle, RoundRectangle, Oval, Folder, Note, Actor etc.

setLayoutConstraints: Sets parameters of the element presentation. This function is
optional.

parameter: Parameters are name-described. See the example below.
Example:
\ setGraphicObject ("Cube") ;

\ setLayoutConstraints (minWidth (20) ,minHeight (20),

\ preferredWidth (100) ,preferredHeight (100),
\ canShiftX (true),canShiftY (true)) ;
Step 3

Now we'll define useful options for element's graphical presentation.
Enable display of the element's unique name:

\ name = addCompartment("'Rectanglelnvisible"," Name");

\ name->setl_ayoutConstraints (horizontal Align("left"),vertical Align(""top""),

\ width Align("parentDefined"));

Here we register a new compartment with the name Nawe and shape Rectanglelnvisible., and
set its layout.

- 536 -

Defining Custom Diagram Types

Add element's name to the compartment:

\ namel abel = addloCompartment(label(getProperty("$name"))," Name");

Here function addToCompartment adds a new label to the compartment Nazze.
Function get Property returns value of $name for this element, which was defined in
the beginning of config file as #nigueName for the element.

Enable inplace editing

This line enables inplace editing of the element's name in the label. Expression
property:= "$name" shows the element property to be updated.

\ namel_abel->setlnplaceE ditor({property:="§name",defanlt:=true});

Defining label properties

The following lines set label properties:

\ namel _abel->setAlignment("" Center");

\ namel_abel->setl_ayoutConstraints(preferredHeight(16), fixedHeight(true));

Defining links

To enable element's links to the other elements, add the following line:

\ setCanHavel .inks()

See the complete sample config file.

Example configuration file

HUHHHHHAHAHAHEHAHAHAHAHFHF S S S BB HEHEHEH ARG H SRS HH S S S
Defining the new diagram type: shape type, name, icons

#
model .diagramType.sd=SampleDiagram

resource.element.SampleDiagram.name = "Sample Diagram"
resource.element.SampleDiagram.diagramName = "Sample"
resource.element.SampleDiagram.icon.small = "Treeviews/tv-sam-

diagram.gif™"
resource.element.SampleDiagram.icon.large =
"DiagramTypes/SampleDiagram.gif"
HHHHHHHAHAHAHAHAHAHAHAHAHSHH S A H A H A H A A S R
Defining icons for the new elements. These icons will be

used in treeview

#

resource.element.sdEntity.icon.small
resource.element.sdAttribute.icon.small

"Treeviews/tv-sdEntity.gif"
"Treeviews/tv-attrib.gif"

HHHHHHHHHAHAHAHAHAHAHAHAHSHH S A A H A A A R
Defining toolbar for the diagram

#

diagram.toolbar.button.SampleDiagram.Entity =

\ node = createNode ("sdEntity") ;

\ node->setProperty ("uniqueName", "Entity")
diagram.toolbar.button.SampleDiagram.Entity.icon =
"SampleDiagram/entity.gif"
diagram.toolbar.button.SampleDiagram.Relationship =
\ link = createLink ("sdRelationship") ;

\ link->setProperty ("uniqueName", "Relationship")
diagram.toolbar.button.SampleDiagram.Relationship.icon =
"SampleDiagram/relationship.gif"

- 537 -

Defining Custom Diagram Types

HHAHHAHAHHAH A H S H A H A H SR A R A
Defining viewmap for the diagram

#

view.map.*.sdEntity.isTopLevel () =

\ setGraphicObject ("Cube") ;

\ setLayoutConstraints (minWidth (20) ,minHeight (20),

\ preferredWidth (100) ,preferredHeight (100),
\ canShiftX (true),canShiftY (true)) ;

\ name = addCompartment ("RectangleInvisible", "Name") ;

\ name-

>setLayoutConstraints (horizontalAlign ("left") ,verticalAlign("top"),
widthAlign ("parentDefined")) ;

namelLabel = addToCompartment (label (getProperty ("S$Sname")), "Name") ;

namelLabel ->setInplaceEditor ({property:="%$name",default:=true}) ;

namelLabel->setAlignment ("Center") ;

namelLabel-

>setLayoutConstraints (preferredHeight (16) , fixedHeight (true)) ;

\ setCanHaveLinks ()

—

* (Support for all UML diagram types and custom diagrams varies by product. The latest
information on product features is available at www.togethersoft.com/together/)

- 538 -

Web Services

Web Services

Web Services

Having created a class, you might want to use it as a Web service. Together helps to
accomplish this task. It is possible to transform a class into a Web service and deploy it to
the target application server.
As of this writing, two plugins are provided: Apache-SOAP and BEA WebLogic 6.1 beta. In
the future, this list will be extended.
Warning: Keep in mind that Apache-SOAP is a lightweight protocol for exchange of
information in a decentralized, distributed environment. It can be used as a client
library to invoke SOAP services available elsewhere, or as a server-side tool to
implement SOAP accessible services.

To use Apache-SOARP it is necessary to install the server-side under an application server, such as
Apache Tomcat v3.2, WebLogic Application Server 5.1, etc.

For more detail, see Apache-SOAP documentation: http://xml.apache.org/soap/index.html

First, you have to choose the target application server. To do this, open the Web Service node
of the Options dialog and choose the required application server from the drop-down list.

Creating a Web Service

Apache-SOAP Properties of AttributeD efinition
You can create a Web HTrLdoc rﬁequirements |/Elean r.&p che-S0AP |
Service from a Class. Properties r Hypetlink ’k Desctiption |/ Jarvadon |
(C)lpen ;he necessa;y - | e
ass diagram, and set
& ’ name attributeDefinition
focus on the class that
has to be transformed package
to a service. The sterentype | |w|
Properties Igspector of dlias
a class contains a Web "
) ile
Service checkbox. When
this flag is set, the new pubalic G
Apache-SOAP tab final |
appears in the - O
Inspector. =
extends Sk
. =R
If you select the Apache- implements &
SOAP tab and set the ineariants Bt
Message flag on, this nersistent |
class will be defined as .
Weh Service [
a message-style Web
Service.
@ Press Ctel+Erter to finish editing and close Inspector
e

- 539 -

When the class is
declared as a Web
Service, its public
operations become
the methods of the
Web Service and an
additional Web Service
tab appears in the
Object Inspector with
the property exposed:

BEA WebLogic
6.1 beta

You can use two types
of Web Services:
RPC-style (remote
procedure call) Web
Services and message-
style Web Services.

RPC-style Web Service

Web Services

(7
Javacdoo |/HII'-.-1Ld|:u: rﬁequirements r'l.-“-.l'eh Service |
Propetties Hyperlink |/ Description |
Plame | Walue
Expoze [¥]
@ Press Cirl+Enter 1o finish editing and close Inspectar y
o

An RPC-style Web Service uses a stateless session EJB. You can create an RPC-style Web
Service from a Session EJB. Open a Class diagram, and set focus on the Session EJB that is
used as the base for the Web Service. The Properties Inspector of a session bean contains a

Web Service checkbox.

When this flag is set, this Session EJB is defined as an RPC-style Web Service.

Message-style Web Service

Open an Properties of Message Web Servicel : i 5[
existent EJB Properties ||Hyperlink rEiEW rgescripticun |/HTr-.-1Ld|:u: rﬁequirements
Assembler Matme | Walue
chagrarn ot Wieh Setvice name Meszage Weh Servicel
create a new
Action | zend - |
one. You can
add a Destination JMOI natme
message-style Destination type | topic - |
W?b Service Connection factary JMDI name
using the LRl
Message Web
Service design
Ers
element | @
You can see
the Properties
Inspector of a
Message Web
Service: @ Press Ctrl+Enter to finish editing and close Inspector
P

- 540 -

Web Services

Action

You can specify whether the client that uses this message-style Web Service is a sender or a
receiver of XML data to the JMS destination.

Select from the possible values: send or recezve.

Destination JNDI name

Type the JNDI name of a JMS topic or queue.

Destination type

Select a type of JMS destination. There are two possible values: Zgpic or quene.
Connection factory JNDI name

This field contains the JNDI name used to create a connection to the JMS destination.

URI

You can fill in this field with the URI used by clients to invoke the Web Service.
The full URL to access the Web Service is:
[protocol] :// [host] : [port] [context] [uri]

Deployment Using the Web Service Expert

Having created a Web Service from a class, you can deploy this service to the selected
application server. To do this, choose Web Services Expert on the Tools menu, which opens the
expert dialog.

Together provides the Web Services Expert, a convenient GUI that greatly simplifies web
services' deployment process. The interface of the Web Services Expert is almost the same
as the interface of the J2EE Deployment Expert. Before using the Web Services Expert be
sure that the server for the deployment of Web Services is installed on your computer. In
this dialog, you can specify:

- the target server platform,

- what deployment-related actions you want to take place (compile, etc.),

- paths to the server, server tools, and the deployment output

- connection parameters for the server

To run the Web Services Expert:

1. Open the project and the class diagram containing the Web Services to be deployed.

2. On the Main menu, choose Tools | Web Services Expert to launch the expert dialog.

3. Choose the target server platform and set the other options as desired.

541 -

For Apache-SOAP:
"'-lul"eh Services Expert

1 Select the target application server platform.

Apache-SOAP b

2 Specify process options. You can optionally compile Web Zervices classes,
generate Deployment Descriptars, and register the Weh Zervices on the server.

Procezs options

[w] Compile classes from the currently selected diagram
[¥] Zenerste Deployment Descrigtaris)

[1] Open ¥ML editor for the genersted Deployment Descriptor(s)

[¥] |Register Web Services on the serverl

| Plext = | Cancel | | Help |

Z

Web Services

If the classes need to be compiled, check the Compile Classes option (if they are already

compiled, clear this option).

Set flags, if it is necessary to generate Deployment Descriptors, or Register Web Services on

the application server.

542 -

Web Services

For Weblogic 6.1. beta some additional information is required:
"'-lul"eh Services Expert

1 Select the target application server platform.

BEA WeblLogic 6.1 beta b

2 Specify process options. You can optionally compile Web Zervices classes,
generate Deployment Descriptars, and register the Weh Zervices on the server.

Procezs options

[w] Compile classes from the currently selected diagram

[¥] Zenerste EJB Deployment Descriptars)

[1] Open ¥ML editor for the genersted Deployment Descriptor(s)
[¥] Pack modules for deployment

[w] &A=z=semble Web Services

[¥] Register ek Services on the server

| Mext = Cancel | | Heli |

&

4. Click Next to advance through the page sequence of the Expert.

5. Specify the path to JDK 1.3, the path to the server, and the path to the folder for
temporary files using the Common Properties page. Refer to Web Services Expert for details for
the supported servers.

6. Click Next to continue.

543

Web Services

You can see default settings for registering Web Services during runtime for Apache-SOAP :
Apache-50AP - "Run-time Registering Web Services™

Mame Yalue I

Setver host name localhost

Server port number 8050

and for Weblogic 6.1.beta Application Server:

BEA WebLogic 6.1 beta - "Run-time Registering Web 5 p x|
 Name | vaue
Server host name localhost
Server port numkber Foo
Wb Service context Ay Context
Protocaol http
Server root directary O begwylzervert 1 _beta'configimydomain =

7. Click Finish. According to your option selections, Together can handle interaction with the
compiler to compile classes, generate the XML deployment descriptors, and register web
services on the target application server.

See also

Web Services Expert

544

A

Activity diagram, 173
Actor, 181

anti-alias, 125
Apache, 539

API, 504

applet, 429
architecture, 21
Association, 149
attribute, 211
attribute group, 211
audits, 340, 418

B

banned destination, 110
bean properties, 289
Beaninfo, 289
bidirectional link, 121
blueprint, 281
bookmark, 243
bound, 289
breakpoints

in Debugger, 270

in Editor, 243

building block, 506, 508, 511, 514

bundled, 26

Business Process diagram, 181

C

C#, 349

C++, 234, 241

C++ metrics, 349
class, 149

Class diagram, 149
clone, 127

code, 281

Index

code sense, 243

code template, 277, 281, 284
Collaboration diagram, 158
command line, 64, 69, 338, 418
compartment, 157

compile, 261

complex type, 211

Compoment diagram, 177
Composite, 164

compositor, 211

configuration, 46, 47, 52, 57, 61, 265, 524,
525, 527, 531

constrained, 289

context help, 243

Continuus, 106

control center, 21

copy, 127

copyright, 18

creating, 81, 119, 429

code template, 281, 284
diagrams, 119, 145
documentation, 309

EJB, 442

JSP test client, 461
message-driven Bean, 486
projects, 81

saved metrics/audits set, 340
shared configuration, 47
Crow Feet, 185, 211

custom properties, 41, 134, 527
custom template name, 281

customization, 46, 47, 52, 57, 61, 265, 524,
525, 527, 531

CVS, 98

D E

data modeling, 185 early access, 26

data type, 211 editing, 136

DDL, 89 Editor, 35, 219, 243
debug, 268, 429, 433, 435 EJB, 188, 437, 442, 496
DefDocComments, 241 debug, 493
dependencies, 132 enable condition, 291
Deployment, 179, 201, 207, 449 enterprise application diagram, 207
DG, 290 entity, 211

diagrams, 37, 119, 121, 164 Entity bean, 442
annotating, 141 ER, 145, 146, 149, 158, 169, 173, 177, 185
creating, 119, 531 error page, 201

custom type, 533 evaluate, 273

editing, 133 event, 289

hyperlinking, 137 Explorer, 30

initial, 80 export, 89, 94, 218
layout, 130 extract method, 347
opening, 133 F

printing, 143 Favorites, 30

Together types, 181, 183, 185, 188, 201, feature, 25, 26

207, 211 filter, 525

l1J7IVI7L :);%es, 145, 146, 149, 158, 169, 173, find, 131

Diagrams tab, 30 find location, 30
dialogs, 531 first class citizen, 129
diff, 98 folder section, 291

Directory tab, 30 formatting, 61

display range, 275 frame, 275
distributed, 429 G
DocGen, 290 generate, 164, 267, 290
documentation, 290 graph, 340
automated, 338 grid, 121
multi-frame HTML, 309 H
helper, 209

template design, 291, 295, 322, 325
Together, 15
drag and drop, 127

home/remote interface, 442

how to, 301, 435, 453, 454, 467, 468, 470,
473, 475, 479, 483, 486

full drag and drop support, 127 HTML, 259, 309

DTD interchange, 218

hyperlink, 137

I

IDE, 504

IDEF1X, 185, 211

IDL, 26, 94, 281

IE, 185, 211

image

BMP, 142

copy image, 142
copy-paste, 142

save image, 142

SVG, 142

WMF, 142

import, 89, 218

initial diagram, 80
Inspector, 41, 134, 527
interface, 149

iterator, 291

J

J2EE, 424, 428

J2EE module import, 428
java beans, 289
JDBC, 89

JSP, 259, 433, 435, 461, 483
JUnit, 420

K

keyboard, 75, 76
Kiviat graph, 340

L

label, 121
language, 230, 231, 349
layout, 130

link, 137

links, 121

bending, 121
dependency links, 149
link to self, 121

wrap, 121

logical view, 185

M

macros, 71, 74

make, 261, 267

makefile, 267

mapping, 201

message driven bean, 486
metamodel, 291

metrics, 340, 418

model, 30, 94

modeling, 116, 118
module, 506, 508, 511, 514
mouse wheel, 61
multi-level, 46

multi-user, 47

N

notation, 185, 211

O

options, 46, 47, 52, 57, 61, 265, 524, 525,

527, 531

P

package, 132

Package diagram, 149
pane, 35, 37, 39

pattern, 285

applying EJB to class, 442
PDF, 290

persistence, 183

physical view, 185
platform, 21

primary key, 442

principal, 201

printing, 143

processing instruction, 211
project, 80, 81, 87, 119, 290
property, 134, 527

PVCS, 106

Q

QA, 340, 418

quality assurance, 340, 418
R

refactoring, 347
relationship link, 121
remote interface, 442
replace, 131

resize, 127

reusable attribute, 211
reverse engineering, 428
Robustness diagram, 183
role, 114

round-trip, 21

round-trip engineering, 21
rt.jar, 81

RTF, 64, 290, 291, 338
run, 265

RWI, 504

S

sample, 301, 435, 453, 454, 467, 468, 470,
473, 475, 479, 483, 486

saved desktop, 37

SCC, 98, 106

SCl, 504

SDE, 129

search, 131

security constraint, 201
Sequence diagram, 158, 164
Serializable, 289

servlet, 429

Session bean, 442

session timeout, 201
shortcut, 121

simultaneous round-trip engineering, 21
Singleton, 164

sinppets, 61

shippet, 243

solo, 21

split pane, 243

standalone design element, 129
standalone formatter, 64

Start WebLogic, 449

StarTeam, 106

Statechart diagram, 169

step by step, 301, 435, 453, 454, 467, 468,
470, 473, 475, 479, 483, 486

stock section, 291

T

tag library helper, 209
taglib, 491

taglib diagram, 209
template, 281
template class, 149
template macros, 74
testing, 420

thread, 275

Tomcat, 433

tools, 52

tools parameters, 71
trademark, 18

u

UML, 145, 146, 149, 158, 169, 173, 177,
185

update, 132

Use Case diagram, 146

User Interface, 27, 30, 41, 45, 114
\Y%

VB6, 349

version control, 98, 106

view management, 110, 112

W

watch, 275

web application diagram, 201

web service, 539
welcome, 201
work role, 114

X

XM, 89

XML, 211, 219

XP, 420, 421
XSD, 211

z

zone, 291

zoom, 76

		2001-09-13T16:47:37+0300
	St. Petersburg
	Together Documentation Team
	Document is released

