CVS--Concurrent Versions System - Table of Contents

CVS--Concurrent Versions System

o 1. Overview
o 1.1WhatisCVS?
o 1.2WhatisCVSnot?
o 1.3 A sample session
» 1.3.1 Getting the source
= 1.3.2 Committing your changes

= 1.3.3 Cleaning up

s 1.3.4 Viewing differences

e 2. The Repository

o 2.1 Teling CVS where your repository is

o 2.2 How datais stored in the repository

n 2.2.1 Wherefiles are stored within the repository

s 2.2.2 File permissions

s 2.2.3 File Permission issues specific to Windows
n 2.2.4 Theattic
s 2.2.5 The CVSdirectory in the repository

= 2.2.6 CVSlocksin the repository

n 2.2.7 How files are stored in the CVSROQT directory
o 2.3 How datais stored in the working directory
o 2.4 Theadministrative files

= 2.4.1 Editing administrative files
o 2.5 Multiple repositories

o 2.6 Creating a repository

o 2.7 Backing up a repository

o 2.8 Moving arepository

o 2.9 Remote repositories

s 2.9.1 Server requirements
s 2.9.2 Connecting with rsh
s 2.9.3 Direct connection with password authentication

s 2.9.3.1 Setting up the server for password authentication

http://www.cvshome.org/docs/manual/cvs_toc.html (1 of 6) [10/27/2000 2:27:56 PM]

CVS--Concurrent Versions System - Table of Contents

s 2.9.3.2 Using the client with password authentication

s 2.9.3.3 Security considerations with password authentication
s 2.9.4 Direct connection with GSSAPI
s 2.9.5 Direct connection with kerberos

= 2.9.6 Connecting with fork

o 2.10 Read-only repository access

o 2.11 Temporary directories for the server
o 3. Starting a project with CVS
o 3.1 Setting up thefiles
= 3.1.1 Creating a directory tree from a number of files
= 3.1.2 Creating Files From Other Version Control Systems
= 3.1.3 Creating a directory tree from scratch
o 3.2 Defining the module
e 4. Revisions

0 4.1 Revision numbers

o 4.2 Versions, revisions and rel eases

0 4.3 Assigning revisions

0 4.4 Tags--Symbolic revisions

o 4.5 Specifying what to tag from the working directory

0 4.6 Specifying what to tag by date or revision

o 4.7 Deleting, moving, and renaming tags

o 4.8 Tagaing and adding and removing files
o 4.9 Sticky tags
« 5. Branching and merging

o 5.1 What branches are good for
0 5.2 Creating abranch
o 5.3 Accessing branches

o 5.4 Branches and revisions

o 5.5 Magic branch numbers

o 5.6 Merging an entire branch

o 5.7 Merging from a branch severa times

o 5.8 Merging differences between any two revisions

o 5.9 Merging can add or remove files

http://www.cvshome.org/docs/manual/cvs_toc.html (2 of 6) [10/27/2000 2:27:56 PM]

CVS--Concurrent Versions System - Table of Contents

o 5.10 Merging and keywords

e 6. Recursive behavior

e 7. Adding, removing, and renaming files and directories

o 7.1 Adding filesto adirectory

o 7.2 Removing files

o 7.3 Removing directories

o 7.4 Moving and renaming files

s 7.4.1 The Normal way to Rename
s 7.4.2 Moving the history file
s 7.4.3 Copying the history file

o 7.5 Moving and renaming directories

« 8. History browsing
o 8.1 Log messages
o 8.2 The history database
o 8.3 User-defined logging
o 8.4 Annotate command

e 9. Handling binary files

o 9.1 Theissues with binary files

o 9.2 How to store binary files

o 10. Multiple developers
o 10.1 File status
o 10.2 Bringing afile up to date

o 10.3 Conflicts example

o 10.4 Informing others about commits

o 10.5 Severa developers simultaneoudly attempting to run CVS

o 10.6 Mechanisms to track who is editing files
= 10.6.1 Telling CVSto watch certain files
= 10.6.2 Telling CV Sto notify you
= 10.6.3 How to edit afile which is being watched
= 10.6.4 Information about who is watching and editing
= 10.6.5 Using watches with old versions of CVS
o 10.7 Choosing between reserved or unreserved checkouts

« 11. Revision management

http://www.cvshome.org/docs/manual/cvs_toc.html (3 of 6) [10/27/2000 2:27:56 PM]

CVS--Concurrent Versions System - Table of Contents

o 11.1 When to commit?
« 12. Keyword substitution

o 12.1 Keyword List

0 12.2 Using keywords

o 12.3 Avoiding substitution

o 12.4 Substitution modes

0 12.5 Problems with the $@asis{ } L og$ keyword.
« 13. Tracking third-party sources

o 13.1 Importing for the first time

o 13.2 Updating with the import command

0 13.3 Reverting to the latest vendor release

o 13.4 How to handle binary files with cvs import

o 13.5 How to handle keyword substitution with cvs import

o 13.6 Multiple vendor branches

e 14. How your build system interacts with CVS
o 15. Special Files
e A. Guideto CVS commands
o A.l Overdl structure of CVS commands
o A.2 CVSsexit status
o A.3 Default options and the ~/.cvsrcfile
o A.4 Global options
0 A.5 Common command options
o A.6 admin--Administration
= A.6.1 admin options

o A.7 checkout--Check out sources for editing

= A.7.1 checkout options

s A.7.2 checkout examples

o A.8 commit--Check files into the repository

= A.8.1 commit options

s A.8.2 commit examples

s A.8.2.1 Committing to a branch
s A.8.2.2 Creating the branch after editing
o A.9 diff--Show differences between revisions

http://www.cvshome.org/docs/manual/cvs_toc.html (4 of 6) [10/27/2000 2:27:56 PM]

CVS--Concurrent Versions System - Table of Contents
= A.9.1diff options
= A.9.2diff examples

o A.10 export--Export sources from CVS, similar to checkout

= A.10.1 export options

o A.11 history--Show status of files and users
= A.11.1 history options
A.12 import--lmport sources into CV'S, using vendor branches

O

= A.12.1 import options

s A.12.2 import output

s A.12.3 import examples

A.13 log--Print out log information for files

O

= A.13.1l0qg options

= A.13.2log examples

o A.14 rdiff---'patch’ format diffs between releases
= A.14.1 rdiff options
= A.14.2 rdiff examples

o A.15 release--Indicate that aModule is no longer in use

s A.15.1 release options

s A.15.2 release output

s A.15.3 release examples

A.16 update--Bring work tree in sync with repository
= A.16.1 update options
= A.16.2 update output

o B. Quick reference to CVS commands

O

o C. Reference manual for Administrative files
o C.1 The modulesfile
s C.1.1 Alias modules

s C.1.2 Regular modules

s C.1.3 Ampersand modules

s C.1.4 Excluding directories
C.1.5 Module options
= C.1.6 How the modulesfile "program options' programs are run

o C.2 The cvswrappersfile

http://www.cvshome.org/docs/manual/cvs_toc.html (5 of 6) [10/27/2000 2:27:56 PM]

CVS--Concurrent Versions System - Table of Contents

o C.3 The commit support files

= C.3.1 The common syntax

o C.4 Commitinfo
o C.5 Verifying log messages
o C.6 Editinfo
= C.6.1 Editinfo example

o C.7 Loginfo
s C.7.1 Loginfo example

= C.7.2 Keeping a checked out copy
o C.8Rcsinfo
o C.9Ignoring files viacvsignore
o C.10 The checkoutlist file
o C.11 The history file
o C.12 Expansionsin administrative files
o C.13 The CVSROQT/config configuration file
D. All environment variables which affect CVS
E. Compatibility between CVS Versions
o F. Troubleshooting
o F.1 Partia list of error messages

0 F.2 Trouble making a connection to a CV S server

o F.3 Other common problems
G. Credits
H. Dealing with bugsin CV'S or this manual
o Index

This document was generated on 2 October 2000 using texi2html 1.56k.

http://www.cvshome.org/docs/manual/cvs_toc.html (6 of 6) [10/27/2000 2:27:56 PM]

http://wwwinfo.cern.ch/dis/texi2html/

CVS--Concurrent Versions System - 1. Overview

Go to thefirst, previous, next, last section, table of contents.

Version Management with CVSfor CVS 1.11 Per Cederqvist et a
Copyright (C) 1992, 1993 Signum Support AB

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided also that the entire resulting derived work is distributed under the terms of a
permission notice identical to thisone.

Permission is granted to copy and distribute trandlations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in atrandlation
approved by the Free Software Foundation.

1. Overview

This chapter isfor people who have never used CV'S, and perhaps have never used version control
software before.

If you are already familiar with CVS and are just trying to learn a particular feature or remember a
certain command, you can probably skip everything here.

1.1 What is CVS?

CVSisaversion control system. Using it, you can record the history of your source files.

For example, bugs sometimes creep in when software is modified, and you might not detect the bug until
along time after you make the modification. With CV'S, you can easily retrieve old versionsto see
exactly which change caused the bug. This can sometimes be a big help.

Y ou could of course save every version of every file you have ever created. This would however waste
an enormous amount of disk space. CVS stores all the versions of afilein asinglefilein aclever way
that only stores the differences between versions.

CVSadso helpsyou if you are part of agroup of people working on the same project. It isall too easy to
overwrite each others changes unless you are extremely careful. Some editors, like GNU Emacs, try to
make sure that the same file is never modified by two people at the same time. Unfortunately, if someone
IS using another editor, that safeguard will not work. CV S solves this problem by insulating the different
developers from each other. Every developer worksin his own directory, and CV S merges the work
when each developer is done.

CV S started out as a bunch of shell scripts written by Dick Grune, posted to the newsgroup
conp. sour ces. uni x inthe volume 6 release of December, 1986. While no actual code from these

http://www.cvshome.org/docs/manual/cvs_1.html (1 of 6) [10/27/2000 2:27:02 PM]

CVS--Concurrent Versions System - 1. Overview

shell scriptsis present in the current version of CVS much of the CV S conflict resolution algorithms
come from them.

In April, 1989, Brian Berliner designed and coded CV S. Jeff Polk later helped Brian with the design of
the CV S module and vendor branch support.

You can get CVSinavariety of ways, including free download from the internet. For more information
on downloading CV S and other CV Stopics, see:

http://ww. cvshone. or g/
http://ww. loria.fr/~nolli/cvs-index.htm

Thereisamailing list, known asi nf 0- cvs, devoted to CVS. To subscribe or unsubscribe write to
i nf o-cvs-request @nu. or g. If you prefer a usenet group, the right group is

conp. sof t war e. confi g- ngnm which isfor CVS discussions (along with other configuration
management systems). In the future, it might be possible to create a

conp. sof t war e. confi g- ngnt . cvs, but probably only if there is sufficient CV S traffic on
conp. sof t ware. confi g-ngnt .

Y ou can also subscribe to the bug-cvs mailing list, described in more detail in section H. Dealing with
bugsin CVS or this manual. To subscribe send mail to bug-cvs-request@gnu.org.

1.2 What is CVS not?

CVScan do alot of things for you, but it does not try to be everything for everyone.
CVSisnot abuild system.

Though the structure of your repository and modules file interact with your build system (e.g.
“Makefil e's), they are essentially independent. CV S does not dictate how you build anything.
It merely storesfilesfor retrieval in atree structure you devise. CV S does not dictate how to use
disk space in the checked out working directories. If you write your = Makef i | €' sor scriptsin
every directory so they have to know the relative positions of everything else, you wind up
requiring the entire repository to be checked out. If you modularize your work, and construct a
build system that will share files (vialinks, mounts, VPATHIn = Makefi | e' s, etc.), you can
arrange your disk usage however you like. But you have to remember that any such systemisalot
of work to construct and maintain. CV S does not address the issues involved. Of course, you
should place the tools created to support such abuild system (scripts, - Makefi | e' s, etc) under
CVS. Figuring out what files need to be rebuilt when something changesis, again, something to be
handled outside the scope of CVS. One traditional approach isto use make for building, and use
some automated tool for generating the dependencies which make uses. See section 14. How your

build system interacts with CV'S, for more information on doing builds in conjunction with CVS.

CVSisnot a substitute for management.

Y our managers and project leaders are expected to talk to you frequently enough to make certain
you are aware of schedules, merge points, branch names and release dates. If they don't, CV'S can't
help. CVSisan instrument for making sources dance to your tune. But you are the piper and the

http://www.cvshome.org/docs/manual/cvs_1.html (2 of 6) [10/27/2000 2:27:02 PM]

CVS--Concurrent Versions System - 1. Overview
composer. No instrument plays itself or writesits own music.
CVSisnot asubstitute for developer communication.

When faced with conflicts within asingle file, most devel opers manage to resolve them without
too much effort. But amore genera definition of "conflict" includes problems too difficult to solve
without communication between developers. CV S cannot determine when simultaneous changes
within asinglefile, or across awhole collection of files, will logically conflict with one ancther.
Its concept of aconflict is purely textual, arising when two changes to the same base file are near
enough to spook the merge (i.e. di f f 3) command. CV 'S does not claim to help at al in figuring
out non-textual or distributed conflictsin program logic. For example: Say you change the
argumentsto function X defined infile ™ A’ . At the same time, someone editsfile ™ B' , adding
new callsto function X using the old arguments. Y ou are outside the realm of CVS's competence.
Acquire the habit of reading specs and talking to your peers.

CV S does not have change control

Change control refersto a number of things. First of al it can mean bug-tracking, that is being
able to keep a database of reported bugs and the status of each one (isit fixed? in what release? has
the bug submitter agreed that it is fixed?). For interfacing CV S to an external bug-tracking system,
seethe rcsinfo' and verifynmsg' files(see section C. Reference manual for
Administrative files). Another aspect of change control is keeping track of the fact that changes to
severa fileswerein fact changed together as one logical change. If you check in severa filesina
singlecvs conmm t operation, CV S then forgets that those files were checked in together, and
the fact that they have the same log message is the only thing tying them together. Keeping a GNU
style” ChangelLog' can help somewhat. Another aspect of change control, in some systems, is
the ability to keep track of the status of each change. Some changes have been written by a

devel oper, others have been reviewed by a second devel oper, and so on. Generally, the way to do
thiswith CVSisto generate adiff (usingcvs di ff ordi ff) and email it to someone who can
then apply it using the pat ch utility. Thisis very flexible, but depends on mechanisms outside
CV S to make sure nothing falls through the cracks.

CVSisnot an automated testing program

It should be possible to enforce mandatory use of atestsuite using theconm t i nf o file. | haven't
heard a ot about projects trying to do that or whether there are subtle gotchas, however.

CV S does not have a builtin process model

Some systems provide ways to ensure that changes or releases go through various steps, with
various approvals as needed. Generally, one can accomplish thiswith CV S but it might be alittle
more work. In some cases you'll want tousethe comm tinfo', | oginfo', rcsinfo',
or “verifynsg' files, torequirethat certain steps be performed before cvs will allow a checkin.
Also consider whether features such as branches and tags can be used to perform tasks such as
doing work in a development tree and then merging certain changes over to a stable tree only once
they have been proven.

http://www.cvshome.org/docs/manual/cvs_1.html (3 of 6) [10/27/2000 2:27:02 PM]

CVS--Concurrent Versions System - 1. Overview

1.3 A sample session

Asaway of introducing CVS, we'll go through atypical work-session using CVS. Thefirst thing to
understand isthat CV S stores all filesin a centralized repository (see section 2. The Repository); this

section assumes that arepository is set up.

Suppose you are working on a simple compiler. The source consists of a handful of C filesand a
“Makefil e' . Thecompileriscaled ‘tc' (Trivial Compiler), and the repository is set up so that thereis
amodule called “tc'.

1.3.1 Getting the source

Thefirst thing you must do isto get your own working copy of the source for "tc'. For this, you use the
checkout command:

$ cvs checkout tc
Thiswill create anew directory called "t ¢' and populate it with the source files.
$cdtc

$1s
CVS Makefil e backend. c driver.c frontend.c parser.c

The ™ CVS' directory isused internally by CVS. Normally, you should not modify or remove any of the
filesinit.

Y ou start your favorite editor, hack away at ~ backend. ¢' , and a couple of hours later you have added
an optimization pass to the compiler. A note to RCS and SCCS users: Thereis no need to lock the files
that you want to edit. See section 10. M ultiple developers, for an explanation.

1.3.2 Committing your changes

When you have checked that the compiler is still compilable you decide to make anew version of
“backend. c¢' . Thiswill storeyour new " backend. c' intherepository and make it available to
anyone else who is using that same repository.

$ cvs commt backend.c

CV S starts an editor, to allow you to enter alog message. Y ou type in "Added an optimization pass.”,
save the temporary file, and exit the editor.

The environment variable $CVSEDI TOR determines which editor is started. If $CVSEDI TOR s not set,
then if the environment variable $EDI TOR is set, it will be used. If both $CVSEDI TOR and $EDI TOR
are not set then there is a default which will vary with your operating system, for example vi for unix or
not epad for Windows NT/95.

http://www.cvshome.org/docs/manual/cvs_1.html (4 of 6) [10/27/2000 2:27:02 PM]

CVS--Concurrent Versions System - 1. Overview

In addition, CV'S checks the $VI SUAL environment variable. Opinions vary on whether this behavior is
desirable and whether future releases of CV'S should check $VI SUAL or ignoreit. Y ou will be OK either
way if you make sure that $VI SUAL is either unset or set to the same thing as $EDI TOR.

When CV S starts the editor, it includes alist of files which are modified. For the CVSclient, thislist is
based on comparing the modification time of the file against the modification time that the file had when
it was last gotten or updated. Therefore, if afile's modification time has changed but its contents have
not, it will show up as modified. The simplest way to handle thisis simply not to worry about it--if you
proceed with the commit CV S will detect that the contents are not modified and treat it as an unmodified
file. The next updat e will clue CVSin to the fact that the file is unmodified, and it will reset its stored
timestamp so that the file will not show up in future editor sessions.

If you want to avoid starting an editor you can specify the log message on the command line using the
“-m' flag instead, like this:

$ cvs commt -m "Added an optim zation pass"” backend.c

1.3.3 Cleaning up

Before you turn to other tasks you decide to remove your working copy of tc. One acceptable way to do
that is of course

$ cd ..
$rm-r tc

but a better way isto usether el ease command (see section A.15 release--Indicate that a Module is no
longer in use):

$cd..

$ cvs release -d tc

M driver.c

? tc

You have [1] altered files in this repository.

Are you sure you want to release (and delete) directory "tc':
** “rel ease' aborted by user choice.

n

Ther el ease command checks that all your modifications have been committed. If history logging is
enabled it also makes a note in the history file. See section C.11 The history file.

When you use the "-d' flag with r el ease, it aso removes your working copy.

In the example above, ther el ease command wrote a couple of lines of output. “? tc' means that the file
“tc' isunknownto CVS. That is nothing to worry about: "t ¢' isthe executable compiler, and it
should not be stored in the repository. See section C.9 Ignoring files via cvsignore, for information about

how to make that warning go away. See section A.15.2 release output, for a complete explanation of all
possible output fromr el ease.

http://www.cvshome.org/docs/manual/cvs_1.html (5 of 6) [10/27/2000 2:27:02 PM]

CVS--Concurrent Versions System - 1. Overview

"M driver.c' ismore serious. It meansthat thefile dri ver . ¢' hasbeen modified since it was checked
out.

Ther el ease command always finishes by telling you how many modified files you have in your
working copy of the sources, and then asks you for confirmation before deleting any files or making any
note in the history file.

Y ou decideto play it safe and answer n RET whenr el ease asksfor confirmation.

1.3.4 Viewing differences

Y ou do not remember modifying “ dri ver. c', so you want to see what has happened to that file.

$ cdtc
$ cvs diff driver.c

Thiscommand runsdi f f to comparetheversionof ~ dri ver. c' that you checked out with your
working copy. When you see the output you remember that you added a command line option that
enabled the optimization pass. Y ou check it in, and release the module.

$ cvs conmt -m " Added an optim zati on pass" driver.c
Checking in driver.c;

fusr/local/cvsroot/tc/driver.c,v <-- driver.c
new revision: 1.2; previous revision: 1.1

done

$ cd ..

$ cvs release -d tc

? tc

You have [0] altered files in this repository.

Are you sure you want to release (and delete) directory tc': vy

Go to the first, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_1.html (6 of 6) [10/27/2000 2:27:02 PM]

CVS--Concurrent Versions System - 2. The Repository

Go to thefirst, previous, next, last section, table of contents.

2. The Repository

The CV Srepository stores a complete copy of all the files and directories which are under version control.

Normally, you never access any of thefilesin the repository directly. Instead, you use CVS commands to get
your own copy of the files into aworking directory, and then work on that copy. When you've finished a set of
changes, you check (or commit) them back into the repository. The repository then contains the changes which
you have made, as well as recording exactly what you changed, when you changed it, and other such
information. Note that the repository is not a subdirectory of the working directory, or vice versa; they should
be in separate locations.

CV S can access arepository by avariety of means. It might be on the local computer, or it might be on a
computer across the room or across the world. To distinguish various ways to access a repository, the
repository name can start with an access method. For example, the accessmethod : | ocal : meansto access
arepository directory, so therepository : | ocal : / usr/ | ocal / cvsr oot meansthat the repository isin
“/usr/local/cvsroot' onthecomputer running CVS. For information on other access methods, see
section 2.9 Remote repositories.

If the access method is omitted, then if the repository does not contain ', then: | ocal : isassumed. If it
does contain ;' then either : ext : or: server: isassumed. For example, if you have alocal repository in
“/usr/local/cvsroot',youcanuse/ usr/ | ocal/cvsroot instead of

;1 ocal : /usr/local/cvsroot.Butif (under Windows NT, for example) your local repository is
“c:\src\cvsroot',then you must specify the access method, asin: | ocal : ¢c: \ src\cvsroot.

The repository is split in two parts. ~ $CVSROOT/ CVSROOT" contains administrative filesfor CVS. The
other directories contain the actual user-defined modules.

2.1 Telling CVS where your repository Is

There are severa waysto tell CVSwhereto find the repository. Y ou can name the repository on the command
line explicitly, with the - d (for "directory") option:
cvs -d /usr/local/cvsroot checkout yoyodyne/tc

Or you can set the $CVSROOT environment variable to an absolute path to the root of the repository,
“/usr/local/cvsroot' inthisexample. To set $CVSROOT, csh andt csh users should have thisline
intheir . cshrc' or .tcshrc' files

set env CVSROOT /usr/l ocal/cvsroot

sh and bash users should instead have these linesintheir * . profil e' or . bashrc':

CVSROOT=/ usr/ | ocal / cvsr oot
export CVSROOT

http://www.cvshome.org/docs/manual/cvs_2.html (1 of 22) [10/27/2000 2:27:07 PM]

CVS--Concurrent Versions System - 2. The Repository

A repository specified with - d will override the $CVSROOT environment variable. Once you've checked a
working copy out from the repository, it will remember where its repository is (the information is recorded in
the” CVS/ Root ' filein the working copy).

The - d option and the ™ CVS/ Root ' file both override the $CVSROOT environment variable. If - d option
differsfrom ~ CVS/ Root ' , the former is used. Of course, for proper operation they should be two ways of
referring to the same repository.

2.2 How data is stored in the repository

For most purposesit isn't important how CV S stores information in the repository. In fact, the format has
changed in the past, and is likely to change in the future. Sincein almost all cases one accesses the repository
via CV S commands, such changes need not be disruptive.

However, in some cases it may be necessary to understand how CV S stores data in the repository, for example
you might need to track down CV S locks (see section 10.5 Several devel opers simultaneously attempting to

run CVS) or you might need to deal with the file permissions appropriate for the repository.

2.2.1 Where files are stored within the repository

The overall structure of the repository is a directory tree corresponding to the directories in the working
directory. For example, supposing the repository isin

[usr/l ocal/cvsroot

here is a possible directory tree (showing only the directories):

[usr

+--| ocal

+--Ccvsr oot

(source code to CVS)

| +- - CVSROOT
| (administrative files)
|
+--gnu
|
| +--diff
| | (source code to G\U diff)
|
| +--rcCs
| | (source code to RCS)
|
| +--CVS
|
|

http://www.cvshome.org/docs/manual/cvs_2.html (2 of 22) [10/27/2000 2:27:07 PM]

CVS--Concurrent Versions System - 2. The Repository
+- -yoyodyne

+--tc

+- - man

I
|
| +--testing

|

+- - (ot her Yoyodyne software)

With the directories are history files for each file under version control. The name of the history fileisthe
name of the corresponding file with ",v' appended to the end. Here is what the repository for the
“yoyodyne/tc' directory might look like:

$CVSROOT
|
+- -yoyodyne
|
| +--tcC

I | I
+- - Makefil e, v

+- - backend. c, v
+--driver.c, v
+--frontend.c, v
+--parser.c,V
+- - man
I I
| +--tc.1,v
I
+--testing
|
+--testpgmt,v
+--test2.t,v

The history files contain, among other things, enough information to recreate any revision of thefile, alog of
all commit messages and the user-name of the person who committed the revision. The history files are known
as RCSfiles, because the first program to store files in that format was a version control system known as
RCS. For afull description of the file format, see the man page rcsfile(5), distributed with RCS, or thefile
“doc/ RCSFI LES' inthe CVS source distribution. Thisfile format has become very common--many
systems other than CVS or RCS can at least import history filesin this format.

The RCSfilesused in CVSdiffer in afew ways from the standard format. The biggest difference is magic
branches; for more information see section 5.5 Magic branch numbers. Also in CVSthevalid tag names are a

subset of what RCS accepts; for CVS's rules see section 4.4 Tags--Symbolic revisions.

http://www.cvshome.org/docs/manual/cvs_2.html (3 of 22) [10/27/2000 2:27:07 PM]

CVS--Concurrent Versions System - 2. The Repository

2.2.2 File permissions

All "v' files are created read-only, and you should not change the permission of those files. The directories
inside the repository should be writable by the persons that have permission to modify the filesin each
directory. This normally means that you must create a UNIX group (see group(5)) consisting of the persons
that are to edit the filesin a project, and set up the repository so that it is that group that owns the directory.

This means that you can only control access to files on a per-directory basis.

Note that users must also have write access to check out files, because CV S needs to create lock files (see
section 10.5 Several developers simultaneously attempting to run CVS).

Also note that users must have write access to the " CVSROOT/ val -t ags' file. CVSusesit to keep track of
what tags are valid tag names (it is sometimes updated when tags are used, as well as when they are created).

Each RCSfile will be owned by the user who last checked it in. This has little significance; what really
matters is who owns the directories.

CV Striesto set up reasonable file permissions for new directories that are added inside the tree, but you must
fix the permissions manually when a new directory should have different permissions than its parent directory.
If you set the CVSUMASK environment variable that will control the file permissions which CVSusesin
creating directories and/or filesin the repository. CVSUMASK does not affect the file permissionsin the
working directory; such files have the permissions which are typical for newly created files, except that
sometimes CV S creates them read-only (see the sections on watches, section 10.6.1 Telling CV S to watch
certain files; -r, section A.4 Global options; or CVSREAD, section D. All environment variables which affect

cVS).

Note that using the client/server CV 'S (see section 2.9 Remote repositories), there is no good way to set
CVSUMASK; the setting on the client machine has no effect. If you are connecting with r sh, you can set
CVSUMASK in " . bashrc' or . cshrc', asdescribed in the documentation for your operating system.
This behavior might change in future versions of CV'S; do not rely on the setting of CVSUMASK on the client
having no effect.

Using pserver, you will generally need stricter permissions on the CVSROQOT directory and directories above
it in the tree; see section 2.9.3.3 Security considerations with password authentication.

Some operating systems have features which allow a particular program to run with the ability to perform
operations which the caller of the program could not. For example, the set user ID (setuid) or set group 1D
(setgid) features of unix or the installed image feature of VM S. CV S was not written to use such features and
therefore attempting to install CV Sin this fashion will provide protection against only accidental |apses;
anyone who is trying to circumvent the measure will be able to do so, and depending on how you have set it
up may gain access to more than just CVS. Y ou may wish to instead consider pserver. It shares some of the
same attributes, in terms of possibly providing afalse sense of security or opening security holes wider than
the ones you are trying to fix, so read the documentation on pserver security carefully if you are considering
this option (section 2.9.3.3 Security considerations with password authentication).

http://www.cvshome.org/docs/manual/cvs_2.html (4 of 22) [10/27/2000 2:27:07 PM]

CVS--Concurrent Versions System - 2. The Repository

2.2.3 File Permission issues specific to Windows

Some file permission issues are specific to Windows operating systems (Windows 95, Windows NT, and
presumably future operating systems in this family. Some of the following might apply to OS/2 but I'm not
sure).

If you are using local CV S and the repository is on a networked file system which is served by the Samba
SMB server, some people have reported problems with permissions. Enabling WRITE=Y ES in the samba
configuration is said to fix/workaround it. Disclaimer: | haven't investigated enough to know the implications
of enabling that option, nor do | know whether there is something which CV S could be doing differently in
order to avoid the problem. If you find something out, please let us know as described in section H. Dealing

with bugsin CV S or this manual.

2.2.4 The attic

Y ou will notice that sometimes CV S stores an RCSfileinthe At t i c. For example, if the CVSROOT is
“/usr/local/cvsroot' andwearetalking about thefile” backend. ¢' inthe directory
“yoyodyne/tc',thenthefile normally would bein

/usr/ | ocal /cvsroot/yoyodyne/tc/backend.c, v

but if it goesin the attic, it would bein

/usr/local /cvsroot/yoyodyne/tc/Attic/backend.c, vV

instead. It should not matter from a user point of view whether afileisin the attic; CV S keeps track of this
and looks in the attic when it needs to. But in case you want to know, the rule is that the RCSfileis stored in
the attic if and only if the head revision on the trunk has state dead. A dead state means that file has been
removed, or never added, for that revision. For example, if you add afile on abranch, it will have atrunk
revisonin dead state, and a branch revision in anon-dead state.

2.2.5 The CVS directory in the repository

The ™ CVS' directory in each repository directory contains information such asfile attributes (in afile called
"CVS/fileattr'.Inthefutureadditiona files may be added to this directory, so implementations should
silently ignore additional files.

This behavior isimplemented only by CVS 1.7 and later; for details see section 10.6.5 Using watches with old
versions of CVS.

The format of the fileattr file is a series of entries of the following form (where *{' and "}' means the text
between the braces can be repeated zero or more times):

ent-type filename <tab> attrname = attrval {; attrname = attrval} <linefeed>
ent-typeis F for afile, in which case the entry specifies the attributes for that file.
ent-typeis D', and filename empty, to specify default attributes to be used for newly added files.

Other ent-type are reserved for future expansion. CVS 1.9 and older will delete them any time it writesfile

http://www.cvshome.org/docs/manual/cvs_2.html (5 of 22) [10/27/2000 2:27:07 PM]

CVS--Concurrent Versions System - 2. The Repository

attributes. CVS 1.10 and later will preserve them.

Note that the order of the linesis not significant; a program writing the fileattr file may rearrange them at its
convenience.

Thereis currently no way of quoting tabs or linefeeds in the filename, "=' in attrname, *;" in attrval, etc. Note:
some implementations also don't handle aNUL character in any of the fields, but implementations are
encouraged to alow it.

By convention, attrname starting with °~_" isfor an attribute given special meaning by CV'S; other attrnames are
for user-defined attributes (or will be, once implementations start supporting user-defined attributes).

Builtin attributes:
_wat ched

Present means the file is watched and should be checked out read-only.
_wat chers

Users with watches for thisfile. Value iswatcher > type{ , watcher > type} where watcher isa
username, and type is zero or more of edit,unedit,commit separated by "+ (that is, nothing if none; there
Isno "none" or "al" keyword).

_editors

Users editing thisfile. Valueis editor > val { , editor > val } where editor is ausername, and val is
time+hostname+pathname, wheretimeiswhenthecvs edi t command (or equivalent) happened,
and hostname and pathname are for the working directory.

Example:

Ffilel _watched=; watchers=joe>edit, mary>conm t
Ffile2 watched=; editors=sue>8 Jan 1975+wor kst n1+/ hone/ sue/ cvs
D wat ched=

meansthat thefile fi | el' should be checked out read-only. Furthermore, joe is watching for edits and
mary is watching for commits. Thefile fi | e2"' should be checked out read-only; sue started editing it on 8
Jan 1975 in the directory " / hone/ sue/ cvs' onthe machinewor kst nl. Future files which are added
should be checked out read-only. To represent this example here, we have shown a space after "D, "Ffilel,
and "Ffile2', but in fact there must be a single tab character there and no spaces.

2.2.6 CVS locks in the repository

For an introduction to CV S locks focusing on user-visible behavior, see section 10.5 Severa developers
simultaneously attempting to run CV'S. The following section is aimed at people who are writing tools which

want to access a CV S repository without interfering with other tools acessing the same repository. If you find
yourself confused by concepts described here, like read lock, write lock, and deadlock, you might consult the
literature on operating systems or databases.

Any filein the repository with a name starting with ~ #cvs. rfl . ' isaread lock. Any file in the repository
with a name starting with ~ #cvs. wf | ' isawritelock. Old versions of CVS (before CVS 1.5) also created
fileswith names starting with ~ #cvs. t f | ', but they are not discussed here. The directory ™ #cvs. | ock’
serves as a master lock. That is, one must obtain this lock first before creating any of the other locks.

http://www.cvshome.org/docs/manual/cvs_2.html (6 of 22) [10/27/2000 2:27:07 PM]

CVS--Concurrent Versions System - 2. The Repository

To obtain areadlock, first createthe ™ #cvs. | ock' directory. This operation must be atomic (which should
be true for creating a directory under most operating systems). If it fails because the directory already existed,
wait for awhile and try again. After obtaining the " #cvs. | ock' lock, create afile whose nameis
“#cevs.rfl . followed by information of your choice (for example, hostname and process identification
number). Then removethe " #cvs. | ock' directory to release the master lock. Then proceed with reading
the repository. When you are done, removethe ™ #cvs. rf 1" fileto release the read lock.

To obtain awritelock, first createthe ™ #cvs. | ock' directory, aswith areadlock. Then check that there are
no fileswhose names start with ~ #cvs. rfl . ' . If thereare, remove ™ #cvs. | ock' , wait for awhile, and
try again. If there are no readers, then create afile whose nameis ™ #cvs. wf | ' followed by information of
your choice (for example, hosthame and process identification number). Hang onto the ™ #cvs. | ock' lock.
Proceed with writing the repository. When you are done, first removethe " #cvs. wf |l ' file and then the
“#cvs. | ock' directory. Notethat unlikethe ™ #cvs. rfl " file the #cvs. wf ' fileisjust
informational; it has no effect on the locking operation beyond what is provided by holding on to the

“#cvs. | ock' lock itself.

Note that each lock (writelock or readlock) only locks a single directory in the repository, including " At ti c'
and " CVS' but not including subdirectories which represent other directories under version control. To lock
an entire tree, you need to lock each directory (note that if you fail to obtain any lock you need, you must

rel ease the whole tree before waiting and trying again, to avoid deadl ocks).

Note also that CV S expects writelocks to control accessto individua ™ f 0o, v' files. RCS has a scheme
wherethe ", f 00, ' fileservesasalock, but CVS does not implement it and so taking out a CV S writelock is
recommended. See the comments at rcs_internal_|lockfile in the CV S source code for further
discussion/rationale.

2.2.7 How files are stored in the CVSROQOT directory

The " $CVSROOT/ CVSROOT" directory contains the various administrative files. In some ways this directory
isjust like any other directory in the repository; it contains RCS files whose names end in *,v', and many of the
CV S commands operate on it the same way. However, there are afew differences.

For each administrative file, in addition to the RCSfile, there is also a checked out copy of thefile. For
example, thereisan RCSfile " | ogi nf o, v' and afile | ogi nf o' which contains the latest revision
contained in " | ogi nf o, v' . When you check in an administrative file, CV S should print

cvs commt: Rebuilding admnistrative file database

and update the checked out copy in ~ $CVSROOT/ CVSROOT" . If it does not, there is something wrong (see
section H. Dealing with bugsin CV S or this manual). To add your own files to the files to be updated in this

fashion, you can add themtothe " checkout | i st' administrative file (see section C.10 The checkoultlist
file).

By default, the " nodul es' file behaves as described above. If the modulesfileisvery large, storing it asa
flat text file may make looking up modules slow (I'm not sure whether thisis as much of a concern now as
when CV Sfirst evolved thisfeature; | haven't seen benchmarks). Therefore, by making appropriate edits to the
CV S source code one can store the modules file in a database which implements the ndbminterface, such as
Berkeley db or GDBM. If this option isin use, then the modul es database will be stored in the files

“nmodul es. db', " nodul es. pag' ,and/or " nodul es. dir'.

http://www.cvshome.org/docs/manual/cvs_2.html (7 of 22) [10/27/2000 2:27:07 PM]

CVS--Concurrent Versions System - 2. The Repository

For information on the meaning of the various administrative files, see section C. Reference manual for
Administrative files.

2.3 How data is stored in the working directory

While we are discussing CV S internals which may become visible from time to time, we might as well talk
about what CVS putsinthe ™ CVS' directories in the working directories. As with the repository, CVS
handles this information and one can usually accessit via CV'S commands. But in some cases it may be useful
to look at it, and other programs, such asthej CVS graphical user interface or the VC package for emacs, may
need to look at it. Such programs should follow the recommendations in this section if they hope to be able to
work with other programs which use those files, including future versions of the programs just mentioned and
the command-line CV S client.

The™ CVS' directory contains several files. Programs which are reading this directory should silently ignore
fileswhich are in the directory but which are not documented here, to allow for future expansion.

The files are stored according to the text file convention for the system in question. This means that working
directories are not portable between systems with differing conventions for storing text files. Thisis
intentional, on the theory that the files being managed by CV S probably will not be portable between such
systems either.
" Root'
Thisfile contains the current CV Sroot, as described in section 2.1 Telling CV S where your repository
is.

" Repository'
Thisfile contains the directory within the repository which the current directory corresponds with. It can
be either an absolute pathname or arelative pathname; CV S has had the ability to read either format
since at least version 1.3 or so. The relative pathname is relative to the root, and is the more sensible
approach, but the absol ute pathname is quite common and implementations should accept either. For
example, after the command

cvs -d :local:/usr/local/cvsroot checkout yoyodyne/tc
" Root " will contain

-1 ocal :/usr/local/cvsroot
and " Reposi tory' will contain either

/usr/1ocal /cvsroot/yoyodyne/tc
or

yoyodyne/tc
If the particular working directory does not correspond to a directory in the repository, then
" Reposi tory' should contain ™ CVSROOT/ Enpt ydi r ' .
"Entries’
Thisfile lists the files and directories in the working directory. The first character of each line indicates

http://www.cvshome.org/docs/manual/cvs_2.html (8 of 22) [10/27/2000 2:27:07 PM]

CVS--Concurrent Versions System - 2. The Repository

what sort of lineit is. If the character is unrecognized, programs reading the file should silently skip that
line, to allow for future expansion. If the first character is /', then the format is:

/ name/ revi si on/ timestanp[+conflict]/options/tagdate

where [' and ']" are not part of the entry, but instead indicate that the "+ and conflict marker are
optional. name is the name of the file within the directory. revision is the revision that the file in the
working derives from, or "0' for an added file, or *-' followed by arevision for aremoved file.
timestamp is the timestamp of the file at the time that CV S created it; if the timestamp differs with the
actual modification time of the file it means the file has been modified. It is stored in the format used by
the 1SO C asctime() function (for example, "Sun Apr 7 01:29:26 1996"). One may write astring whichis
not in that format, for example, "Result of merge', to indicate that the file should always be considered
to be modified. Thisisnot a special case; to see whether afileis modified a program should take the
timestamp of the file and simply do a string compare with timestamp. If there was a conflict, conflict
can be set to the modification time of the file after the file has been written with conflict markers (see
section 10.3 Conflicts example). Thusif conflict is subsequently the same as the actual modification

time of the file it means that the user has obviously not resolved the conflict. options contains sticky
options (for example "-kb' for abinary file). tagdate contains "T' followed by atag name, or "D’ for a
date, followed by a sticky tag or date. Note that if timestamp contains a pair of timestamps separated by
a space, rather than a single timestamp, you are dealing with aversion of CVS earlier than CVS 1.5 (not
documented here). The timezone on the timestamp in CV S/Entries (local or universal) should be the
same as the operating system stores for the timestamp of the file itself. For example, on Unix thefile's
timestamp isin universal time (UT), so the timestamp in CV S/Entries should be too. On VMS; thefile's
timestamp isin local time, so CVS on VMS should use local time. Thisruleis so that files do not
appear to be modified merely because the timezone changed (for example, to or from summer time). If
thefirst character of alinein " Entri es' is D', thenit indicates asubdirectory. ‘D' on alineal by
itself indicates that the program which wrotethe ™ Ent ri es’ file does record subdirectories (therefore,
if there is such aline and no other lines beginning with "D', one knows there are no subdirectories).
Otherwise, the line looks like:

Dnane/fillerl/filler2/filler3/filler4

where name is the name of the subdirectory, and all the filler fields should be silently ignored, for future
expansion. Programs which modify Ent r i es files should preserve these fields. Thelinesin the
"Entries' filecanbeinany order.

"Entries. Log'

Thisfile does not record any information beyond that in " Ent ri es' , but it does provide away to
update the information without having to rewritethe entire” Ent ri es' file, including the ability to
preserve the information even if the program writing " Entri es' and " Entri es. Log' abruptly
aborts. Programs which arereading the " Ent ri es' file should also check for " Entri es. Log' . If
the latter exists, they shouldread " Ent ri es' and then apply the changes mentioned in

"Entries. Log' .After applying the changes, the recommended practice isto rewrite " Ent ri es'
andthen delete " Ent ri es. Log' . Theformat of alinein” Entri es. Log' isasingle character
command followed by a space followed by alinein the format specified for alinein ™ Entri es' . The
single character command is "A' to indicate that the entry is being added, "R’ to indicate that the entry is
being removed, or any other character to indicate that the entirelinein " Ent ri es. Log" should be
silently ignored (for future expansion). If the second character of thelinein " Entri es. Log' isnota
space, then it was written by an older version of CV'S (not documented here). Programs which are

http://www.cvshome.org/docs/manual/cvs_2.html (9 of 22) [10/27/2000 2:27:07 PM]

CVS--Concurrent Versions System - 2. The Repository
writing rather than reading can safely ignore " Ent ri es. Log" if they so choose.
"Entries. Backup’

Thisisatemporary file. Recommended usage isto write anew entriesfileto " Entri es. Backup'
and then to rename it (atomically, where possible) to " Entri es' .

"Entries. Static'

The only relevant thing about thisfile is whether it exists or not. If it exists, then it means that only part
of adirectory was gotten and CV S will not create additional filesin that directory. To clear it, use the
updat e command with the "-d' option, which will get the additional files and remove

"Entries. Static'.

" Tag'

Thisfile contains per-directory sticky tags or dates. The first character is "T' for abranch tag, 'N' for a
non-branch tag, or "D’ for adate, or another character to mean the file should be silently ignored, for
future expansion. This character is followed by the tag or date. Note that per-directory sticky tags or
dates are used for things like applying to files which are newly added; they might not be the same as the
sticky tags or dates on individual files. For general information on sticky tags and dates, see section 4.9

Sticky tags.

" Checki n. prog'

" Updat e. prog'

These files store the programs specified by the *-i' and "-u' options in the modulesfile, respectively.
"Notify'

Thisfile stores notifications (for example, for edi t or unedi t) which have not yet been sent to the
server. Itsformat is not yet documented here.

"Notify.tnp'

Thisfileisto Notify' as Entries. Backup' isto Entri es'.Thatis, towrite Notify",
first write the new contentsto " Not i fy. t np' and then (atomically where possible), renameiit to
"Notify'.

" Base'

If watches arein use, then an edi t command stores the original copy of thefilein the " Base'
directory. Thisallowstheunedi t command to operate evenif it is unable to communicate with the
server.

" Baserev'
Thefileliststherevision for each of thefilesinthe " Base' directory. Theformat is:

Bnane/ r ev/ expansi on
where expansion should be ignored, to allow for future expansion.
" Baserev.tnp'

Thisfileisto " Baserev' as Entries. Backup' isto” Entri es'.Thatis, towrite
" Baser ev' , first write the new contentsto - Baser ev. t np' and then (atomically where possible),
renameitto Baserev' .

“Tenpl at €'
Thisfile contains the template specified by the " r csi nf o' file (see section C.8 Rcsinfo). It isonly
used by the client; the non-client/server CVS consults " r csi nf o' directly.

http://www.cvshome.org/docs/manual/cvs_2.html (10 of 22) [10/27/2000 2:27:08 PM]

CVS--Concurrent Versions System - 2. The Repository

2.4 The administrative files

The directory - $CVSROOT/ CVSROOT" contains some administrative files. See section C. Reference manual
for Administrative files, for a complete description. Y ou can use CV S without any of these files, but some
commands work better when at least the " nodul es' fileis properly set up.

The most important of thesefilesisthe " nodul es' file. It definesall modules in the repository. Thisisa
sample " nodul es' file.

CVSROOT CVSROOT

nodul es CVSROOT nodul es
CVS gnu/ cvs

rcs gnu/rcs

di ff gnu/ di f f

tc yoyodyne/tc

The nodul es' fileisline oriented. In its simplest form each line contains the name of the module,
whitespace, and the directory where the module resides. The directory is a path relative to $CVSROOT. The
last four lines in the example above are examples of such lines.

The line that defines the module called "'modules’ uses features that are not explained here. See section C.1
The modulesfile, for afull explanation of al the available features.

2.4.1 Editing administrative files

Y ou edit the administrative files in the same way that you would edit any other module. Use “cvs checkout
CVSROOT' to get aworking copy, edit it, and commit your changes in the normal way.

It is possible to commit an erroneous administrative file. Y ou can often fix the error and check in anew
revision, but sometimes a particularly bad error in the administrative file makes it impossible to commit new
revisions.

2.5 Multiple repositories

In some situationsit is a good idea to have more than one repository, for instance if you have two
development groups that work on separate projects without sharing any code. All you have to do to have
several repositoriesisto specify the appropriate repository, using the CVSROOT environment variable, the "-d'
option to CVS, or (once you have checked out a working directory) by simply allowing CVSto use the
repository that was used to check out the working directory (see section 2.1 Telling CV S where your

repository is).

The big advantage of having multiple repositoriesis that they can reside on different servers. With CVS
version 1.10, a single command cannot recurse into directories from different repositories. With devel opment
versions of CVS, you can check out code from multiple serversinto your working directory. CVSwill recurse
and handle all the details of making connections to as many server machines as necessary to perform the
requested command. Here is an example of how to set up aworking directory:

http://www.cvshome.org/docs/manual/cvs_2.html (11 of 22) [10/27/2000 2:27:08 PM]

CVS--Concurrent Versions System - 2. The Repository

cvs -d serverl:/cvs co dirl
cd dirl

cvs -d server2:/root co sdir
cvs update

Thecvs co commands set up the working directory, and thenthecvs updat e command will contact
server2, to update the dirl/sdir subdirectory, and serverl, to update everything else.

2.6 Creating a repository

To set up aCV Srepositary, first choose the machine and disk on which you want to store the revision history
of the source files. CPU and memory requirements are modest, so most machines should be adequate. For
details see section 2.9.1 Server requirements.

To estimate disk space requirements, if you are importing RCS files from another system, the size of those
filesisthe approximate initial size of your repository, or if you are starting without any version history, arule
of thumb isto allow for the server approximately three times the size of the code to be under CV Sfor the
repository (you will eventually outgrow this, but not for awhile). On the machines on which the devel opers
will be working, you'll want disk space for approximately one working directory for each developer (either the
entire tree or aportion of it, depending on what each developer uses).

The repository should be accessible (directly or via a networked file system) from all machines which want to
use CVSin server or local mode; the client machines need not have any accessto it other than viathe CVS
protocol. It is not possible to use CVSto read from arepository which one only has read access to; CV S needs
to be able to create lock files (see section 10.5 Severa developers ssimultaneously attempting to run CVS).

To create arepository, runthecvs i ni t command. It will set up an empty repository in the CV S root
specified in the usual way (see section 2. The Repository). For example,

cvs -d /usr/local/cvsroot init

cvs i nit iscareful to never overwrite any existing filesin the repository, so no harmis doneif you run
Cvs i nit onanalready set-up repository.

cvs i nit will enable history logging; if you don't want that, remove the history file after running cvs
i nit.Seesection C.11 The history file.

2.7 Backing up arepository

There is nothing particularly magical about the filesin the repository; for the most part it is possible to back
them up just like any other files. However, there are afew issues to consider.

Thefirst isthat to be paranoid, one should either not use CV S during the backup, or have the backup program
lock CV S while doing the backup. To not use CV'S, you might forbid logins to machines which can access the
repository, turn off your CV S server, or similar mechanisms. The details would depend on your operating
system and how you have CV S set up. To lock CVS, you would create ™ #cvs. rf 1" locksin each repository
directory. See section 10.5 Several developers simultaneously attempting to run CV'S, for more on CV Slocks.

http://www.cvshome.org/docs/manual/cvs_2.html (12 of 22) [10/27/2000 2:27:08 PM]

CVS--Concurrent Versions System - 2. The Repository

Having said all this, if you just back up without any of these precautions, the results are unlikely to be
particularly dire. Restoring from backup, the repository might be in an inconsistent state, but this would not be
particularly hard to fix manually.

When you restore arepository from backup, assuming that changes in the repository were made after the time
of the backup, working directories which were not affected by the failure may refer to revisions which no
longer exist in the repository. Trying to run CVSin such directories will typically produce an error message.
One way to get those changes back into the repository is as follows:

« Get anew working directory.

« Copy thefiles from the working directory from before the failure over to the new working directory (do
not copy the contents of the ™ CVS' directories, of course).

« Working in the new working directory, use commands such ascvs updat e andcvs di ff tofigure
out what has changed, and then when you are ready, commit the changes into the repository.

2.8 Moving a repository

Just as backing up the filesin the repository is pretty much like backing up any other files, if you need to
move arepository from one place to another it is also pretty much like just moving any other collection of
files.

The main thing to consider is that working directories point to the repository. The ssimplest way to deal with a
moved repository isto just get afresh working directory after the move. Of course, you'll want to make sure
that the old working directory had been checked in before the move, or you figured out some other way to
make sure that you don't lose any changes. If you really do want to reuse the existing working directory, it
should be possible with manual surgery onthe ™ CVS/ Reposi t ory"' files. You can see section 2.3 How
datais stored in the working directory, for information on the " CVS/ Reposi tory' and ™ CVS/ Root

files, but unless you are sure you want to bother, it probably isn't worth it.

2.9 Remote repositories

Y our working copy of the sources can be on a different machine than the repository. Using CVSin this
manner is known as client/server operation. Y ou run CV S on a machine which can mount your working
directory, known as the client, and tell it to communicate to a machine which can mount the repository, known
asthe server. Generally, using aremote repository isjust like using alocal one, except that the format of the
repository nameis:

- met hod: user @ost nane: / path/to/ repository

The details of exactly what needs to be set up depend on how you are connecting to the server.

If method is not specified, and the repository name contains "', then the default isext or ser ver , depending
on your platform; both are described in section 2.9.2 Connecting with rsh.

http://www.cvshome.org/docs/manual/cvs_2.html (13 of 22) [10/27/2000 2:27:08 PM]

CVS--Concurrent Versions System - 2. The Repository

2.9.1 Server requirements

The quick answer to what sort of machine is suitable as a server is that requirements are modest--a server with
32M of memory or even less can handle afairly large source tree with afair amount of activity.

Thereal answer, of course, is more complicated. Estimating the known areas of large memory consumption
should be sufficient to estimate memory requirements. There are two such areas documented here; other
memory consumption should be small by comparison (if you find that is not the case, let us know, as
described in section H. Dealing with bugsin CV S or this manual, so we can update this documentation).

The first area of big memory consumption is large checkouts, when using the CV S server. The server consists
of two processes for each client that it is serving. Memory consumption on the child process should remain
fairly small. Memory consumption on the parent process, particularly if the network connection to the client is
slow, can be expected to grow to slightly more than the size of the sourcesin asingle directory, or two
megabytes, whichever islarger.

Multiplying the size of each CV S server by the number of servers which you expect to have active at one time
should give an idea of memory requirements for the server. For the most part, the memory consumed by the
parent process probably can be swap space rather than physical memory.

The second area of large memory consumptionisdi f f , when checking in largefiles. Thisisrequired even
for binary files. The rule of thumb isto allow about ten times the size of the largest file you will want to check
in, although five times may be adequate. For example, if you want to check in afile which is 10 megabytes,
you should have 100 megabytes of memory on the machine doing the checkin (the server machine for
client/server, or the machine running CV S for non-client/server). This can be swap space rather than physical
memory. Because the memory is only required briefly, there is no particular need to allow memory for more
than one such checkin at atime.

Resource consumption for the client is even more modest--any machine with enough capacity to run the
operating system in question should have little trouble.

For information on disk space requirements, see section 2.6 Creating a repository.

2.9.2 Connecting with rsh

CVSusesthe rsh' protocol to perform these operations, so the remote user host needs to have a
“.rhosts' filewhich grants access to the local user.

For example, suppose you arethe user * nozart' onthelocal machine "t oe. exanpl e. coni , and the
server machineis ™ f aun. exanpl e. or g' . Onfaun, put the following lineinto thefile " . r host s’ in
" bach' 'shome directory:

t oe. exanpl e. com nozart

Thentest that r sh isworking with

rsh -1 bach faun.exanple.org 'echo $PATH

Next you have to make sure that r sh will be ableto find the server. Make sure that the path which r sh
printed in the above example includes the directory containing a program named cvs which isthe server. You

http://www.cvshome.org/docs/manual/cvs_2.html (14 of 22) [10/27/2000 2:27:08 PM]

CVS--Concurrent Versions System - 2. The Repository

needto set thepathin ™. bashrc', . cshrc' ,etc.,not” .1 ogin' or .profile'.Alternately, you
can set the environment variable CVS_SERVER on the client machine to the filename of the server you want
to use, for example "/ usr /1 ocal / bi n/ cvs-1. 6" .

Thereisno need to edit " i net d. conf' or start aCV S server daemon.

There are two access methods that you use in CVSROOT for rsh. : ser ver : specifies aninternal rsh client,
which is supported only by some CV S ports. : ext : specifies an external rsh program. By default thisisr sh
but you may set the CVS_RSH environment variable to invoke another program which can access the remote
server (for example, r emsh on HP-UX 9 because r sh is something different). It must be a program which
can transmit data to and from the server without modifying it; for example the Windows NT r sh is not
suitable since it by default translates between CRLF and LF. The OS/2 CV S port has a hack to pass *-b' to

r sh to get around this, but since this could potentially cause problems for programs other than the standard

r sh, it may changein the future. If you set CVS_RSH to SSH or some other rsh replacement, the instructions
in the rest of this section concerning ™ . r host s' and so on are likely to be inapplicable; consult the
documentation for your rsh replacement.

Continuing our example, supposing you want to accessthe module ™ f 00" in the repository
“/usr/local/cvsroot/',onmachine faun.exanpl e.org',youareready to go:

cvs -d :ext:bach@ aun. exanpl e.org:/usr/local/cvsroot checkout foo

(The bach@ can be omitted if the username is the same on both the local and remote hosts.)

2.9.3 Direct connection with password authentication

The CV S client can also connect to the server using a password protocol. Thisis particularly useful if using
r sh isnot feasible (for example, the server is behind afirewall), and Kerberos also is not available.

To use this method, it is necessary to make some adjustments on both the server and client sides.

2.9.3.1 Setting up the server for password authentication

First of all, you probably want to tighten the permissions on the * $CVSROOT" and
" $CVSROOT/ CVSROOT" directories. See section 2.9.3.3 Security considerations with password

authentication, for more details.

Onthe server side, thefile / et ¢/ i net d. conf' needsto be edited so i net d knowsto run the command
cvs pserver when it receives aconnection on the right port. By default, the port number is 2401, it would
be different if your client were compiled with CVS_AUTH _PORT defined to something else, though.

If your i net d allowsraw port numbersin "/ et ¢/ i net d. conf' , then thefollowing (all on asingleline
in"inetd. conf') should be sufficient:

2401 stream tcp nowait root /usr/local/bin/cvs

cvs -f --allowroot=/usr/cvsroot pserver

You could aso use the "-T' option to specify atemporary directory.

The "--allow-root' option specifies the allowable CVSROOT directory. Clients which attempt to use a different

http://www.cvshome.org/docs/manual/cvs_2.html (15 of 22) [10/27/2000 2:27:08 PM]

CVS--Concurrent Versions System - 2. The Repository

CV SROQT directory will not be allowed to connect. If there is more than one CVSROOT directory which you
want to allow, repeat the option. (Unfortunately, many versions of i net d have very small limits on the
number of arguments and/or the total length of the command. The usual solution to this problem isto have

i net d run ashell script which then invokes CV S with the necessary arguments.)

If your i net d wants asymbolic service name instead of araw port number, then put thisin
“/etc/services':

cvspserver 2401/ tcp

and put cvspser ver instead of 2401 in " i netd. conf' .

Once the above is taken care of, restart your i net d, or do whatever is necessary to force it to reread its
initialization files.

If you are having trouble setting this up, see section F.2 Trouble making a connection to a CVS server.

Because the client stores and transmits passwords in cleartext (almost--see section 2.9.3.3 Security
considerations with password authentication, for details), a separate CV S password file is generally used, so

people don't compromise their regular passwords when they access the repository. Thisfileis

" $CVSROOT/ CVSROOT/ passwd' (see section 2.4 The administrative files). It uses a colon-separated
format, similarto " / et ¢/ passwd' on Unix systems, except that it has fewer fields: CV S username,
optional password, and an optional system username for CVSto run asif authentication succeeds. Hereis an
example " passwd' filewith five entries:

anonynous:

bach: ULt gRLX07NRxs

spwang: 1s0Op854gDF3DY

nel i ssa: t GX1f S8sun6r Y: pubcvs
gpr oj : XRAEZcEsOszi k: pubcvs

(The passwords are encrypted according to the standard Unix cr ypt () function, soit ispossibleto pastein
passwords directly from regular Unix ~ / et ¢/ passwd' files))

Thefirst line in the example will grant accessto any CV S client attempting to authenticate as user
anonynous, no matter what password they use, including an empty password. (Thisistypical for sites
granting anonymous read-only access; for information on how to do the "read-only" part, see See section 2.10

Read-only repository access.)

The second and third lines will grant accessto bach and spwang if they supply their respective plaintext
passwords.

The fourth line will grant accessto el i ssa, if she supplies the correct password, but her CV'S operations
will actually run on the server side under the system user pubcvs. Thus, there need not be any system user
named el i ssa, but there must be one named pubcvs.

Thefifth line shows that system user identities can be shared: any client who successfully authenticates as
gpr oj will actually runaspubcvs, just asnel i ssa does. That way you could create a single, shared
system user for each project in your repository, and give each developer their own line in the

" $CVSROOT/ CVSROOT/ passwd' file. The CV S username on each line would be different, but the system

http://www.cvshome.org/docs/manual/cvs_2.html (16 of 22) [10/27/2000 2:27:08 PM]

CVS--Concurrent Versions System - 2. The Repository

username would be the same. The reason to have different CV S usernamesisthat CVSwill log their actions
under those names: when nmel i ssa commits a change to a project, the checkin is recorded in the project's
history under the name nel i ssa, not pubcvs. And the reason to have them share a system username is so
that you can arrange permissions in the relevant area of the repository such that only that account has
write-permission there.

If the system-user field is present, all password-authenticated CVS commands run as that user; if no system
user is specified, CVS simply takes the CV'S username as the system username and runs commands as that
user. In either case, if there is no such user on the system, then the CV S operation will fail (regardless of
whether the client supplied avalid password).

The password and system-user fields can both be omitted (and if the system-user field is omitted, then also
omit the colon that would have separated it from the encrypted password). For example, this would be avalid
" $CVSROOT/ CVSROOT/ passwd' file:

anonynous: : pubcvs
fish: rKa5j zULzmhOo: kf ogel
sussman: 1sOp854gDF3DY

When the password field is omitted or empty, then the client's authentication attempt will succeed with any
password, including the empty string. However, the colon after the CV S username is always necessary, even if
the password is empty.

CVS can dso fall back to use system authentication. When authenticating a password, the server first checks
for the user in the - $CVSROOT/ CVSROOT/ passwd' file. If it finds the user, it will use that entry for
authentication as described above. But if it does not find the user, or if the CVS ™ passwd' file does not
exist, then the server can try to authenticate the username and password using the operating system's
user-lookup routines (this "fallback" behavior can be disabled by setting Syst emAut h=no inthe CVS
“config' file seesection C.13 The CVSROQT/config configuration file). Be aware, however, that falling
back to system authentication might be a security risk: CV S operations would then be authenticated with that
user's regular login password, and the password flies across the network in plaintext. See section 2.9.3.3

Security considerations with password authentication for more on this.

Right now, the only way to put a password inthe CVS ™ passwd' fileisto pasteit there from somewhere
else. Someday, theremay beacvs passwd command.

Unlike many of thefilesin = $CVSROOT/ CVSROOT" , it isnormal to edit the " passwd' filein-place, rather
than viaCVS. Thisis because of the possible security risks of having the " passwd' file checked out to
people's working copies. If you do want to include the ™ passwd' filein checkouts of

" $CVSROOT/ CVSROOT" , see See section C.10 The checkoutlist file.

2.9.3.2 Using the client with password authentication

To run a CVS command on aremote repository viathe password-authenticating server, one specifies the
pser ver protocol, username, repository host, and path to the repository. For example:

cvs -d :pserver:bach@ aun. exanpl e.org:/usr/local/cvsroot checkout someproj

or

http://www.cvshome.org/docs/manual/cvs_2.html (17 of 22) [10/27/2000 2:27:08 PM]

CVS--Concurrent Versions System - 2. The Repository

CVSROOT=: pserver: bach@ aun. exanpl e. org: /usr/| ocal / cvsr oot
cvs checkout someproj

However, unless you're connecting to a public-access repository (i.e., one where that username doesn't require
apassword), you'll need to log in first. Logging in verifies your password with the repository. It's done with
thel ogi n command, which will prompt you interactively for the password:

cvs -d :pserver: bach@ aun. exanpl e.org:/usr/1ocal/cvsroot |ogin
CVS passwor d:

After you enter the password, CV S verifiesit with the server. If the verification succeeds, then that
combination of username, host, repository, and password is permanently recorded, so future transactions with
that repository won't requireyou toruncvs | ogi n. (If verification fails, CVSwill exit complaining that the
password was incorrect, and nothing will be recorded.)

The records are stored, by default, in thefile " $HOVE/ . cvspass' . That file'sformat is human-readable,
and to a degree human-editable, but note that the passwords are not stored in cleartext--they aretrivially
encoded to protect them from "innocent" compromise (i.e., inadvertent viewing by a system administrator or
other non-malicious person).

Y ou can change the default location of thisfile by setting the CVS_PASSFI LE environment variable. If you
use this variable, make sure you set it beforecvs | ogi nisrun. If you were to set it after running cvs

| ogi n, then later CV'S commands would be unable to ook up the password for transmission to the server.
Once you have logged in, all CV'S commands using that remote repository and username will authenticate
with the stored password. So, for example

cvs -d :pserver: bach@ aun. exanpl e.org:/usr/l1ocal/cvsroot checkout foo

should just work (unless the password changes on the server side, in which case you'll haveto re-runcvs
| ogi n).

Note that if the “:pserver:' were not present in the repository specification, CVS would assume it should use
r sh to connect with the server instead (see section 2.9.2 Connecting with rsh).

Of course, once you have aworking copy checked out and are running CVS commands from within it, thereis
no longer any need to specify the repository explicitly, because CV S can deduce the repository from the
working copy's” CVS' subdirectory.

The password for a given remote repository can be removed from the CVS_PASSFI LE by using thecvs
| ogout command.

2.9.3.3 Security considerations with password authentication

The passwords are stored on the client side in atrivial encoding of the cleartext, and transmitted in the same
encoding. The encoding is done only to prevent inadvertent password compromises (i.e., a system
administrator accidentally looking at the file), and will not prevent even a naive attacker from gaining the
password.

The separate CV S password file (see section 2.9.3.1 Setting up the server for password authentication) allows

http://www.cvshome.org/docs/manual/cvs_2.html (18 of 22) [10/27/2000 2:27:08 PM]

CVS--Concurrent Versions System - 2. The Repository

people to use a different password for repository access than for login access. On the other hand, once a user
has non-read-only access to the repository, she can execute programs on the server system through a variety of
means. Thus, repository access impliesfairly broad system access as well. It might be possible to modify CVS
to prevent that, but no one has done so as of thiswriting.

Note that because the * $CVSROOT/ CVSROOT" directory contains ™ passwd' and other files which are used
to check security, you must control the permissions on this directory astightly asthe permissionson "/ et c' .
The same appliesto the " $CVSROOT" directory itself and any directory above it in the tree. Anyone who has
write access to such a directory will have the ability to become any user on the system. Note that these
permissions are typically tighter than you would use if you are not using pserver.

In summary, anyone who gets the password gets repository access (which may imply some measure of general
system access as well). The password is available to anyone who can sniff network packets or read a protected
(i.e., user read-only) file. If you want real security, get Kerberos.

2.9.4 Direct connection with GSSAPI

GSSAPI isageneric interface to network security systems such as Kerberos 5. If you have aworking GSSAPI
library, you can have CV'S connect via a direct TCP connection, authenticating with GSSAPI.

To do this, CV S needs to be compiled with GSSAPI support; when configuring CVSit tries to detect whether
GSSAPI libraries using kerberos version 5 are present. You can alsousethe ™ - - wi t h- gssapi ' flagto
configure.

The connection is authenticated using GSSAPI, but the message stream is not authenticated by default. Y ou
must use the - a global option to request stream authentication.

The data transmitted is not encrypted by default. Encryption support must be compiled into both the client and
the server; usethe ™ - - enabl e- encrypt ' configure option to turn it on. Y ou must then use the - x global
option to request encryption.

GSSAPI connections are handled on the server side by the same server which handles the password
authentication server; see section 2.9.3.1 Setting up the server for password authentication. If you are using a
GSSAPI mechanism such as Kerberos which provides for strong authentication, you will probably want to
disable the ability to authenticate via cleartext passwords. To do so, create an empty -~ CVSROOT/ passwd'
password file, and set Syst emAut h=no in the config file (see section C.13 The CVSROOT/config

configuration file).

The GSSAPI server uses aprincipal name of cvsg/hostname, where hostname is the canonical name of the
server host. Y ou will have to set this up as required by your GSSAPI mechanism.

To connect using GSSAPI, use “:gserver:'. For example,

cvs -d :gserver:faun.exanple.org:/usr/local/cvsroot checkout foo

2.9.5 Direct connection with kerberos

The easiest way to use kerberosis to use the kerberosr sh, as described in section 2.9.2 Connecting with rsh.

The main disadvantage of using rshisthat all the data needs to pass through additional programs, so it may be
slower. So if you have kerberos installed you can connect via adirect TCP connection, authenticating with

http://www.cvshome.org/docs/manual/cvs_2.html (19 of 22) [10/27/2000 2:27:08 PM]

CVS--Concurrent Versions System - 2. The Repository

kerberos.

This section concerns the kerberos network security system, version 4. Kerberos version 5 is supported viathe
GSSAPI generic network security interface, as described in the previous section.

To do this, CV'S needs to be compiled with kerberos support; when configuring CVSit tries to detect whether
kerberosis present or you can usethe ™ - - wi t h- kr b4" flag to configure.

The data transmitted is not encrypted by default. Encryption support must be compiled into both the client and
server; usethe ™ - - enabl e- encrypti on' configure option to turn it on. You must then use the - x global
option to request encryption.

Youneedto edit " i net d. conf' onthe server machinetoruncvs kser ver . Theclient uses port 1999
by default; if you want to use another port specify it in the CVS_CLI ENT _PORT environment variable on the
client.

When you want to use CV S, get aticket in the usual way (generally ki ni t); it must be aticket which alows
you to log into the server machine. Then you are ready to go:

cvs -d :kserver:faun.exanple.org:/usr/local/cvsroot checkout foo

Previous versions of CVSwould fall back to a connection viarsh; this version will not do so.

2.9.6 Connecting with fork

This access method allows you to connect to arepository on your local disk via the remote protocol. In other
words it does pretty much the samething as: | ocal : , but various quirks, bugs and the like are those of the
remote CV Srather than the local CVS.

For day-to-day operations you might prefer either : | ocal : or: f or k: , depending on your preferences. Of
course: f or k: comesin particularly handy in testing or debugging cvs and the remote protocol.
Specifically, we avoid all of the network-related setup/configuration, timeouts, and authentication inherent in
the other remote access methods but still create a connection which uses the remote protocol.

To connect using the f or k method, use “:fork:' and the pathname to your local repository. For example:

cvs -d :fork:/usr/local/cvsroot checkout foo

Aswith: ext : , the server is called "cvs by default, or the value of the CVS_SERVER environment variable.

2.10 Read-only repository access

It is possible to grant read-only repository access to people using the password-authenticated server (see
section 2.9.3 Direct connection with password authentication). (The other access methods do not have explicit
support for read-only users because those methods all assume login access to the repository machine anyway,
and therefore the user can do whatever local file permissions alow her to do.)

A user who has read-only access can do only those CV S operations which do not modify the repository,
except for certain "administrative" files (such aslock files and the history file). It may be desirable to use this
feature in conjunction with user-aliasing (see section 2.9.3.1 Setting up the server for password

http://www.cvshome.org/docs/manual/cvs_2.html (20 of 22) [10/27/2000 2:27:08 PM]

CVS--Concurrent Versions System - 2. The Repository

authentication).

Unlike with previous versions of CV'S, read-only users should be able merely to read the repository, and not to
execute programs on the server or otherwise gain unexpected levels of access. Or to be more accurate, the
known holes have been plugged. Because this feature is new and has not received a comprehensive security
audit, you should use whatever level of caution seems warranted given your attitude concerning security.

There are two ways to specify read-only access for a user: by inclusion, and by exclusion.

"Inclusion” means listing that user specificaly in the * $CVSROOT/ CVSROOT/ r eader s' file, whichis
simply anewline-separated list of users. Hereisasample " r eader s' file:

nel i ssa
spl ot ni k
j random

(Don't forget the newline after the last user.)

"Exclusion" means explicitly listing everyone who has write access--if thefile

$CVSROOT/ CVSROOT/ wri ters

exists, then only those users listed in it have write access, and everyone el se has read-only access (of course,
even the read-only users still need to belisted inthe CVS ™ passwd' file). The writers' filehasthe
same format asthe " r eader s' file.

Note: if your CVS ™ passwd' file maps cvs users onto system users (see section 2.9.3.1 Setting up the server
for password authentication), make sure you deny or grant read-only access using the cvs usernames, not the

system usernames. That is, the readers' and " writers' filescontain cvsusernames, which may or
may not be the same as system usernames.

Here is a complete description of the server's behavior in deciding whether to grant read-only or read-write
access.

If " readers' exists, and thisuser islisted in it, then she gets read-only access. Or if "wri ters' exigts,
and thisuser isNOT listed in it, then she also gets read-only access (thisistrue evenif " r eader s' exists but
sheisnot listed there). Otherwise, she gets full read-write access.

Of course thereisaconflict if the user islisted in both files. Thisisresolved in the more conservative way, it
being better to protect the repository too much than too little: such a user gets read-only access.

2.11 Temporary directories for the server

While running, the CV S server creates temporary directories. They are named

cvs-servpid

where pid is the process identification number of the server. They are located in the directory specified by the
TMPDI R environment variable (see section D. All environment variables which affect CVS), the *-T' global

option (see section A.4 Global options), or failingthat * / t mp' .

http://www.cvshome.org/docs/manual/cvs_2.html (21 of 22) [10/27/2000 2:27:08 PM]

CVS--Concurrent Versions System - 2. The Repository

In most cases the server will remove the temporary directory when it is done, whether it finishes normally or
abnormally. However, there are afew cases in which the server does not or cannot remove the temporary
directory, for example:

« If the server aborts due to an internal server error, it may preserve the directory to aid in debugging
« If theserveriskilled in away that it has no way of cleaning up (most notably, “kill -KILL" on unix).
o If the system shuts down without an orderly shutdown, which tells the server to clean up.

In cases such asthis, you will need to manually removethe " cvs- servpi d' directories. Aslong asthereis
no server running with process identification number pid, it is safe to do so.

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_2.html (22 of 22) [10/27/2000 2:27:08 PM]

CVS--Concurrent Versions System - 3. Starting a project with CVS

Go to thefirst, previous, next, last section, table of contents.

3. Starting a project with CVS

Because renaming files and moving them between directories is somewhat inconvenient, the first thing
you do when you start a new project should be to think through your file organization. It is not
Impossible to rename or move files, but it does increase the potential for confusion and CV S does have
some quirks particularly in the area of renaming directories. See section 7.4 Moving and renaming files.

What to do next depends on the situation at hand.

3.1 Setting up the files

Thefirst step isto create the files inside the repository. This can be donein a couple of different ways.

3.1.1 Creating a directory tree from a number of files

When you begin using CV'S, you will probably already have several projects that can be put under CVS
control. In these cases the easiest way isto usethei nport command. An exampleis probably the
easiest way to explain how to useit. If the filesyou want to install in CVSresidein ™ wdi r ' , and you
want them to appear in the repository as~ $CVSROOT/ yoyodyne/ rdi r' , you can do this:

$ cd wdir
$ cvs inport -m"Inported sources” yoyodyne/rdir yoyo start

Unless you supply alog message with the "-m' flag, CV S starts an editor and prompts for a message. The
string "yoyo' isavendor tag, and “start' isarelease tag. They may fill no purpose in this context, but
since CV S requires them they must be present. See section 13. Tracking third-party sources, for more

information about them.

Y ou can now verify that it worked, and remove your original source directory.

$cd ..

$ cvs checkout yoyodyne/rdir # Expl anati on bel ow
$ diff -r wdir yoyodyne/rdir

$rm-r wdir

Erasing the original sourcesis agood idea, to make sure that you do not accidentally edit them in wdir,
bypassing CVS. Of course, it would be wise to make sure that you have a backup of the sources before
you remove them.

The checkout command can either take a module name as argument (asit has donein all previous
examples) or a path name relative to $CVSROOT, asit did in the example above.

http://www.cvshome.org/docs/manual/cvs_3.html (1 of 3) [10/27/2000 2:27:09 PM]

CVS--Concurrent Versions System - 3. Starting a project with CVS

It isagood ideato check that the permissions CV S sets on the directories inside $CVSROOT are
reasonable, and that they belong to the proper groups. See section 2.2.2 File permissions.

If some of the files you want to import are binary, you may want to use the wrappers features to specify
which files are binary and which are not. See section C.2 The cvswrappersfile.

3.1.2 Creating Files From Other Version Control Systems

If you have a project which you are maintaining with another version control system, such as RCS, you
may wish to put the files from that project into CV'S, and preserve the revision history of thefiles.

From RCS

If you have been using RCS, find the RCSfiles--usually afilenamed " f 0o. ¢' will haveits RCS
filein” RCS/ f 00. c, v' (but it could be other places; consult the RCS documentation for
details). Then create the appropriate directoriesin CVSif they do not already exist. Then copy the
filesinto the appropriate directories in the CV S repository (the name in the repository must be the
name of the source file with *,v' added; the files go directly in the appropriate directory of the
repository, notinan ™ RCS' subdirectory). Thisis one of the few timeswhen it isa good idea to
access the CV Srepository directly, rather than using CV S commands. Then you are ready to check
out a new working directory. The RCS file should not be locked when you move it into CVS; if it
IS, CVSwill have trouble letting you operate on it.

From another version control system
Many version control systems have the ability to export RCSfiles in the standard format. If yours
does, export the RCS files and then follow the above instructions. Failing that, probably your best
bet isto write a script that will check out the files one revision at atime using the command line

interface to the other system, and then check therevisionsinto CVS. The sccs2r cs' script
mentioned below may be a useful example to follow.

From SCCS

Thereisascriptinthe cont ri b' directory of the CV S source distribution called
“sccs2rcs' which converts SCCSfilesto RCSfiles. Note: you must run it on a machine which
has both SCCS and RCSinstalled, and like everything else in contrib it is unsupported (your
mileage may vary).

From PVCS
Thereisascriptinthe contri b' directory of the CVS source distribution called
“pvcs_to_rcs' which converts PVCS archivesto RCSfiles. Y ou must run it on a machine
which has both PVCS and RCS installed, and like everything elsein contrib it is unsupported
(your mileage may vary). See the comments in the script for details.

3.1.3 Creating a directory tree from scratch

For anew project, the easiest thing to do is probably to create an empty directory structure, like this:

$ nkdir tc
$ nkdir tc/man

http://www.cvshome.org/docs/manual/cvs_3.html (2 of 3) [10/27/2000 2:27:09 PM]

CVS--Concurrent Versions System - 3. Starting a project with CVS

$ nkdir tc/testing

After that, you usethei npor t command to create the corresponding (empty) directory structure inside
the repository:

$cdtc

$ cvs inport -m"Created directory structure” yoyodyne/dir yoyo start

Then, use add to add files (and new directories) as they appear.
Check that the permissions CV S sets on the directories inside $CVSROOT are reasonable.

3.2 Defining the module

The next step isto define the module inthe " nodul es' file. Thisisnot strictly necessary, but modules
can be convenient in grouping together related files and directories.

In simple cases these steps are sufficient to define a module.
1. Get aworking copy of the modulesfile.

$ cvs checkout CVSROOT/ nodul es
$ cd CVSROOT

2. Edit the file and insert aline that defines the module. See section 2.4 The administrative files, for
an introduction. See section C.1 The modulesfile, for afull description of the modulesfile. You
can use the following line to define the module “tc":

tc yoyodyne/tc
3. Commit your changes to the modulesfile.

$ cvs commt -m"Added the tc nodul e." nodul es
4. Release the modules module.

$ cd ..
$ cvs rel ease -d CVSROOT

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_3.html (3 of 3) [10/27/2000 2:27:09 PM]

CVS--Concurrent Versions System - 4. Revisions

Go to thefirst, previous, next, last section, table of contents.

4. Revisions

For many uses of CV'S, one doesn't need to worry too much about revision numbers; CV'S assigns
numberssuchas 1. 1,1. 2, and so on, and that is al one needs to know. However, some people prefer to
have more knowledge and control concerning how CV S assigns revision numbers.

If one wants to keep track of a set of revisions involving more than one file, such as which revisions went
into a particular release, one uses atag, which is a symbolic revision which can be assigned to a numeric
revision in each file.

4.1 Revision numbers

Each version of afile has a unique revision number. Revision numberslook like "1.1', "1.2', 1.3.2.2' or
even 1.3.2.2.4.5'. A revision number always has an even number of period-separated decimal integers.
By default revision 1.1 isthefirst revision of afile. Each successive revision is given a new number by
Increasing the rightmost number by one. The following figure displays afew revisions, with newer
revisions to the right.

It is also possible to end up with numbers containing more than one period, for example "1.3.2.2. Such
revisions represent revisions on branches (see section 5. Branching and merging); such revision numbers

are explained in detall in section 5.4 Branches and revisions.

4.2 Versions, revisions and releases

A file can have severa versions, as described above. Likewise, a software product can have several
versions. A software product is often given aversion number such as '4.1.1'.

Versionsin the first sense are called revisions in this document, and versions in the second sense are
called releases. To avoid confusion, the word version is almost never used in this document.

4.3 Assigning revisions

By default, CVSwill assign numeric revisions by leaving the first number the same and incrementing the
second number. For example, 1. 1,1. 2, 1. 3, etc.

http://www.cvshome.org/docs/manual/cvs_4.html (1 of 8) [10/27/2000 2:27:11 PM]

CVS--Concurrent Versions System - 4. Revisions

When adding a new file, the second number will always be one and the first number will equal the
highest first number of any file in that directory. For example, the current directory contains files whose
highest numbered revisionsare 1. 7, 3. 1, and 4. 12, then an added file will be given the numeric
revison4. 1.

Normally there is no reason to care about the revision numbers--it is easier to treat them as internal
numbers that CV S maintains, and tags provide a better way to distinguish between things like release 1
versus release 2 of your product (see section 4.4 Tags--Symbolic revisions). However, if you want to set
the numeric revisions, the "-r' optiontocvs comni t can do that. The "-r' option implies the *-f' option,
In the sense that it causes the files to be committed even if they are not modified.

For example, to bring al your files up to revision 3.0 (including those that haven't changed), you might
invoke:

$ cvs commit -r 3.0

Note that the number you specify with "-r' must be larger than any existing revision number. That is, if
revision 3.0 exists, you cannot “cvs commit -r 1.3". If you want to maintain several releases in paralldl,
you need to use a branch (see section 5. Branching and merging).

4.4 Tags--Symbolic revisions

The revision numbers live alife of their own. They need not have anything at all to do with the release
numbers of your software product. Depending on how you use CV S the revision numbers might change
severa times between two releases. As an example, some of the source files that make up RCS 5.6 have
the following revision numbers:

ci.c 5 21
co.C 59
I dent. c 5 3
rcs.c 5. 12
rcsbase. h 5.11
rcsdiff.c 5.10
rcsedit.c 5 11
rcsfenp. c 5.9
rcsgen. c 5.10
rcslex.c 5. 11
rcsmap. c 5.2
rcsutil.c 5.10

Y ou can use thet ag command to give a symbolic nameto a certain revision of afile. You can use the
-v' flag to the st at us command to see all tags that a file has, and which revision numbers they
represent. Tag names must start with an uppercase or lowercase letter and can contain uppercase and
lowercase letters, digits, -, and ~_". The two tag names BASE and HEAD are reserved for use by CVS. It
Is expected that future names which are special to CVSwill be specially named, for example by starting

http://www.cvshome.org/docs/manual/cvs_4.html (2 of 8) [10/27/2000 2:27:11 PM]

CVS--Concurrent Versions System - 4. Revisions

with ', rather than being named analogously to BASE and HEAD, to avoid conflicts with actual tag
names.

Y ou'll want to choose some convention for naming tags, based on information such as the name of the
program and the version number of the release. For example, one might take the name of the program,
immediately followed by the version number with ".' changed to "-', so that CV S 1.9 would be tagged
with the namecvs1- 9. If you choose a consistent convention, then you won't constantly be guessing
whether atagiscvs- 1- 9 orcvsl 9 or what. You might even want to consider enforcing your
convention in the taginfo file (see section 8.3 User-defined logging).

The following example shows how you can add atag to afile. The commands must be issued inside your
working directory. That is, you should issue the command in the directory where " backend. c'
resides.

$ cvs tag rel-0-4 backend.c
T backend. c
$ cvs status -v backend.c

File: backend.c Status: Up-to-date
Ver si on: 1.4 Tue Dec 1 14:39:01 1992
RCS Ver si on: 1.4 / ul cvsroot/yoyodyne/tc/ backend. c, v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

Exi sting Tags:
rel-0-4 (revision: 1.4)

For a complete summary of the syntax of cvs t ag, including the various options, see section B. Quick
reference to CV'S commands.

Thereis seldom reason to tag afilein isolation. A more common useisto tag al the files that constitute
amodule with the same tag at strategic points in the development life-cycle, such aswhen areleaseis
made.

$ cvs tag rel-1-0 .
cvs tag: Tagging .
T Makefile

T backend. c

T driver.c

T frontend. c

T parser.c

(When you give CV S adirectory as argument, it generally applies the operation to al the filesin that

http://www.cvshome.org/docs/manual/cvs_4.html (3 of 8) [10/27/2000 2:27:11 PM]

CVS--Concurrent Versions System - 4. Revisions

directory, and (recursively), to any subdirectories that it may contain. See section 6. Recursive behavior.)

Thecheckout command hasaflag, -r', that lets you check out a certain revision of amodule. This
flag makes it easy to retrieve the sources that make up release 1.0 of the module "tc' at any timein the
future:

$ cvs checkout -r rel-1-0 tc

Thisisuseful, for instance, if someone claims that there is abug in that release, but you cannot find the
bug in the current working copy.

Y ou can also check out amodule asit was at any given date. See section A.7.1 checkout options. When
specifying "-r' to any of these commands, you will need beware of sticky tags, see section 4.9 Sticky tags.

When you tag more than one file with the same tag you can think about the tag as "a curve drawn
through a matrix of filename vs. revision number." Say we have 5 files with the following revisions:

filel file2 file3 filed fileb

*

[--1.1* <-*- TAG
/
/

*

*

1
EEEREE
aswNeE
EEEREE
aswWNR

\ -

1.6

At sometimein the past, the * versions were tagged. Y ou can think of the tag as a handle attached to the
curve drawn through the tagged revisions. When you pull on the handle, you get all the tagged revisions.
Another way to look at it isthat you "sight" through a set of revisions that is "flat" along the tagged
revisions, like this:

filel file2z file3 filed4d file5

1.1
1.2
1.1 1.3 B
1.1 1.2 1.4 1.1 /
1.2%--=-1.3%----1.5%----1,2%----1.1 (--- <--- Look here
1.3 1.6 1.3 \
1. 4 1. 4
1.5

http://www.cvshome.org/docs/manual/cvs_4.html (4 of 8) [10/27/2000 2:27:11 PM]

CVS--Concurrent Versions System - 4. Revisions

4.5 Specifying what to tag from the working
directory

The example in the previous section demonstrates one of the most common ways to choose which
revisions to tag. Namely, running thecvs t ag command without arguments causes CV Sto select the
revisions which are checked out in the current working directory. For example, if the copy of
“backend. ¢' inworking directory was checked out from revision 1.4, then CVSwill tag revision 1.4.
Note that the tag is applied immediately to revision 1.4 in the repository; tagging is not like modifying a
file, or other operations in which one first modifies the working directory and thenrunscvs conmit to
transfer that modification to the repository.

One potentially surprising aspect of the fact that cvs t ag operates on the repository isthat you are
tagging the checked-in revisions, which may differ from locally modified files in your working directory.
If you want to avoid doing this by mistake, specify the "-c' optiontocvs t ag. If there are any locally
modified files, CVSwill abort with an error before it tags any files:

$ cvs tag -c rel-0-4
cvs tag: backend.c is locally nodified
cvs [tag aborted]: correct the above errors first!

4.6 Specifying what to tag by date or revision

Thecvs rtag command tags the repository as of acertain date or time (or can be used to tag the latest
revision). r t ag works directly on the repository contents (it requires no prior checkout and does not
look for aworking directory).

The following options specify which date or revision to tag. See section A.5 Common command options,
for a complete description of them.

-D date
Tag the most recent revision no later than date.

- f
Only useful with the *-D date' or "-r tag' flags. If no matching revision is found, use the most recent
revision (instead of ignoring the file).

-r tag
Only tag those files that contain existing tag tag.

Thecvs t ag command also allows one to specify files by revision or date, using the same "-r', *-D',
and "-f' options. However, this feature is probably not what you want. The reasonisthat cvs t ag
chooses which files to tag based on the files that exist in the working directory, rather than the files
which existed as of the given tag/date. Therefore, you are generally better off usingcvs rtag. The
exceptions might be cases like:

http://www.cvshome.org/docs/manual/cvs_4.html (5 of 8) [10/27/2000 2:27:11 PM]

CVS--Concurrent Versions System - 4. Revisions

cvs tag -r 1.4 backend.c

4.7 Deleting, moving, and renaming tags

Normally one does not modify tags. They exist in order to record the history of the repository and so
deleting them or changing their meaning would, generally, not be what you want.

However, there might be cases in which one uses atag temporarily or accidentally puts one in the wrong
place. Therefore, one might delete, move, or rename atag. Warning: the commands in this section are
dangerous; they permanently discard historical information and it can difficult or impossible to recover
from errors. If you are a CV S administrator, you may consider restricting these commands with taginfo
(see section 8.3 User-defined logging).

To delete atag, specify the "-d' option to either cvs tag orcvs rt ag. For example:

cvs rtag -d rel-0-4 tc
deletesthetag r el - 0- 4 from the modulet c.

When we say move atag, we mean to make the same name point to different revisions. For example, the
st abl e tag may currently point to revision 1.4 of * backend. ¢' and perhaps we want to make it
point to revision 1.6. To move atag, specify the "-F option to either cvs tag orcvs rtag. For
example, the task just mentioned might be accomplished as:

cvs tag -r 1.6 -F stable backend.c

When we say rename atag, we mean to make a different name point to the same revisions as the old tag.
For example, one may have misspelled the tag name and want to correct it (hopefully before others are
relying on the old spelling). To rename atag, first create a new tag using the "-r' optiontocvs rt ag,
and then delete the old name. This leaves the new tag on exactly the same files as the old tag. For
example:

cvs rtag -r old-nanme-0-4 rel-0-4 tc
cvs rtag -d old-nane-0-4 tc

4.8 Tagging and adding and removing files

The subject of exactly how tagging interacts with adding and removing files is somewhat obscure; for the
most part CVSwill keep track of whether files exist or not without too much fussing. By default, tags are
applied to only files which have arevision corresponding to what is being tagged. Files which did not
exist yet, or which were already removed, simply omit the tag, and CV S knows to treat the absence of a
tag as meaning that the file didn't exist as of that tag.

However, this can lose a small amount of information. For example, suppose a file was added and then
removed. Then, if the tag ismissing for that file, there is no way to know whether the tag refers to the

http://www.cvshome.org/docs/manual/cvs_4.html (6 of 8) [10/27/2000 2:27:11 PM]

CVS--Concurrent Versions System - 4. Revisions

time before the file was added, or the time after it was removed. If you specify the "-r' optionto cvs
rt ag, then CV Stags the files which have been removed, and thereby avoids this problem. For example,
one might specify - r HEAD to tag the head.

On the subject of adding and removing files, thecvs rt ag command hasa -a option which meansto
clear the tag from removed files that would not otherwise be tagged. For example, one might specify this
option in conjunction with "-F when moving atag. If one moved atag without "-a, then the tag in the
removed files might still refer to the old revision, rather than reflecting the fact that the file had been
removed. | don't think thisis necessary if "-r' is specified, as noted above.

4.9 Sticky tags

Sometimes a working copy's revision has extra data associated with it, for example it might be on a
branch (see section 5. Branching and merging), or restricted to versions prior to a certain date by
“checkout -D' or "update -D'. Because this data persists -- that is, it applies to subsequent commandsin
the working copy -- we refer to it as sticky.

Most of the time, stickinessis an obscure aspect of CV S that you don't need to think about. However,
even if you don't want to use the feature, you may need to know something about sticky tags (for
example, how to avoid them!).

You can usethe st at us command to seeif any sticky tags or dates are set:

$ cvs status driver.c

File: driver.c Status: Up-to-date
Ver si on: 1.7.2.1 Sat Dec 5 19:35:03 1992
RCS Ver si on: 1.7.2.1 /ulcvsroot/yoyodyne/tc/driver.c,v
Sticky Tag: rel -1-0-patches (branch: 1.7.2)
Sticky Date: (none)
Sticky Options: (none)

The sticky tags will remain on your working files until you delete them with “cvs update -A'. The "-A’
option retrieves the version of the file from the head of the trunk, and forgets any sticky tags, dates, or
options.

The most common use of sticky tagsisto identify which branch oneisworking on, as described in
section 5.3 Accessing branches. However, non-branch sticky tags have uses as well. For example,
suppose that you want to avoid updating your working directory, to isolate yourself from possibly
destabilizing changes other people are making. Y ou can, of course, just refrain from running cvs
updat e. But if you want to avoid updating only a portion of alarger tree, then sticky tags can help. If
you check out a certain revision (such as 1.4) it will become sticky. Subsequent cvs updat e
commands will not retrieve the latest revision until you reset the tag with cvs updat e - A. Likewise,
use of the *-D' option to updat e or checkout setsasticky date, which, similarly, causes that date to

http://www.cvshome.org/docs/manual/cvs_4.html (7 of 8) [10/27/2000 2:27:11 PM]

CVS--Concurrent Versions System - 4. Revisions

be used for future retrievals.

People often want to retrieve an old version of afile without setting a sticky tag. This can be done with
the "-p' option to checkout or updat e, which sends the contents of the file to standard output. For
example:

$ cvs update -p -r 1.1 filel >filel

Checking out filel
RCS. /tnp/cvs-sanity/cvsroot/first-dir/Attic/filel,v

VERS: 1.1
R R S b I
$

However, thisisn't the easiest way, if you are asking how to undo a previous checkin (in this example,
put filel" backtotheway it wasasof revision 1.1). In that case you are better off using the "-j'
option to updat e; for further discussion see section 5.8 Merging differences between any two revisions.

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_4.html (8 of 8) [10/27/2000 2:27:11 PM]

CVS--Concurrent Versions System - 5. Branching and merging

Go to the first, previous, next, last section, table of contents.

5. Branching and merging

CVSalowsyou to isolate changes onto a separate line of development, known as a branch. When you
change files on a branch, those changes do not appear on the main trunk or other branches.

Later you can move changes from one branch to another branch (or the main trunk) by merging. Merging
involvesfirst running cvs updat e -, to merge the changesinto the working directory. Y ou can then
commit that revision, and thus effectively copy the changes onto another branch.

5.1 What branches are good for

Suppose that release 1.0 of tc has been made. Y ou are continuing to develop tc, planning to create release 1.1
in acouple of months. After awhile your customers start to complain about afatal bug. Y ou check out
release 1.0 (see section 4.4 Tags--Symbolic revisions) and find the bug (which turns out to have atrivia fix).
However, the current revision of the sources are in a state of flux and are not expected to be stable for at |east
another month. There is no way to make a bugfix release based on the newest sources.

The thing to do in asituation like thisis to create a branch on the revision trees for all the files that make up
release 1.0 of tc. Y ou can then make modifications to the branch without disturbing the main trunk. When
the modifications are finished you can elect to either incorporate them on the main trunk, or leave them on
the branch.

5.2 Creating a branch

Y ou can create abranch witht ag - b; for example, assuming you're in a working copy:

$ cvs tag -b rel-1-0-patches

This splits off a branch based on the current revisions in the working copy, assigning that branch the name
“rel-1-0-patches.

It isimportant to understand that branches get created in the repository, not in the working copy. Creating a
branch based on current revisions, as the above example does, will not automatically switch the working
copy to be on the new branch. For information on how to do that, see section 5.3 Accessing branches.

Y ou can also create a branch without reference to any working copy, by using r t ag:

$ cvs rtag -b -r rel-1-0 rel-1-0-patches tc

“-r rel-1-0' says that this branch should be rooted at the revision that correspondsto the tag ‘rel-1-0'. It need
not be the most recent revision -- it's often useful to split a branch off an old revision (for example, when
fixing abug in a past release otherwise known to be stable).

http://www.cvshome.org/docs/manual/cvs_5.html (1 of 9) [10/27/2000 2:27:13 PM]

CVS--Concurrent Versions System - 5. Branching and merging

Aswith ‘tag', the -b' flag tellsr t ag to create a branch (rather than just a symbolic revision name). Note that
the numeric revision number that matches “rel-1-0" will probably be different from file to file.

So, the full effect of the command is to create a new branch -- named “rel-1-0-patches -- in module “tc',
rooted in the revision tree at the point tagged by “rel-1-0'.

5.3 Accessing branches

Y ou can retrieve a branch in one of two ways:. by checking it out fresh from the repository, or by switching
an existing working copy over to the branch.

To check out a branch from the repository, invoke “checkout' with the "-r* flag, followed by the tag name of
the branch (see section 5.2 Creating a branch):

$ cvs checkout -r rel-1-0-patches tc

Or, if you aready have a working copy, you can switch it to a given branch with "update -r':

$ cvs update -r rel-1-0-patches tc

or equivaently:

$ cdtc
$ cvs update -r rel-1-0-patches

It does not matter if the working copy was originally on the main trunk or on some other branch -- the above
command will switch it to the named branch. And similarly to aregular "update’ command, "update -r'
merges any changes you have made, notifying you of conflicts where they occur.

Once you have aworking copy tied to a particular branch, it remains there until you tell it otherwise. This
means that changes checked in from the working copy will add new revisions on that branch, while leaving
the main trunk and other branches unaffected.

To find out what branch aworking copy is on, you can use the “status command. In its output, look for the
field named "Sticky tag' (see section 4.9 Sticky tags) -- that's CVSsway of telling you the branch, if any, of

the current working files:

$ cvs status -v driver.c backend.c

File: driver.c Status: Up-to-date
Ver si on: 1.7 Sat Dec 5 18:25:54 1992
RCS Ver si on: 1.7 [ul cvsroot/yoyodyne/tc/driver.c,v
Sticky Tag: rel -1-0-patches (branch: 1.7.2)
Sticky Date: (none)
Sticky Options: (none)

Exi sting Tags:

http://www.cvshome.org/docs/manual/cvs_5.html (2 of 9) [10/27/2000 2:27:13 PM]

CVS--Concurrent Versions System - 5. Branching and merging

rel -1-0- pat ches (branch: 1.7.2)
rel-1-0 (revision: 1.7)
Fil e: backend. c Status: Up-to-date
Ver si on: 1.4 Tue Dec 1 14:39:01 1992
RCS Ver si on: 1.4 / u/ cvsroot/yoyodyne/tc/backend. c, v
Sticky Tag: rel -1-0-patches (branch: 1.4.2)
Sticky Date: (none)
Sticky Options: (none)
Exi sting Tags:
rel - 1- 0- pat ches (branch: 1.4.2)
rel-1-0 (revision: 1.4)
rel-0-4 (revision: 1.4)

Don't be confused by the fact that the branch numbers for each file are different ('1.7.2' and "1.4.2'
respectively). The branch tag is the same, "rel-1-0-patches, and the files are indeed on the same branch. The
numbers ssimply reflect the point in each file's revision history at which the branch was made. In the above
example, one can deduce that "driver.c' had been through more changes than “backend.c' before this branch
was created.

See section 5.4 Branches and revisions for details about how branch numbers are constructed.

5.4 Branches and revisions

Ordinarily, afilesrevision history isalinear series of increments (see section 4.1 Revision numbers):

However, CVSisnot limited to linear development. The revision tree can be split into branches, where each
branch is a self-maintained line of development. Changes made on one branch can easily be moved back to
the main trunk.

Each branch has a branch number, consisting of an odd number of period-separated decimal integers. The
branch number is created by appending an integer to the revision number where the corresponding branch
forked off. Having branch numbers allows more than one branch to be forked off from a certain revision.

All revisions on a branch have revision numbers formed by appending an ordinal number to the branch
number. The following figure illustrates branching with an example.

Branch 1.2.2.3.2 -> 11.2.2.3.2.1 !

http://www.cvshome.org/docs/manual/cvs_5.html (3 of 9) [10/27/2000 2:27:13 PM]

CVS--Concurrent Versions System - 5. Branching and merging

/
/
S TR + S A + S TR +
Branch 1.2.2 -> I 1.2.2.1!----11.2.2.21!----11.2.2.3
/] +--------- + S + Fomm oo oo - +
/
/
+----- + +----- + +--- - - + +--- - - + +-- - - - +
r1.1t----t1.210t----1131!----11.41"1----1 151 <- The main trunk
+----- + +----- + +----- + +-- - - - + +----- +
I
!
I S IR + +--mmmema - + +-mmm e +
Branch 1.2.4 -> +---1 1.2.4.1!----1 1.2.4.21----11.2.4.3!
S SRR + +oemmmeaa - + +-mmm e +

The exact details of how the branch number is constructed is not something you normally need to be
concerned about, but here is how it works: When CV S creates a branch number it picks the first unused even
integer, starting with 2. So when you want to create a branch from revision 6.4 it will be numbered 6.4.2. All
branch numbers ending in a zero (such as 6.4.0) are used internally by CV S (see section 5.5 Magic branch

numbers). The branch 1.1.1 has a special meaning. See section 13. Tracking third-party sources.

5.5 Magic branch numbers

This section describes a CV S feature called magic branches. For most purposes, you need not worry about
magic branches, CV S handles them for you. However, they are visible to you in certain circumstances, so it
may be useful to have some idea of how it works.

Externally, branch numbers consist of an odd number of dot-separated decimal integers. See section 4.1
Revision numbers. That is not the whole truth, however. For efficiency reasons CV 'S sometimes inserts an

extra 0 in the second rightmost position (1.2.4 becomes 1.2.0.4, 8.9.10.11.12 becomes 8.9.10.11.0.12 and so
on).

CV S does a pretty good job at hiding these so called magic branches, but in afew placesthe hiding is
incompl ete:

« The magic branch number appears in the output fromcvs | og.
« You cannot specify asymbolic branch nametocvs adm n.

Y ou can use theadm n command to reassign a symbolic name to a branch the way RCS expectsit to be. If
R4pat ches isassigned to the branch 1.4.2 (magic branch number 1.4.0.2) infile " nunber s. ¢’ you can
do this:

$ cvs admin -NR4patches: 1.4.2 nunbers.c

It only works if at |east one revision is already committed on the branch. Be very careful so that you do not
assign the tag to the wrong number. (Thereis no way to see how the tag was assigned yesterday).

http://www.cvshome.org/docs/manual/cvs_5.html (4 of 9) [10/27/2000 2:27:13 PM]

CVS--Concurrent Versions System - 5. Branching and merging

5.6 Merging an entire branch

Y ou can merge changes made on a branch into your working copy by giving the "-j branch’ flag to the
updat e command. With one "-j branch' option it merges the changes made between the point where the
branch forked and newest revision on that branch (into your working copy).

The *-j' stands for "join".

Consider thisrevision tree:

F----- + F----- + S + S +
r1.1t----1r1.21----11,3"!"----11.4"1 <- The main trunk
t----- + t----- + +----- + +--- - +

|

!

! o e + S —— +
Branch R1fix -> +---1 1.2.2. 1 !----1 1.2.2.2 1

e + S S —— +

The branch 1.2.2 has been given the tag (symbolic name) "R1fix". The following example assumes that the
module "'mod' contains only onefile, m c¢' .

$ cvs checkout nod # Retrieve the latest revision, 1.4

$ cvs update -j RIfix mc # Merge all changes nmade on the branch,
i.e. the changes between revision 1.2
and 1.2.2.2, into your working copy
of the file.

$ cvs commt -m"Included Rifix" # Create revision 1.5.

A conflict can result from amerge operation. If that happens, you should resolve it before committing the
new revision. See section 10.3 Conflicts example.

If your source files contain keywords (see section 12. Keyword substitution), you might be getting more
conflicts than strictly necessary. See section 5.10 Merging and keywords, for information on how to avoid
this.

Thecheckout command also supportsthe "-j branch' flag. The same effect as above could be achieved
with this:

$ cvs checkout -j Rifix nod
$ cvs conmmit -m"Included R1fi x"

http://www.cvshome.org/docs/manual/cvs_5.html (5 of 9) [10/27/2000 2:27:13 PM]

CVS--Concurrent Versions System - 5. Branching and merging

5.7 Merging from a branch several times

Continuing our example, the revision tree now looks like this:

e m - - + +e e - - + SR + SR + SR +
I 1.1 1----1 1.2 l-=--1 1.3 1----1 1.4 1----1 1.5 1 <- The main trunk
+o-m - - + +emm - - + Femm - - + +o-m - - + Fomm o - +

| *

| *

! o + R +
Branch RIfix -> +---1 1.2.2.1 l----1 1.2.2.2 |

e + SR +

where the starred line represents the merge from the "R1fix" branch to the main trunk, as just discussed.

Now suppose that development continues on the "R1fix' branch:

F----- + oo - + oo - + oo - + oo - +
r1.10!----1 1.2 1!----11.31!----11.41----1 151 <- The main trunk
oo - + oo - + oo - + oo - + oo - +

| *

! *

! N + o + oo +
Branch R1fix -> +---1 1.2.2. 1 !----11,2.2.2 !----11.2.2.3

N + o + oo +

and then you want to merge those new changes onto the main trunk. If you just usethecvs update - |
R1fi x m ¢ command again, CVSwill attempt to merge again the changes which you have already
merged, which can have undesirable side effects.

So instead you need to specify that you only want to merge the changes on the branch which have not yet
been merged into the trunk. To do that you specify two "-j' options, and CV S merges the changes from the
first revision to the second revision. For example, in this case the simplest way would be

cvs update -j 1.2.2.2 -j Rlfix mc # Merge changes from1l.2.2.2 to the
head of the Rlfix branch

The problem with thisis that you need to specify the 1.2.2.2 revision manually. A slightly better approach
might be to use the date the last merge was done:

cvs update -] RIlfix:yesterday -j Rlfix mc
Better yet, tag the R1fix branch after every merge into the trunk, and then use that tag for subsequent merges:

cvs update -] nerged fromRIlfix to trunk -j Rilfix mc

http://www.cvshome.org/docs/manual/cvs_5.html (6 of 9) [10/27/2000 2:27:13 PM]

CVS--Concurrent Versions System - 5. Branching and merging

5.8 Merging differences between any two revisions

With two "-j revision' flags, the updat e (and checkout) command can merge the differences between any
two revisionsinto your working file.

$ cvs update -j 1.5 -j 1.3 backend.c
will undo all changes made between revision 1.3 and 1.5. Note the order of the revisions!

If you try to use this option when operating on multiple files, remember that the numeric revisions will
probably be very different between the variousfiles. Y ou amost always use symbolic tags rather than
revision numbers when operating on multiple files.

Specifying two "-j' options can al'so undo file removals or additions. For example, suppose you have afile
named fil el" which existed asrevision 1.1, and you then removed it (thus adding a dead revision 1.2).
Now suppose you want to add it again, with the same contents it had previously. Here is how to do it:

$ cvs update -j 1.2 -j 1.1 filel

Ufilel

$ cvs conmit -mtest

Checking in filel;
/tnp/cvs-sanity/cvsroot/first-dir/filel,v <-- filel
new revision: 1.3; previous revision: 1.2

done

$

5.9 Merging can add or remove files

If the changes which you are merging involve removing or adding somefiles, updat e -] will reflect such
additions or removals.

For example:

Cvs update -A

touch a b c

cvs add a b c ; cvs ci -m"added" a b c
cvs tag -b branchtag

cvs update -r branchtag

touch d ; cvs add d

rma ; cvs rma

cvs ci -m"added d, renoved a"

cvs update -A

cvs update -jbranchtag

After these commands are executed and a "cvs commit' isdone, file™ a' will be removed and file” d' added
in the main branch.

http://www.cvshome.org/docs/manual/cvs_5.html (7 of 9) [10/27/2000 2:27:13 PM]

CVS--Concurrent Versions System - 5. Branching and merging

5.10 Merging and keywords

If you merge files containing keywords (see section 12. Keyword substitution), you will normally get

numerous conflicts during the merge, because the keywords are expanded differently in the revisions which
you are merging.

Therefore, you will often want to specify the "-kk' (see section 12.4 Substitution modes) switch to the merge
command line. By substituting just the name of the keyword, not the expanded value of that keyword, this
option ensures that the revisions which you are merging will be the same as each other, and avoid spurious
conflicts.

For example, suppose you have afile like this:

S +
I 1.1.2.1"! <- br1l
] +---cc---- +
/
/
+---- - + +--- - - +
M1.11t!----11.2"1
S + +--- - - +

and your working directory is currently on the trunk (revision 1.2). Then you might get the following results
from amerge:

$ cat filel
key $Revision: 1.2 $

$ cvs update -j bril

Ufilel

RCS file: /cvsroot/first-dir/filel,v

retrieving revision 1.1

retrieving revision 1.1.2.1

Merging differences between 1.1 and 1.1.2.1 into filel
rcsmerge: warning: conflicts during nerge

$ cat filel

<<gg<<< filel

key $Revision: 1.2 $

key $Revision: 1.1.2.1 $
>S>>>>>> 1.1.2.1

What happened was that the merge tried to merge the differences between 1.1 and 1.1.2.1 into your working
directory. So, since the keyword changed from Revi sion: 1.1toRevision: 1.1.2.1,CVStried
to merge that change into your working directory, which conflicted with the fact that your working directory
had contained Revi si on: 1. 2.

http://www.cvshome.org/docs/manual/cvs_5.html (8 of 9) [10/27/2000 2:27:13 PM]

CVS--Concurrent Versions System - 5. Branching and merging

Here iswhat happens if you had used "-kk':

$ cat filel
key $Revision: 1.2 $

$ cvs update -kk -j brl

Ufilel

RCS file: /cvsroot/first-dir/filel,v

retrieving revision 1.1

retrieving revision 1.1.2.1

Merging differences between 1.1 and 1.1.2.1 into filel
$ cat filel

key $Revi sion$

What is going on hereisthat revision 1.1 and 1.1.2.1 both expand as plain Revi si on, and therefore
merging the changes between them into the working directory need not change anything. Therefore, thereis
no conflict.

There is, however, one major caveat with using “-kk' on merges. Namely, it overrides whatever keyword
expansion mode CV S would normally have used. In particular, thisis a problem if the mode had been "-kb'
for abinary file. Therefore, if your repository contains binary files, you will need to deal with the conflicts
rather than using "-kk'.

Go to the first, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_5.html (9 of 9) [10/27/2000 2:27:13 PM]

CVS--Concurrent Versions System - 6. Recursive behavior

Go to thefirst, previous, next, last section, table of contents.

0. Recursive behavior

Almost al of the subcommands of CV S work recursively when you specify a directory as an argument.
For instance, consider this directory structure:

$HOMVE
I
+--tcC
.
+-- CVS
| (internal CVS files)
+- - Makefile

+- - backend. c
+--driver.c
+--frontend. c
+--parser.c

+- - man
| |
| +-- CVS
| | (internal CVS files)
| +--tc.1
|
+--testing
|
+--CVS

| (internal CVS files)
+--testpgmt
+--test2.t
If "t c' isthe current working directory, the following istrue:
« cvsupdatetesting' isequivaent to

cvs update testing/testpgmt testing/test2.t
« Cvsupdate testing man' updates al files in the subdirectories
e cvsupdate.' or just ‘cvsupdate' updates all filesinthet ¢ directory

If no arguments are given to updat e it will update all filesin the current working directory and all its
subdirectories. In other words, . ' isadefault argument to updat e. Thisisalso true for most of the
CV S subcommands, not only the updat e command.

The recursive behavior of the CV'S subcommands can be turned off with the “-I' option. Conversely, the

http://www.cvshome.org/docs/manual/cvs_6.html (1 of 2) [10/27/2000 2:27:13 PM]

CVS--Concurrent Versions System - 6. Recursive behavior

"-R' option can be used to force recursion if "-I' is specified in ™ ~/ . cvsrc' (seesection A.3 Default
options and the ~/.cvsrc file).

$ cvs update -I # Don't update files in subdirectories

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_6.html (2 of 2) [10/27/2000 2:27:13 PM]

CVS--Concurrent Versions System - 7. Adding, removing, and renaming files and directories

Go to thefirst, previous, next, last section, table of contents.

/. Adding, removing, and renaming files
and directories

In the course of a project, one will often add new files. Likewise with removing or renaming, or with
directories. The general concept to keep in mind in all these casesisthat instead of making an
irreversible change you want CV Sto record the fact that a change has taken place, just as with modifying
an existing file. The exact mechanisms to do thisin CV S vary depending on the situation.

7.1 Adding files to a directory

To add anew fileto adirectory, follow these steps.
« You must have aworking copy of the directory. See section 1.3.1 Getting the source.

« Create the new fileinside your working copy of the directory.

« Use cvsadd filename' to tell CV S that you want to version control thefile. If the file contains
binary data, specify "-kb' (see section 9. Handling binary files).

« Use cvs commit filename' to actually check in the file into the repository. Other developers cannot
see the file until you perform this step.

Y ou can also use the add command to add a new directory.

Unlike most other commands, the add command is not recursive. Y ou cannot even type “cvs add
foo/bar'! Instead, you haveto

$ cd foo
$ cvs add bar

Command: cvsadd [- k kflag] [- mmessage] files...

Schedule files to be added to the repository. The files or directories specified with add must
aready exist in the current directory. To add awhole new directory hierarchy to the source
repository (for example, files received from athird-party vendor), usethei nport command
instead. See section A.12 import--Import sources into CV'S, using vendor branches.

The added files are not placed in the source repository until you useconmi t to make the change
permanent. Doing an add on afile that was removed with ther enove command will undo the
effect of ther enpve, unlessacomm t command intervened. See section 7.2 Removing files, for

an example.

The "-k' option specifies the default way that this file will be checked out; for more information see

http://www.cvshome.org/docs/manual/cvs_7.html (1 of 6) [10/27/2000 2:27:15 PM]

CVS--Concurrent Versions System - 7. Adding, removing, and renaming files and directories

section 12.4 Substitution modes.

The "-m'’ option specifies a description for the file. This description appearsin the history log (if it
Is enabled, see section C.11 The history file). It will aso be saved in the version history inside the

repository when the file is committed. Thel og command displays this description. The
description can be changed using “admin -t'. See section A.6 admin--Administration. If you omit

the "-m description’ flag, an empty string will be used. Y ou will not be prompted for a description.

For example, the following commands add the file " backend. ¢' to the repository:

$ cvs add backend.c
$ cvs commt -m"Early version. Not yet conpil able."” backend.c

When you add afileit is added only on the branch which you are working on (see section 5. Branching

and merging). Y ou can later merge the additions to another branch if you want (see section 5.9 Merging
can add or remove files).

7.2 Removing files

Directories change. New files are added, and old files disappear. Still, you want to be able to retrieve an
exact copy of old releases.

Here iswhat you can do to remove afile, but remain able to retrieve old revisions:

« Make sure that you have not made any uncommitted modifications to the file. See section 1.3.4
Viewing differences, for one way to do that. Y ou can also usethe st at us or updat e command.

If you remove the file without committing your changes, you will of course not be able to retrieve
thefile asit was immediately before you deleted it.

« Remove the file from your working copy of the directory. Y ou can for instance user m
« Use cvsremove filename' to tell CV Sthat you really want to delete the file.
o Use ‘cvs commit filename' to actually perform the removal of the file from the repository.

When you commit the removal of the file, CV S records the fact that the file no longer exists. It is
possible for afile to exist on only some branches and not on others, or to re-add another file with the
same name later. CVSwill correctly create or not create the file, based on the *-r' and "-D’ options
specified to checkout or updat e.

Command: cvsremove [optiong] files ...

Schedule file(s) to be removed from the repository (files which have not already been removed
from the working directory are not processed). This command does not actually remove thefile
from the repository until you commit the removal. For afull list of options, see section B. Quick
reference to CV'S commands.

Here is an example of removing severa files:

http://www.cvshome.org/docs/manual/cvs_7.html (2 of 6) [10/27/2000 2:27:15 PM]

CVS--Concurrent Versions System - 7. Adding, removing, and renaming files and directories

$ cd test

$rm*.c

$ cvs renove

cvs renove: Renovi ng

cvs renove: scheduling a.c for renoval

cvs renove: scheduling b.c for renoval

CVS renove: use 'cvs commt' to renove these files permanently
$ cvs ci -m "Renoved unneeded fil es"

cvs commit: Exam ning

cvs commt: Commtting

As aconvenience you can remove thefileand cvs renove itinone step, by specifying the "-f' option.
For example, the above example could also be done like this:

$ cd test

$ cvs renove -f *.c

cvs renove: scheduling a.c for renoval

cvs renove: scheduling b.c for renoval

CVS renove: use 'cvs commt' to renove these files permanently
$ cvs ci -m"Renpved unneeded fil es"

cvs commit: Exam ning

cvs commt: Commtting

If you executer enove for afile, and then change your mind before you commit, you can undo the
r enove with anadd command.

$1Is
CVS jJja.h oj.c
$rmoj.c

$ cvs renove 0j.cC

cvs renove: scheduling oj.c for renoval

CVS renove: use 'cvs commt' to renove this file permanently
$ cvs add oj.c

Uoj.c

cvs add: oj.c, version 1.1.1.1, resurrected

If you realize your mistake before you run ther enove command you can use updat e to resurrect the
file:

$rmoj.c

$ cvs update oj.c

cvs update: warning: oj.c was | ost
Uoj.c

When you remove afileit is removed only on the branch which you are working on (see section 5.
Branching and merging). Y ou can later merge the removals to another branch if you want (see section

http://www.cvshome.org/docs/manual/cvs_7.html (3 of 6) [10/27/2000 2:27:15 PM]

CVS--Concurrent Versions System - 7. Adding, removing, and renaming files and directories

5.9 Merging can add or remove files).

/.3 Removing directories

In concept removing directories is somewhat similar to removing files--you want the directory to not
exist in your current working directories, but you also want to be able to retrieve old releases in which
the directory existed.

The way that you remove adirectory isto remove all thefilesin it. Y ou don't remove the directory itself;
there is no way to do that. Instead you specify the "-P optionto cvs updat e or cvs checkout ,
which will cause CV S to remove empty directories from working directories. (Note that cvs export
always removes empty directories.) Probably the best way to do thisisto aways specify "-P; if you want
an empty directory then put adummy file (for example * . keepn®e') init to prevent -P from removing
it.

Note that "-P isimplied by the *-r' or *-D' options of checkout . Thisway CVSwill be ableto correctly
create the directory or not depending on whether the particular version you are checking out contains any
filesin that directory.

7.4 Moving and renaming files

Moving files to a different directory or renaming them is not difficult, but some of the waysin which this
works may be non-obvious. (Moving or renaming adirectory is even harder. See section 7.5 Moving and

renaming directories.).

The examples below assume that the file old is renamed to new.

7.4.1 The Normal way to Rename

The normal way to move afileisto copy old to new, and then issue the normal CV S commands to
remove old from the repository, and add new to it.

$ nv old new

$ cvs renove ol d

$ cvs add new

$ cvs commt -m"Renaned old to new' old new

Thisisthe simplest way to move afile, it is not error-prone, and it preserves the history of what was
done. Note that to access the history of the file you must specify the old or the new name, depending on
what portion of the history you are accessing. For example, cvs | og ol d will give thelog up until the
time of the rename.

When new is committed its revision numbers will start again, usually at 1.1, so if that bothers you, use
the "-r rev' option to commit. For more information see section 4.3 Assigning revisions.

http://www.cvshome.org/docs/manual/cvs_7.html (4 of 6) [10/27/2000 2:27:15 PM]

CVS--Concurrent Versions System - 7. Adding, removing, and renaming files and directories

7.4.2 Moving the history file

This method is more dangerous, since it involves moving files inside the repository. Read this entire
section before trying it out!

$ cd $CVSROOT/ di r

$ nv old,v new, v

Advantages.
« Thelog of changesis maintained intact.
e Therevision numbers are not affected.

Disadvantages:

« Old releases cannot easily be fetched from the repository. (The file will show up asnew evenin
revisions from the time before it was renamed).

« Thereisno loginformation of when the file was renamed.

« Nasty things might happen if someone accesses the history file while you are moving it. Make sure
no one else runs any of the CV'S commands while you move it.

7.4.3 Copying the history file

Thisway also involves direct modifications to the repository. It is safe, but not without drawbacks.

Copy the RCS file inside the repository
cd $CVSROOT/ di r

cp old,v new, v

Renove the old file

cd ~/dir

rmold

cvs renove old

cvs commt old

Renove all tags from new

Cvs update new

cvs | og new # Renenber the non-branch tag nanes
cvs tag -d tagl new

cvs tag -d tag2 new

PR A AR HATHA R

By removing the tags you will be able to check out old revisions.

Advantages:

« Checking out old revisions works correctly, aslong as you use "-rtag' and not "-Ddat€e' to retrieve
the revisions.

« Thelog of changesis maintained intact.

http://www.cvshome.org/docs/manual/cvs_7.html (5 of 6) [10/27/2000 2:27:15 PM]

CVS--Concurrent Versions System - 7. Adding, removing, and renaming files and directories

o Therevision numbers are not affected.

Disadvantages:
« You cannot easily see the history of the file across the rename.

7.5 Moving and renaming directories

The normal way to rename or move a directory is to rename or move each file within it as described in
section 7.4.1 The Normal way to Rename. Then check out with the "-P' option, as described in section

7.3 Removing directories.

If you really want to hack the repository to rename or delete a directory in the repository, you can do it
like this:

1. Inform everyone who has a checked out copy of the directory that the directory will be renamed.
They should commit al their changes, and remove their working copies, before you take the steps
below.

2. Rename the directory inside the repository.

$ cd $CVSROOT/ parent-di r
$ nv old-dir newdir

3. Fix the CVSadministrative files, if necessary (for instance if you renamed an entire module).
4. Tell everyone that they can check out again and continue working.

If someone had aworking copy the CVS commands will cease to work for him, until he removes the
directory that disappeared inside the repository.

It is amost always better to move the filesin the directory instead of moving the directory. If you move
the directory you are unlikely to be able to retrieve old releases correctly, since they probably depend on
the name of the directories.

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_7.html (6 of 6) [10/27/2000 2:27:15 PM]

CVS--Concurrent Versions System - 8. History browsing

Go to thefirst, previous, next, last section, table of contents.

8. History browsing

Once you have used CV Sto store aversion control history--what files have changed when, how, and by
whom, there are a variety of mechanisms for looking through the history.

8.1 Log messages

Whenever you commit afile you specify alog message.

To look through the log messages which have been specified for every revision which has been
committed, usethecvs | og command (see section A.13 log--Print out |og information for files).

8.2 The history database

Y ou can use the history file (see section C.11 The history file) to log various CVS actions. To retrieve
the information from the history file, usethecvs hi st or y command (see section A.11 history--Show
status of files and users).

Note: you can control what islogged to this file by using the "LogHistory' keyword in the
" CVSROOT/ confi g' file(see section C.13 The CVSROQOT/config configuration file).

8.3 User-defined logging

Y ou can customize CV S to log various kinds of actions, in whatever manner you choose. These
mechanisms operate by executing a script at various times. The script might append a message to afile
listing the information and the programmer who created it, or send mail to a group of developers, or,
perhaps, post a message to a particular newsgroup. To log commits, usethe " | ogi nf o' file (see
section C.7 Loginfo). To log commits, checkouts, exports, and tags, respectively, you can also use the

-i', -0, "-€, and "-t' options in the modules file. For a more flexible way of giving notificationsto
various users, which requires lessin the way of keeping centralized scripts up to date, usethecvs
wat ch add command (see section 10.6.2 Telling CV S to notify you); this command is useful even if

you arenot usingcvs wat ch on.

The t agi nf o' file defines programs to execute when someone executesat ag or r t ag command.
The t agi nf o' file hasthe standard form for administrative files (see section C. Reference manual for

Administrative files), where each line is aregular expression followed by a command to execute. The

arguments passed to the command are, in order, the tagname, operation (add fort ag, nov fort ag - F,
anddel fortag - d),repository, and any remaining are pairs of filename revision. A non-zero exit of

http://www.cvshome.org/docs/manual/cvs_8.html (1 of 2) [10/27/2000 2:27:15 PM]

CVS--Concurrent Versions System - 8. History browsing

the filter program will cause the tag to be aborted.

Here is an example of using taginfo to log tag and rtag commands. In the taginfo file put:

ALL /usr/local/cvsroot/ CVSROOT/ | oggit
Where "/ usr/ | ocal / cvsr oot/ CVSROOT/ | oggi t' containsthe following script:

#!/ bi n/sh
echo "$@ >>/hone/ ki ngdon/ cvsr oot/ CVSROOT/ t agl og

8.4 Annotate command

Command: cvsannotate[-f| R] [-r rev|-D dat e] files...

For each filein files, print the head revision of the trunk, together with information on the last
modification for each line. For example:

$ cvs annotate ssfile

Annot ations for ssfile

Xk k k) khkkkkkhkhkkx

1.1 (mary 27-Mar-96): ssfile line 1
1.2 (j oe 28-Mar-96): ssfile line 2

Thefile ssfil e’ currently containstwolines. Thessfil e |ine 1 linewascheckedin by
mar y on March 27. Then, on March 28, j oe added alinessfil e |ine 2, without modifying
thessfile |ine 1line Thisreportdoesn'ttell you anything about lines which have been
deleted or replaced; you needtousecvs di ff for that (see section A.9 diff--Show differences

between revisons).

Theoptionstocvs annot at e arelisted in section B. Quick reference to CVS commands, and can be
used to select the files and revisions to annotate. The options are described in more detail in section A.5
Common command options.

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_8.html (2 of 2) [10/27/2000 2:27:15 PM]

CVS--Concurrent Versions System - 9. Handling binary files

Go to thefirst, previous, next, last section, table of contents.

9. Handling binary files

The most common use for CVSisto store text files. With text files, CV'S can merge revisions, display
the differences between revisions in a human-visible fashion, and other such operations. However, if you
are willing to give up afew of these abilities, CVS can store binary files. For example, one might store a
web sitein CV Sincluding both text files and binary images.

9.1 The issues with binary files

While the need to manage binary files may seem obviousif the files that you customarily work with are
binary, putting them into version control does present some additional issues.

One basic function of version control is to show the differences between two revisions. For example, if
someone else checked in anew version of afile, you may wish to look at what they changed and
determine whether their changes are good. For text files, CV S provides this functionality viathecvs

di f f command. For binary files, it may be possible to extract the two revisions and then compare them
with atool external to CV'S (for example, word processing software often has such afeature). If thereis
no such tool, one must track changes via other mechanisms, such as urging people to write good log
messages, and hoping that the changes they actually made were the changes that they intended to make.

Another ability of aversion control system isthe ability to merge two revisions. For CV S this happensin
two contexts. The first is when users make changes in separate working directories (see section 10.

Multiple developers). The second is when one merges explicitly with the "update -j' command (see
section 5. Branching and merging).

In the case of text files, CV S can merge changes made independently, and signal a conflict if the changes
conflict. With binary files, the best that CV S can do is present the two different copies of the file, and
leave it to the user to resolve the conflict. The user may choose one copy or the other, or may run an
external merge tool which knows about that particular file format, if one exists. Note that having the user
merge relies primarily on the user to not accidentally omit some changes, and thus is potentially error
prone.

If this process is thought to be undesirable, the best choice may be to avoid merging. To avoid the
merges that result from separate working directories, see the discussion of reserved checkouts (file
locking) in section 10. Multiple developers. To avoid the merges resulting from branches, restrict use of

branches.

http://www.cvshome.org/docs/manual/cvs_9.html (1 of 3) [10/27/2000 2:27:16 PM]

CVS--Concurrent Versions System - 9. Handling binary files

9.2 How to store binary files

There are two issues with using CV S to store binary files. The first isthat CVS by default converts line
endings between the canonical form in which they are stored in the repository (linefeed only), and the
form appropriate to the operating system in use on the client (for example, carriage return followed by
line feed for Windows NT).

The second is that a binary file might happen to contain data which looks like a keyword (see section 12.
Keyword substitution), so keyword expansion must be turned off.

The "-kb' option available with some CV'S commands insures that neither line ending conversion nor
keyword expansion will be done.

Hereis an example of how you can create a new file using the "-kb' flag:

$ echo ' $1d$' > kot est
$ cvs add -kb -m'A test file" kotest
$ cvs ci -nmFirst checkin; contains a keyword" kot est

If afile accidentally gets added without "-kb', one can usethecvs admi n command to recover. For
example:

echo ' Id" > kot est

cvs add -m'A test file" kotest

cvs ci -m'First checkin; contains a keyword" kotest
cvs adm n -kb kot est

cvs update -A kotest

For non-uni x systens:

Copy in a good copy of the file from outside CVS
cvs commit -m"nmake it binary" kotest

AHHTAHH S

When you check inthefile " kot est ' thefileisnot preserved as a binary file, because you did not
check itinasabinary file. Thecvs adm n - kb command sets the default keyword substitution
method for thisfile, but it does not alter the working copy of the file that you have. If you need to cope
with line endings (that is, you are using CV'S on a non-unix system), then you need to check in a new
copy of thefile, asshown by thecvs conmm t command above. On unix, thecvs update -A
command suffices.

However, inusingcvs adm n - Kk to change the keyword expansion, be aware that the keyword
expansion mode is not version controlled. This means that, for example, that if you have atext file in old
releases, and a binary file with the same name in new releases, CV S provides no way to check out the file
in text or binary mode depending on what version you are checking out. There is no good workaround
for this problem.

Y ou can also set adefault for whether cvs add andcvs i nport treat afile as binary based onits
name; for example you could say that files who names end in ".exe' are binary. See section C.2 The

http://www.cvshome.org/docs/manual/cvs_9.html (2 of 3) [10/27/2000 2:27:16 PM]

CVS--Concurrent Versions System - 9. Handling binary files

cvswrappersfile. Thereis currently no way to have CV S detect whether afileis binary based on its
contents. The main difficulty with designing such afeatureisthat it is not clear how to distinguish
between binary and non-binary files, and the rules to apply would vary considerably with the operating
System.

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_9.html (3 of 3) [10/27/2000 2:27:16 PM]

CVS--Concurrent Versions System - 10. Multiple developers

Go to thefirst, previous, next, last section, table of contents.

10. Multiple developers

When more than one person works on a software project things often get complicated. Often, two people
try to edit the same file simultaneously. One solution, known as file locking or reserved checkouts, isto
allow only one person to edit each file at atime. Thisis the only solution with some version control
systems, including RCS and SCCS. Currently the usual way to get reserved checkouts with CVSisthecvs
adm n -1 command (see section A.6.1 admin options). Thisis not as nicely integrated into CVS as the
watch features, described below, but it seems that most people with a need for reserved checkouts find it
adequate. It also may be possible to use the watches features described below, together with suitable
procedures (not enforced by software), to avoid having two people edit at the same time.

The default model with CVSis known as unreserved checkouts. In this model, developers can edit their
own working copy of afile smultaneously. The first person that commits his changes has no automatic way
of knowing that another has started to edit it. Others will get an error message when they try to commit the
file. They must then use CV'S commands to bring their working copy up to date with the repository
revision. This processis amost automatic.

CV S also supports mechanisms which facilitate various kinds of communication, without actually
enforcing rules like reserved checkouts do.

The rest of this chapter describes how these various models work, and some of the issues involved in
choosing between them.

10.1 File status

Based on what operations you have performed on a checked out file, and what operations others have
performed to that file in the repository, one can classify afilein anumber of states. The states, as reported
by the st at us command, are:

Up-to-date

Thefileisidentical with the latest revision in the repository for the branch in use.
Locally Modified

Y ou have edited the file, and not yet committed your changes.
Locally Added

Y ou have added the file with add, and not yet committed your changes.
Locally Removed

Y ou have removed the file with r enove, and not yet committed your changes.
Needs Checkout

Someone else has committed a newer revision to the repository. The name is slightly misleading; you
will ordinarily use updat e rather than checkout to get that newer revision.

http://www.cvshome.org/docs/manual/cvs_10.html (1 of 11) [10/27/2000 2:27:18 PM]

CVS--Concurrent Versions System - 10. Multiple developers

Needs Patch

Like Needs Checkout, but the CVS server will send a patch rather than the entire file. Sending a
patch or sending an entire file accomplishes the same thing.

Needs Merge

Someone else has committed a newer revision to the repository, and you have also made
modifications to the file.

File had conflicts on merge

Thisislike Locally Modified, except that a previous updat e command gave a conflict. If you have
not already done so, you need to resolve the conflict as described in section 10.3 Conflicts example.

Unknown

CV S doesn't know anything about this file. For example, you have created a new file and have not
run add.

To help clarify thefile status, st at us also reportsthe Wor ki ng r evi si on whichisthe revision that
the file in the working directory derives from, and the Reposi t ory revi si on which isthe latest
revision in the repository for the branch in use.

The optionsto st at us arelisted in section B. Quick reference to CVS commands. For information on its
Sticky tagandSti cky dat e output, see section 4.9 Sticky tags. For information onits St i cky
opt i ons output, seethe -k’ option in section A.16.1 update options.

You can think of thest at us and updat e commands as somewhat complementary. You use updat e to
bring your files up to date, and you can use st at us to give you some idea of what an updat e would do
(of course, the state of the repository might change before you actually run updat e). In fact, if you want a
command to display file statusin amore brief format than is displayed by the st at us command, you can
invoke

$ cvs -n -q update

The "-n' option meansto not actually do the update, but merely to display statuses; the "-q' option avoids
printing the name of each directory. For more information on the updat e command, and these options,
see section B. Quick reference to CV'S commands.

10.2 Bringing a file up to date

When you want to update or merge afile, use the updat e command. For files that are not up to date thisis
roughly equivalent to acheckout command: the newest revision of the file is extracted from the
repository and put in your working directory.

Y our modificationsto afile are never lost when you use updat e. If no newer revision exists, running
updat e has no effect. If you have edited the file, and a newer revision is available, CVS will merge all
changes into your working copy.

For instance, imagine that you checked out revision 1.4 and started editing it. In the meantime someone
else committed revision 1.5, and shortly after that revision 1.6. If you run updat e on the file now, CVS

http://www.cvshome.org/docs/manual/cvs_10.html (2 of 11) [10/27/2000 2:27:18 PM]

CVS--Concurrent Versions System - 10. Multiple developers

will incorporate all changes between revision 1.4 and 1.6 into your file.

If any of the changes between 1.4 and 1.6 were made too close to any of the changes you have made, an
overlap occurs. In such cases awarning is printed, and the resulting file includes both versions of the lines
that overlap, delimited by special markers. See section A.16 update--Bring work tree in sync with

repository, for a complete description of the updat e command.

10.3 Conflicts example

Supposerevision 1.4 of " dri ver. c' containsthis:

#i ncl ude <stdi o. h>

void mai n()

{
parse();
i f (nerr == 0)
gencode() ;
el se
fprintf(stderr, "No code generated.\n");
exit(nerr == 0 ? 0 : 1);
}

Revision 1.6 of " dri ver. c' containsthis:;

#i ncl ude <stdi o. h>

int main(int argc,
char **argv)
{

parse();
i f (argc !'= 1)
{

fprintf(stderr,
exit(1l);

tc: No args expected.\n");

}
I f (nerr == 0)
gencode() ;
el se
fprintf(stderr, "No code generated.\n");
exit(!!'nerr);

}

Y our working copy of “ dri ver. ¢' , based on revision 1.4, contains this before you run "cvs update':

#i ncl ude <stdlib. h>

http://www.cvshome.org/docs/manual/cvs_10.html (3 of 11) [10/27/2000 2:27:18 PM]

CVS--Concurrent Versions System - 10. Multiple developers

#i ncl ude <stdi o. h>

voi d mai n()
{
I nit_scanner ();
parse();
if (nerr == 0)
gencode();
el se
fprintf(stderr, "No code generated.\n");
exit(nerr == 0 ? EXIT_SUCCESS : EX T_FAI LURE)

}

You run “cvs update':

$ cvs update driver.c

RCS file: /usr/local/cvsroot/yoyodyne/tc/driver.c,v
retrieving revision 1.4

retrieving revision 1.6

Merging differences between 1.4 and 1.6 into driver.c
rcsnmerge warni ng: overl aps during nerge

cvs update: conflicts found in driver.c

Cdriver.c

CV Stellsyou that there were some conflicts. Y our origina working fileis saved unmodified in
T #driver.c.1.4" .Thenewvesonof driver.c' containsthis:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

I nt main(int argc,
char **argv)
{

i nit_scanner();
parse();
if (argc '= 1)
{
fprintf(stderr, "tc: No args expected.\n");
exit(1);
}
I f (nerr == 0)
gencode();
el se
fprintf(stderr, "No code generated.\n");
<<<<<<< driver.c
exit(nerr == 0 ? EXIT_SUCCESS : EXI T_FAI LURE);

http://www.cvshome.org/docs/manual/cvs_10.html (4 of 11) [10/27/2000 2:27:18 PM]

CVS--Concurrent Versions System - 10. Multiple developers

exit(!!'nerr);
>>S>S>>>> 1.6

}
Note how all non-overlapping modifications are incorporated in your working copy, and that the
overlapping section is clearly marked with "<<<<<<<'| '======="and ">>>>>>>",

Y ou resolve the conflict by editing the file, removing the markers and the erroneous line. Suppose you end
up with thisfile:

#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

I nt main(int argc,
char **argv)
{

I nit_scanner();
parse();
if (argc !'= 1)
{
fprintf(stderr, "tc: No args expected.\n");
exit(1);
}
I f (nerr == 0)
gencode();
el se
fprintf(stderr, "No code generated.\n");
exit(nerr == 0 ? EXIT _SUCCESS : EXIT_FAI LURE);

}

Y ou can now go ahead and commit thisas revision 1.7.

$ cvs commit -m™"Initialize scanner. Use synbolic exit values." driver.c
Checking in driver.c;

/usr/1ocal /cvsroot/yoyodyne/tc/driver.c,v <-- driver.c
new revision: 1.7; previous revision: 1.6
done

For your protection, CVSwill refuse to check in afileif a conflict occurred and you have not resolved the
conflict. Currently to resolve a conflict, you must change the timestamp on the file. In previous versions of
CVSS, you also needed to insure that the file contains no conflict markers. Because your file may
legitimately contain conflict markers (that is, occurrences of ">>>>>>>" gt the start of aline that don't
mark a conflict), the current version of CVSwill print awarning and proceed to check in thefile.

If you use release 1.04 or later of pcl-cvs (a GNU Emacs front-end for CVS) you can use an Emacs
package called emerge to help you resolve conflicts. See the documentation for pcl-cvs.

http://www.cvshome.org/docs/manual/cvs_10.html (5 of 11) [10/27/2000 2:27:18 PM]

CVS--Concurrent Versions System - 10. Multiple developers

10.4 Informing others about commits

It is often useful to inform others when you commit anew revision of afile. The "-i* option of the
“nodul es' file, orthe ™ | ogi nf o' file, can be used to automate this process. See section C.1 The

modulesfile. See section C.7 Loginfo. Y ou can use these features of CV Sto, for instance, instruct CVSto
mail a message to all developers, or post a message to alocal newsgroup.

10.5 Several developers simultaneously attempting
to run CVS

If several developerstry to run CV S at the same time, one may get the following message:

[11:43: 23] waiting for bach's lock in /usr/local/cvsroot/foo

CVSwill try again every 30 seconds, and either continue with the operation or print the message again, if it
still needs to wait. If alock seemsto stick around for an undue amount of time, find the person holding the
lock and ask them about the cvs command they are running. If they aren't running a cvs command, look in
the repository directory mentioned in the message and remove files which they own whose names start with
“#evs.rfl', #cvs.wil ', or #cvs. | ock'.

Note that these locks are to protect CV S'sinternal data structures and have no relationship to the word lock
in the sense used by RCS---which refers to reserved checkouts (see section 10. Multiple developers).

Any number of people can be reading from a given repository at atime; only when someone is writing do
the locks prevent other people from reading or writing.

One might hope for the following property
| f sonmeone commts sone changes in one cvs conmand,

then an update by soneone else will either get all the
changes, or none of them

but CV S does not have this property. For example, given thefiles
a/ one. c
a/two. c

b/three.c
b/ four.c

if someone runs

cvs ci a/ltwo.c b/three.c

and someone elserunscvs updat e at the same time, the person running updat e might get only the
changeto " b/t hree. c¢' and not thechangeto a/two. c' .

http://www.cvshome.org/docs/manual/cvs_10.html (6 of 11) [10/27/2000 2:27:18 PM]

CVS--Concurrent Versions System - 10. Multiple developers

10.6 Mechanisms to track who is editing files

For many groups, use of CVSin its default mode is perfectly satisfactory. Users may sometimes go to
check in amodification only to find that another modification has intervened, but they deal with it and
proceed with their check in. Other groups prefer to be able to know who is editing what files, so that if two
people try to edit the same file they can choose to talk about who is doing what when rather than be
surprised at check in time. The features in this section allow such coordination, while retaining the ability
of two developersto edit the samefile at the same time.

For maximum benefit developers should usecvs edi t (not chnod) to make files read-write to edit
them, andcvs r el ease (notr m to discard aworking directory which is no longer in use, but CVSis
not able to enforce this behavior.

10.6.1 Telling CVS to watch certain files

To enable the watch features, you first specify that certain files are to be watched.
Command: cvswatch on [- | R] files...

Specify that developers should runcvs edi t before editing files. CVSwill create working copies
of files read-only, to remind developersto runthecvs edi t command before working on them.

If files includes the name of adirectory, CV S arranges to watch all files added to the corresponding
repository directory, and sets a default for files added in the future; this allows the user to set
notification policies on a per-directory basis. The contents of the directory are processed recursively,
unlessthe- | optionisgiven. The - Roption can be used to force recursion if the- | optionissetin
"~/ .cvsrc' (seesection A.3 Default options and the ~/.cvsrc file).

If filesis omitted, it defaults to the current directory.
Command: cvswatch off [- | R] files...

Do not create files read-only on checkout; thus, developers will not be remindedtousecvs edi t
andcvs unedit.

The files and options are processed asfor cvs wat ch on.

10.6.2 Telling CVS to notify you

Y ou can tell CV S that you want to receive notifications about various actions taken on afile. You can do
thiswithout using cvs wat ch on for thefile, but generally you will want tousecvs wat ch on, so
that developersusethecvs edi t command.

Command: cvswatch add [- a action] [- | R] files...
Add the current user to the list of people to receive notification of work done on files.

The - a option specifies what kinds of events CV S should notify the user about. action is one of the
following:

edit

http://www.cvshome.org/docs/manual/cvs_10.html (7 of 11) [10/27/2000 2:27:19 PM]

CVS--Concurrent Versions System - 10. Multiple developers
Another user has applied thecvs edi t command (described below) to afile.
unedi t

Another user has applied thecvs unedi t command (described below) or thecvs
r el ease command to afile, or has deleted the file and allowed cvs updat e to recreate it.

comm t
Another user has committed changes to afile.
al |
All of the above.
none
None of the above. (Thisisuseful withcvs edi t, described below.)

The - a option may appear more than once, or not at al. If omitted, the action defaultstoal | .

Thefiles and options are processed asfor thecvs wat ch commands.
Command: cvswatch remove|[- a action] [- | R] files...

Remove a notification request established using cvs wat ch add; the arguments are the same. If
the - a option is present, only watches for the specified actions are removed.

When the conditions exist for notification, CVScallsthe " not i f y' administrativefile. Edit “ noti f y'
as one edits the other administrative files (see section 2.4 The administrative files). Thisfile follows the
usual conventions for administrative files (see section C.3.1 The common syntax), where each lineisa
regular expression followed by a command to execute. The command should contain a single occurrence of
“%s which will be replaced by the user to notify; the rest of the information regarding the notification will
be supplied to the command on standard input. The standard thing to put inthenot i fy fileisthesingle
line:

ALL mail % -s "CVS notification”
This causes users to be notified by electronic mail.

Note that if you set this up in the straightforward way, users receive notifications on the server machine.
One could of coursewritea™ not i fy" script which directed notifications elsewhere, but to make this
easy, CV S alowsyou to associate a notification address for each user. To do so create afile” users' in
" CVSROOT" with aline for each user in the format user:value. Then instead of passing the name of the
user to be notifiedto " noti fy' , CVSwill passthe value (normally an email address on some other
machine).

CV S does not notify you for your own changes. Currently this check is done based on whether the user
name of the person taking the action which triggers notification matches the user name of the person
getting notification. In fact, in general, the watches features only track one edit by each user. It probably
would be more useful if watches tracked each working directory separately, so this behavior might be
worth changing.

http://www.cvshome.org/docs/manual/cvs_10.html (8 of 11) [10/27/2000 2:27:19 PM]

CVS--Concurrent Versions System - 10. Multiple developers

10.6.3 How to edit a file which is being watched

Since afile which is being watched is checked out read-only, you cannot simply edit it. To make it
read-write, and inform others that you are planning to edit it, usethecvs edi t command. Some systems
call this a checkout, but CV S uses that term for obtaining a copy of the sources (see section 1.3.1 Getting

the source), an operation which those systems call a get or afetch.
Command: cvs edit [optiong] files ...

Prepare to edit the working files files. CV S makes the files read-write, and notifies users who have
requested edi t notification for any of files.

Thecvs edit command accepts the same optionsasthecvs wat ch add command, and
establishes atemporary watch for the user on files; CV S will remove the watch when files are
unedi t ed or commi t ted. If the user does not wish to receive notifications, she should specify - a
none.

Thefiles and options are processed asfor thecvs wat ch commands.

Normally when you are done with a set of changes, you usethecvs conm t command, which checksin
your changes and returns the watched files to their usual read-only state. But if you instead decide to
abandon your changes, or not to make any changes, you can usethecvs unedi t command.

Command: cvsunedit [- | R] files...

Abandon work on the working filesfiles, and revert them to the repository versions on which they
are based. CV S makes those files read-only for which users have requested notification using cvs
wat ch on. CVS notifies users who have requested unedi t notification for any of files.

The files and options are processed as for thecvs wat ch commands.

If watches are not in use, theunedi t command probably does not work, and the way to revert to
the repository version isto remove the file and then usecvs updat e to get anew copy. The
meaning is not precisely the same; removing and updating may also bring in some changes which
have been made in the repository since the last time you updated.

When using client/server CVS, you can usethecvs edit andcvs unedi t commandsevenif CVSis
unable to successfully communicate with the server; the notifications will be sent upon the next successful
CV'S command.

10.6.4 Information about who is watching and editing

Command: cvswatchers[-| R] files...

List the users currently watching changes to files. The report includes the files being watched, and
the mail address of each watcher.

The files and options are processed as for thecvs wat ch commands.
Command: cvseditors[- | R] files...

List the users currently working on files. The report includes the mail address of each user, the time

http://www.cvshome.org/docs/manual/cvs_10.html (9 of 11) [10/27/2000 2:27:19 PM]

CVS--Concurrent Versions System - 10. Multiple developers

when the user began working with the file, and the host and path of the working directory containing
thefile.

Thefiles and options are processed asfor thecvs wat ch commands.

10.6.5 Using watches with old versions of CVS

If you use the watch features on arepository, it creates ™ CVS' directoriesin the repository and stores the
information about watches in that directory. If you attempt to use CVS 1.6 or earlier with the repository,
you get an error message such as the following (all on oneline):

cvs update: cannot open CVS/Entries for reading:
No such file or directory

and your operation will likely be aborted. To use the watch features, you must upgrade all copies of CVS
which use that repository in local or server mode. If you cannot upgrade, usethewat ch of f and wat ch
r enove commands to remove all watches, and that will restore the repository to a state which CVS 1.6
can cope with.

10.7 Choosing between reserved or unreserved
checkouts

Reserved and unreserved checkouts each have pros and cons. Let it be said that alot of thisis a matter of
opinion or what works given different groups working styles, but hereis abrief description of some of the
issues. There are many ways to organize ateam of developers. CV'S does not try to enforce a certain
organization. It isatool that can be used in several ways.

Reserved checkouts can be very counter-productive. If two persons want to edit different parts of afile,
there may be no reason to prevent either of them from doing so. Also, it is common for someone to take out
alock on afile, because they are planning to edit it, but then forget to release the lock.

People, especially people who are familiar with reserved checkouts, often wonder how often conflicts occur
If unreserved checkouts are used, and how difficult they are to resolve. The experience with many groupsis
that they occur rarely and usually are relatively straightforward to resolve.

The rarity of serious conflicts may be surprising, until one realizes that they occur only when two
developers disagree on the proper design for a given section of code; such a disagreement suggests that the
team has not been communicating properly in the first place. In order to collaborate under any source
management regimen, devel opers must agree on the general design of the system; given this agreement,
overlapping changes are usually straightforward to merge.

In some cases unreserved checkouts are clearly inappropriate. If no merge tool exists for the kind of file
you are managing (for example word processor files or files edited by Computer Aided Design programs),
and it is not desirable to change to a program which uses a mergeabl e data format, then resolving conflicts
Is going to be unpleasant enough that you generally will be better off to smply avoid the conflicts instead,
by using reserved checkouts.

http://www.cvshome.org/docs/manual/cvs_10.html (10 of 11) [10/27/2000 2:27:19 PM]

CVS--Concurrent Versions System - 10. Multiple developers

The watches features described above in section 10.6 M echanisms to track who is editing files can be

considered to be an intermediate model between reserved checkouts and unreserved checkouts. When you
go to edit afile, it ispossible to find out who elseis editing it. And rather than having the system simply
forbid both people editing thefile, it can tell you what the situation is and let you figure out whether itisa

problem in that particular case or not. Therefore, for some groups it can be considered the best of both the
reserved checkout and unreserved checkout worlds.

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_10.html (11 of 11) [10/27/2000 2:27:19 PM]

CVS--Concurrent Versions System - 11. Revision management

Go to thefirst, previous, next, last section, table of contents.

11. Revision management

If you have read thisfar, you probably have a pretty good grasp on what CV S can do for you. This
chapter talks a little about things that you still have to decide.

If you are doing development on your own using CV S you could probably skip this chapter. The
guestions this chapter takes up become more important when more than one person isworking in a
repository.

11.1 When to commit?

Y our group should decide which policy to use regarding commits. Several policies are possible, and as
your experience with CV S grows you will probably find out what works for you.

If you commit files too quickly you might commit files that do not even compile. If your partner updates

his working sources to include your buggy file, he will be unable to compile the code. On the other hand,

other persons will not be able to benefit from the improvements you make to the code if you commit very
seldom, and conflicts will probably be more common.

It is common to only commit files after making sure that they can be compiled. Some sites require that
the files pass atest suite. Policies like this can be enforced using the commitinfo file (see section C.4

Commitinfo), but you should think twice before you enforce such a convention. By making the

development environment too controlled it might become too regimented and thus counter-productive to
the real goal, which isto get software written.

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_11.html [10/27/2000 2:27:20 PM]

CVS--Concurrent Versions System - 12. Keyword substitution

Go to thefirst, previous, next, last section, table of contents.

12. Keyword substitution

Aslong as you edit source files inside a working directory you can aways find out the state of your files
via cvs status and “cvslog'. But as soon as you export the files from your devel opment environment it
becomes harder to identify which revisionsthey are.

CV S can use a mechanism known as keyword substitution (or keyword expansion) to help identifying the
files. Embedded strings of the form $keywor d$ and $keywor d: . . . $ in afile are replaced with
strings of the form $keywor d: val ue$ whenever you obtain anew revision of thefile.

12.1 Keyword List

Thisisalist of the keywords:

$Aut hor $
The login name of the user who checked in the revision.

$Dat e$
The date and time (UTC) the revision was checked in.

$Header $
A standard header containing the full pathname of the RCSfile, the revision number, the date
(UTC), the author, the state, and the locker (if locked). Fileswill normally never be locked when
you use CVS.

$1 d$
Same as $Header $, except that the RCS filename is without a path.

$Nane$

Tag name used to check out thisfile. The keyword is expanded only if one checks out with an
explicit tag name. For example, when running the commandcvs co -r first,thekeyword
expands to ‘Name: first'.

$Locker $
The login name of the user who locked the revision (empty if not locked, which is the normal case
unlesscvs adm n -1 isinuse).

Log

The log message supplied during commit, preceded by a header containing the RCS filename, the
revision number, the author, and the date (UTC). Existing log messages are not replaced. Instead,
the new log message isinserted after $Log: . . . $. Each new lineis prefixed with the same string
which precedes the $Log keyword. For example, if the file contains

/* Here is what people have been up to:

http://www.cvshome.org/docs/manual/cvs_12.html (1 of 4) [10/27/2000 2:27:21 PM]

CVS--Concurrent Versions System - 12. Keyword substitution

*

* $Log: frob.c,v $
* Revision 1.1 1997/01/03 14:23:51 |joe
* Add the superfrobnicate option

*/
then additional lines which are added when expanding the $Log keyword will be preceded by ™ * .
Unlike previous versions of CV S and RCS, the comment |eader from the RCSfileis not used. The

$Log keyword is useful for accumulating a complete change log in a source file, but for several
reasons it can be problematic. See section 12.5 Problems with the $L og$ keyword..

SRCSi | e$

The name of the RCS file without a path.
$Revi si on$

The revision number assigned to the revision.
$Sour ce$

The full pathname of the RCSfile.
$St at e$

The state assigned to the revision. States can be assigned withcvs adm n - s---see section A.6.1
admin options.

12.2 Using keywords

To include a keyword string you simply include the relevant text string, such as $I d$, inside thefile, and
commit the file. CV Swill automatically expand the string as part of the commit operation.

It is common to embed the $1d$ string in the source files so that it gets passed through to generated files.
For example, if you are managing computer program source code, you might include avariable whichis
initialized to contain that string. Or some C compilers may provide a#pr agma i dent directive. Or a
document management system might provide away to pass a string through to generated files.

Thei dent command (which is part of the RCS package) can be used to extract keywords and their
values from afile. This can be handy for text files, but it is even more useful for extracting keywords
from binary files.

$ ident sanp.c
sanp. c:
$ld: sanp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $
$ gcc sanp.c
$ ident a.out
a. out :
$ld: sanp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $

SCCSis another popular revision control system. It has acommand, what , which isvery similar to

http://www.cvshome.org/docs/manual/cvs_12.html (2 of 4) [10/27/2000 2:27:21 PM]

CVS--Concurrent Versions System - 12. Keyword substitution

I dent and used for the same purpose. Many sites without RCS have SCCS. Sincewhat looksfor the
character sequence @ #) it is easy to include keywords that are detected by either command. Simply
prefix the keyword with the magic SCCS phrase, like this:

static char *id="@#) $ld: ab.c,v 1.5 1993/10/19 14:57: 32 ceder Exp $";

12.3 Avoiding substitution

Keyword substitution has its disadvantages. Sometimes you might want the literal text string "$Author$
to appear inside afile without CV Sinterpreting it as a keyword and expanding it into something like
“$'Author: ceder $.

Thereis unfortunately no way to selectively turn off keyword substitution. Y ou can use "-ko' (see section
12.4 Substitution modes) to turn off keyword substitution entirely.

In many cases you can avoid using keywords in the source, even though they appear in the final product.
For example, the source for this manual contains "$@asi <{ } Author$' whenever the text “$Author$ should
appear. Innrof f andt r of f you can embed the null-character \ & inside the keyword for a similar
effect.

12.4 Substitution modes

Each file has a stored default substitution mode, and each working directory copy of afilealso hasa
substitution mode. The former is set by the "-k' optiontocvs add andcvs adm n; thelatter is set by
the -k’ or "-A' optionstocvs checkout orcvs update.cvs diff asohasa -k' option. For
some examples, see section 9. Handling binary files, and section 5.10 Merging and keywords.

The modes available are:

“-kkv'
Generate keyword strings using the default form, e.g. $Revision: 5.7 $ for the Revi si on
keyword.

“-kkvl'
Like "-kkv', except that alocker's nameis always inserted if the given revision is currently locked.
The locker'snameisonly relevantif cvs admi n -1 isinuse

KK
Generate only keyword names in keyword strings; omit their values. For example, for the
Revi si on keyword, generate the string $Revision$ instead of $Revision: 5.7 $. Thisoption is

useful to ignore differences due to keyword substitution when comparing different revisions of a
file (see section 5.10 Merging and keywords).

-ko'
Generate the old keyword string, present in the working file just before it was checked in. For

example, for the Revi si on keyword, generate the string $Revision: 1.1 $ instead of $Revision:
5.7 $if that is how the string appeared when the file was checked in.

http://www.cvshome.org/docs/manual/cvs_12.html (3 of 4) [10/27/2000 2:27:21 PM]

CVS--Concurrent Versions System - 12. Keyword substitution
“-kb'
Like "-ko', but also inhibit conversion of line endings between the canonical form in which they are
stored in the repository (linefeed only), and the form appropriate to the operating system in use on

the client. For systems, like unix, which use linefeed only to terminate lines, thisis the same as
“-ko'. For more information on binary files, see section 9. Handling binary files.

-kv'
Generate only keyword values for keyword strings. For example, for the Revi si on keyword,
generate the string 5. 7 instead of $Revision: 5.7 $. This can help generate filesin programming
languages where it is hard to strip keyword delimiters like $Revision: $ from a string. However,
further keyword substitution cannot be performed once the keyword names are removed, so this
option should be used with care. One often would like to use "-kv' withcvs expor t ---see section
A.10 export--Export sources from CVS, similar to checkout. But be aware that doesn't handle an

export containing binary files correctly.

12.5 Problems with the Log keyword.

The Log keyword is somewhat controversial. Aslong as you are working on your development system
the information is easily accessible even if you do not use the Log keyword--just doacvs | og. Once
you export the file the history information might be usel ess anyhow.

A more serious concern isthat CVSis not good at handling Log entries when a branch is merged onto
the main trunk. Conflicts often result from the merging operation.

People also tend to "fix" the log entries in the file (correcting spelling mistakes and maybe even factual
errors). If that is done the information fromcvs | og will not be consistent with the information inside
thefile. Thismay or may not be aprobleminread life.

It has been suggested that the Log keyword should be inserted last in the file, and not in the files
header, if it isto be used at all. That way the long list of change messages will not interfere with everyday
source file browsing.

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_12.html (4 of 4) [10/27/2000 2:27:21 PM]

CVS--Concurrent Versions System - 13. Tracking third-party sources

Go to thefirst, previous, next, last section, table of contents.

13. Tracking third-party sources

If you modify a program to better fit your site, you probably want to include your modifications when the
next release of the program arrives. CV'S can help you with this task.

In the terminology used in CV'S, the supplier of the program is called a vendor. The unmodified
distribution from the vendor is checked in on its own branch, the vendor branch. CV S reserves branch
1.1.1 for this use.

When you modify the source and commit it, your revision will end up on the main trunk. When a new
release is made by the vendor, you commit it on the vendor branch and copy the modifications onto the
main trunk.

Usethei nport command to create and update the vendor branch. When you import a new file, the
vendor branch is made the "head' revision, so anyone that checks out a copy of the file gets that revision.
When alocal modification is committed it is placed on the main trunk, and made the "head' revision.

13.1 Importing for the first time

Usethei nport command to check in the sources for the first time. When you usethei npor t
command to track third-party sources, the vendor tag and release tags are useful. The vendor tag isa
symbolic name for the branch (which isalways 1.1.1, unless you use the "-b branch' flag---See section
13.6 Multiple vendor branches.). The release tags are symbolic names for a particular release, such as

"FSF 0 04

Notethat i mport does not change the directory in which you invokeit. In particular, it does not set up
that directory as a CV S working directory; if you want to work with the sources import them first and
then check them out into a different directory (see section 1.3.1 Getting the source).

Suppose you have the sourcesto a program caled wdi f f inadirectory " wdi f f - 0. 04' , and are going
to make private modifications that you want to be able to use even when new releases are made in the
future. Y ou start by importing the source to your repository:

$ cd wdi ff-0.04
$ cvs inport -m"Inport of FSF v. 0.04" fsf/wdiff FSF_D ST WDI FF_0 04

The vendor tag is named "FSF_DIST' in the above example, and the only release tag assigned is
"WDIFF_0 04'.

http://www.cvshome.org/docs/manual/cvs_13.html (1 of 4) [10/27/2000 2:27:22 PM]

CVS--Concurrent Versions System - 13. Tracking third-party sources

13.2 Updating with the import command

When anew release of the source arrives, you import it into the repository with the samei npor t
command that you used to set up the repository in the first place. The only difference is that you specify
adifferent release tag this time.

$ tar xfz wdiff-0.05.tar.gz
$ cd wdiff-0.05
$ cvs inmport -m"Inport of FSF v. 0.05" fsf/wdiff FSF D ST WDI FF_0 05

For files that have not been modified locally, the newly created revision becomes the head revision. If
you have made local changes, i npor t will warn you that you must merge the changes into the main
trunk, and tell you to use "checkout -j' to do so.

$ cvs checkout -jFSF_DI ST:yesterday -jFSF_D ST wdi ff

The above command will check out the latest revision of “wdiff', merging the changes made on the
vendor branch "FSF_DIST" since yesterday into the working copy. If any conflicts arise during the merge
they should be resolved in the normal way (see section 10.3 Conflicts example). Then, the modified files

may be committed.

Using adate, as suggested above, assumes that you do not import more than one release of a product per
day. If you do, you can always use something like this instead:

$ cvs checkout -jWDIFF 0 04 -jWDIFF_ 0 05 wdiff

In this case, the two above commands are equivalent.

13.3 Reverting to the latest vendor release

Y ou can also revert local changes completely and return to the latest vendor release by changing the
“head' revision back to the vendor branch on al files. For example, if you have a checked-out copy of the
sourcesin ™ ~/ wor k. d/ wdi f f' , and you want to revert to the vendor's version for al the filesin that
directory, you would type:

$ cd ~/work.d/ wdi ff
$ cvs admin -bWD FF .

Y ou must specify the -bWDIFF without any space after the "-b'. See section A.6.1 admin options.

http://www.cvshome.org/docs/manual/cvs_13.html (2 of 4) [10/27/2000 2:27:22 PM]

CVS--Concurrent Versions System - 13. Tracking third-party sources

13.4 How to handle binary files with cvs import

Use the "-k" wrapper option to tell import which files are binary. See section C.2 The cvswrappersfile.

13.5 How to handle keyword substitution with cvs
Import

The sources which you are importing may contain keywords (see section 12. Keyword substitution). For
example, the vendor may use CV S or some other system which uses similar keyword expansion syntax.
If you just import the filesin the default fashion, then the keyword expansions supplied by the vendor
will be replaced by keyword expansions supplied by your own copy of CVS. It may be more convenient
to maintain the expansions supplied by the vendor, so that this information can supply information about
the sources that you imported from the vendor.

To maintain the keyword expansions supplied by the vendor, supply the -ko' optionto cvs i nport
the first time you import the file. Thiswill turn off keyword expansion for that file entirely, soif you
want to be more selective you'll have to think about what you want and use the *-k' optionto cvs
updat e or cvs adm n as appropriate.

13.6 Multiple vendor branches

All the examples so far assume that there is only one vendor from which you are getting sources. In some
situations you might get sources from avariety of places. For example, suppose that you are dealing with
aproject where many different people and teams are modifying the software. There are a variety of ways
to handle this, but in some cases you have a bunch of source trees lying around and what you want to do
more than anything elseisjust to all put them in CVS so that you at least have them in one place.

For handling situations in which there may be more than one vendor, you may specify the "-b' option to
cvs i nport. Ittakes as an argument the vendor branch to import to. The default is -b 1.1.1".

For example, suppose that there are two teams, the red team and the blue team, that are sending you
sources. Y ou want to import the red team's efforts to branch 1.1.1 and use the vendor tag RED. Y ou want
to import the blue team's efforts to branch 1.1.3 and use the vendor tag BLUE. So the commands you
might use are:

$ cvs inport dir RED RED 1-0
$ cvs inmport -b 1.1.3 dir BLUE BLUE 1-5

Note that if your vendor tag does not match your "-b' option, CVSwill not detect this case! For example,

$ cvs inport -b 1.1.3 dir RED RED 1-0

Be careful; this kind of mismatch is sure to sow confusion or worse. | can't think of a useful purpose for
the ability to specify amismatch here, but if you discover such ause, don't. CVSislikely to make this an

http://www.cvshome.org/docs/manual/cvs_13.html (3 of 4) [10/27/2000 2:27:22 PM]

CVS--Concurrent Versions System - 13. Tracking third-party sources

error in some future release.

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_13.html (4 of 4) [10/27/2000 2:27:22 PM]

CVS--Concurrent Versions System - 14. How your build system interacts with CVS

Go to thefirst, previous, next, last section, table of contents.

14. How your build system interacts with
CVS

As mentioned in the introduction, CV S does not contain software for building your software from source
code. This section describes how various aspects of your build system might interact with CVS.

One common guestion, especially from people who are accustomed to RCS, is how to make their build
get an up to date copy of the sources. The answer to thiswith CVSistwo-fold. First of al, since CVS
itself can recurse through directories, there is no need to modify your ~ Makefi | e' (or whatever
configuration file your build tool uses) to make sure each file is up to date. Instead, just use two
commands, firstcvs - q updat e and then make or whatever the command is to invoke your build
tool. Secondly, you do not necessarily want to get a copy of a change someone else made until you have
finished your own work. One suggested approach isto first update your sources, then implement, build
and test the change you were thinking of, and then commit your sources (updating first if necessary). By
periodically (in between changes, using the approach just described) updating your entire tree, you
ensure that your sources are sufficiently up to date.

One common need isto record which versions of which source files went into a particular build. This
kind of functionality is sometimes called bill of materials or something similar. The best way to do this
with CVSisto usethet ag command to record which versions went into a given build (see section 4.4

Tags--Symbolic revisions).

Using CVSin the most straightforward manner possible, each developer will have a copy of the entire
source tree which is used in a particular build. If the source treeis small, or if developers are
geographically dispersed, thisis the preferred solution. In fact one approach for larger projectsisto break
aproject down into smaller separately-compiled subsystems, and arrange away of releasing them
internally so that each developer need check out only those subsystems which are they are actively
working on.

Another approach is to set up a structure which allows developers to have their own copies of somefiles,
and for other files to access source files from a central location. Many people have come up with some
such a system using features such as the symbolic link feature found in many operating systems, or the
VPATH feature found in many versions of make. One build tool which is designed to help with this kind
of thingisOdin (seeftp://ftp.cs. col orado. edu/ pub/ di stri bs/ odi n).

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_14.html [10/27/2000 2:27:22 PM]

CVS--Concurrent Versions System - 15. Special Files

Go to thefirst, previous, next, last section, table of contents.

15. Special Files

In normal circumstances, CV S works only with regular files. Every filein a project is assumed to be
persistent; it must be possible to open, read and close them; and so on. CV S aso ignores file permissions
and ownerships, leaving such issues to be resolved by the developer at installation time. In other words, it
IS not possible to "check in" adevice into arepository; if the device file cannot be opened, CV S will
refuse to handle it. Files also lose their ownerships and permissions during repository transactions.

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_15.html [10/27/2000 2:27:23 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

Go to thefirst, previous, next, last section, table of contents.

A. Guide to CVS commands

This appendix describes the overall structure of CVS commands, and describes some commands in detail
(others are described elsewhere; for a quick reference to CVS commands, see section B. Quick reference

to CVS commands).

A.1 Overall structure of CVS commands

The overall format of all CVS commandsis:

cvs [cvs_options] cvs _command [command _options] [command_args |
CVsS

The name of the CV S program.
cvs_options

Some options that affect all sub-commands of CVS. These are described below.
cvs_conmand

One of severa different sub-commands. Some of the commands have aliases that can be used
instead; those aliases are noted in the reference manual for that command. There are only two
situations where you may omit "cvs_command': “cvs -H' elicits alist of available commands, and
“cvs-V' displays version information on CV S itself.

command_opti ons
Options that are specific for the command.
conmand_ar gs
Arguments to the commands.
There is unfortunately some confusion between cvs_opti ons and conmmand_opti ons. "-I', when
givenasacvs_opti on, only affects some of the commands. Whenitisgivenasa

command_opt i on ishasadifferent meaning, and is accepted by more commands. In other words, do
not take the above categorization too serioudly. Look at the documentation instead.

A.2 CVS's exit status

CV S can indicate to the calling environment whether it succeeded or failed by setting its exit status. The
exact way of testing the exit status will vary from one operating system to another. For example in a unix
shell script the "$7 variable will be O if the last command returned a successful exit status, or greater than
0if the exit status indicated failure.

http://www.cvshome.org/docs/manual/cvs_16.html (1 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

If CVSissuccessful, it returns a successful status; if thereisan error, it prints an error message and
returns a failure status. The one exception to thisisthecvs di f f command. It will return a successful
statusif it found no differences, or afailure status if there were differences or if there was an error.
Because this behavior provides no good way to detect errors, in the future it is possible that cvs di f f
will be changed to behave like the other CV S commands.

A.3 Default options and the ~/.cvsrc file

There are some comand_opt i ons that are used so often that you might have set up an aias or some
other means to make sure you always specify that option. One example (the one that drove the
implementation of the ™ . cvsr ¢' support, actually) isthat many people find the default output of the
“diff' command to be very hard to read, and that either context diffs or unidiffs are much easier to
understand.

The ~/. cvsrc' fileisaway that you can add default optionsto cvs_conmmands within cvs, instead
of relying on aliases or other shell scripts.

Theformat of the” ~/ . cvsrc' fileissmple. Thefileis searched for aline that begins with the same
name asthe cvs_conmmand being executed. If a match isfound, then the remainder of the lineis split
up (at whitespace characters) into separate options and added to the command arguments before any
options from the command line.

If acommand has two names (e.g., checkout and co), the official name, not necessarily the one used
on the command line, will be used to match against the file. So if thisis the contents of the user's
"~/ .cvsrc' file

| og -N

diff -u
update -P
checkout -P

the command “cvs checkout foo' would have the "-P' option added to the arguments, as well as "cvs co
foo'.

With the example file above, the output from “cvs diff foobar' will be in unidiff format. "cvs diff -c
foobar' will provide context diffs, as usual. Getting "old" format diffs would be slightly more
complicated, because di f f doesn't have an option to specify use of the "old" format, so you would need
“cvs -f diff foobar'.

In place of the command name you can use cvs to specify global options (see section A.4 Global
options). For example the following linein " . cvsrc'

CVSsS -26

causes CV Sto use compression level 6.

http://www.cvshome.org/docs/manual/cvs_16.html (2 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

A.4 Global options

The available "cvs_options (that are given to the left of “‘cvs command') are:
--all owroot=rootdir

Specify legal CVSROOT directory. See section 2.9.3.1 Setting up the server for password
authentication.

Authenticate all communication between the client and the server. Only has an effect onthe CVS
client. As of thiswriting, thisis only implemented when using a GSSAPI connection (see section
2.9.4 Direct connection with GSSAPI). Authentication prevents certain sorts of attacks involving

hijacking the active TCP connection. Enabling authentication does not enable encryption.
-b bindir
In CVS1.9.18 and older, this specified that RCS programs are in the bindir directory. Current

versions of CV S do not run RCS programs; for compatibility this option is accepted, but it does
nothing.

-T tenpdir

Use tempdir as the directory where temporary files are located. Overrides the setting of the
$TMPDI R environment variable and any precompiled directory. This parameter should be
specified as an absolute pathname.

-d cvs_root _directory
Use cvs root_directory as the root directory pathname of the repository. Overrides the setting of
the $CVSROOT environment variable. See section 2. The Repository.

-e editor

Use editor to enter revision log information. Overrides the setting of the $CVSEDI TOR and
$EDI TOR environment variables. For more information, see section 1.3.2 Committing your

changes.

Donotreadthe™ ~/ . cvsrc' file Thisoptionismost often used because of the
non-orthogonality of the CV'S option set. For example, the "cvslog' option "-N' (turn off display of
tag names) does not have a corresponding option to turn the display on. So if you have "-N'in the
"~/ .cvsrc' entry for ‘log', you may need to use "-f' to show the tag names.

-H

--hel p
Display usage information about the specified "cvs_command' (but do not actually execute the

command). If you don't specify a command name, "cvs -H' displays overal help for CVS,
including alist of other help options.

Do not log the "cvs_command' in the command history (but execute it anyway). See section A.11
history--Show status of files and users, for information on command history.

http://www.cvshome.org/docs/manual/cvs_16.html (3 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

-N

Do not change any files. Attempt to execute the "cvs_command', but only to issue reports; do not
remove, update, or merge any existing files, or create any new files. Note that CV S will not
necessarily produce exactly the same output as without "-n'. In some cases the output will be the
same, but in other cases CV S will skip some of the processing that would have been required to
produce the exact same output.

Cause the command to be really quiet; the command will only generate output for serious
problems.

Cause the command to be somewhat quiet; informational messages, such as reports of recursion
through subdirectories, are suppressed.

Make new working files read-only. Same effect as if the $CVSREAD environment variable is set
(see section D. All environment variables which affect CV'S). The default isto make working files

writable, unless watches are on (see section 10.6 Mechanisms to track who is editing files).

-s vari abl e=val ue

-1

Set a user variable (see section C.12 Expansions in administrative files).

Trace program execution; display messages showing the steps of CV S activity. Particularly useful
with "-n' to explore the potential impact of an unfamiliar command.

-V
--version
Display version and copyright information for CV S.
- W
Make new working files read-write. Overrides the setting of the $CVSREAD environment variable.
Files are created read-write by default, unless $CVSREAD is set or “-I' is given.
- X

Encrypt all communication between the client and the server. Only has an effect on the CVS
client. As of thiswriting, thisis only implemented when using a GSSAPI connection (see section
2.9.4 Direct connection with GSSAPI) or a Kerberos connection (see section 2.9.5 Direct
connection with kerberos). Enabling encryption implies that message traffic is also authenticated.
Encryption support is not available by default; it must be enabled using a special configure option,
"--enabl e-encryption',whenyoubuild CVS.

-z gzip-1level

Set the compression level. Valid levels are 1 (high speed, low compression) to 9 (low speed, high
compression), or 0 to disable compression (the default). Only has an effect on the CV S client.

http://www.cvshome.org/docs/manual/cvs_16.html (4 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

A.5 Common command options

This section describes the "'command_options that are available across several CVS commands. These
options are always given to the right of "cvs_command'. Not all commands support all of these options;
each option is only supported for commands where it makes sense. However, when a command has one
of these options you can amost always count on the same behavior of the option as in other commands.
(Other command options, which are listed with the individual commands, may have different behavior
from one CV'S command to the other).

War ning: the "history' command is an exception; it supports many options that conflict even with these
standard options.

-D date_spec

Use the most recent revision no later than date _spec. date spec is a single argument, a date
description specifying a date in the past. The specification is sticky when you useit to make a
private copy of asourcefile; that is, when you get aworking file using "-D', CV S records the date
you specified, so that further updates in the same directory will use the same date (for more
information on sticky tags/dates, see section 4.9 Sticky tags). -D' is available with the
checkout ,di ff,export,history,rdiff,rtag,andupdat e commands. (The

hi st or y command uses this option in aslightly different way; see section A.11.1 history

options). A wide variety of date formats are supported by CVS. The most standard ones are

1SO8601 (from the International Standards Organization) and the Internet e-mail standard
(specified in RFC822 as amended by RFC1123). ISO8601 dates have many variants but a few
examples are:

1972-09- 24
1972-09-24 20: 05

There are alot more 1SO8601 date formats, and CV S accepts many of them, but you probably
don't want to hear the whole long story :-). In addition to the dates allowed in Internet e-mail itself,
CV S aso allows some of the fields to be omitted. For example:

24 Sep 1972 20: 05
24 Sep

The date isinterpreted as being in the local timezone, unless a specific timezone is specified.
These two date formats are preferred. However, CV'S currently accepts awide variety of other date
formats. They are intentionally not documented here in any detail, and future versions of CVS
might not accept all of them. One such format isnont h/ day/ year . Thismay confuse people
who are accustomed to having the month and day in the other order; “1/4/96' is January 4, not
April 1. Remember to quote the argument to the "-D' flag so that your shell doesn't interpret spaces
as argument separators. A command using the *-D' flag can look like this:

$ cvs diff -D "1 hour ago" cvs.texinfo

http://www.cvshome.org/docs/manual/cvs_16.html (5 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

When you specify a particular date or tag to CV'S commands, they normally ignore files that do
not contain the tag (or did not exist prior to the date) that you specified. Use the "-f' option if you
want files retrieved even when there is no match for the tag or date. (The most recent revision of
the file will be used). Note that even with "-f', atag that you specify must exist (that is, in some
file, not necessary in every file). Thisis so that CVSwill continue to give an error if you mistype a
tag name. "-f' is available with these commands: annot at e, checkout ,export,rdiff,

rt ag, and updat e. Warning: Theconm t and r enove commands also have a *-f' option, but
it has a different behavior for those commands. See section A.8.1 commit options, and section 7.2

Removing files.

-k kflag

Alter the default processing of keywords. See section 12. Keyword substitution, for the meaning of
kflag. Y our kflag specification is sticky when you use it to create a private copy of a sourcefile;
that is, when you use this option with the checkout or updat e commands, CV S associates
your selected kflag with the file, and continues to use it with future update commands on the same
file until you specify otherwise. The -k’ option is available with theadd, checkout , di f f,

| nport and updat e commands.

Local; run only in current working directory, rather than recursing through subdirectories.
Warning: thisis not the same as the overall "cvs-I' option, which you can specify to the left of a
cvs command! Available with the following commands: annot at e, checkout,comm t,
diff,edit,editors,export,log,rdiff,renove,rtag,status,tag,unedit,
updat e, wat ch, and wat cher s.

-m nessage

- T

Use message as log information, instead of invoking an editor. Available with the following
commands: add, comm t andi nport.

Do not run any checkout/commit/tag program. (A program can be specified to run on each of these
activities, in the modules database (see section C.1 The modulesfil€e); this option bypasses it).
Warning: thisis not the same as the overall "cvs -n' option, which you can specify to the left of a
cvs command! Available with thecheckout ,commi t, export,andrt ag commands.

Prune empty directories. See section 7.3 Removing directories.

Pipe the files retrieved from the repository to standard output, rather than writing them in the
current directory. Available with thecheckout and updat e commands.

Process directories recursively. Thisis on by default. Available with the following commands:
annot at e, checkout,comm t,diff,edit,editors,export,rdiff,renove,rtag,
stat us,tag,unedi t,updat e,wat ch, andwat chers.

t ag

Use the revision specified by the tag argument instead of the default head revision. Aswell as

http://www.cvshome.org/docs/manual/cvs_16.html (6 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

arbitrary tags defined with thet ag or r t ag command, two special tags are always available:
"HEAD' refers to the most recent version available in the repository, and ‘BASE' refersto the
revision you last checked out into the current working directory. The tag specification is sticky
when you use thiswith checkout or updat e to make your own copy of afile: CVS remembers
the tag and continues to use it on future update commands, until you specify otherwise (for more
information on sticky tags/dates, see section 4.9 Sticky tags). The tag can be either a symbolic or
numeric tag, as described in section 4.4 Tags--Symbolic revisions, or the name of a branch, as
described in section 5. Branching and merging. Specifying the "-g' global option along with the "-r'
command option is often useful, to suppress the warning messages when the RCS file does not
contain the specified tag. War ning: thisis not the same as the overall “cvs-r' option, which you
can specify to the left of aCVS command! "-r' is available withthecheckout ,commi t , di f f,
hi story,export,rdiff,rtag,andupdat e commands.

Specify file names that should be filtered. Y ou can use this option repeatedly. The spec can be a
file name pattern of the same type that you can specify inthe ™ . cvswr apper s’ file. Available
with the following commands: i nport, and updat e.

A.6 admin--Administration

« Requires: repository, working directory.
» Changes: repository.
e Synonym: rcs

Thisisthe CVSinterface to assorted administrative facilities. Some of them have questionable
usefulness for CV'S but exist for historical purposes. Some of the questionable options are likely to
disappear in the future. This command does work recursively, so extreme care should be used.

On unix, if thereisagroup named cvsadm n, only members of that group canruncvs adm n
(except for thecvs adm n - k command, which can be run by anybody). This group should exist on
the server, or any system running the non-client/server CVS. To disallow cvs adm n for al users,
create agroup with no usersinit. On NT, thecvsadm n feature does not exist and all users can run
cvs adm n.

A.6.1 admin options

Some of these options have questionable usefulness for CV'S but exist for historical purposes. Some even
make it impossible to use CV'S until you undo the effect!

-Aol dfile
Might not work together with CVS. Append the access list of oldfile to the access list of the RCS
file.

-al ogi ns

Might not work together with CV S. Append the login names appearing in the comma-separated
list loginsto the access list of the RCSfile.

http://www.cvshome.org/docs/manual/cvs_16.html (7 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

-b[rev]

Set the default branch to rev. In CV'S, you normally do not manipulate default branches; sticky
tags (see section 4.9 Sticky tags) are a better way to decide which branch you want to work on.

Thereisonereasontoruncvs adm n - b: to revert to the vendor's version when using vendor
branches (see section 13.3 Reverting to the |atest vendor release). There can be no space between

“-b' and its argument.

-cstring

Sets the comment |leader to string. The comment leader is not used by current versions of CVS or
RCS5.7. Therefore, you can almost surely not worry about it. See section 12. Keyword

substitution.

- e[| ogi ns]

Might not work together with CV S. Erase the login names appearing in the comma-separated list
logins from the accesslist of the RCSfile. If loginsis omitted, erase the entire access list. There
can be no space between "-€' and its argument.

Run interactively, even if the standard input is not aterminal. This option does not work with the
client/server CVS and islikely to disappear in afuture release of CVS.

Uselesswith CVS. This creates and initializes a new RCS file, without depositing arevision. With
CVS, add fileswiththecvs add command (see section 7.1 Adding files to adirectory).

- ksubst

Set the default keyword substitution to subst. See section 12. Keyword substitution. Giving an
explicit -k' optionto cvs updat e,cvs export,orcvs checkout overridesthisdefault.

-l [rev]

Lock the revision with number rev. If abranch is given, lock the latest revision on that branch. If
rev is omitted, lock the latest revision on the default branch. There can be no space between "-I'
and its argument. This can be used in conjunction with the " r csl ock. pl ' scriptinthe
“contrib' directory of the CVS source distribution to provide reserved checkouts (where only
one user can be editing agiven file at atime). See the commentsin that file for details (and see the
" READMVE' fileinthat directory for disclaimers about the unsupported nature of contrib).
According to commentsin that file, locking must set to strict (which is the default).

-L
Set locking to strict. Strict locking means that the owner of an RCSfile is not exempt from locking
for checkin. For use with CV'S, strict locking must be set; see the discussion under the "-I' option
above.

-NT ev: nsg

Replace the log message of revision rev with msg.

-Nnane[:[rev]]

Act like "-n', except override any previous assignment of name. For use with magic branches, see
section 5.5 Magic branch numbers.

http://www.cvshome.org/docs/manual/cvs_16.html (8 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

-nnane[:[rev]]
Associate the symbolic name name with the branch or revision rev. It is normally better to use “cvs
tag' or “cvsrtag' instead. Delete the symbolic name if both ;' and rev are omitted; otherwise, print
an error message if name is aready associated with another number. If rev is symbolic, itis
expanded before association. A rev consisting of a branch number followed by a"." stands for the
current latest revision in the branch. A "' with an empty rev stands for the current latest revision on
the default branch, normally the trunk. For example, "cvs admin -nname:" associates name with the
current latest revision of al the RCSfiles; this contrasts with “cvs admin -nname:$' which
associates name with the revision numbers extracted from keyword strings in the corresponding
working files.

- or ange

Deletes (outdates) the revisions given by range. Note that this command can be quite dangerous
unless you know exactly what you are doing (for example see the warnings below about how the
revl:rev2 syntax is confusing). If you are short on disc this option might help you. But think twice
before using it--there is no way short of restoring the latest backup to undo this command! If you
delete different revisions than you planned, either due to carelessness or (heaven forbid) aCVS
bug, there is no opportunity to correct the error before the revisions are deleted. It probably would
be a good idea to experiment on a copy of the repository first. Specify range in one of the
following ways:
revl: . rev2
Collapse al revisions between revl and rev2, so that CV S only stores the differences
associated with going from revl to rev2, not intermediate steps. For example, after "-o0
1.3::1.5' one can retrieve revision 1.3, revision 1.5, or the differencesto get from 1.3 to 1.5,
but not the revision 1.4, or the differences between 1.3 and 1.4. Other examples: -0 1.3::1.4'
and -0 1.3::1.3 have no effect, because there are no intermediate revisions to remove.
Lirev
Collapse revisions between the beginning of the branch containing rev and rev itself. The
branchpoint and rev are left intact. For example, -0 ::1.3.2.6' deletesrevision 1.3.2.1,
revision 1.3.2.5, and everything in between, but leaves 1.3 and 1.3.2.6 intact.
rev::
Collapse revisions between rev and the end of the branch containing rev. Revision rev is |eft
intact but the head revision is deleted.
rev
Delete therevision rev. For example, -0 1.3'isequivalent to -0 1.2::1.4".
revli:rev2
Delete the revisions from revl to rev2, inclusive, on the same branch. One will not be able
to retrieve revl or rev2 or any of the revisions in between. For example, the command “cvs
admin-oR_1 01:R 1 02 .'israrely useful. It meansto delete revisions up to, and including,
thetag R_1 02. But beware! If there are files that have not changed between R_1 02 and
R 1 03 thefilewill have the same numerical revision number assigned to thetagsR_1 02

and R_1 03. So not only will it beimpossibleto retrieve R_1 02; R_1 03 will also have to
be restored from the tapes! In most cases you want to specify revl::rev2 instead.

http://www.cvshome.org/docs/manual/cvs_16.html (9 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

-q

‘rev
Delete revisions from the beginning of the branch containing rev up to and including rev.
rev:

Delete revisions from revision rev, including rev itself, to the end of the branch containing
rev.

None of the revisions to be deleted may have branches or locks. If any of the revisionsto be
deleted have symbolic names, and one specifies one of the ::' syntaxes, then CVSwill give an
error and not delete any revisions. If you really want to delete both the symbolic names and the
revisions, first delete the symbolic nameswithcvs tag -d,thenruncvs adm n -o.If one
specifies the non-"::' syntaxes, then CV S will delete the revisions but |eave the symbolic names
pointing to nonexistent revisions. This behavior is preserved for compatibility with previous
versions of CV'S, but because it isn't very useful, in the future it may change to be like the "::' case.
Due to the way CV S handles branches rev cannot be specified symbolically if it isabranch. See
section 5.5 Magic branch numbers, for an explanation. Make sure that no-one has checked out a

copy of the revision you outdate. Strange things will happen if he starts to edit it and tries to check
it back in. For this reason, this option is not a good way to take back a bogus commit; commit a
new revision undoing the bogus change instead (see section 5.8 Merging differences between any

two revisions).

Run quietly; do not print diagnostics.

-sstate[:rev]

Useful with CVS. Set the state attribute of the revision rev to state. If rev is a branch number,
assume the latest revision on that branch. If rev is omitted, assume the latest revision on the default
branch. Any identifier is acceptable for state. A useful set of statesis Exp' (for experimental),
"Stab' (for stable), and "Rel’ (for released). By default, the state of a new revision is set to EXp'
when it is created. The state is visible in the output from cvslog (see section A.13 log--Print out

log information for files), and in the "$'Log$ and "$ State$ keywords (see section 12. Keyword
substitution). Note that CV S uses the dead state for its own purposes; to take afile to or from the
dead state use commandslikecvs renove andcvs add,notcvs admin -s.

“t[file]

Useful with CV'S. Write descriptive text from the contents of the named file into the RCSfile,
deleting the existing text. The file pathname may not begin with "-'. The descriptive text can be
seen in the output from “cvslog' (see section A.13 log--Print out |og information for files). There
can be no space between "-t' and its argument. If file is omitted, obtain the text from standard
input, terminated by end-of-file or by aline containing "." by itself. Prompt for the text if
interaction is possible; see "-I'.

-t-string

-U

Similar to "-tfile'. Write descriptive text from the string into the RCSfile, deleting the existing text.
There can be no space between "-t' and its argument.

Set locking to non-strict. Non-strict locking means that the owner of afile need not lock arevision

http://www.cvshome.org/docs/manual/cvs_16.html (10 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

for checkin. For use with CVS, strict locking must be set; see the discussion under the "-I" option
above.

-u[rev]
See the option "-I' above, for a discussion of using this option with CVS. Unlock the revision with
number rev. If abranchis given, unlock the latest revision on that branch. If rev is omitted,
remove the latest lock held by the caller. Normally, only the locker of arevision may unlock it.
Somebody else unlocking arevision breaks the lock. This causes amail message to be sent to the
original locker. The message contains a commentary solicited from the breaker. The commentary
is terminated by end-of-file or by aline containing . by itself. There can be no space between "-u'
and its argument.

-Vn

In previous versions of CVS, this option meant to write an RCS file which would be acceptable to
RCS version n, but it is now obsolete and specifying it will produce an error.

-xsuf fi xes

In previous versions of CV'S, this was documented as away of specifying the names of the RCS
files. However, CV S has always required that the RCS filesused by CVSendin ",Vv', so this option
has never done anything useful.

A.7 checkout--Check out sources for editing

Synopsis: checkout [options] modules...
Requires:. repository.

Changes. working directory.
Synonyms: co, get

Create or update a working directory containing copies of the source files specified by modules. Y ou
must execute checkout before using most of the other CV'S commands, since most of them operate on
your working directory.

The modules are either symbolic names for some collection of source directories and files, or pathsto
directories or filesin the repository. The symbolic names are defined in the "modules file. See section
C.1 The modulesfile.

Depending on the modules you specify, checkout may recursively create directories and popul ate
them with the appropriate source files. Y ou can then edit these source files at any time (regardless of
whether other software devel opers are editing their own copies of the sources); update them to include
new changes applied by othersto the source repository; or commit your work as a permanent change to
the source repository.

Notethat checkout isusedto create directories. The top-level directory created is always added to the
directory where checkout isinvoked, and usually has the same name as the specified module. In the
case of amodule alias, the created sub-directory may have a different name, but you can be sure that it
will be a sub-directory, and that checkout will show the relative path leading to each file asit is
extracted into your private work area (unless you specify the "-Q' global option).

http://www.cvshome.org/docs/manual/cvs_16.html (11 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

Thefiles created by checkout are created read-write, unlessthe "-r' option to CV'S (see section A.4
Global options) is specified, the CVSREAD environment variable is specified (see section D. All
environment variables which affect CVS), or awatch isin effect for that file (see section 10.6
Mechanisms to track who is editing files).

Note that running checkout on adirectory that was already built by aprior checkout isalso
permitted. Thisis similar to specifying the -d' option to the updat e command in the sense that new
directories that have been created in the repository will appear in your work area. However, checkout
takes a module name whereas updat e takes adirectory name. Also to use checkout thisway it must
be run from the top level directory (where you originally ran checkout from), so before you run
checkout to update an existing directory, don't forget to change your directory to the top level
directory.

For the output produced by the checkout command see section A.16.2 update output.

A.7.1 checkout options

These standard options are supported by checkout (see section A.5 Common command options, for a
compl ete description of them):
-D date

Use the most recent revision no later than date. This option is sticky, and implies "-P'. See section
4.9 Sticky tags, for more information on sticky tags/dates.

Only useful with the *-D date' or "-r tag' flags. If no matching revision is found, retrieve the most
recent revision (instead of ignoring the file).

-k kflag

Process keywords according to kflag. See section 12. Keyword substitution. This option is sticky;

future updates of thisfilein thisworking directory will use the same kflag. The st at us
command can be viewed to see the sticky options. See section B. Quick referenceto CVS

commands, for more information on the st at us command.

Local; run only in current working directory.

-n
Do not run any checkout program (as specified with the "-0' option in the modules file; see section
C.1 The modulesfile).

-P
Prune empty directories. See section 7.5 Moving and renaming directories.

-P
Pipe files to the standard output.

-R

http://www.cvshome.org/docs/manual/cvs_16.html (12 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

- T

Checkout directories recursively. This option is on by default.

t ag

Userevision tag. Thisoption is sticky, and implies "-P'. See section 4.9 Sticky tags, for more
information on sticky tags/dates.

In addition to those, you can use these special command options with checkout :

-A

Reset any sticky tags, dates, or -k’ options. See section 4.9 Sticky tags, for more information on
sticky tags/dates.

Copy the module file, sorted, to the standard output, instead of creating or modifying any files or
directoriesin your working directory.

-d dir

-]

Create a directory called dir for the working files, instead of using the module name. In general,
using thisflag is equivalent to using ‘mkdir dir; cd dir' followed by the checkout command without
the "-d' flag. There is an important exception, however. It is very convenient when checking out a
single item to have the output appear in adirectory that doesn't contain empty intermediate
directories. In this case only, CV Striesto "shorten" pathnames to avoid those empty directories.
For example, given amodule “foo' that contains the file "bar.c', the command “cvs co -d dir foo'
will create directory “dir' and place "bar.c' inside. Similarly, given amodule "bar' which has
subdirectory "baz' wherein thereisafile "quux.c', the command "cvs-d dir co bar/baz' will create
directory “dir' and place "quux.c' inside. Using the "-N' flag will defeat this behavior. Given the
same modul e definitions above, "cvs co -N -d dir foo' will create directories "dir/foo’ and place
“bar.c' inside, while "cvs co -N -d dir bar/baz' will create directories "dir/bar/baz' and place "quux.c'
inside.

t ag

With two "-j' options, merge changes from the revision specified with thefirst *-j' option to the
revision specified with the second “j' option, into the working directory. With one "-j' option,
merge changes from the ancestor revision to the revision specified with the “-j' option, into the
working directory. The ancestor revision is the common ancestor of the revision which the
working directory is based on, and the revision specified in the "-j' option. In addition, each -j
option can contain an optional date specification which, when used with branches, can limit the
chosen revision to one within a specific date. An optional date is specified by adding acolon (:) to
thetag: -jSymbolic_Tag:Date Specifier'. See section 5. Branching and merging.

Only useful together with "-d dir'. With this option, CV Swill not "shorten” module paths in your
working directory when you check out a single module. See the "-d' flag for examples and a
discussion.

Like "-c', but include the status of all modules, and sort it by the status string. See section C.1 The
modulesfile, for info about the "-s option that is used inside the modules file to set the module
status.

http://www.cvshome.org/docs/manual/cvs_16.html (13 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

A.7.2 checkout examples

Get a copy of the module “tc":

$ cvs checkout tc

Get a copy of the module “tc' asit looked one day ago:

$ cvs checkout -D yesterday tc

A.8 commit--Check files into the repository

o Synopsis. commit [-INRf] [-m 'log_message' | -F file] [-r revision] [files...]
« Requires: working directory, repository.

« Changes:. repository.

e Synonym: ci

Usecomi t when you want to incorporate changes from your working source files into the source
repository.

If you don't specify particular filesto commit, al of the filesin your working current directory are
examined. commi t iscareful to change in the repository only those files that you have really changed.
By default (or if you explicitly specify the "-R' option), filesin subdirectories are also examined and
committed if they have changed; you can use the "-I" option to limit commi t to the current directory
only.

comm t verifiesthat the selected files are up to date with the current revisions in the source repository;
it will notify you, and exit without committing, if any of the specified files must be made current first
with updat e (see section A.16 update--Bring work tree in sync with repository). conm t does not call

the updat e command for you, but rather leaves that for you to do when the timeisright.

When all iswell, an editor isinvoked to allow you to enter alog message that will be written to one or
more logging programs (see section C.1 The modulesfile, and see section C.7 Loginfo) and placed in the
RCSfileinside the repository. This log message can be retrieved with thel og command; see section
A.13 1og--Print out log information for files. Y ou can specify the log message on the command line with
the "-m message' option, and thus avoid the editor invocation, or use the "-F file' option to specify that the
argument file contains the log message.

A.8.1 commit options

These standard options are supported by commi t (see section A.5 Common command options, for a
compl ete description of them):

http://www.cvshome.org/docs/manual/cvs_16.html (14 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands
Local; run only in current working directory.
-n
Do not run any module program.
-R
Commit directories recursively. Thisis on by default.
-r revision

Commit to revision. revision must be either a branch, or arevision on the main trunk that is higher
than any existing revision number (see section 4.3 Assigning revisions). Y ou cannot commit to a

specific revision on a branch.

conm t also supports these options:
-F file
Read the log message from file, instead of invoking an editor.
- f
Note that thisis not the standard behavior of the "-f' option as defined in section A.5 Common

command options. Force CV S to commit a new revision even if you haven't made any changesto
thefile. If the current revision of fileis 1.7, then the following two commands are equival ent:

$ cvs commit -f file
$ cvs commt -r 1.8 file

The "-f' option disables recursion (i.e., it implies "-I'). To force CV S to commit a new revision for
al filesin all subdirectories, you must use "-f -R'.

-m nessage
Use message as the log message, instead of invoking an editor.

A.8.2 commit examples

A.8.2.1 Committing to a branch

Y ou can commit to a branch revision (one that has an even number of dots) with the "-r' option. To create
abranch revision, use the -b' option of ther t ag or t ag commands (see section 5. Branching and
merging). Then, either checkout or updat e can be used to base your sources on the newly created
branch. From that point on, all comm t changes made within these working sources will be
automatically added to a branch revision, thereby not disturbing main-line development in any way. For
example, if you had to create a patch to the 1.2 version of the product, even though the 2.0 version is
already under development, you might do:

$ cvs rtag -b -r FCS1 2 FCS1 2 Patch product nodul e
$ cvs checkout -r FCS1 2 Patch product nodul e

$ cd product nodul e

[[hack away]]

http://www.cvshome.org/docs/manual/cvs_16.html (15 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

$ cvs commt

Thisworks automatically since the *-r' option is sticky.

A.8.2.2 Creating the branch after editing

Say you have been working on some extremely experimental software, based on whatever revision you
happened to checkout last week. If othersin your group would like to work on this software with you,
but without disturbing main-line development, you could commit your change to a new branch. Others
can then checkout your experimental stuff and utilize the full benefit of CV S conflict resolution. The
scenario might look like:

[[hacked sources are present]]
$ cvs tag -b EXPR1

$ cvs update -r EXPR1

$ cvs commit

The updat e command will make the "-r EXPR1' option sticky on all files. Note that your changes to the
fileswill never be removed by the updat e command. The conm t will automatically commit to the
correct branch, because the "-r' is sticky. Y ou could also do like this:

[[hacked sources are present]]
$ cvs tag -b EXPR1
$ cvs commit -r EXPRL

but then, only those files that were changed by you will have the "-r EXPR1' sticky flag. If you hack
away, and commit without specifying the "-r EXPRL' flag, some files may accidentally end up on the
main trunk.

To work with you on the experimental change, others would simply do

$ cvs checkout -r EXPR1 what ever nodul e

A.9 diff--Show differences between revisions

« Synopsis. diff [-IR] [format_options] [[-r revl | -D datel] [-r rev2 | -D date?]] [files...]
« Requires: working directory, repository.
« Changes. nothing.

Thedi f f command is used to compare different revisions of files. The default action isto compare your
working files with the revisions they were based on, and report any differences that are found.

If any file names are given, only those files are compared. If any directories are given, al files under
them will be compared.

The exit status for diff is different than for other CVS commands; for details section A.2 CVS's exit

http://www.cvshome.org/docs/manual/cvs_16.html (16 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

status.

A.9.1 diff options

These standard options are supported by di f f (see section A.5 Common command options, for a
compl ete description of them):

-D date

Use the most recent revision no later than date. See "-r' for how this affects the comparison.
-k kflag

Process keywords according to kflag. See section 12. Keyword substitution.

-

Local; run only in current working directory.
-R

Examine directories recursively. Thisoption is on by default.
-r tag

Compare with revision tag. Zero, one or two "-r' options can be present. With no "-r' option, the
working file will be compared with the revision it was based on. With one "-r', that revision will be
compared to your current working file. With two "-r' options those two revisions will be compared
(and your working file will not affect the outcome in any way). One or both "-r' options can be
replaced by a "-D date' option, described above.

The following options specify the format of the output. They have the same meaning asin GNU diff.

-0-1-2-3-4-5-6-7-8-9
--bi nary
--brief
- - changed- group-format =arg
-C
-C nlines
--context[=li nes]
-e --ed
-t --expand-tabs
-f --forward-ed
--horizon-lines=arg

--ifdef=arg

-w --ignore-all-space

-B --ignore-Dbl ank-1ines

-1 --lignore-case

-1 regexp
--ignore-mat chi ng-1i nes=regexp

-h

-b --ignore-space-change

-T --initial-tab

http://www.cvshome.org/docs/manual/cvs_16.html (17 of 33) [10/27/2000 2:27:30 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

-L | abel

- -1 abel =I abel
--left-colum
-d --m ninal
-N --newfile
--new-| i ne-format=arg
--old-line-format=arg

--pagi nat e

-n --rcs

-s --report-identical-files
-p

--show c-function

-y --side-by-side

-F regexp
--showfunction-1ine=regexp
-H --speed-large-files

- -suppress-common- | i nes

-a --text
- -unchanged- gr oup- f or mat =ar g
-u
-U nlines
--uni fied[=lines]
-V arg
- W col umms

- -wi dt h=col umtmms

A.9.2 diff examples

The following line produces a Unidiff (*-u' flag) between revision 1.14 and 1.19 of * backend. c' . Due
to the "-kk' flag no keywords are substituted, so differences that only depend on keyword substitution are
ignored.

$ cvs diff -kk -u -r 1.14 -r 1.19 backend.c

Suppose the experimental branch EXPR1 was based on a set of filestagged RELEASE 1 0. To see what
has happened on that branch, the following can be used:

$ cvs diff -r RELEASE 1 0 -r EXPR1

A command like this can be used to produce a context diff between two releases:

$ cvs diff -c -r RELEASE 1 0 -r RELEASE 1 1 > diffs

If you are maintaining Changelogs, a command like the following just before you commit your changes
may help you write the ChangelLog entry. All local modifications that have not yet been committed will
be printed.

http://www.cvshome.org/docs/manual/cvs_16.html (18 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands
$ cvs diff -u | less

A.10 export--Export sources from CVS, similar to
checkout

o Synopsis. export [-fINNR] [-r rev|-D date] [-k subst] [-d dir] module...
« Requires: repository.
« Changes: current directory.

Thiscommand isavariant of checkout ; useit when you want a copy of the source for module without
the CV S administrative directories. For example, you might use expor t to prepare source for shipment
off-site. This command requires that you specify a date or tag (with -D' or "-r"), so that you can count on
reproducing the source you ship to others (and thus it always prunes empty directories).

One often would like to use "-kv' with cvs expor t . This causes any keywords to be expanded such
that an import done at some other site will not lose the keyword revision information. But be aware that
doesn't handle an export containing binary files correctly. Also be aware that after having used "-kv', one
can no longer usethei dent command (which is part of the RCS suite--see ident(1)) which looks for
keyword strings. If you want to be ableto usei dent you must not use "-kv'.

A.10.1 export options

These standard options are supported by expor t (see section A.5 Common command options, for a
compl ete description of them):

-D date
Use the most recent revision no later than date.

- f
If no matching revision isfound, retrieve the most recent revision (instead of ignoring the file).
- |
Local; run only in current working directory.
-n
Do not run any checkout program.
-R

Export directories recursively. Thisis on by default.
-r tag
Userevision tag.

In addition, these options (that are common to checkout and expor t) are also supported:
-d dir
Create adirectory called dir for the working files, instead of using the module name. See section

http://www.cvshome.org/docs/manual/cvs_16.html (19 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

A.7.1 checkout options, for complete details on how CV S handles this flag.

-k subst
Set keyword expansion mode (see section 12.4 Substitution modes).

-N
Only useful together with “-d dir'. See section A.7.1 checkout options, for complete details on how
CV S handles this flag.

A.11 history--Show status of files and users

« Synopsis. history [-report] [-flags] [-options args] [files...]
« Requires: thefile " $CVSROOT/ CVSROOT/ hi st ory'
« Changes. nothing.

CV'S can keep ahistory file that tracks each use of thecheckout ,comm t, rt ag, updat e, and
r el ease commands. You can use hi st ory to display thisinformation in various formats.

Logging must be enabled by creating the file * $CVSROOT/ CYSROOT/ hi st ory" .

Warning: hi st ory uses -f', -I', "-n', and "-p' in ways that conflict with the normal use inside CV'S (see
section A.5 Common command options).

A.11.1 history options

Several options (shown above as "-report”) control what kind of report is generated:
-C
Report on each time commit was used (i.e., each time the repository was modified).

Everything (all record types). Equivalent to specifying "-x" with all record types. Of course, "-€
will also include record types which are added in a future version of CVS; if you are writing a
script which can only handle certain record types, you'll want to specify "-x'.

-m nodul e

Report on a particular module. (Y ou can meaningfully use "-m' more than once on the command
line.)

-0

Report on checked-out modules. Thisis the default report type.
-T

Report on al tags.
-X type

Extract a particular set of record types type from the CV S history. The types are indicated by
single letters, which you may specify in combination. Certain commands have a single record

type:

http://www.cvshome.org/docs/manual/cvs_16.html (20 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

F
release
@)
checkout
E
export
T
rtag
One of four record types may result from an update:
C
A merge was necessary but collisions were detected (requiring manual merging).
G
A merge was necessary and it succeeded.
U
A working file was copied from the repository.
W
The working copy of afile was deleted during update (because it was gone from the
repository).
One of three record types results from commit:
A
A file was added for the first time.
M
A file was modified.
R

A file was removed.

The options shown as "-flags' constrain or expand the report without requiring option arguments:
-a

Show datafor all users (the default is to show data only for the user executing hi st or y).
-

Show last modification only.

Show only the records for modifications done from the same working directory where hi st ory
IS executing.

The options shown as "-options args constrain the report based on an argument:
-b str
Show data back to arecord containing the string str in either the module name, the file name, or

http://www.cvshome.org/docs/manual/cvs_16.html (21 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands
the repository path.
-D date

Show data since date. Thisis dightly different from the normal use of "-D date', which selects the
newest revision older than date.

-f file

Show datafor a particular file (you can specify several "-f' options on the same command line).
Thisis equivaent to specifying the file on the command line.

-n nodul e
Show data for a particular module (you can specify severa "-n' options on the same command
line).

-p repository
Show datafor a particular source repository (you can specify several "-p' options on the same
command line).

-r rev

Show records referring to revisions since the revision or tag named rev appears in individual RCS
files. Each RCSfileis searched for the revision or tag.

-t tag

Show records since tag tag was last added to the history file. This differs from the "-r' flag above in
that it reads only the history file, not the RCSfiles, and is much faster.

-u nane
Show records for user name.

-z timezone
Show times in the selected records using the specified time zone instead of UTC.

A.12 import--Import sources into CVS, using
vendor branches

« Synopsis. import [-options] repository vendortag rel easetag...
« Requires: Repository, source distribution directory.
« Changes: repository.
Usei nport toincorporate an entire source distribution from an outside source (e.g., a source vendor)

into your source repository directory. Y ou can use this command both for initial creation of arepository,
and for wholesale updates to the module from the outside source. See section 13. Tracking third-party

sources, for a discussion on this subject.

The repository argument gives a directory name (or a path to a directory) under the CV Sroot directory
for repositories; if the directory did not exist, import createsiit.

When you use import for updates to source that has been modified in your source repository (since a

http://www.cvshome.org/docs/manual/cvs_16.html (22 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

prior import), it will notify you of any files that conflict in the two branches of development; use
“checkout -j' to reconcile the differences, asimport instructs you to do.

If CVS decides afile should be ignored (see section C.9 Ignoring files via cvsignore), it does not import
it and prints | ' followed by the filename (see section A.12.2 import output, for a complete description of
the output).

If thefile " $CVSROOT/ CVSROOT/ cvswr apper s' exists, any file whose names match the
specificationsin that file will be treated as packages and the appropriate filtering will be performed on
the file/directory before being imported. See section C.2 The cvswrappersfile.

The outside source is saved in afirst-level branch, by default 1.1.1. Updates are leaves of this branch; for
example, filesfrom the first imported collection of source will berevision 1.1.1.1, then files from the
first imported update will berevision 1.1.1.2, and so on.

At least three arguments are required. repository is needed to identify the collection of source. vendortag
Isatag for the entire branch (e.g., for 1.1.1). You must also specify at least one releasetag to identify the
files at the leaves created each time you executei nport .

Notethat i nport does not change the directory in which you invokeit. In particular, it does not set up
that directory as a CV S working directory; if you want to work with the sources import them first and
then check them out into a different directory (see section 1.3.1 Getting the source).

A.12.1 import options

This standard option is supported by i nport (see section A.5 Common command options, for a
compl ete description):
-m nessage

Use message as log information, instead of invoking an editor.

There are the following additional special options.
-b branch
See section 13.6 Multiple vendor branches.

-k subst

Indicate the keyword expansion mode desired. This setting will apply to all files created during the
import, but not to any filesthat previously existed in the repository. See section 12.4 Substitution

modes, for alist of valid -k’ settings.

-1 nane
Specify file names that should be ignored during import. Y ou can use this option repeatedly. To
avoid ignoring any files at all (even those ignored by default), specify -1 I'. name can be afile

name pattern of the same type that you can specify inthe " . cvsi gnor e’ file. See section C.9
Ignoring files via cvsignore.

- W spec
Specify file names that should be filtered during import. Y ou can use this option repeatedly. spec

http://www.cvshome.org/docs/manual/cvs_16.html (23 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

can be afile name pattern of the same type that you can specify inthe ™ . cvswr apper s’ file.
See section C.2 The cvswrappersfile.

A.12.2 import output

| mport keepsyou informed of its progress by printing aline for each file, preceded by one character
indicating the status of thefile:

Ufile

Thefile already exists in the repository and has not been locally modified; a new revision has been
created (if necessary).

Nfile
Thefileisanew file which has been added to the repository.
Cfile

Thefile already exists in the repository but has been locally modified; you will have to merge the
changes.

I file
Thefileisbeing ignored (see section C.9 Ignoring files via cvsignore).

L file

Thefileisasymboliclink; cvs i nport ignores symbolic links. People periodically suggest that
this behavior should be changed, but if there is a consensus on what it should be changed to, it
doesn't seem to be apparent. (Various optionsinthe " nodul es’ file can be used to recreate
symbolic links on checkout, update, etc.; see section C.1 The modulesfile.)

A.12.3 import examples

See section 13. Tracking third-party sources, and section 3.1.1 Creating a directory tree from a number of
files.

A.13 log--Print out log information for files

« Synopsis. log [optiong] [files...]
« Requires: repository, working directory.
« Changes. nothing.
Display log information for files. | og used to call the RCS utility r I og. Although thisis no longer true

in the current sources, this history determines the format of the output and the options, which are not
quite in the style of the other CV S commands.

The output includes the location of the RCSfile, the head revision (the latest revision on the trunk), all
symbolic names (tags) and some other things. For each revision, the revision number, the author, the
number of lines added/del eted and the log message are printed. All times are displayed in Coordinated
Universal Time (UTC). (Other parts of CV S print timesin the local timezone).

http://www.cvshome.org/docs/manual/cvs_16.html (24 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

Warning: | og uses -R' in away that conflicts with the normal useinside CV'S (see section A.5
Common command options).

A.13.1 log options

By default, | og printsall information that is available. All other options restrict the output.

-b
Print information about the revisions on the default branch, normally the highest branch on the
trunk.
-d dates
Print information about revisions with a checkin date/time in the range given by the
semicolon-separated list of dates. The date formats accepted are those accepted by the "-D* option
to many other CV S commands (see section A.5 Common command options). Dates can be
combined into ranges as follows:
dl<d2
d2>d1
Select the revisions that were deposited between d1 and d2.
<d
d>
Select al revisions dated d or earlier.
d<
>d
Select all revisions dated d or |ater.
d
Select the single, latest revision dated d or earlier.
The ">' or "<’ characters may be followed by "= to indicate an inclusive range rather than an
exclusive one. Note that the separator is a semicolon (;).
-h
Print only the name of the RCS file, name of the file in the working directory, head, default
branch, access list, locks, symbolic names, and suffix.
-
Local; run only in current working directory. (Default isto run recursively).
-N
Do not print the list of tags for thisfile. This option can be very useful when your site uses alot of
tags, so rather than "more™"'ing over 3 pages of tag information, the log information is presented
without tags at all.
-R

Print only the name of the RCSfile.

http://www.cvshome.org/docs/manual/cvs_16.html (25 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands
-rrevisions

Print information about revisions given in the comma-separated list revisions of revisions and
ranges. The following table explains the available range formats:

revi:rev2

Revisions revl to rev2 (which must be on the same branch).
‘rev

Revisions from the beginning of the branch up to and including rev.
rev:

Revisions starting with rev to the end of the branch containing rev.
branch

An argument that is a branch means all revisions on that branch.
branchl: branch2

A range of branches means all revisions on the branches in that range.
br anch.

The latest revision in branch.

A bare "-r' with no revisions means the latest revision on the default branch, normally the trunk.
There can be no space between the "-r' option and its argument.

-S states

Print information about revisions whose state attributes match one of the states given in the
comma-separated list states.

-t
Print the same as "-h', plus the descriptive text.
-wW ogi ns
Print information about revisions checked in by users with login names appearing in the

comma-separated list logins. If logins is omitted, the user'slogin is assumed. There can be no
space between the “-w' option and its argument.

| og prints the intersection of the revisions selected with the options "-d', "-s, and "-w', intersected with
the union of the revisions selected by "-b' and "-r".

A.13.2 log examples

Contributed examples are gratefully accepted.

A.14 rdiff---'patch' format diffs between releases

o rdiff [-flags] [-V vn] [-r t|-D d [-r t2]-D d2]] modules...
« Requires: repository.
« Changes. nothing.

http://www.cvshome.org/docs/manual/cvs_16.html (26 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

e Synonym: patch

Builds aLarry Wall format patch(1) file between two releases, that can be fed directly into the pat ch
program to bring an old release up-to-date with the new release. (Thisis one of the few CVS commands
that operates directly from the repository, and doesn't require a prior checkout.) The diff output is sent to
the standard output device.

Y ou can specify (using the standard "-r' and "-D' options) any combination of one or two revisions or
dates. If only one revision or date is specified, the patch file reflects differences between that revision or
date and the current head revisions in the RCSfile.

Note that if the software release affected is contained in more than one directory, then it may be
necessary to specify the "-p' option to the pat ch command when patching the old sources, so that
pat ch isableto find the files that are located in other directories.

A.14.1 rdiff options

These standard options are supported by r di f f (see section A.5 Common command options, for a
compl ete description of them):

-D date
Use the most recent revision no later than date.

- f
If no matching revision isfound, retrieve the most recent revision (instead of ignoring the file).
-
Local; don't descend subdirectories.
-R
Examine directories recursively. Thisoption is on by default.
-r tag
Userevision tag.

In addition to the above, these options are available:

-C
Use the context diff format. Thisis the default format.

-S
Create a summary change report instead of a patch. The summary includes information about files
that were changed or added between the releases. It is sent to the standard output device. Thisis
useful for finding out, for example, which files have changed between two dates or revisions.

-t
A diff of the top two revisionsis sent to the standard output device. Thisis most useful for seeing
what the last change to afile was.

-u

Use the unidiff format for the context diffs. Remember that old versions of the pat ch program

http://www.cvshome.org/docs/manual/cvs_16.html (27 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands
can't handle the unidiff format, so if you plan to post this patch to the net you should probably not
use -u'.
-V vn

Expand keywords according to the rules current in RCS version vn (the expansion format changed
with RCS version 5). Note that this option is no longer accepted. CV S will always expand
keywords the way that RCS version 5 does.

A.14.2 rdiff examples

Suppose you receive mail from f oo@xanpl e. net asking for an update from release 1.2 to 1.4 of the
tc compiler. Y ou have no such patches on hand, but with CV S that can easily be fixed with a command
such asthis:

$ cvs rdiff -c -r FOOL 2 -r FOOL 4 tc | \
$$ Mail -s 'The patches you asked for' foo@xanple. net

Suppose you have made release 1.3, and forked abranch called 'R_1 3fix' for bugfixes. R_ 1 3 1'
corresponds to release 1.3.1, which was made some time ago. Now, you want to see how much
development has been done on the branch. This command can be used:

$ cvs patch -s -r R1 3 1 -r R 1 3fix nodul e-nane

cvs rdiff: Diffing nodul e- nane

Fil e ChangelLog,v changed fromrevision 1.52.2.5 to 1.52.2.6
File foo.c,v changed fromrevision 1.52.2.3 to 1.52.2.4
File bar.h,v changed fromrevision 1.29.2.1 to 1.2

A.15 release--Indicate that a Module is no longer in
use

 release[-d] directories...

« Requires: Working directory.

« Changes: Working directory, history log.
This command is meant to safely cancel the effect of “cvs checkout'. Since CVS doesn't lock files, it isn't
strictly necessary to use this command. Y ou can always simply delete your working directory, if you

like; but you risk losing changes you may have forgotten, and you leave no trace in the CV S history file
(see section C.11 The history file) that you've abandoned your checkout.

Use "cvsrelease’ to avoid these problems. This command checks that no uncommitted changes are
present; that you are executing it from immediately above a CV S working directory; and that the
repository recorded for your filesis the same as the repository defined in the modul e database.

If al these conditions are true, "cvs release' leaves arecord of its execution (attesting to your
intentionally abandoning your checkout) in the CV S history log.

http://www.cvshome.org/docs/manual/cvs_16.html (28 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

A.15.1 release options

Ther el ease command supports one command option:

-d
Delete your working copy of thefileif the release succeeds. If thisflag is not given your files will
remain in your working directory. Warning: Ther el ease command deletes all directories and
filesrecursively. This has the very serious side-effect that any directory that you have created

inside your checked-out sources, and not added to the repository (using the add command; see
section 7.1 Adding files to adirectory) will be silently deleted--even if it is non-empty!

A.15.2 release output

Beforer el ease releases your sourcesit will print a one-line message for any file that is not up-to-date.

Warning: Any new directories that you have created, but not added to the CV S directory hierarchy with
the add command (see section 7.1 Adding files to a directory) will be silently ignored (and deleted, if

“-d' is specified), even if they contain files.
Ufile
Pfile

There exists a newer revision of thisfilein the repository, and you have not modified your local
copy of thefile (U' and "P mean the same thing).
Afile

The file has been added to your private copy of the sources, but has not yet been committed to the
repository. If you delete your copy of the sources thisfile will be lost.

Rfile

The file has been removed from your private copy of the sources, but has not yet been removed
from the repository, since you have not yet committed the removal. See section A.8

commit--Check filesinto the repository.

Mfile
Thefileismodified in your working directory. There might also be a newer revision inside the
repository.

? file

fileisin your working directory, but does not correspond to anything in the source repository, and
isnot in thelist of filesfor CVSto ignore (see the description of the "-I' option, and see section C.9

Ignoring files via cvsignore). If you remove your working sources, this file will be lost.

A.15.3 release examples

Releasethe "t ¢’ directory, and delete your local working copy of thefiles.

http://www.cvshome.org/docs/manual/cvs_16.html (29 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

$ cd .. # You nust stand i nmedi ately above the
sources when you issue cvs rel ease'.
$ cvs release -d tc
You have [0] altered files in this repository.
Are you sure you want to release (and delete) directory tc': vy
$

A.16 update--Bring work tree in sync with
repository

o update [-AdfIPpR] [-d] [-r tag|-D date] files...
« Requires: repository, working directory.
« Changes: working directory.

After you've run checkout to create your private copy of source from the common repository, other
developers will continue changing the central source. From time to time, when it is convenient in your
development process, you can use the updat e command from within your working directory to
reconcile your work with any revisions applied to the source repository since your last checkout or
update.

A.16.1 update options

These standard options are available with updat e (see section A.5 Common command options, for a
compl ete description of them):

-D date

Use the most recent revision no later than date. This option is sticky, and implies "-P'. See section
4.9 Sticky tags, for more information on sticky tags/dates.

Only useful with the "-D date' or "-r tag' flags. If no matching revision is found, retrieve the most
recent revision (instead of ignoring the file).

-k kflag

Process keywords according to kflag. See section 12. Keyword substitution. This option is sticky;

future updates of thisfilein thisworking directory will use the same kflag. The st at us
command can be viewed to see the sticky options. See section B. Quick referenceto CVS

commands, for more information on the st at us command.

Local; run only in current working directory. See section 6. Recursive behavior.

Prune empty directories. See section 7.5 Moving and renaming directories.

http://www.cvshome.org/docs/manual/cvs_16.html (30 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

-R

- T

Pipe files to the standard output.

Update directories recursively (default). See section 6. Recursive behavior.

rev

Retrieve revision/tag rev. This option is sticky, and implies "-P'. See section 4.9 Sticky tags, for
more information on sticky tags/dates.

These special options are also available with updat e.

-A

Reset any sticky tags, dates, or -k’ options. See section 4.9 Sticky tags, for more information on
sticky tags/dates.

Overwrite locally modified files with clean copies from the repository (the modified fileis saved
in" . #file.revision',however).

Create any directories that exist in the repository if they're missing from the working directory.
Normally, updat e acts only on directories and files that were already enrolled in your working
directory. Thisis useful for updating directories that were created in the repository since theinitial
checkout; but it has an unfortunate side effect. If you deliberately avoided certain directoriesin the
repository when you created your working directory (either through use of a module name or by
listing explicitly the files and directories you wanted on the command line), then updating with "-d'
will create those directories, which may not be what you want.

nane

Ignore files whose hames match name (in your working directory) during the update. Y ou can
specify “-1' more than once on the command line to specify several filesto ignore. Use -l !' to
avoid ignoring any files at all. See section C.9 Ignoring files via cvsignore, for other ways to make

CVSignore somefiles.

- Wspec

Specify file names that should be filtered during update. Y ou can use this option repeatedly. spec
can be afile name pattern of the same type that you can specify inthe ™ . cvsw apper s’ file.
See section C.2 The cvswrappersfile.

-jrevision

With two "-j' options, merge changes from the revision specified with the first "-j' option to the
revision specified with the second j' option, into the working directory. With one "-j' option,
merge changes from the ancestor revision to the revision specified with the *-j' option, into the
working directory. The ancestor revision is the common ancestor of the revision which the
working directory is based on, and the revision specified in the "-j" option. In addition, each "-j'
option can contain an optional date specification which, when used with branches, can limit the
chosen revision to one within a specific date. An optional date is specified by adding acolon (:) to
thetag: "-jSymbolic_Tag:Date Specifier'. See section 5. Branching and merging.

http://www.cvshome.org/docs/manual/cvs_16.html (31 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

A.16.2 update output

updat e and checkout keep you informed of their progress by printing aline for each file, preceded
by one character indicating the status of thefile:

Ufile

The file was brought up to date with respect to the repository. Thisis done for any file that exists
in the repository but not in your source, and for files that you haven't changed but are not the most
recent versions available in the repository.

Pfile

Like "U', but the CV S server sends a patch instead of an entire file. These two things accomplish
the same thing.

Afile

The file has been added to your private copy of the sources, and will be added to the source
repository when you run conm t onthefile. Thisisareminder to you that the file needs to be
committed.

Rfile

The file has been removed from your private copy of the sources, and will be removed from the
source repository when you runconm t on thefile. Thisisareminder to you that the file needs to
be committed.

Mfile

Thefileis modified in your working directory. "M' can indicate one of two states for afile you're
working on: either there were no modifications to the same file in the repository, so that your file
remains as you last saw it; or there were modificationsin the repository aswell asin your copy,
but they were merged successfully, without conflict, in your working directory. CVSwill print
some messages if it merges your work, and a backup copy of your working file (asit looked before
you ran updat e) will be made. The exact name of that fileis printed while updat e runs,

Cfile

A conflict was detected while trying to merge your changes to file with changes from the source
repository. file (the copy in your working directory) is now the result of attempting to merge the
two revisions; an unmodified copy of your fileis also in your working directory, with the name
“.#file.revision whererevisionistherevision that your modified file started from.
Resolve the conflict as described in section 10.3 Conflicts example. (Note that some systems
automatically purgefilesthat begin with * . #' if they have not been accessed for afew days. If
you intend to keep a copy of your original file, it isavery good ideato renameit.) Under VMS,
thefile name startswith ™~ ' rather than ~ . #' .

? file

fileisin your working directory, but does not correspond to anything in the source repository, and
isnot in thelist of filesfor CVSto ignore (see the description of the “-I' option, and see section C.9

lgnoring files via cvsignore).

http://www.cvshome.org/docs/manual/cvs_16.html (32 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - A. Guide to CVS commands

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_16.html (33 of 33) [10/27/2000 2:27:31 PM]

CVS--Concurrent Versions System - B. Quick reference to CVS commands

Go to thefirst, previous, next, last section, table of contents.

B. Quick reference to CVS commands

This appendix describes how to invoke CV S, with references to where each command or featureis
described in detail. For other referencesrunthecvs - - hel p command, or see section |ndex.

A CVS command looks like:

cvs [global options] conmand [command options] [conmand_args |

Global options:
--allowroot=rootdir

Specify legal CVSROQT directory (server only) (notin CVS 1.9 and older). See section 2.9.3.1
Setting up the server for password authentication.

-a
Authenticate all communication (client only) (not in CVS 1.9 and older). See section A.4 Global
options.

-b

Specify RCS location (CV'S 1.9 and older). See section A.4 Global options.
-d root

Specify the CVSROQOT. See section 2. The Repository.
-e editor

Edit messages with editor. See section 1.3.2 Committing your changes.

- f
Donotreadthe™ ~/ . cvsrc' file. See section A.4 Global options.
-H
--help
Print a help message. See section A.4 Global options.
-
Do not log in * $CVSROOT/ CVSROOT/ hi st ory" file. See section A.4 Global options.
-n
Do not change any files. See section A.4 Global options.
-Q
Bereally quiet. See section A.4 Global options.
-q

http://www.cvshome.org/docs/manual/cvs_17.html (1 of 14) [10/27/2000 2:27:35 PM]

CVS--Concurrent Versions System - B. Quick reference to CVS commands

Be somewhat quiet. See section A.4 Global options.

Make new working files read-only. See section A.4 Global options.

-s vari abl e=val ue
Set auser variable. See section C.12 Expansions in administrative files.

-T tenpdir
Put temporary filesin tempdir. See section A.4 Global options.

-t
Trace CV'S execution. See section A .4 Global options.

-V
--version

Display version and copyright information for CVS.
- W

Make new working files read-write. See section A.4 Global options.
- X

Encrypt all communication (client only). See section A.4 Global options.

-z gzip-1level
Set the compression level (client only). See section A.4 Global options.

Keyword expansion modes (see section 12.4 Substitution modes):

-kkv $Id: filel,v 1.1 1993/12/09 03:21:13 joe Exp $

-kkvl $1d: filel,v 1.1 1993/12/09 03:21:13 joe Exp harry $
-kk $1d$

- kv filel,v 1.1 1993/12/09 03:21:13 joe Exp

- ko no expansi on

- kb no expansion, file is binary

Keywords (see section 12.1 Keyword List):

$Aut hor: joe $

$Date: 1993/12/09 03:21:13 $

$Header: /hone/files/filel,v 1.1 1993/12/09 03:21:13 joe Exp harry $
$Id: filel,v 1.1 1993/12/09 03:21:13 joe Exp harry $

$Locker: harry $

$Nane: snapshot 1 14 $

$RCSfile: filel,v $

$Revision: 1.1 $

$Source: /hone/files/filel,v $

$State: Exp $

http://www.cvshome.org/docs/manual/cvs_17.html (2 of 14) [10/27/2000 2:27:35 PM]

CVS--Concurrent Versions System - B. Quick reference to CVS commands

$Log: filel,v $
Revision 1.1 1993/12/09 03:30:17 |oe
Initial revision

Commands, command options, and command arguments:
add [options] [files...]
Add anew file/directory. See section 7.1 Adding files to a directory.
-k kfl ag
Set keyword expansion.
-m nsg
Set file description.
admn [options] [files...]
Administration of history filesin the repository. See section A.6 admin--Administration.
-b[rev]
Set default branch. See section 13.3 Reverting to the latest vendor release.
-cstring
Set comment leader.
- ksubst
Set keyword substitution. See section 12. Keyword substitution.

-l [rev]
Lock revision rev, or latest revision.
-NT ev: Nsg
Replace the log message of revision rev with msg.
- or ange
Delete revisions from the repository. See section A.6.1 admin options.

-qg
Run quietly; do not print diagnostics.
-sstate[:rev]

Set the state.
-t

Set file description from standard inpui.
-tfile

Set file description from file.
-t-string

Set file description to string.
-u[rev]

http://www.cvshome.org/docs/manual/cvs_17.html (3 of 14) [10/27/2000 2:27:35 PM]

CVS--Concurrent Versions System - B. Quick reference to CVS commands
Unlock revision rev, or latest revision.
annotate [options] [files...]
Show last revision where each line was modified. See section 8.4 Annotate command.

-D date
Annotate the most recent revision no later than date. See section A.5 Common command
options.

- f

Use head revision if tag/date not found. See section A.5 Common command options.

Local; run only in current working directory. See section 6. Recursive behavior.

-R
Operate recursively (default). See section 6. Recursive behavior.

-r tag
Annotate revision tag. See section A.5 Common command options.

checkout [options] nodul es. ..
Get acopy of the sources. See section A.7 checkout--Check out sources for editing.

-A
Reset any sticky tags/date/options. See section 4.9 Sticky tags and section 12. Keyword
substitution.
-C
Output the module database. See section A.7.1 checkout options.
-D date
Check out revisions as of date (is sticky). See section A.5 Common command options.
-d dir
Check out into dir. See section A.7.1 checkout options.
- f
Use head revision if tag/date not found. See section A.5 Common command options.
-] rev
Merge in changes. See section A.7.1 checkout options.
-k kflag
Use kflag keyword expansion. See section 12.4 Substitution modes.
-
Local; run only in current working directory. See section 6. Recursive behavior.
-N

Don't "shorten" module pathsif -d specified. See section A.7.1 checkout options.

http://www.cvshome.org/docs/manual/cvs_17.html (4 of 14) [10/27/2000 2:27:35 PM]

CVS--Concurrent Versions System - B. Quick reference to CVS commands

-n
Do not run module program (if any). See section A.7.1 checkout options.
-P
Prune empty directories. See section 7.5 Moving and renaming directories.
-P
Check out files to standard output (avoids stickiness). See section A.7.1 checkout options.
-R
Operate recursively (default). See section 6. Recursive behavior.
-r tag
Checkout revision tag (is sticky). See section A.5 Common command options.
-S

Like -c, but include module status. See section A.7.1 checkout options.

commt [options] [files...]
Check changes into the repository. See section A.8 commit--Check files into the repository.
-F file
Read log message from file. See section A.8.1 commit options.

- f

Force the file to be committed; disables recursion. See section A.8.1 commit options.
-

Local; run only in current working directory. See section 6. Recursive behavior.
-m nsg

Use msg as log message. See section A.8.1 commit options.
-n

Do not run module program (if any). See section A.8.1 commit options.
-R

Operate recursively (default). See section 6. Recursive behavior.
-r rev

Commit to rev. See section A.8.1 commit options.

diff [options] [files...]
Show differences between revisions. See section A.9 diff--Show differences between revisons. In

addition to the options shown below, accepts awide variety of optionsto control output style, for
example "-c' for context diffs.

-D datel
Diff revision for date against working file. See section A.9.1 diff options.

-D dat e2

http://www.cvshome.org/docs/manual/cvs_17.html (5 of 14) [10/27/2000 2:27:35 PM]

CVS--Concurrent Versions System - B. Quick reference to CVS commands

Diff revl/datel against date2. See section A.9.1 diff options.

-
Local; run only in current working directory. See section 6. Recursive behavior.

- N
Include diffs for added and removed files. See section A.9.1 diff options.

-R
Operate recursively (default). See section 6. Recursive behavior.
-r revl
Diff revision for rev1 against working file. See section A.9.1 diff options.

-r rev2
Diff revl/datel against rev2. See section A.9.1 diff options.
edit [options] [files...]
Get ready to edit awatched file. See section 10.6.3 How to edit afile which is being watched.
-a actions

Specify actions for temporary watch, where actionsisedi t ,unedi t,comm t,al |, or
none. See section 10.6.3 How to edit afile which is being watched.

-
Local; run only in current working directory. See section 6. Recursive behavior.

-R
Operate recursively (default). See section 6. Recursive behavior.

editors [options] [files...]
See who is editing a watched file. See section 10.6.4 Information about who is watching and
editing.
-

Local; run only in current working directory. See section 6. Recursive behavior.

-R
Operate recursively (default). See section 6. Recursive behavior.

export [options] nodul es...
Export filesfrom CVS. See section A.10 export--Export sources from CV S, similar to checkout.
-D date
Check out revisions as of date. See section A.5 Common command options.
-d dir
Check out into dir. See section A.10.1 export options.

- f
Use head revision if tag/date not found. See section A.5 Common command options.

http://www.cvshome.org/docs/manual/cvs_17.html (6 of 14) [10/27/2000 2:27:35 PM]

CVS--Concurrent Versions System - B. Quick reference to CVS commands

-k kflag
Use kflag keyword expansion. See section 12.4 Substitution modes.

-
Local; run only in current working directory. See section 6. Recursive behavior.

-N
Don't "shorten" module pathsif -d specified. See section A.10.1 export options.
-n
Do not run module program (if any). See section A.10.1 export options.
-P
Prune empty directories. See section 7.5 Moving and renaming directories.
-R
Operate recursively (default). See section 6. Recursive behavior.
-r tag

Checkout revision tag. See section A.5 Common command options.

history [options] [files...]
Show repository access history. See section A.11 history--Show status of files and users.

-a
All users (default is self). See section A.11.1 history options.
-b str
Back to record with str in module/file/repos field. See section A.11.1 history options.

Report on committed (modified) files. See section A.11.1 history options.

-D date
Since date. See section A.11.1 history options.

Report on al record types. See section A.11.1 history options.

-

Last modified (committed or modified report). See section A.11.1 history options.
-m nodul e

Report on module (repeatable). See section A.11.1 history options.

-n nodul e
In module. See section A.11.1 history options.

Report on checked out modules. See section A.11.1 history options.

-r rev

http://www.cvshome.org/docs/manual/cvs_17.html (7 of 14) [10/27/2000 2:27:35 PM]

CVS--Concurrent Versions System - B. Quick reference to CVS commands

Sincerevision rev. See section A.11.1 history options.

-T
Produce report on all TAGs. See section A.11.1 history options.

-t tag
Since tag record placed in history file (by anyone). See section A.11.1 history options.

-u user
For user user (repeatable). See section A.11.1 history options.

Working directory must match. See section A.11.1 history options.

-X types

Report on types, one or more of TOEFWUCGVAR. See section A.11.1 history options.
-Z zone

Output for time zone zone. See section A.11.1 history options.

| nport [options] repository vendor-tag rel ease-tags...
Import filesinto CVS, using vendor branches. See section A.12 import--Import sourcesinto CVS,
using vendor branches.
-b bra
Import to vendor branch bra. See section 13.6 Multiple vendor branches.

-d
Use the file's modification time as the time of import. See section A.12.1 import options.

-k kflag
Set default keyword substitution mode. See section A.12.1 import options.

-m nsg
Use msg for log message. See section A.12.1 import options.

-1 ign
Morefilestoignore (! to reset). See section A.12.1 import options.

- W spec
More wrappers. See section A.12.1 import options.

I nit
Create a CV Srepository if it doesn't exist. See section 2.6 Creating arepository.

| og [options] [files...]
Print out history information for files. See section A.13 log--Print out log information for files.

-b

Only list revisions on the default branch. See section A.13.1 log options.
-d dates

http://www.cvshome.org/docs/manual/cvs_17.html (8 of 14) [10/27/2000 2:27:35 PM]

CVS--Concurrent Versions System - B. Quick reference to CVS commands

Specify dates (d1<d2 for range, d for latest before). See section A.13.1 log options.

-h
Only print header. See section A.13.1 log options.
-
Local; run only in current working directory. See section 6. Recursive behavior.
-N
Do not list tags. See section A.13.1 |og options.
-R

Only print name of RCSfile. See section A.13.1 log options.
-rrevs
Only list revisions revs. See section A.13.1 log options.

-s states
Only list revisions with specified states. See section A.13.1 log options.

-t
Only print header and descriptive text. See section A.13.1 log options.

-W ogi ns
Only list revisions checked in by specified logins. See section A.13.1 log options.

| ogi n
Prompt for password for authenticating server. See section 2.9.3.2 Using the client with password
authentication.

| ogout

Remove stored password for authenticating server. See section 2.9.3.2 Using the client with
password authentication.

rdi ff [options] nodules...
Show differences between releases. See section A.14 rdiff---'patch’ format diffs between rel eases.

-C

Context diff output format (default). See section A.14.1 rdiff options.
-D date
Select revisions based on date. See section A.5 Common command options.

- f
Use head revision if tag/date not found. See section A.5 Common command options.

-
Local; run only in current working directory. See section 6. Recursive behavior.

-R
Operate recursively (default). See section 6. Recursive behavior.

http://www.cvshome.org/docs/manual/cvs_17.html (9 of 14) [10/27/2000 2:27:35 PM]

CVS--Concurrent Versions System - B. Quick reference to CVS commands
-r rev
Select revisions based on rev. See section A.5 Common command options.

Short patch - one liner per file. See section A.14.1 rdiff options.

Top two diffs - last change made to the file. See section A.9.1 diff options.

Unidiff output format. See section A.14.1 rdiff options.

-V vers
Use RCS Version vers for keyword expansion (obsolete). See section A.14.1 rdiff options.

rel ease [options] directory
Indicate that a directory isno longer in use. See section A.15 release--Indicate that a Module is no
longer in use.

-d

Delete the given directory. See section A.15.1 release options.

renmove [options] [files...]
Remove an entry from the repository. See section 7.2 Removing files.

- f

Delete the file before removing it. See section 7.2 Removing files.

-
Local; run only in current working directory. See section 6. Recursive behavior.

-R
Operate recursively (default). See section 6. Recursive behavior.

rtag [options] tag nodul es. ..
Add a symbolic tag to amodule. See section 4. Revisions and section 5. Branching and merging.

-a
Clear tag from removed files that would not otherwise be tagged. See section 4.8 Tagging
and adding and removing files.

-b
Create a branch named tag. See section 5. Branching and merging.

-D date
Tag revisions as of date. See section 4.6 Specifying what to tag by date or revision.

-d
Delete tag. See section 4.7 Deleting, moving, and renaming tags.

-F

http://www.cvshome.org/docs/manual/cvs_17.html (10 of 14) [10/27/2000 2:27:35 PM]

CVS--Concurrent Versions System - B. Quick reference to CVS commands

Movetag if it already exists. See section 4.7 Deleting, moving, and renaming tags.

- f
Force a head revision match if tag/date not found. See section 4.6 Specifying what to tag by
date or revision.
-
Local; run only in current working directory. See section 6. Recursive behavior.
-n
No execution of tag program. See section A.5 Common command options.
-R
Operate recursively (default). See section 6. Recursive behavior.
-r rev

Tag existing tag rev. See section 4.6 Specifying what to tag by date or revision.

status [options] files...
Display status information in aworking directory. See section 10.1 File status.

Local; run only in current working directory. See section 6. Recursive behavior.

-R
Operate recursively (default). See section 6. Recursive behavior.

Include tag information for file. See section 4.4 Tags--Symbolic revisions.

tag [options] tag [files...]
Add a symbolic tag to checked out version of files. See section 4. Revisions and section 5.
Branching and merging.

-b

Create a branch named tag. See section 5. Branching and merging.

Check that working files are unmodified. See section 4.5 Specifying what to tag from the
working directory.

-D date
Tag revisions as of date. See section 4.6 Specifying what to tag by date or revision.

-d

Delete tag. See section 4.7 Deleting, moving, and renaming tags.
-F

Movetag if it already exists. See section 4.7 Deleting, moving, and renaming tags.
- f

http://www.cvshome.org/docs/manual/cvs_17.html (11 of 14) [10/27/2000 2:27:35 PM]

CVS--Concurrent Versions System - B. Quick reference to CVS commands

Force a head revision match if tag/date not found. See section 4.6 Specifying what to tag by
date or revision.

-
Local; run only in current working directory. See section 6. Recursive behavior.

-R
Operate recursively (default). See section 6. Recursive behavior.

-r rev
Tag existing tag rev. See section 4.6 Specifying what to tag by date or revision.

unedit [options] [files...]
Undo an edit command. See section 10.6.3 How to edit afile which is being watched.

-a actions

Specify actions for temporary watch, where actionsisedi t ,unedi t,comm t,al |, or
none. See section 10.6.3 How to edit afile which is being watched.

-
Local; run only in current working directory. See section 6. Recursive behavior.

-R
Operate recursively (default). See section 6. Recursive behavior.

update [options] [files...]
Bring work tree in sync with repository. See section A.16 update--Bring work tree in sync with
repository.
-A

Reset any sticky tags/date/options. See section 4.9 Sticky tags and section 12. Keyword
substitution.

-C
Overwrite locally modified files with clean copies from the repository (the modified fileis
savedin . #fil e.revision', however).

-D date
Check out revisions as of date (is sticky). See section A.5 Common command options.

-d
Create directories. See section A.16.1 update options.
- f
Use head revision if tag/date not found. See section A.5 Common command options.
-1 ign
Morefilestoignore (! to reset). See section A.12.1 import options.
-] rev

Merge in changes. See section A.16.1 update options.

http://www.cvshome.org/docs/manual/cvs_17.html (12 of 14) [10/27/2000 2:27:35 PM]

CVS--Concurrent Versions System - B. Quick reference to CVS commands

-k kfl ag
Use kflag keyword expansion. See section 12.4 Substitution modes.

-
Local; run only in current working directory. See section 6. Recursive behavior.

-P
Prune empty directories. See section 7.5 Moving and renaming directories.
-P
Check out filesto standard output (avoids stickiness). See section A.16.1 update options.
-R
Operate recursively (default). See section 6. Recursive behavior.
-r tag
Checkout revision tag (is sticky). See section A.5 Common command options.
- W spec
More wrappers. See section A.12.1 import options.
versi on

Display the version of CV S being used. If the repository is remote, display both the client and
server versions.

wat ch [on| of f| add| renpbve] [options] [files...]

on/off: turn on/off read-only checkouts of files. See section 10.6.1 Telling CV S to watch certain
files. add/remove: add or remove notification on actions. See section 10.6.2 Telling CV Sto notify

you.

-a actions
Specify actions for temporary watch, where actionsisedi t ,unedi t,comm t,al | ,or
none. See section 10.6.3 How to edit afile which is being watched.

-
Local; run only in current working directory. See section 6. Recursive behavior.

-R

Operate recursively (default). See section 6. Recursive behavior.

wat chers [options] [files...]
See who iswatching afile. See section 10.6.4 Information about who is watching and editing.

Local; run only in current working directory. See section 6. Recursive behavior.

-R
Operate recursively (default). See section 6. Recursive behavior.

http://www.cvshome.org/docs/manual/cvs_17.html (13 of 14) [10/27/2000 2:27:35 PM]

CVS--Concurrent Versions System - B. Quick reference to CVS commands

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_17.html (14 of 14) [10/27/2000 2:27:35 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files

Go to thefirst, previous, next, last section, table of contents.

C. Reference manual for Administrative
filles

Inside the repository, in the directory - $CVSROOT/ CVSROOT" | there are a number of supportive files
for CVS. You can use CVSin alimited fashion without any of them, but if they are set up properly they
can help make life easier. For adiscussion of how to edit them, see section 2.4 The administrative files.

The most important of thesefilesisthe " nodul es' file, which defines the modulesinside the
repository.

C.1 The modules file

The " nodul es' filerecordsyour definitions of names for collections of source code. CVSwill use
these definitions if you use CV S to update the modules file (use normal commandslike add, commi t ,
etc).

The " nodul es’ filemay contain blank lines and comments (lines beginning with "#) aswell as module
definitions. Long lines can be continued on the next line by specifying a backslash ("\') asthe last
character on the line.

There are three basic types of modules: alias modules, regular modules, and ampersand modules. The
difference between them is the way that they map filesin the repository to files in the working directory.
In all of the following examples, the top-level repository containsadirectory called " first-dir',
which containstwo files, filel' and fil e2',andadirectory sdir'. first-dir/sdir’
containsafile sfil e'.

C.1.1 Alias modules

Alias modules are the ssmplest kind of module:
mane -a aliases...

This represents the simplest way of defining a module mname. The "-a' flags the definition asa
simple alias: CVSwill treat any use of mname (as a command argument) as if the list of names
aliases had been specified instead. aliases may contain either other module names or paths. When
you use pathsin aliases, checkout createsal intermediate directoriesin the working directory,
just asif the path had been specified explicitly in the CV S arguments,

For example, if the modulesfile contains:

anobdule -a first-dir

http://www.cvshome.org/docs/manual/cvs_18.html (1 of 16) [10/27/2000 2:27:39 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files

then the following two commands are equivalent:

$ cvs co anodul e
$ cvs co first-dir

and they each would provide output such as:

cvs checkout: Updating first-dir
Ufirst-dir/filel

Ufirst-dir/file2

cvs checkout: Updating first-dir/sdir
Ufirst-dir/sdir/sfile

C.1.2 Regular modules

mane [options | dir [files...]
In the simplest case, this form of module definition reduces to ‘mname dir'. This defines all the files
in directory dir as module mname. dir is arelative path (from $CVSROOT) to a directory of source
in the source repository. In this case, on checkout, a single directory called mname s created as a
working directory; no intermediate directory levels are used by default, even if dir was a path
involving several directory levels.

For example, if amodule is defined by:

regnodul e first-dir

then regmodule will contain the files from first-dir:

$ cvs co regnodul e

cvs checkout: Updating regnodul e

U regnodul e/fil el

U regnodul e/fil e2

cvs checkout: Updating regnodul e/ sdir
U regnodul e/sdir/sfile

$

By explicitly specifying files in the module definition after dir, you can select particular files from
directory dir. Here is an example:

regfiles first-dir/sdir sfile

With this definition, getting the regfiles module will create a single working directory " r egfi | es'
containing the file listed, which comes from a directory deeper in the CV S source repository:

$ cvs co regfiles
Uregfiles/sfile

http://www.cvshome.org/docs/manual/cvs_18.html (2 of 16) [10/27/2000 2:27:39 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files

$

C.1.3 Ampersand modules

A module definition can refer to other modules by including “& modul€' in its definition.

mane [options | &nmodul e. ..

Then getting the modul e creates a subdirectory for each such module, in the directory containing the
module. For example, if modules contains

anpernod &first-dir

then a checkout will create an anper nod directory which containsadirectory calledfi rst-dir,
which in turns contains all the directories and files which live there. For example, the command

$ cvs co anper nod

will create the following files:

anpernod/first-dir/filel
anpernod/first-dir/file2
anpernod/first-dir/sdir/sfile

Thereis one quirk/bug: the messages that CV'S prints omit the " anper nod' , and thus do not correctly
display the location to which it is checking out the files:

$ cvs co anper nod

cvs checkout: Updating first-dir
Ufirst-dir/filel

Ufirst-dir/file2

cvs checkout: Updating first-dir/sdir
Ufirst-dir/sdir/sfile

$

Do not rely on this buggy behavior; it may get fixed in afuture release of CVS.

C.1.4 Excluding directories

An alias module may exclude particular directories from other modules by using an exclamation mark
('!") before the name of each directory to be excluded.

For example, if the modulesfile contains:

exnodule -a !'first-dir/sdir first-dir

then checking out the module “exmodul € will check out everything in “first-dir' except any filesin the

http://www.cvshome.org/docs/manual/cvs_18.html (3 of 16) [10/27/2000 2:27:39 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files

subdirectory “first-dir/sdir'.

C.1.5 Module options

Either regular modules or ampersand modules can contain options, which supply additional information
concerning the module.

-d name
Name the working directory something other than the module name.
-e prog

Specify a program prog to run whenever filesin a module are exported. prog runs with asingle
argument, the module name.

-1 prog
Specify aprogram prog to run whenever files in a module are committed. prog runs with asingle
argument, the full pathname of the affected directory in a source repository. The conmi ti nfo'
“loginfo',and verifynsg' filesprovideother waysto call aprogram on commit.

-0 prog
Specify a program prog to run whenever filesin a module are checked out. prog runs with asingle
argument, the module name.

-S status

Assign a status to the module. When the module file is printed with “cvs checkout -s' the modules
are sorted according to primarily module status, and secondarily according to the module name.
This option has no other meaning. Y ou can use this option for several things besides status: for
instance, list the person that is responsible for this module.

-t prog
Specify a program prog to run whenever filesin amodule are tagged with r t ag. prog runs with
two arguments: the module name and the symbolic tag specifiedtor t ag. Itisnot runwhent ag is
executed. Generally you will find that taginfo is a better solution (see section 8.3 User-defined
logging).

-u prog
Specify a program prog to run whenever "cvs update' is executed from the top-level directory of the

checked-out module. prog runs with a single argument, the full path to the source repository for this
module.

Y ou should also see see section C.1.6 How the modules file " program options" programs are run about
how the "program options" programs are run.

C.1.6 How the modules file "program options" programs are run

For checkout, rtag, and export, the program is server-based, and as such the following applies:-

If using remote access methods (pserver, ext, etc.), CVSwill execute this program on the server from a
temporary directory. The path is searched for this program.

http://www.cvshome.org/docs/manual/cvs_18.html (4 of 16) [10/27/2000 2:27:39 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files

If using "local access" (on alocal or remote NFS filesystem, i.e. repository set just to a path), the program
will be executed from the newly checked-out tree, if found there, or alternatively searched for in the path
if not.

The commit and update programs are locally-based, and are run as follows:-

The program is always run locally. One must re-checkout the tree oneis using if these options are updated
in the modules administrative file. The file CV S/Checkin.prog contains the value of the option "-i' set in
the modulesfile, and similarly for the file CV S/Update.prog and "-u'. The program is always executed
from the top level of the checked-out copy on the client. Again, the program isfirst searched for in the
checked-out copy and then using the path.

The programs are all run after the operation has effectively completed.

C.2 The cvswrappers file

Wrappers refersto a CV S feature which lets you control certain settings based on the name of thefile
which is being operated on. The settings are -k’ for binary files, and "-m' for nonmergeabl e text files.

The "-m' option specifies the merge methodology that should be used when a non-binary file is updated.
MERGE means the usual CV S behavior: try to merge the files. COPY meansthat cvs updat e will
refuse to merge files, asit also does for files specified as binary with "-kb' (but if the file is specified as
binary, there is no need to specify -m 'COPY"). CVSwill provide the user with the two versions of the
files, and require the user using mechanisms outside CV S, to insert any necessary changes. WARNING:
do not use COPY with CVS 1.9 or earlier--such versions of CVSwill copy one version of your file over
the other, wiping out the previous contents. The "-m' wrapper option only affects behavior when merging
is done on update; it does not affect how files are stored. See section 9. Handling binary files, for more on

binary files.

The basic format of thefile” cvswr apper s’ is:

wi | dcard [option value][option val ue]...

where option is one of

-m updat e et hodol ogy val ue: MERGE or COPY
-k keywor d expansi on val ue: expansi on node

and value is a single-quote delimted val ue.

For example, the following command imports a directory, treating files whose name ends in ".exe' as
binary:

cvs inport -I ! -W"* exe -k "b'"" first-dir vendortag reltag

http://www.cvshome.org/docs/manual/cvs_18.html (5 of 16) [10/27/2000 2:27:39 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files

C.3 The commit support files

The *-i' flaginthe " nodul es' file can be used to run a certain program whenever files are committed
(see section C.1 The modulesfile). The files described in this section provide other, more flexible, ways

to run programs whenever something is committed.

There are three kind of programs that can be run on commit. They are specified in filesin the repository,
as described below. The following table summarizes the file names and the purpose of the corresponding
programs.
‘comm tinfo'
The program is responsible for checking that the commit is allowed. If it exits with a non-zero exit
status the commit will be aborted.
“verifynmsg'
The specified program is used to evaluate the log message, and possibly verify that it contains all
required fields. Thisis most useful in combination withthe " r csi nf o' file, which can hold alog
message template (see section C.8 Rcsinfo).
“editinfo’
The specified program is used to edit the log message, and possibly verify that it contains all
required fields. Thisis most useful in combination with the " r csi nf o' file, which can hold alog
message template (see section C.8 Rcsinfo). (obsolete)

"1 ogi nf o'
The specified program is called when the commit is complete. It receives the log message and some

additional information and can store the log message in afile, or mail it to appropriate persons, or
maybe post it to alocal newsgroup, or... Your imagination is the limit!

C.3.1 The common syntax

The administrative filessuchas commitinfo', loginfo', rcsinfo', verifynsg',etc., dl
have a common format. The purpose of the files are described later on. The common syntax is described
here.

Each line contains the following:
« A regular expression. Thisisabasic regular expression in the syntax used by GNU emacs.
« A whitespace separator--one or more spaces and/or tabs.
« A file name or command-line template.

Blank lines are ignored. Linesthat start with the character "#' are treated as comments. Long lines
unfortunately can not be broken in two partsin any way.

Thefirst regular expression that matches the current directory name in the repository is used. The rest of
thelineis used as afile name or command-line as appropriate.

http://www.cvshome.org/docs/manual/cvs_18.html (6 of 16) [10/27/2000 2:27:40 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files

C.4 Commitinfo

The comm ti nf o' filedefines programs to execute whenever “cvs commit' is about to execute. These
programs are used for pre-commit checking to verify that the modified, added and removed files are really
ready to be committed. This could be used, for instance, to verify that the changed files conform to to
your site's standards for coding practice.

As mentioned earlier, each lineinthe " comm ti nf o' file consists of aregular expression and a
command-line template. The template can include a program name and any number of arguments you
wish to supply to it. The full path to the current source repository is appended to the template, followed by
the file names of any filesinvolved in the commit (added, removed, and modified files).

Thefirst line with aregular expression matching the directory within the repository will be used. If the
command returns a non-zero exit status the commit will be aborted.

If the repository name does not match any of the regular expressionsin thisfile, the ' DEFAULT' lineis
used, if it is specified.

All occurrences of the name "ALL" appearing as aregular expression are used in addition to the first
matching regular expression or the name DEFAULT".

Note: when CV Sis accessing aremote repository, - conmmi t i nf o' will be run on the remote (i.e.,
server) side, not the client side (see section 2.9 Remote repositories).

C.5 Verifying log messages

Once you have entered alog message, you can evaluate that message to check for specific content, such
asabug ID. Usethe veri fynsg' fileto specify aprogram that is used to verify the log message. This
program could be a simple script that checks that the entered message contains the required fields.

The verifynsg' fileisoften most useful together withthe " r csi nf o' file, which can be used to
specify alog message template.

Eachlineinthe veri fynsg' fileconsistsof aregular expression and a command-line template. The
template must include a program name, and can include any number of arguments. The full path to the
current log message template file is appended to the templ ate.

One thing that should be noted is that the "ALL" keyword is not supported. If more than one matching line
Isfound, thefirst oneis used. This can be useful for specifying a default verification script in a directory,
and then overriding it in a subdirectory.

If the repository name does not match any of the regular expressionsin thisfile, the ' DEFAULT' lineis
used, if it is specified.

If the verification script exits with a non-zero exit status, the commit is aborted.
Note that the verification script cannot change the log message; it can merely accept it or reject it.

Thefollowingisalittlesilly exampleof a” veri f ynsg' file, together with the corresponding

http://www.cvshome.org/docs/manual/cvs_18.html (7 of 16) [10/27/2000 2:27:40 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files
“rcsinfo' file thelog message template and an verification script. We begin with the log message
template. We want to always record a bug-id number on the first line of the log message. The rest of log
message is free text. The following template isfound in the file
“fusr/cvssupport/tc.tenplate'.
Bugl d:

Thescript * / usr/ cvssupport/bugi d. veri fy' isusedto evauate the log message.

#!/ bi n/ sh

bugi d.verify fil enane

#
#
#
Verify that the | og nessage contains a valid bugid
on the first |ine.

#

i

f head -1 < $1 | grep ""Bugld:[]*[0-9][0-9]*%" > /dev/null; then
exit O
el se
echo "No Bugld found."
exit 1
fi

The verifynmsg' filecontainsthisline:

e [usr/ cvssupport/bugid.verify

The rcsi nf o' filecontainsthisline:

Atc [usr/cvssupport/tc.tenpl ate

C.6 Editinfo

NOTE: The " edi ti nf o' feature has been rendered obsolete. To set a default editor for log messages
use the EDI TOR environment variable (see section D. All environment variables which affect CVS) or the

"-€ global option (see section A.4 Global options). See section C.5 Verifying log messages, for
information on theuse of the " veri f ynsg' feature for evaluating log messages.

If you want to make sure that all log messages ook the same way, you can usethe " edi ti nf o' fileto
specify aprogram that is used to edit the log message. This program could be a custom-made editor that
always enforces a certain style of the log message, or maybe a simple shell script that calls an editor, and
checks that the entered message contains the required fields.

If no matching lineisfoundinthe edi ti nf o' file, the editor specified in the environment variable
$CVSEDI TORIisused instead. If that variable is not set, then the environment variable $EDI TOR is used
instead. If that variable is not set adefault will be used. See section 1.3.2 Committing your changes.

http://www.cvshome.org/docs/manual/cvs_18.html (8 of 16) [10/27/2000 2:27:40 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files

The edi ti nfo' fileisoften most useful together withthe " r csi nf o' file, which can be used to
specify alog message template.

Eachlineinthe” edi ti nf o' file consists of aregular expression and a command-line template. The
template must include a program name, and can include any number of arguments. The full path to the
current log message template file is appended to the template.

One thing that should be noted isthat the "ALL" keyword is not supported. If more than one matching line
isfound, thefirst oneis used. This can be useful for specifying adefault edit script in amodule, and then
overriding it in a subdirectory.

If the repository name does not match any of the regular expressionsin thisfile, the DEFAULT' lineis
used, if it is specified.

If the edit script exits with a non-zero exit status, the commit is aborted.

Note: when CV Sis accessing aremote repository, or when the -m' or *-F optionstocvs commi t are
used, edi ti nf o' will not be consulted. There is no good workaround for this; use " veri f ynsg’
instead.

C.6.1 Editinfo example

Thefollowingisalittlesilly exampleof a™ edi ti nf o' file, together with the corresponding
“rcsinfo' file thelog message template and an editor script. We begin with the log message templ ate.
We want to always record a bug-id number on the first line of the log message. The rest of log messageis
free text. The following templateisfound inthefile / usr/ cvssupport/tc. tenpl ate'.

Bugl d:
The script “ / usr/ cvssupport/ bugi d. edi t' isused to edit the log message.

#!/ bi n/ sh

#

bugid.edit fil enane

#

Call $EDI TOR on FILENAME, and verify that the

resulting file contains a valid bugid on the first
line.

If ["X$EDI TOR" = "x"]; then ED TOR=vi; fi

if ["x$CVSEDI TOR' = "x"]; then CVSED TOR=$EDI TOR, fi

$CVSEDI TOR $1
until head -1|grep '~Bugld:[]*[0-9][0-9]*% < $1
do echo -n "No Bugld found. Edit again? ([y]/n)"
read ans
case ${ans} in
n*) exit 1;;
esac

http://www.cvshome.org/docs/manual/cvs_18.html (9 of 16) [10/27/2000 2:27:40 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files

$CVSEDI TOR $1
done

The edi ti nf o' filecontansthisline

Ate [usr/ cvssupport/bugid. edit

The rcsi nf o' filecontainsthisline:

Atc [usr/cvssupport/tc.tenpl ate

C.7 Loginfo

The | ogi nf o' fileisused to control where "cvs commit' log information is sent. Thefirst entry on a
lineisaregular expression which is tested against the directory that the change is being made to, relative
to the $CVSROOT. If amatch isfound, then the remainder of the lineisafilter program that should
expect log information on its standard input.

If the repository name does not match any of the regular expressionsin thisfile, the DEFAULT' lineis
used, if it is specified.

All occurrences of the name "ALL' appearing as aregular expression are used in addition to the first
matching regular expression or DEFAULT".

The first matching regular expression is used.

See section C.3 The commit support files, for a description of the syntax of the " | ogi nf o' file.

The user may specify aformat string as part of the filter. The string is composed of a %' followed by a
space, or followed by a single format character, or followed by a set of format characters surrounded by
{"and '}" as separators. The format characters are:

S

file name
\Y

old version number (pre-checkin)
Y

new version number (post-checkin)

All other characters that appear in aformat string expand to an empty field (commas separating fields are
still provided).

For example, some valid format strings are "%', "%s, "%{s}', and "%{sVv}"

The output will be a string of tokens separated by spaces. For backwards compatibility, the first token will
be the repository subdirectory. The rest of the tokens will be comma-delimited lists of the information
requested in the format string. For example, if “/u/src/master/yoyodyne/tc’ is the repository, "%{sVv}'is
the format string, and three files (ChangelLog, Makef i | e, f 00. ¢) were modified, the output might be:

http://www.cvshome.org/docs/manual/cvs_18.html (10 of 16) [10/27/2000 2:27:40 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files

yoyodyne/tc ChangelLog,1.1,1.2 Makefile,1.3,1.4 foo.c,1.12,1.13
As another example, "%{}' means that only the name of the repository will be generated.

Note: when CVSis accessing aremote repository, ~ | ogi nf o' will berun on the remote (i.e., server)
side, not the client side (see section 2.9 Remote repositories).

C.7.1 Loginfo example

Thefollowing " | ogi nf o' file, together with the tiny shell-script below, appends all log messages to the
file” $CVSROOT/ CVSROOT/ conmi t | og' , and any commits to the administrative files (inside the

" CVSROOT" directory) aredsologgedin ™/ usr/ adm cvsroot -1 og' . Commitstothe” progl'
directory are mailed to ceder .

ALL /usr/ 1 ocal / bin/cvs-1og $CVSROOT/ CVSROOT/ conmmi t | og $USER
N CVSROOT [usr/local/bin/cvs-1og /usr/adnf cvsroot-I og
Aprogl Mail -s % ceder

The shell-script * / usr/ 1 ocal / bi n/ cvs-1 0g" lookslikethis:

#!/ bi n/ sh
(=Ted ¢ (o I e e "
echo -n $2" “;
dat e;
echo;
cat) >> $1

C.7.2 Keeping a checked out copy

It is often useful to maintain a directory tree which contains files which correspond to the latest version in
the repository. For example, other developers might want to refer to the latest sources without having to
check them out, or you might be maintaining aweb site with CVS and want every checkin to cause the
files used by the web server to be updated.

The way to do thisis by having loginfo invokecvs updat e. Doing so in the naive way will cause a
problem with locks, so thecvs updat e must be run in the background. Here is an example for unix
(this should all be on oneline):

Acycli c- pages (date; cat; (sleep 2; cd /u/ ww | ocal -docs;
CVS -q update -d) & >> $CVSROOT/ CVSROOT/ updat el og 2>&1

Thiswill cause checkinsto repository directories starting withcycl i ¢c- pages to update the checked
out treein "/ u/ www/ | ocal - docs' .

http://www.cvshome.org/docs/manual/cvs_18.html (11 of 16) [10/27/2000 2:27:40 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files

C.8 Rcsinfo

The rcsi nf o' filecan be used to specify aform to edit when filling out the commit log. The
“rcsinfo' filehasasyntax similartothe " veri fynsg', comm tinfo' and | ogi nfo' files.
See section C.3.1 The common syntax. Unlike the other files the second part is not a command-line
template. Instead, the part after the regular expression should be afull pathname to afile containing the
log message templ ate.

If the repository name does not match any of the regular expressionsin thisfile, the DEFAULT' lineis
used, if it is specified.

All occurrences of the name "ALL' appearing as aregular expression are used in addition to the first
matching regular expression or 'DEFAULT".

The log message template will be used as a default log message. If you specify alog message with “cvs
commit -m message' or “cvs commit -f file' that log message will override the template.

See section C.5 Verifying log messages, for an example " r csi nf o' file.

When CV Sis accessing aremote repository, the contentsof * r csi nf o' at thetime adirectory isfirst
checked out will specify atemplate which does not then change. If you edit " r csi nf o' or itstemplates,
you may need to check out a new working directory.

C.9 Ignoring files via cvsignore

There are certain file names that frequently occur inside your working copy, but that you don't want to put
under CV S control. Examples are al the object files that you get while you compile your sources.
Normally, when you run “cvs update, it prints aline for each file it encounters that it doesn't know about
(see section A.16.2 update output).

CVShasalist of files (or sh(1) file name patterns) that it should ignore while running updat e, i npor t
andr el ease. Thislist is constructed in the following way.

o Thelistisinitialized to include certain file name patterns. names associated with CVS
administration, or with other common source control systems; common names for patch files,
object files, archive files, and editor backup files; and other names that are usually artifacts of
assorted utilities. Currently, the default list of ignored file name patternsis:

RCS SCCS CVS CVS. adm
RCSLOG cvslog. *
t ags TAGS

. make. state .nse_depinfo

* #* .#* ’* $* *$
*.old * . bak *BAK *.orig *.rej .del -*
*.a *.olb *.0 *. 0obj *.S0 *.exe
4 *.elc *.In

core

http://www.cvshome.org/docs/manual/cvs_18.html (12 of 16) [10/27/2000 2:27:40 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files

o Theper-repository list in ° $CVSROOT/ CVSROOT/ cvsi gnor e' isappended to thelist, if that
file exists.

e Theper-userlistin . cvsi gnore' inyour homedirectory is appended to the ligt, if it exists.

« Any entriesin the environment variable $CVSI GNORE is appended to the list.

o Any -I' options given to CVSis appended.

« AsCVStraversesthrough your directories, the contentsof any = . cvsi gnor e' will be appended

to thelist. The patternsfound in ™ . cvsi gnor e' areonly valid for the directory that contains
them, not for any sub-directories.

In any of the 5 places listed above, a single exclamation mark (*!") clearsthe ignore list. This can be used
if you want to store any file which normally isignored by CVS.

Specifying -1 I"tocvs i nmport will import everything, which is generally what you want to do if you
are importing files from a pristine distribution or any other source which is known to not contain any
extraneous files. However, looking at the rules above you will see thereisafly in the ointment; if the
distribution containsany ~ . cvsi gnor e' files, then the patterns from those files will be processed even
if -1 I"is specified. The only workaround isto removethe ™. cvsi gnor e' filesin order to do the
import. Because thisis awkward, in the future "-I !" might be modified to override " . cvsi gnor e’ files
in each directory.

Note that the syntax of the ignore files consists of a series of lines, each of which contains a space
separated list of filenames. This offers no clean way to specify filenames which contain spaces, but you
can use aworkaround like " f oo?bar ' to matchafilenamed " f oo bar' (it also matches
“fooxbar' andthelike). Also note that there is currently no way to specify comments.

C.10 The checkoutlist file

It may be helpful to use CVSto maintain your own filesin the " CVSROOT" directory. For example,
suppose that you have ascript * | ogcommi t. pl ' which you run by including the following line in the
“conmitinfo' administrativefile:

ALL $CVSROOT/ CVSROOT/ | ogconmi t . pl

Tomaintain " | ogcomm t. pl ' with CVSyou would add the following lineto the " checkout | i st
administrative file:

| ogcomm t. pl

Theformat of “ checkout | i st' isonelinefor each file that you want to maintain using CVS, giving
the name of thefile.

After settingup * checkout | i st' inthisfashion, thefileslisted there will function just like CVS's
built-in administrative files. For example, when checking in one of the files you should get a message
such as;

http://www.cvshome.org/docs/manual/cvs_18.html (13 of 16) [10/27/2000 2:27:40 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files

cvs commt: Rebuilding adm nistrative file database
and the checked out copy inthe ™ CVSROOT" directory should be updated.

Note that listing * passwd' (see section 2.9.3.1 Setting up the server for password authentication) in
“checkout | i st' isnot recommended for security reasons.

For information about keeping a checkout out copy in amore general context than the one provided by
“checkout | i st', seesection C.7.2 Keeping a checked out copy.

C.11 The history file

Thefile” $CVSROOT/ CVSROOT/ hi st ory"' isused to log information for the hi st or y command
(see section A.11 history--Show status of files and users). Thisfile must be created to turn on logging.

Thisisdone automatically if thecvs i ni t command isused to set up the repository (see section 2.6
Cregting arepository).

Thefileformat of the ™ hi st ory" fileis documented only in comments in the CV S source code, but
generally programs should usethecvs hi st or y command to access it anyway, in case the format
changes with future releases of CVS.

C.12 Expansions in administrative files

Sometimes in writing an administrative file, you might want the file to be able to know various things
based on environment CVSisrunning in. There are severa mechanismsto do that.

To find the home directory of the user running CV S (from the HOVE environment variable), use "~
followed by “/* or the end of the line. Likewise for the home directory of user, use "~user'. These variables
are expanded on the server machine, and don't get any reasonable expansion if pserver (see section 2.9.3

Direct connection with password authentication) isin use; therefore user variables (see below) may be a
better choice to customize behavior based on the user running CVS.

One may want to know about various pieces of information internal to CVS. A CVSinternal variable has
the syntax ${ var i abl e}, where variable starts with aletter and consists of alphanumeric characters
and ~_'. If the character following variable is a non-alphanumeric character other than ™ ', the '{"and '}’
can be omitted. The CVSinternal variables are:
CVSROOT
Thisisthe value of the CVSroot in use. See section 2. The Repository, for a description of the
various ways to specify this.
RCSBI N

In CVS 1.9.18 and older, this specified the directory where CV S was looking for RCS programs.
Because CV S no longer runs RCS programs, specifying thisinternal variable is now an error.

CVSEDI TOR
VI SUAL

http://www.cvshome.org/docs/manual/cvs_18.html (14 of 16) [10/27/2000 2:27:40 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files

EDI TOR
These al expand to the same value, which is the editor that CVSisusing. See section A.4 Global
options, for how to specify this.

USER

Username of the user running CV S (on the CV S server machine). When using pserver, thisisthe
user specified in the repository specification which need not be the same as the username the server
IS running as (see section 2.9.3.1 Setting up the server for password authentication).

If you want to pass a value to the administrative files which the user who is running CV S can specify, use
auser variable. To expand a user variable, the administrative file contains ${ =var i abl e} . To set auser
variable, specify the global option "-s to CV'S, with argument var i abl e=val ue. It may be particularly
useful to specify thisoptionvia™ . cvsrc' (see section A.3 Default options and the ~/.cvsrc file).

For example, if you want the administrative file to refer to atest directory you might create a user variable
TESTDI R Then if CVSisinvoked as

cvs -s TESTDI R=/work/| ocal /tests

and the administrative file containssh ${ =TESTDI R}/ r unt est s, then that string is expanded to sh
/wor k/ 1 ocal /tests/runtests.

All other strings containing *$' are reserved; there is no way to quote a'$' character so that *$' represents
itself.

C.13 The CVSROOT/config configuration file

The administrativefile conf i g' contains various miscellaneous settings which affect the behavior of
CVS. The syntax is dlightly different from the other administrative files. Variables are not expanded.
Lines which start with "# are considered comments. Other lines consist of akeyword, "=', and avalue.
Note that this syntax is very strict. Extraneous spaces or tabs are not permitted.

Currently defined keywords are:
RCSBI N=bi ndi r

For CVS 1.9.12 through 1.9.18, this setting told CV Sto look for RCS programs in the bindir
directory. Current versions of CV'S do not run RCS programs; for compatibility this setting is
accepted, but it does nothing.

Syst emAut h=val ue

If valueis yes, then pserver should check for usersin the system's user database if not found in
" CVSROOT/ passwd' . If itis 'no', then all pserver users must exist in - CVSROOT/ passwd' .
The default is "yes. For more on pserver, see section 2.9.3 Direct connection with password

authentication.

TopLevel Adm n=val ue

Modify the “checkout' command to create a CV S directory at the top level of the new working
directory, in addition to "CV S directories created within checked-out directories. The default value

http://www.cvshome.org/docs/manual/cvs_18.html (15 of 16) [10/27/2000 2:27:40 PM]

CVS--Concurrent Versions System - C. Reference manual for Administrative files

Is 'no". Thisoption isuseful if you find yourself performing many commands at the top level of
your working directory, rather than in one of the checked out subdirectories. The ™ CVS' directory
created there will mean you don't have to specify CVSROOT for each command. It also provides a
place for the " CVS/ Tenpl at e' file (see section 2.3 How datais stored in the working directory).

LockDi r=di rectory

Put CVSlock filesin directory rather than directly in the repository. Thisis useful if you want to let
users read from the repository while giving them write access only to directory, not to the
repository. Y ou need to create directory, but CVSwill create subdirectories of directory as it needs
them. For information on CV S locks, see section 10.5 Severa developers simultaneously
attempting to run CV'S. Before enabling the LockDir option, make sure that you have tracked down
and removed any copies of CVS 1.9 or older. Such versions neither support LockDir, nor will give
an error indicating that they don't support it. The result, if thisis allowed to happen, isthat some
CV S userswill put the locks one place, and others will put them another place, and therefore the
repository could become corrupted. CV S 1.10 does not support LockDir but it will print awarning
if run on arepository with LockDir enabled.

LogHi st ory=val ue

Control what islogged to the " CVSROOT/ hi st ory" file. Default of ' TOFEWGCMAR' (or
simply “al’) will log all transactions. Any subset of the default islegal. (For example, to only log
transactions that modify the ™ *, v' files, use 'LogHistory=TMAR'.)

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_18.html (16 of 16) [10/27/2000 2:27:40 PM]

CVS--Concurrent Versions System - D. All environment variables which affect CVS

Go to thefirst, previous, next, last section, table of contents.

D. All environment variables which affect
CVS

Thisisacompletelist of al environment variables that affect CVS.

$CVSI GNORE
A whitespace-separated list of file name patterns that CV S should ignore. See section C.9 Ignoring
filesvia cvsignore.

$CVSVRAPPERS

A whitespace-separated list of file name patterns that CV S should treat as wrappers. See section
C.2 The cvswrappersfile.

$CVSREAD

If thisisset, checkout and updat e will try hard to make the files in your working directory
read-only. When thisis not set, the default behavior isto permit modification of your working
files.

$CVSUVASK
Controls permissions of filesin the repository. See section 2.2.2 File permissions.

$CVSROOT

Should contain the full pathname to the root of the CV S source repository (where the RCSfiles are
kept). Thisinformation must be available to CV'S for most commands to execute; if $CVSROOT is
not set, or if you wish to override it for one invocation, you can supply it on the command line:
“cvs-d cvsroot cvs command..." Once you have checked out aworking directory, CVS stores the
appropriate root (in thefile” CVS/ Root '), so normally you only need to worry about this when
initially checking out aworking directory.

$EDI TOR
$CVSEDI TOR
$VI SUAL

Specifies the program to use for recording log messages during commit. $CVSEDI TOR overrides
$EDI TOR. See section 1.3.2 Committing your changes.

$PATH

If $RCSBI Nis not set, and no path is compiled into CVS, it will use $PATHto try to find all
programs it uses.

$HOVE
$HOVEPATH
$HOVEDRI VE

http://www.cvshome.org/docs/manual/cvs_19.html (1 of 3) [10/27/2000 2:27:41 PM]

CVS--Concurrent Versions System - D. All environment variables which affect CVS

Used to locate the directory wherethe " . cvsr ¢’ file, and other such files, are searched. On
Unix, CVSjust checks for HOVE. On Windows NT, the system will set HOVEDRI VE, for example
to "d:" and HOVEPATH, for exampleto "\ j oe' . On Windows 95, you'll probably need to set
HOMEDRI VE and HOVEPATH yourself.

$CVS_RSH

Specifies the external program which CV'S connects with, when : ext : accessmethod is
specified. see section 2.9.2 Connecting with rsh.

$CVS_SERVER

Used in client-server mode when accessing a remote repository using RSH. It specifies the name
of the program to start on the server side when accessing a remote repository using RSH. The
default valueiscvs. see section 2.9.2 Connecting with rsh

$CVS_PASSFI LE

Used in client-server mode when accessingthecvs | ogi n server . Default valueis
" $HOME/ . cvspass' . seesection 2.9.3.2 Using the client with password authentication

$CVS_CLI ENT_PORT
Used in client-server mode when accessing the server via Kerberos. see section 2.9.5 Direct
connection with kerberos

$CVS_RCVD_PORT

Used in client-server mode. If set, specifies the port number to be used when accessing the RCMD
demon on the server side. (Currently not used for Unix clients).

$CVS_CLI ENT_LOG

Used for debugging only in client-server mode. If set, everything sent to the server islogged into
"$CVS _CLI ENT_LGG. i n' and everything sent from the server islogged into
"$CVS _CLI ENT_LCG. out ' .

$CVS_SERVER SLEEP

Used only for debugging the server side in client-server mode. If set, delays the start of the server
child process the specified amount of seconds so that you can attach to it with a debugger.

$CVS_| GNORE._ REMOTE_ROOT

For CVS 1.10 and older, setting this variable prevents CV S from overwriting the ™ CVS/ Root '
file when the "-d' global option is specified. Later versions of CV S do not rewrite " CVS/ Root ',
so CVS | GNORE_REMOTE_ROOT has no effect.

$COVSPEC

Used under OS/2 only. It specifies the name of the command interpreter and defaults to
CMD.EXE.

$TMPDI R
$TWP
$TEMP

Directory in which temporary files are located. The CVS server uses TMPDI R. See section A.4
Global options, for a description of how to specify this. Some parts of CVSwill always use

http://www.cvshome.org/docs/manual/cvs_19.html (2 of 3) [10/27/2000 2:27:41 PM]

CVS--Concurrent Versions System - D. All environment variables which affect CVS

“/tnp' (viathet npnamfunction provided by the system). On Windows NT, TMP is used (via
the _t enpnamfunction provided by the system). The pat ch program which is used by the CVS
clientuses TMPDI R, and if itisnot set, uses / t np' (at least with GNU patch 2.1). Note that if

your server and client are both running CVS 1.9.10 or later, CVSwill not invoke an externa
pat ch program.

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_19.html (3 of 3) [10/27/2000 2:27:41 PM]

CVS--Concurrent Versions System - E. Compatibility between CVS Versions

Go to thefirst, previous, next, last section, table of contents.

E. Compatibility between CVS Versions

The repository format is compatible going back to CVS 1.3. But see section 10.6.5 Using watches with
old versions of CVS, if you have copies of CVS 1.6 or older and you want to use the optional developer
communication features.

The working directory format is compatible going back to CVS 1.5. It did change between CVS 1.3 and
CVS15. If you run CVS 1.5 or newer on aworking directory checked out with CVS 1.3, CV S will
convert it, but to go back to CVS 1.3 you need to check out a new working directory with CVS 1.3.

The remote protocol isinteroperable going back to CVS 1.5, but no further (1.5 was the first official
release with the remote protocol, but some older versions might still be floating around). In many cases
you need to upgrade both the client and the server to take advantage of new features and bugfixes,
however.

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_20.html [10/27/2000 2:27:42 PM]

CVS--Concurrent Versions System - F. Troubleshooting

Go to thefirst, previous, next, last section, table of contents.

F. Troubleshooting

If you are having trouble with CV'S, this appendix may help. If thereis a particular error message which
you are seeing, then you can look up the message alphabetically. If not, you can look through the section
on other problemsto see if your problem is mentioned there.

F.1 Partial list of error messages

Hereisapartial list of error messages that you may see from CVS. It isnot acomplete list---CVSis
capable of printing many, many error messages, often with parts of them supplied by the operating
system, but the intention is to list the common and/or potentially confusing error messages.

The messages are al phabetical, but introductory text such as "cvs update: ' is hot considered in ordering
them.

In some cases the list includes messages printed by old versions of CV'S (partly because users may not be
sure which version of CVSthey are using at any particular moment).

cvs command: authorization failed: server host rejected access
Thisis ageneric response when trying to connect to a pserver server which chooses not to provide
a specific reason for denying authorization. Check that the username and password specified are

correct and that the CVSROOT specified is allowed by "--allow-root' in " i net d. conf' . See
section 2.9.3 Direct connection with password authentication.

file:line: Assertion '"text' failed

The exact format of this message may vary depending on your system. It indicatesabug in CVS,
which can be handled as described in section H. Dealing with bugsin CV S or this manual.

cvs command: conflict: renoved file was nodified by second party

This message indicates that you removed afile, and someone else modified it. To resolve the
conflict, first run "cvsadd fil€'. If desired, look at the other party's modification to decide whether
you still want to remove it. If you don't want to remove it, stop here. If you do want to removeit,
proceed with “cvs remove file' and commit your removal.

cannot change perm ssions on tenporary directory

Qperation not permtted

This message has been happening in a non-reproducible, occasional way when we run the
client/server testsuite, both on Red Hat Linux 3.0.3 and 4.1. We haven't been able to figure out
what causes it, nor isit known whether it is specific to linux (or even to this particular machine!).
If the problem does occur on other unices, "Operation not permitted’ would be likely to read "Not
owner' or whatever the system in question uses for the unix EPERMerror. If you have any

http://www.cvshome.org/docs/manual/cvs_21.html (1 of 7) [10/27/2000 2:27:43 PM]

CVS--Concurrent Versions System - F. Troubleshooting

information to add, please let us know as described in section H. Dealing with bugsin CVS or this
manual. If you experience this error while using CV'S, retrying the operation which produced it
should work fine.

cvs [server aborted]: Cannot check out files into the repository
I tself

The obvious cause for this message (especially for non-client/server CVS) isthat the CVSroot is,
for example, "/ usr/ 1 ocal / cvsroot' andyou try to check out fileswhen you arein a
subdirectory, suchas "/ usr/ | ocal / cvsroot/t est' . However, there is amore subtle cause,
which is that the temporary directory on the server is set to a subdirectory of the root (which isalso
not allowed). If thisisthe problem, set the temporary directory to somewhere else, for example
“/var/tnp';see TMPDI Rinsection D. All environment variables which affect CVS, for how
to set the temporary directory.

cannot open CVS/Entries for reading: No such file or directory
This generally indicates a CV Sinternal error, and can be handled as with other CV'S bugs (see
section H. Dealing with bugsin CVS or this manual). Usually there is a workaround--the exact
nature of which would depend on the situation but which hopefully could be figured out.

cvs [init aborted]: cannot open CVS/ Root: No such file or directory

This message is harmless. Provided it is not accompanied by other errors, the operation has
completed successfully. This message should not occur with current versionsof CVS, but itis
documented here for the benefit of CVS 1.9 and older.

cvs [checkout aborted]: cannot renane file file to CVS/,,file: Invalid
ar gunent

This message has been reported as intermittently happening with CVS 1.9 on Solaris 2.5. The
cause is unknown; if you know more about what causesit, let us know as described in section H.

Dealing with bugs in CV'S or this manual.

cvs [conmand aborted]: cannot start server via rcnd

This, unfortunately, is a rather nonspecific error message which CVS 1.9 will print if you are
running the CV S client and it is having trouble connecting to the server. Current versions of CVS
should print a much more specific error message. If you get this message when you didn't mean to
run the client at all, you probably forgot to specify : | ocal : , asdescribed in section 2. The

Repository.

ci: file,v: bad diff output line: Binary files - and /tnp/ T2a22651
differ

CVS 1.9 and older will print this message when trying to check in abinary fileif RCSis not
correctly installed. Re-read the instructions that came with your RCS distribution and the
INSTALL fileinthe CVSdistribution. Alternately, upgrade to a current version of CVS, which
checksinfilesitself rather than via RCS.

cvs checkout: could not check out file

With CVS 1.9, this can mean that the co program (part of RCS) returned afailure. It should be
preceded by another error message, however it has been observed without another error message
and the cause is not well-understood. With the current version of CV'S, which doesnot run co, if

http://www.cvshome.org/docs/manual/cvs_21.html (2 of 7) [10/27/2000 2:27:43 PM]

CVS--Concurrent Versions System - F. Troubleshooting

this message occurs without another error message, it is definitely a CV S bug (see section H.
Dealing with bugsin CVS or this manual).
cvs [login aborted]: could not find out hone directory

This means that you need to set the environment variables that CV S uses to locate your home
directory. See the discussion of HOVE, HOVEDRI VE, and HOVEPATH in section D. All

environment variables which affect CVS.

cvs update: could not nerge revision rev of file: No such file or
di rectory

CVS 1.9 and older will print this message if there was a problem finding ther csner ge program.
Make surethat it isin your PATH, or upgrade to a current version of CV'S, which does not require
an externa r csner ge program.

cvs [update aborted]: could not patch file: No such file or directory

This means that there was a problem finding the pat ch program. Make sure that it isin your
PATH. Note that despite appearances the message is not referring to whether it can find file. If both
the client and the server are running a current version of CVS, then there is no need for an external
patch program and you should not see this message. But if either client or server isrunning CVS
1.9, then you need pat ch.

cvs update: could not patch file; wll refetch

This means that for whatever reason the client was unable to apply a patch that the server sent. The
message is nothing to be concerned about, because inability to apply the patch only slows things
down and has no effect on what CV S does.

dyi ng gasps from server unexpected

Thereisaknown bug in the server for CVS 1.9.18 and older which can cause this. For me, this
was reproducible if | used the "-t' global option. It was fixed by Andy Piper's 14 Nov 1997 change
to src/filesubr.c, if anyoneis curious. If you see the message, you probably can just retry the
operation which failed, or if you have discovered information concerning its cause, please let us
know as described in section H. Dealing with bugsin CV S or this manual.

end of file fromserver (consult above nessages if any)

The most common cause for this messageisif you are using an external r sh program and it exited
with an error. In this case ther sh program should have printed a message, which will appear
before the above message. For more information on setting up a CV S client and server, see section
2.9 Remote repositories.

cvs [update aborted]: EOF in key in RCS file file,v

cvs [checkout aborted]: EOF while | ooking for end of string in RCS
file file,v

This means that there is a syntax error in the given RCSfile. Note that this might be true even if
RCS can read the file OK; CV S does more error checking of errorsin the RCSfile. That iswhy
you may see this message when upgrading from CVS 1.9 to CVS 1.10. The likely cause for the
original corruption is hardware, the operating system, or the like. Of course, if you find acasein
which CV'S seems to corrupting the file, by al means report it, (see section H. Dealing with bugs

In CVS or this manual). There are quite afew variations of this error message, depending on

http://www.cvshome.org/docs/manual/cvs_21.html (3 of 7) [10/27/2000 2:27:43 PM]

CVS--Concurrent Versions System - F. Troubleshooting

exactly where in the RCS file CV S finds the syntax error.
cvs commt: Executing 'nknodul es’

This means that your repository is set up for aversion of CVS prior to CVS 1.8. When using CVS
1.8 or later, the above message will be preceded by

cvs commt: Rebuilding admnistrative file database

If you see both messages, the database is being rebuilt twice, which is unnecessary but harmless. If
you wish to avoid the duplication, and you have no versions of CVS 1.7 or earlier in use, remove

-1 nknodul es every placeit appearsin your nodul es file. For more information on the
nodul es file, see section C.1 The modulesfile.

m ssi ng aut hor

Typicaly this can happen if you created an RCS file with your username set to empty. CVSwill,
bogusly, create an illegal RCS file with no value for the author field. The solution is to make sure
your username is set to a non-empty value and re-create the RCSfile.

cvs [checkout aborted]: no such tag tag

This message means that CVSisn't familiar with the tag tag. Usually this means that you have
mistyped atag name; however there are (relatively obscure) cases in which CVSwill require you
to try afew other CV'S commands involving that tag, before you find one which will cause CVSto
update the " val -t ags" file; see discussion of val-tagsin section 2.2.2 File permissions. Y ou
only need to worry about this once for agiven tag; when atagislistedin " val -t ags' , it stays
there. Note that using "-f' to not require tag matches does not override this check; see section A.5
Common command options.

PANI C adm nistration files m ssing

This typically means that there is a directory named CV S but it does not contain the administrative
fileswhich CVS putsin a CVSdirectory. If the problem isthat you created a CV S directory via
some mechanism other than CV'S, then the answer is simple, use a name other than CVS. If not, it
indicates a CV S bug (see section H. Dealing with bugsin CVS or this manual).

rcs error: Unknown option: -x,v/

This message will be followed by a usage message for RCS. It means that you have an old version
of RCS (probably supplied with your operating system), aswell asan old version of CVS. CVS

1.9.18 and earlier only work with RCS version 5 and later; current versions of CV S do not run
RCS programs.

cvs [server aborted]: received broken pipe signal

This message seems to be caused by a hard-to-track-down bug in CVS or the systems it runs on
(we don't know--we haven't tracked it down yet!). It seemsto happen only after a CV'S command
has completed, and you should be able to just ignore the message. However, if you have
discovered information concerning its cause, please let us know as described in section H. Dealing
with bugsin CV'S or this manual.

Too many ar gunents!

This message istypically printed by the " | og. pl ' script whichisinthe™ contri b' directory
in the CV S source distribution. In some versions of CVS, " | og. pl ' has been part of the default

http://www.cvshome.org/docs/manual/cvs_21.html (4 of 7) [10/27/2000 2:27:43 PM]

CVS--Concurrent Versions System - F. Troubleshooting

CVSinstalation. The " | og. pl * script gets called fromthe " | ogi nf o' administrativefile.
Check that the arguments passed in " | ogi nf o' match what your version of * | 0g. pl ' expects.
In particular, the " | og. pl ' from CVS 1.3 and older expects the logfile as an argument whereas
the | og. pl ' from CVS 1.5 and newer expects the logfile to be specified with a"-f' option. Of
course, if youdon'tneed " | og. pl ' you canjust comment it out of * | ogi nf o' .

cvs [update aborted]: unexpected EOF reading file,v
See "EOF in key in RCSfile.

cvs [login aborted]: unrecogni zed auth response from server
This message typically means that the server is not set up properly. For example, if
“inetd. conf' pointsto anonexistent cvs executable. To debug it further, find the log file
which inetd writes (" / var /| og/ nessages’ or whatever inetd uses on your system). For
details, see section F.2 Trouble making a connection to a CV S server, and section 2.9.3.1 Setting
up the server for password authentication.

cvs server: cannot open /root/.cvsignore: Perm ssion denied

cvs [server aborted]: can't chdir(/root): Perm ssion denied
See section F.2 Trouble making a connection to a CV S server.

cvs commt: Up-to-date check failed for "file'
This means that someone el se has committed a change to that file since the last time that you did a
cvs updat e. So before proceeding with your cvs conm t youneedtocvs updat e. CVS
will merge the changes that you made and the changes that the other person made. If it does not
detect any conflictsit will report "M file' and you are ready to cvs commi t . If it detects conflicts
it will print a message saying so, will report "C file', and you need to manually resolve the conflict.
For more details on this process see section 10.3 Conflicts example.

Usage: diff3 [-exEX3 [-i | -m [-L labell -L label3]] filel file2

file3

Only one of [exEX3] all owed

Thisindicates a problem with the installation of di f f 3 andr csner ge. Specifically r csner ge
was compiled to ook for GNU diff3, but it isfinding unix diff3 instead. The exact text of the
message will vary depending on the system. The simplest solution is to upgrade to a current
version of CV'S, which does not rely on external r csner ge or di f f 3 programs.

war ni ng: unrecogni zed response text' fromcvs server

CVsS

If text contains a valid response (such as "ok') followed by an extra carriage return character (on
many systems thiswill cause the second part of the message to overwrite the first part), then it
probably means that you are using the ":ext:" access method with a version of rsh, such as most
non-unix rsh versions, which does not by default provide atransparent data stream. In such cases
you probably want to try “:server:' instead of “:ext:". If text is something else, thismay signify a
problem with your CV S server. Double-check your installation against the instructions for setting
up the CVS server.

commt: [tine] waiting for user's lock in directory
Thisisanormal message, not an error. See section 10.5 Several developers simultaneously

http://www.cvshome.org/docs/manual/cvs_21.html (5 of 7) [10/27/2000 2:27:43 PM]

CVS--Concurrent Versions System - F. Troubleshooting

attempting to run CVS, for more details.

cvs commt: warning: editor session failed

This means that the editor which CVSisusing exits with a nonzero exit status. Some versions of vi
will do this even when there was not a problem editing the file. If so, point the CVSEDI TOR
environment variable to asmall script such as:

#! / bi n/ sh
vi $*
exit O

F.2 Trouble making a connection to a CVS server

This section concerns what to do if you are having trouble making a connection to a CV S server. If you
are running the CVS command line client running on Windows, first upgrade the client to CVS1.9.12 or
later. The error reporting in earlier versions provided much less information about what the problem was.
If the client is non-Windows, CV S 1.9 should be fine.

If the error messages are not sufficient to track down the problem, the next steps depend largely on which
access method you are using.

ext:
Try running the rsh program from the command line. For example: "rsh servername cvs -v" should

print CV S version information. If this doesn't work, you need to fix it before you can worry about
CV S problems.

. server:
Y ou don't need a command line rsh program to use this access method, but if you have an rsh
program around, it may be useful as a debugging tool. Follow the directions given for :ext:.

. pserver:

One good debugging tool isto "telnet servername 2401". After connecting, send any text (for
example "foo" followed by return). If CVSisworking correctly, it will respond with

cvs [pserver aborted]: bad auth protocol start: foo

If thisfails to work, then make sure inetd is working right. Change the invocation in
“inetd. conf' toruntheecho program instead of cvs. For example:

2401 stream tcp nowait root /bin/echo echo hello

After making that change and instructing inetd to re-read its configuration file, "telnet servername
2401" should show you the text hello and then the server should close the connection. If this
doesn't work, you need to fix it before you can worry about CV'S problems. On AlIX systems, the
system will often have its own program trying to use port 2401. Thisis AlX's problem in the sense
that port 2401 isregistered for use with CVS. | hear that thereisan AlX patch available to address
this problem. Another good debugging tool isthe "-d' (debugging) option to inetd. Consult your
system documentation for more information. If you seem to be connecting but get errors like:

http://www.cvshome.org/docs/manual/cvs_21.html (6 of 7) [10/27/2000 2:27:43 PM]

CVS--Concurrent Versions System - F. Troubleshooting

cvs server: cannot open /root/.cvsignore: Perm ssion denied

cvs [server aborted]: can't chdir(/root): Perm ssion denied

then either you haven't specified *-f'in " i net d. conf ' or your system is setting the HOVE
environment variable for programs being run by inetd. In the latter case, you can either have inetd
run a shell script that unsets HOVE and then runs CV'S, or you can use env to run CVSwith a
pristine environment. If you can connect successfully for awhile but then can't, you've probably
hit inetd's rate limit. (If inetd receives too many requests for the same service in a short period of
time, it assumes that something is wrong and temporarily disables the service.) Check your inetd
documentation to find out how to adjust the rate limit (some versions of inetd have asingle rate
limit, others allow you to set the limit for each service separately.)

F.3 Other common problems

Hereisalist of problemswhich do not fit into the above categories. They are in no particular order.

« On Windows, if thereisa 30 second or so delay when you run a CV'S command, it may mean that
you have your home directory setto ™ C. /' , for example (see HOVEDRI VE and HOVEPATH n
section D. All environment variables which affect CVS). CV S expects the home directory to not

endinasdlash, forexample C.* or C.\cvs'.
o If youarerunning CVS1.9.18 or older, and cvs updat e findsaconflict and triesto merge, as
described in section 10.3 Conflicts example, but doesn't tell you there were conflicts, then you may

have an old version of RCS. The easiest solution probably isto upgrade to a current version of
CVS, which does not rely on external RCS programs.

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_21.html (7 of 7) [10/27/2000 2:27:43 PM]

CVS--Concurrent Versions System - G. Credits

Go to thefirst, previous, next, last section, table of contents.

G. Credits

Roland Pesch, then of Cygnus Support <r ol and@w s. con® wrote the manual pages which were
distributed with CVS 1.3. Much of their text was copied into this manual. He also read an early draft of
this manual and contributed many ideas and corrections.

The mailing-listi nf 0- cvs issometimesinformative. | have included information from postings made
by the following persons. David G. Grubbs <dgg@ hi nk. conp.

Some text has been extracted from the man pages for RCS.

The CVS FAQ by David G. Grubbs has provided useful material. The FAQ is no longer maintained,
however, and this manual is about the closest thing there is to a successor (with respect to documenting
how to use CVS, at least).

In addition, the following persons have helped by telling me about mistakes I've made:

Roxanne Brunskill <rbrunski @at ap. ca>,

Kat hy Dyer <dyer @hoeni x. ocf. || nl.gov>,

Karl Pi ngl e <pi ngl e@cuson. conp,

Thomas A Peterson <tap@rc. honeywel | . conp,

| nge Wallin <i ngwa@i gnum se>,

D rk Koschuet zki <koschuet @ m . uni - passau. de>
and M chael Brown <brown@wu .extrel.conp.

Thelist of contributors here is not comprehensive; for amore complete list of who has contributed to this
manual seethefile” doc/ ChangelLog' inthe CVS source distribution.

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_22.html [10/27/2000 2:27:44 PM]

CVS--Concurrent Versions System - H. Dealing with bugs in CVS or this manual

Go to thefirst, previous, next, last section, table of contents.

H. Dealing with bugs in CVS or this
manual

Neither CV S nor this manual is perfect, and they probably never will be. If you are having trouble using
CVS, or think you have found a bug, there are a number of things you can do about it. Note that if the
manual is unclear, that can be considered a bug in the manual, so these problems are often worth doing
something about as well as problems with CV S itself.

« |If you want someone to help you and fix bugs that you report, there are companies which will do
that for afee. Two such companies are:

Si gnum Support AB

Box 2044

S-580 02 Linkoping
Sweden

Emai |l : i nfo@i gnum se

Phone: +46 (0)13 - 21 46 00
Fax: +46 (0)13 - 21 47 00
http://ww. si gnum se/

« If you got CV Sthrough adistributor, such as an operating system vendor or a vendor of freeware
CD-ROMSs, you may wish to see whether the distributor provides support. Often, they will provide
no support or minimal support, but this may vary from distributor to distributor.

« If you have the skills and time to do so, you may wish to fix the bug yourself. If you wish to
submit your fix for inclusion in future releases of CVS, see the file HACKING in the CV S source
distribution. It contains much more information on the process of submitting fixes.

« There may be resources on the net which can help. Two good placesto start are:

http://ww. cvshone. org
http://ww. loria.fr/~nmolli/cvs-index.htm

If you are so inspired, increasing the information available on the net islikely to be appreciated.
For example, before the standard CV S distribution worked on Windows 95, there was a web page
with some explanation and patches for running CV'S on Windows 95, and various people helped
out by mentioning this page on mailing lists or newsgroups when the subject came up.

« Itisaso possibleto report bugsto bug- cvs. Note that someone may or may not want to do
anything with your bug report--if you need a solution consider one of the options mentioned
above. People probably do want to hear about bugs which are particularly severe in consequences
and/or easy to fix, however. Y ou can also increase your odds by being as clear as possible about

http://www.cvshome.org/docs/manual/cvs_23.html (1 of 2) [10/27/2000 2:27:44 PM]

CVS--Concurrent Versions System - H. Dealing with bugs in CVS or this manual

the exact nature of the bug and any other relevant information. The way to report bugsisto send
email to bug- cvs@nu. or g. Note that submissionsto bug- cvs may be distributed under the
terms of the GNU Public License, so if you don't like this, don't submit them. There is usually no
justification for sending mail directly to one of the CVS maintainers rather than to bug- cvs;
those maintainers who want to hear about such bug reports read bug- cvs. Also note that sending
a bug report to other mailing lists or newsgroups is not a substitute for sending it to bug- cvs. It
is fine to discuss CV S bugs on whatever forum you prefer, but there are not necessarily any

mai ntainers reading bug reports sent anywhere except bug- cvs.

People often ask if thereisalist of known bugs or whether a particular bug is aknown one. Thefile
BUGS in the CV S source distribution is one list of known bugs, but it doesn't necessarily try to be
comprehensive. Perhaps there will never be acomprehensive, detailed list of known bugs.

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_23.html (2 of 2) [10/27/2000 2:27:44 PM]

CVS--Concurrent Versions System - Index

Go to thefirst, previous, next, last section, table of contents.

Index

u-v-w-z
!
e | inmodulesfile

#

o #cvs.lock, removing

o #cvs.lock, technical details

o #cvs.rfl, and backups

e #evs.rfl, removing

o #evs.rfl, technical detalls

o Hcvs.ifl
o #Heovs.wil, removing

o #Hcvs.wil, technical details

e &, Inmodulesfile

e -a inmodulesfile

e -d, in modulesfile

e -& in modulesfile, -e, in modulesfile

e -i, iIn modulesfile, -i, in modulesfile

e -| (merging branches)

e -| (merging branches), and keyword substitution

o -k (keyword substitution)

http://www.cvshome.org/docs/manual/cvs_24.html (1 of 21) [10/27/2000 2:26:59 PM]

CVS--Concurrent Versions System - Index

-kk, to avoid conflicts during a merge

e -0, in modulesfile, -0, in modulesfile

e -S, in modulesfile

o -t. in modulesfile, -t, in modulesfile

-u, in modulesfile, -u, in modulesfile

. ffiles

e .bashrc, setting CVSROOT in
e .Cshrc, setting CVSROOQT in
« .cvscfile

o .profile, setting CVSROOT in
e .tcshre, setting CVSROQT in

/usr/local/cvsroot, as example repository

e :ext:, setting up

o :ext:, troubleshooting

o :fork:, setting up

e :QgServer:, setting up

e :kserver:, setting up

o :local:, setting up

e :pServer:, setting up

e :pserver:, troubleshooting

e :SErver:, setting up

e :Server:, troubleshooting

http://www.cvshome.org/docs/manual/cvs_24.html (2 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index

<

0 <<LLLLKL

o D>SD>>>>>

files (VMYS)

« Abandoning work

o Accessabranch

o add (subcommand)

o Adding atag

« Adding files
o Admin (subcommand)

o Administrative files (intro)

o« Administrative files (reference)

o« Administrative files, editing them

o Alias modules

e ALL in commitinfo

o Ampersand modules

« annotate (subcommand)

o Atomic transactions, lack of
o Attic
o Authenticated client, using

« Authenticating server, setting up

http://www.cvshome.org/docs/manual/cvs_24.html (3 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index

« Authentication, stream

« Author keyword
o Automatically ignored files
e Avoiding editor invocation

o Backing up, repository

o Basedirectory, in CVSdirectory

o« BASE, asreserved tag name
« BASE, specia tag
o Baserev file, in CV S directory

« Baserev.tmpfile, in CVSdirectory
« Bill of materials

o Binary files

» Branch merge example

o Branch number, Branch number

e Branch, accessing

e Branch, check out

e Branch, creating a

« Branch, identifying

e Branch, retrieving

« Branch, vendor-

o Branches motivation

o Branches, copying changes between

o Branches, sticky

« Branching
e Bringing afile up to date

e Bugsin thismanual or CVS

o Bugs, reporting
o Builds

http://www.cvshome.org/docs/manual/cvs_24.html (4 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index

o Changes, copying between branches

« Changing alog message

o Check out abranch
o Checked out copy, keeping
e Checkin program

e Checkin.prog file, in CV S directory

e Checking commits

o Checking out source

o checkout (subcommand)

o Checkout program

o Checkout, asterm for getting ready to edit

o Checkout, example

 checkoutlist

« Choosing, reserved or unreserved checkouts
o Cleaning up

» Client/Server Operation

e CO (subcommand)

« Command reference

« Command structure

« Comment leader

o commit (subcommand)

e Commit files

« Commit, when to

e« Commitinfo
« Committing changes

« Common options

« Common syntax of info files

o Compatibility, between CV S versions

o Compression, Compression
« COMSPEC, environment variable
e config, in CVSROOT

http://www.cvshome.org/docs/manual/cvs_24.html (5 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index

o Conflict markers

o Conflict resolution

o Conflicts (merge example)

o Contributors (CV'S program)

« Contributors (manual)

« Copying arepository

o Copying changes

o Correcting alog message

o Creating abranch

o Creating a project

« Creating arepository

e Credits (CVS program)
o Credits (manual)

o CVS1.6, and watches

o CVScommand structure

o« CVSdirectory, in repository

o CVSdirectory, in working directory
e CVSpasswdfile

o CVS, history of

o CVS, introduction to

e CVS, versions of

o CVS/Basedirectory

« CVS/Baserev file

o CVSBaserev.tmpfile

o CVS/Checkin.prog file
o CVSEntriesfile

o CVSEntries.Backup file
o CVSEntries.Logfile

o CVSEntriesStaticfile
o CVS/Natify file

o CVS/Notify.tmpfile

o CVS/Repository file

o« CVSRoot file

http://www.cvshome.org/docs/manual/cvs_24.html (6 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index

« CVSTagfile

o CVSTemplatefile

o CVSUpdate.prog file

e CVS CLIENT_ LOG, environment variable
« CVS CLIENT PORT

« CVS IGNORE REMOTE ROQT, environment variable
o CVS PASSFILE, environment variable

« CVS RCMD PORT, environment variable
e« CVS RSH, environment variable

o« CVS SERVER, and :fork:

« CVS SERVER, environment variable

o« CVS SERVER SLEEP, environment variable
e Ccvsadmin

o CVSEDITOR, environment variable

e« CVSEDITOR, internal variable

« cvsignore (admin file), global

o CVSIGNORE, environment variable

o CVSREAD, environment variable

« CVSREAD, overriding

e Cvsroot

« CVSROOQT (file)

o CVSROQT, environment variable

o CVSROQT, internal variable

o CVSROOQOT, module name

o CVSROQOT, multiple repositories

o CVSROQT, overriding

o CVSROQT, storage of files

o CVSROOQOT/config

« CVSUMASK, environment variable

o cvswrappers (adminfile)

« CVSWRAPPERS, environment variable, CVSWRAPPERS, environment variable

http://www.cvshome.org/docs/manual/cvs_24.html (7 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index

» Date keyword

o Dates

« Dead state

« Decimal revision number
o DEFAULT in commitinfo
o« DEFAULT in editinfo

o« DEFAULT inverifymsg
« Defining amodule

o Defining modules (intro)

« Defining modules (reference manual)
o Deleting files

» Deleting revisions

« Deleting sticky tags

« Deleting tags

o Descending directories

o Device nodes
o Diff
o diff (subcommand)

o Differences, merging

« Directories, moving

« Directories, removing

o Directory, descending

o Digoint repositories

« Distributing log messages

o driver.c (merge example)

« edit (subcommand)

« editinfo (admin file)

« Editing administrative files
« Editing the modulesfile

http://www.cvshome.org/docs/manual/cvs_24.html (8 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index

o Editor, avoiding invocation of

o EDITOR, environment variable
o EDITOR, internal variable

o EDITOR, overriding

« Editor, specifying per module

o editors (subcommand)

e €Emerge

« Encryption
e Entriesfile, in CVSdirectory

o Entries.Backup file, in CVS directory

e Entries.Logfile, in CVS directory
o Entries.Static file, in CVSdirectory
o Environment variables

e Errors, reporting

o Example of awork-session

« Example of merge

o Example, branch merge

o Excluding directories, in modulesfile

« Exit status, of commitinfo
« Exit status, of CVS

« Exit status, of editor

« Exit status, of taginfo

« Exit status, of verifymsg

o export (subcommand)

o EXport program

o Fetching source

o File had conflicts on merge

« Filelocking
o File permissions, general

o File permissions, Windows-specific
o Filestatus

http://www.cvshome.org/docs/manual/cvs_24.html (9 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index

e Files, moving

o Files, reference manudl

o Fixing alog message

e Forcing atag match

o fork, access method

o Form for log message

o Format of CVS commands

o Getting started
o Getting the source

e Global cvsignore

o Global options

o Group
o GSSAP

o Gzip, Gzip

o Hardlinks

« HEAD, asreserved tag name
« HEAD, special tag

« Header keyword

« history (subcommand)

» History browsing

« History file

o History files

o History of CVS

« HOME, environment variable

« HOMEDRIVE, environment variable
« HOMEPATH, environment variable

http://www.cvshome.org/docs/manual/cvs_24.html (10 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index

« Id keyword
o ldent (shell command)

« ldentifying a branch

o ldentifying files

« Ignoredfiles
o lgnoring files

e import (subcommand)

o Importing files

« Importing files, from other version control systems

« Importing modules

e Index
o Infofiles (syntax)

« Informing others

e init (subcommand)

« Installed images (VMS)
 Internal variables

« Introductionto CVS

e Invoking CVS
 Isolation

o Keeping a checked out copy

o Kerberos, using :gserver:

o Kerberos, using :kserver:

o Kerberos, using kerberized rsh

« Keyword expansion

e KeywordList

http://www.cvshome.org/docs/manual/cvs_24.html (11 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index

o Keyword substitution

o Keyword substitution, and merging

o Keyword substitution, changing modes

. Kiflag

e Known bugsin this manual or CVS

o Layout of repository

o Left-hand options

o Linear development

e Link, symbolic, importing

e List, mailing list

o Localy Added

» Localy Modified

« Localy Removed

e LockDir, in CVSROQOT/config
» Locker keyword

e Lockingfiles

o Locks, cvs, and backups

e Locks, cvs, introduction

e Locks, cvs, technical details

e loqg (subcommand)

e Loginformation, saving

o Log keyword

« L0g message entry
o Log message template
« L0g message, correcting

« Log message, verifying

« L0Og messages

« Log messages, editing

o LogHistory, in CVSROQT/config
 Login (subcommand)

http://www.cvshome.org/docs/manual/cvs_24.html (12 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index

loginfo (admin file)

L ogout (subcommand)

o Mail, automatic mail on commit
o Mailing list
o Mailing log messages

e Main trunk and branches

« make
« Many repositories

o Markers, conflict

« Merge, an example

o Merge, branch example

« Merging
« Merging abranch

e Merging afile

o Merging two revisions

« Merging, and keyword substitution

o mkmodules

« Modifications, copying between branches
« Module status

» Module, defining

o Modules (adminfile)

o Modulesfile

o Modulesfile program options

« Modulesfile, changing

« modules.db
o modules.dir

« Modules.pag
« Motivation for branches

« Moving arepository

e Moving directories

« Movingfiles

http://www.cvshome.org/docs/manual/cvs_24.html (13 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index

Moving tags
o Multiple developers

« Multiple repositories

« Name keyword

« Name, symbolic (tag)

» Needs Checkout

« NeedsMerge

« Needs Patch

« Newsgroups

« notify (adminfile)

« Notify file, in CVSdirectory

o Notify.tmpfile, in CVS directory

o Number, branch, Number, branch

e Number, revision-

o Option defaults
o Options, global
o Options, in modulesfile

» Outdating revisions

e Overlap

e Overriding CVSREAD
e Overriding CVSROOT
e Overriding EDITOR
e Overriding RCSBIN

e Overriding TMPDIR
o Overview

e« Ownership, savingin CVS

http://www.cvshome.org/docs/manual/cvs_24.html (14 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index

o Parallel repositories

o passwd (admin file)

o Password client, using

o Password server, setting up

o« PATH, environment variable

o Per-directory sticky tags/dates
o Per-module editor
o Permissions, general

e Permissions, savingin CVS

e Permissions, Windows-specific

« Policy
o Precommit checking

o pserver (subcommand)

e« PVCS, importing files from

e RCShistory files
o RCSrevision numbers

o RCS, importing files from

« RCS-stylelocking

o RCSBIN, in CVSROOT/config
o RCSBIN, internal variable

« RCSBIN, overriding

« RCSfile keyword

 rcsinfo (adminfile)

o rdiff (subcommand)

o Read-only files, and -r
o Read-only files, and CVSREAD
« Read-only files, and watches

o Read-only files, in repository

o Read-only mode

http://www.cvshome.org/docs/manual/cvs_24.html (15 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index
» Read-only repository access
« readers (adminfile)
» Recursive (directory descending)

o Reference manual (files)

o Reference manual for variables

o Reference, commands

o Regular expression syntax

o Regular modules

o release (subcommand)

o Releases, revisions and versions

o Releasing your working copy

o Remote repositories

o Remove (subcommand)

« Removing achange

« Removing directories

« Removingfiles

« Removing tags

« Removing your working copy

o Renaming directories

e Renamingfiles

o Renaming tags
o Replacing alog message
o Reporting bugs

o Repositories, multiple

o Repositories, remote

o Repository (intro)

o Repository file, in CV S directory

o Repository, backing up

o Repository, example

o Repository, how datais stored

e Repository, moving

o Repository, setting up

o Reserved checkouts

http://www.cvshome.org/docs/manual/cvs_24.html (16 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index
» Resetting sticky tags
» Resolving a conflict

o Restoring old version of removed file

o Resurrecting old version of dead file

o Retrieve abranch

e Retrieving an old revision using tags

o Reverting to repository version

o Revision keyword

« Revision management

« Revision numbers

e Revision numbers (branches)

« Revision tree

e Revision tree, making branches

o Revisions, merging differences between

o Revisions, versions and releases

« Right-hand options

« Root file, in CVSdirectory

e Ish

« rsh replacements (Kerberized, SSH, &)
« rtag (subcommand)

e rtag, creating a branch using

o Saving space
e SCCS, importing files from

o Security, file permissionsin repository
o Security, GSSAPI
e Security, kerberos

« Security, of pserver

« Security, setuid

e Server, CVS

« Server, temporary directories

o Setaid

http://www.cvshome.org/docs/manual/cvs_24.html (17 of 21) [10/27/2000 2:27:00 PM]

CVS--Concurrent Versions System - Index

Setting up arepository
Setuid
Signum Support

Source keyword

Source, getting CV S source
Source, getting from CVS
Special files

Specifying dates

Spreading information

SSH (rsh replacement)

Starting a project with CVS

State keyword
Status of afile
Status of amodule

Sticky date

Sticky tags

Sticky tags, resetting

Sticky tags/dates, per-directory

Storing log messages

Stream authentication

Structure

Subdirectories

Support, getting CV S support
Symboalic link, importing
Symboalic links

Symbolic name (tag)

Syntax of info files

SystemAuth, in CVSROOT/config

tag (subcommand)
Tag file, in CVSdirectory

Tag program

http://www.cvshome.org/docs/manual/cvs_24.html (18 of 21) [10/27/2000 2:27:01 PM]

CVS--Concurrent Versions System - Index

o tag, command, introduction

e tag, creating a branch using

e Tag, example

o Tag, retrieving old revisions

« Tag, symbolic name
- taginfo

. Tags

o Tags, deleting

« Tags, moving

e Tags, renaming

o Tags, sticky
o tc, Trivial Compiler (example)

o Team of developers

« TEMP, environment variable

« Templatefile, in CVS directory
o Template for log message
o Temporary directories, and server

o Temporary files, location of

e Third-party sources

e Time
e Timezone, in input

e Timezone, in output

o« TMP, environment variable

« TMPDIR, environment variable

« TMPDIR, overriding

e TopLevelAdmin, in CVSROQOT/config
o« Trace

« Traceability

 Tracking sources

e Transactions, atomic, lack of

e Trivial Compiler (example)

e Typical repository

http://www.cvshome.org/docs/manual/cvs_24.html (19 of 21) [10/27/2000 2:27:01 PM]

CVS--Concurrent Versions System - Index

u

o« Umask, for repository files

« Undoing a change

o Uunedit (subcommand)

o Unknown

« Unreserved checkouts
o Up-to-date

« update (subcommand)

o Update program

o Update, introduction
o Update, to display file status
o Update.prog file, in CV S directory

o Updating afile

o Userdiases

o User variables

o USER, internal variable
o users(adminfile)

o Variables
e Vendor
o Vendor branch

e Vverifymsg (admin file)
e« Veasons, of CVS
o Versions, revisons and releases

o Viewing differences

e« VISUAL, environment variable
e VISUAL, internal variable

http://www.cvshome.org/docs/manual/cvs_24.html (20 of 21) [10/27/2000 2:27:01 PM]

CVS--Concurrent Versions System - Index

o Wwatch add (subcommand)

« watch off (subcommand)

o watch on (subcommand)

« watch remove (subcommand)

o watchers (subcommand)
« Watches
o wdiff (import example)

« Web pages, maintaining with CVS
o What (shell command)

« What branches are good for

e WhatisCVSnot?

e WhatisCVS?

o When to commit

« Windows, and permissions

o Work-session, example of

o Working copy

o Working copy, removing

o Wrappers
o writers (admin file)

e ZOne, time, in input

e ZoOne, time, in output

Go to thefirst, previous, next, last section, table of contents.

http://www.cvshome.org/docs/manual/cvs_24.html (21 of 21) [10/27/2000 2:27:01 PM]

	CVS--Concurrent Versions System
	Table of Contents
	1. Overview
	1.1 What is CVS?
	1.2 What is CVS not?
	1.3 A sample session
	1.3.1 Getting the source
	1.3.2 Committing your changes
	1.3.3 Cleaning up
	1.3.4 Viewing differences

	2. The Repository
	2.1 Telling CVS where your repository is
	2.2 How data is stored in the repository
	2.2.1 Where files are stored within the repository
	2.2.2 File permissions
	2.2.3 File Permission issues specific to Windows
	2.2.4 The attic
	2.2.5 The CVS directory in the repository
	2.2.6 CVS locks in the repository
	2.2.7 How files are stored in the CVSROOT directory

	2.3 How data is stored in the working directory
	2.4 The administrative files
	2.4.1 Editing administrative files

	2.5 Multiple repositories
	2.6 Creating a repository
	2.7 Backing up a repository
	2.8 Moving a repository
	2.9 Remote repositories
	2.9.1 Server requirements
	2.9.2 Connecting with rsh
	2.9.3 Direct connection with password authentication
	2.9.3.1 Setting up the serer for password authentication
	2.9.3.2 Using the client with password authentication
	2.9.3.3 Security considerations with password authentication

	2.9.4 Direct connection with GSSAPI
	2.9.5 Direct connection with kerberos
	2.9.6 Connecting with fork

	2.10 Read-only repository access
	2.11 Temporary directories for the server

	3. Starting a project with CVS
	3.1 Setting up the files
	3.1.1 Creating a directory tree from number of files
	3.1.2 Creating Files From Other Version Control Systems
	3.1.3 Creating a directory tree from scratch

	3.2 Defining the module

	4. Revisions
	4.1 Revision numbers
	4.2 Versions, revisions, and releases
	4.3 Assigning revisions
	4.4 Tags--Symbolic revisions
	4.5 Specifying what to tag from the working directory
	4.6 Specifying what to tag by date or revision
	4.7 Deleting, moving, and renaming tags
	4.8 Tagging and adding and removing files
	4.9 Sticky tags

	5. Branching and merging
	5.1 What branches are good for
	5.2 Creating a branch
	5.3 Accessing branches
	5.4 Branches and revisions
	5.5 Magic branch numbers
	5.6 Merging an entire branch
	5.7 Merging from a branch several times
	5.8 Merging differences between any two revisions
	5.9 Merging can add or remove files
	5.10 Merging and keywords

	6. Recursive behavior
	7. Adding, removing, and renaming files and directories
	7.1 Adding files to a directory
	7.2 Removing files
	7.3 Removing directories
	7.4 Moving and renaming files
	7.4.1 The Normal way to Rename
	7.4.2 Moving the history file
	7.4.3 Copying the history file

	7.5 Moving and renaming directories

	8. History browsing
	8.1 Log messages
	8.2 The history database
	8.3 User-defined logging
	8.4 Annotate command

	9. Handling binary files
	9.1 The issues with binary files
	9.2 How to store binary files

	10. Multiple developers
	10.1 File status
	10.2 Bringing a file up to date
	10.3 Conflicts example
	10.4 Informing others about commits
	10.5 Several developers simultaneously attempting to run CVS
	10.6 Mechanisms to track who is editing files
	10.6.1 Telling CVS to watch certain files
	10.6.2 Telling CVS to notify you
	10.6.3 How to edit a file which is being watched
	10.6.4 Information about who is watching and editing
	10.6.5 Using watches with old versions of CVS

	10.7 Choosing between reserved or unreserved checkouts

	11. Revision management
	11.1 When to commit?

	12. Keyword substitution
	12.1 Keyword List
	12.2 Using keywords
	12.3 Avoiding substitution
	12.4 Substitution modes
	12.5 Problems with the Log keyword.

	13. Tracking third-party sources
	13.1 Importing for the first time
	13.2 Updating with the import command
	13.3 Reverting to the latest vendor release
	13.4 How to handle binary files with cvs import
	13.5 How to handle kwyword substitution with cvs import
	13.6 Multiple vendor branches

	14. How your build system interacts with CVS
	15. Special Files
	A. Guide to CVS commands
	A.1 Overall structure of CVS commands
	A.2 CVS's exit status
	A.3 Default options and the ~/.cvsrc file
	A.4 Global options
	A.5 Common command options
	A.6 admin--Administrtion
	A.6.1 admin options

	A.7 checkout--Check out sources for editing
	A.7.1 checkout options
	A.7.2 checkout examples

	A.8 commit--Check files into the repository
	A.8.1 commit options
	A.8.2 commit examples
	A.8.2.1 Committing to a branch
	A.8.2.2 Creating the branch after editing

	A.9 diff--Show differences between revisions
	A.9.1 diff options
	A.9.2 diff examples

	A.10 export--Export sources from CVS, similar to checkout
	A.10.1 export options

	A.11 history--Show status of files and users
	A.11.1 history options

	A.12 import--Import sources into CVS, using vendor brnches
	A.12.1 import options
	A.12.2 import output
	A.12.3 import examples

	A.13 log--Print out log informtion for files
	A.13.1 log options
	A.13.2 log examples

	A.14 rdiff--'patch' format diffs between releases
	A.14.1 rdiff options
	A.14.2 rdiff examples

	A.15 release--Indicate that a Module is no longer in use
	A.15.1 release options
	A.15.2 release output
	A.15.3 release examples

	A.16 update--Bring work tree in sync with repository
	A.16.1 update options
	A.16.2 update output

	B. Quick reference to CVS commands
	C. Reference manual for Administrative files
	C.1 The modules file
	C.1.1 Alias modules
	C.1.2 Regular modules
	C.1.3 Ampersand modules
	C.1.4 Excluding directories
	C.1.5 Module options
	C.1.6 How the modules file "program options" programs are run

	C.2 The cvswrppers file
	C.3 The commit support files
	C.3.1 The common syntax

	C.4 Commitinfo
	C.5 Verifying log messages
	C.6 Editinfo
	C.6.1 Editinfo example

	C.7 Loginfo
	C.7.1 Loginfo exmple
	C.7.2 Keeping a checkout out copy

	C.8 Rcsinfo
	C.9 Ignoring files vi cvsignore
	C.10 The checkoutlist file
	C.11 The history file
	C.12 Expansions in administrative files
	C.13 The CVSROOT/config configuration file

	D. All environment variables which affect CVS
	E. Compatibility between CVS Versions
	F. Troubleshooting
	F.1 Partial list of error messages
	F.2 Trouble making a connection to a CVS server
	F.3 Other common problems

	G. Credits
	H. Dealing with bugs in CVS or this manual
	Index

