RSVP as a User Signaling Protocol in a Multi-Layer Bandwidth Broker Architecture

E. Nikolouzou, <u>Ch. Tsetsekas</u>, S. Maniatis, I.S. Venieris

National Technical University of Athens

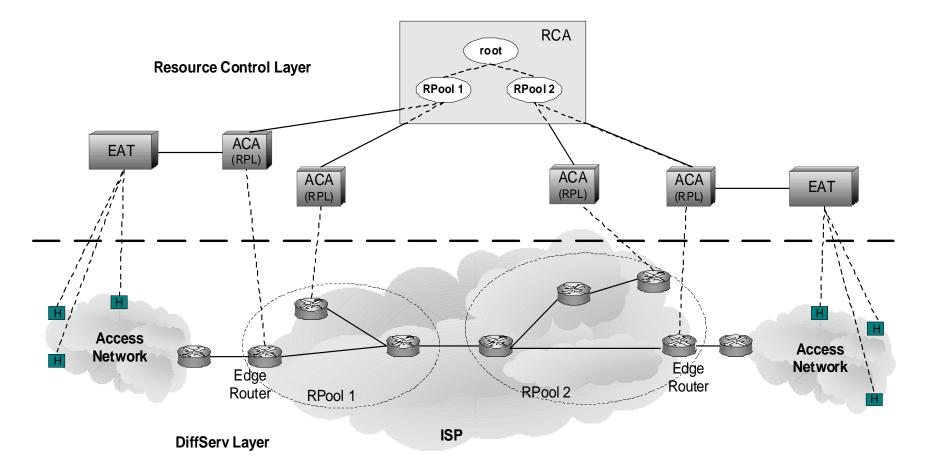
- Introduction
- The AQUILA architecture
 - Main Modules
 - Network Services and Traffic Classes
- RSVP as signaling protocol
 - Functionality
 - End-to-end Scenario
 - IntServ Mapping to AQUILA Network Services
- Conclusions

Introduction

- Many applications (esp. multimedia) are QoS demanding
 - Timing and throughput requirements
- Current QoS Mechanisms
 - Integrated Services (IntServ)
 - Differentiated Services (DiffServ)
 - Bandwidth Brokers
- Gap between users/applications and the QoS network
- Motivation: to reuse RSVP as a resource request protocol in a combined DiffServ/Bandwidth Broker approach

The AQUILA architecture

- Aims to provide a scalable and efficient solution for QoS provisioning in IP networks
- Based on the concepts of DiffServ and Bandwidth Brokers
- Introduces a new layer (Resource Control Layer RCL) over the DiffServ Network
 - Distributed BB architecture
- Consists of three main entities:
 - Resource Control Agent (RCA)
 - Admission Control Agent (ACA)
 - End-user Application Toolkit (EAT)



Architectural Principles

- RCA
 - Overall view of the network
 - Management of resources, allocation to controlled ACAs
- ACA
 - Localized admission control
 - Authorization and accounting functions
 - One ACA for each Edge Router
- EAT
 - QoS portal
 - Web-based interfaces for the formulation of QoS requests by users and applications

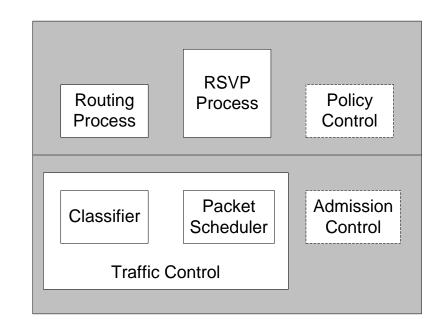
The AQUILA architecture

Network Services and Traffic Classes

- Network Services: aggregates created by applying traffic conditioning, which experience a known PHB at each node within the DS domain
 - Premium Constant Bit Rate (PCBR)
 - Premium Variable Bit Rate (PVBR)
 - Premium MultiMedia (PMM)
 - Premium Mission Critical (PMC)
 - Best Effort (BE)
- Traffic Classes: implementation of NSs.
 - They are defined as a composition of a set of admission control rules, a set of traffic conditioning rules and a PHB.
 - Currently, five TCLs correspond one-to-one to each NS.

Network Services Details (1)

- Premium Constant Bit Rate (PCBR)
 - Intended for constant and variable bit rate applications with low bandwidth flows, e.g. IP Telephony
 - low delay, delay variation requirements
 - strict packet loss, small packet size
 - TCL1: Single Token Bucket that polices the Peak Rate.
- Premium Variable Bit Rate (PVBR)
 - appropriate for unresponsive VBR sources with medium to high bandwidth requirements, e.g. video-conferencing
 - have low delay, delay variation and packet loss requirements, but less strict than those of PCBR
 - TCL2: Dual Token Bucket. The first TB polices the sustained rate, the second one polices the peak rate to allow for burstiness.


Network Services Details (2)

- Premium MultiMedia (PMM)
 - carry a mixture of TCP and TCP-friendly traffic, e.g. video streaming and FTP
 - require minimum bandwidth, delivered with high probability
 - TCL3: single TB as a meter and marker, which polices the sustained rate
- Premium Mission Critical (PMC)
 - supports mainly transactions and database queries
 - flows are non-greedy, have short lifetimes, low bandwidth requirements and roughly homogeneous congestion control
 - TCL4: dual TB (as in PVBR), operates as meter & marker
- Best Effort (BE)
 - no quality of service guarantees

RSVP as a Signaling Protocol

- Assume a pure DiffServ core network, where core & edge routers are RSVP-unaware.
- Enhance the edge router to intercept RSVP messages.
- Follow the coarse internal design of an RSVP capable edge router
 - RSVP Process
 - Routing Process
 - Admission Control
 - Policy Control
 - Traffic Control

End-to-end Scenario

- Path messages are intercepted in RSVP daemon of *ingress* ER
- RSVP daemon installs Path state, and *transparently* forwards the PATH msg, until it reaches *egress* ER. Path state kept there too
- Resv msg sent by receiver intercepted in RSVP daemon of egress ER, and forwards it directly to ingress ER
- Resv msg sent by egress ER intercepted in RSVP daemon of ingress ER, which initiates AQUILA-based admission control:
 - EAT *maps* IntServ parameters to AQUILA NS
 - Admission control is performed at both ACAs that control ingress and egress ERs
 - A positive answer is returned to the EAT and the RSVP daemon
- If AC fails, REV_ERR msgs are forwarded to both directions.
- Explicit Resv_Tear, Path_Tear or timeouts initiate termination of a reservation

IntServ Mapping to AQUILA NSs

- Resv message carries a FLOWSPEC:
 - QoS control service desired (Guaranteed or Controlled-Load)
 - TSpec describing the resources to be reserved
 - RSpec describing the level of service desired
- Flowspec is transformed to AQUILA TCL specification by a *mapping algorithm*
- Purpose of the mapping algorithm:
 - To select the appropriate Network Service in AQUILA
 - Guaranteed Service to PCBR or PVBR
 - Controlled Load to PMM or PMC
 - To transform the RSpec to the traffic descriptor of the selected NS

RSpec mapping to Aquila TCLs

	Integrated Services	AQUILA Network Service	
	Guaranteed Service	PCBR	PVBR
Traffic Spec	r,b,p,m,M	PR=a*p, BSP=x*M, m, M	PR=p, BSP=x*M, SR=r, BSS=b, m, M
Transfer Delay (msec)	func(R,S)	150 maximum	250 maximum
	Controlled Load	PMM	PMC
Traffic Spec	r,b,p,m,M	SR=r, BSS=x*M, m, M	PR=p, BSP=x*M, SR=r, BSS=b, m, M
	Best Effort	BE	

Mapping Algorithm Details

- Main factors for mapping Guaranteed to PCBR or PVBR:
 - Maximum Packet Size (M): small -> PCBR
 - Bursty flow -> PVBR (but also PCBR under strict delay requirements)
- Main factors for mapping Controlled-Load to PMM or PMC:
 - Parameters p and r of RSpec are compared to max PR and SR of PMM and PMC

Project details

IST Project AQUILA :

Adaptive Resource Control for QoS Using an IP-based Layered Architecture

http://www-st.inf.tu-dresden.de/aquila/

