Component-Based Software Engineering Exercise Sheet No. 1

Dipl.-Medieninf. Christian Piechnick Software Technology Group
INF 2078 Institute for SMT
christian.piechnick@tu-dresden.de Department of Computer Science

Technische Universitat Dresden
01062 Dresden

Composition Systems and Metamodelling

Task 1: Composition Systems Basics

Composition systems simplify the development of large systems by focusing on loose coupling, separa-
tion of concerns, reuse, reducibility and standardization. This tasks repeats the terminology and the
fundamentals of composition systems.

la)| Task: Clemens Szyperski provided one of the well-established definitions of a component [1]. How

did he define a component? Try to summarize the key features of a component in your own words!

Solution: Definition: A software component is a unit of composition with contractually specified inter-
faces and explicit context dependencies only. A software component can be deployed independently and
is subject to third-party composition.

Unit of composition (can be composed with other components)

Contractually specified interfaces (explicit interface descriptions that act as an contract)
Explicit context dependencies only (all dependencies are explicitly described)

Can be deployed independently (components do not rely on concrete other components)
Are subject to third-party composition (Can be reused others)

Task: What are the three elements of composition systems? Try to explaint each part in your
own words!

Solution:

Component Model: A component model describes the shape of components. It describes what com-
ponents are, how they are structured, what features they have and how their ports look like.
Composition Technique: The composition technique describes how components can be composed and

decomposed.
Composition Language: The composition language is a language for defining composition programs.
It uses a component model and a composition technique.

Task: Is the UNIX Pipes and Filters approach a composition system? Explain the three parts!

Solution: Yes. The components are filters with 3 standardized untyped ports (stdin, stdout, stderr).
The connectors are pipes. The composition technique is to compose filters by connecting the stdout or
stderr port with the stdin port of another filter. The composition language is a shell script.

Task: Can LEGO (http://www.lego.com/en-us/default.aspx) be considered as composition
system? Explain your conclusion.

Solution: Yes. The components are LEGO bricks with provided (the studs on top) and required ports
(the holes on the bottom). They can be composed by plugging a stud of one brick in the holes of other
bricks. The way LEGO describes its instructions (visually) can be considered a composition language.



Bibliography

1. Clemens Szyperski, Component Software: Beyond Object-Oriented Programming. Addison-Wesley
Longman Pubhshmg CO., IIlC.7 2002 The book is available in the SLUB.



Task 2: Metamodelling Basics

Metamodelling is one central discipline in today’s software engineering landscape. Especially for safety-
critical systems, models are used to formally describe the structure and behaviuor of systems. Thus,
certain properties can be proven. But not only for safety-critical systems, models are used. For example,
one important engineering tool today are Domain Specific Languages (DSLs).

This tasks repeats the basic terminology and concepts of metamodelling.

Task: Explain the terms Model, Metamodel and Metametamodel. What are the relations across
those elements?

Solution:

Model: A model is an abstraction of some &riginal: Usually models refelect a part of the real or virtual
world, with a certain degree of abstraction.

Metamodel: A metamodel describes types of model elements and their relations.

Metametamodel: A metametamodel describes the types of metamodels and their relations.

Task: The Meta Object Facility (MOF) standard of the OMG emphauzises 4 layers of metamodelling

(M3 - MO). In the lecture we called this Meta-Pyramid. How are the terms of task 2a) aligned with

those layers?

Solution:

M3: Metametamodels
M2: Metamodels
M1: Models

Task: Why is there no 5" layer M4?

Solution: The metametamodel can be used to describe itself. Therefore, a layer M4 is not needed.

Task: What is a Domain-Specific-Language (DSL)? Give an example.

Solution: A DSL is a language in Software Engineering specifically designed for a certain domain. A
dsl uses concepts and keywords from this domain, and thus, can be used by domain experts which are
non-programiers.



N

o

S

An example could be a language for describing business workflows within a company:

Metamodel:

Customer

name : String
dataOfBirth: Date

sex : Sex
primaryAddress : String

Language Syntax Specification:

Customer := ’customer’ name=String ’{’
’data of birth’ ’:’ dateOfBirth = DateString
’sex’ ’:’ sex = Sex
’primary address’ ’:’ primaryAddress = String
)}7
Sex := ’female’ | ’male’

Example Instance:

customer John Doef{

date of birth: 01.01.1980

sex: male

primary address: Sample Street 1, 12345 Samplecity
}

Task: How can your example be aligned with the Meta-Pyramid?

Solution:

Metamodel: M2
Language Syntax Specification: M2
Example Instance: M1

Task: Explain the terms reflection, introspection and meta-object protocol (MOP).

Solution:

Reflection is the ability of a model to reason about and change its own metamodel.
Introspection is Read-Only reflection.
MOP is the implementation of a language semantics, using the language itself.

Task: What happens when the MOP is changed?

Solution: The semantics of the language is changed.



Task 3: Metamodelling in Practice

We are going to design a composition system for classical components (according to Clements Szyperski).
Components have a name, a set of attributes and a set of provided and required interfaces. Attributes
have a name and a types (represented as a String). An interfaces has a name and a set of methods,
whereby each method has a name, a return type (represented as a String) and a set of parameters. Like
attributes, a parameter has a name and a type. Based on this model, compositions can be described as
an instantiation and composition of components by connecting required and provided ports of the same
type.

1. Download the latest version of the Eclipse Modeling Tools (http://eclipse.org/downloads/)
2. Install the latest version of xText (http://eclipse.org/Xtext/)

Task: Create an EMF-Metamodel (Ecore Model) for the composition system!

Solution: The solution can be downloaded on the website.

Task: Create a DSL using xText that let you design components and compose them in a compo-
sition language

Solution: The solution can be downloaded on the website.

Task: Use the xText validation engine to validate at least 3 rules that must be enforced in the
static semantics of the language! (Look at the xText help section for further information)

Solution: The solution can be downloaded on the website.



