
Types of Quality of Service Contracts for Component-Based Systems
Steffen Zschaler and Simone Röttger

Institute for Software and Multimedia Technology
Department of Computer Science
Dresden University of Technology

Dresden, Germany
email{Steffen.Zschaler, Simone.Roettger}@inf.tu-dresden.de

ABSTRACT
In this paper, we identify the different roles and contract
types which are important in providing Quality of Service
(QoS) properties of component-based systems. A surpris-
ing result of our work is that direct contracts between com-
ponents are not necessary and even insufficient to handle
non-functional properties of component-based systems.

KEY WORDS
Software Engineering, Quality of Service, Component-
Based Software, Design by Contract

1 Introduction

In [1] four different levels of contracts are defined for
component-based software: the syntactic, behavioural,
synchronization and quality of service (QoS) level. In this
paper we take a closer look at the QoS contract level, ex-
amining the various roles that are involved and the different
types of contracts which are needed to provide QoS prop-
erties for component-based software. We also sketch out
how these contracts can be used to provide QoS-properties
for component-based software.

The work presented in this paper is restricted to QoS
in the narrower sense. Properties like security, transaction-
ality, or maintainability are left out of consideration. Also,
we restrict ourselves to components as per the definition in
[2]. This research is part of the COMQUAD1 project.

2 Overview of Contracts and Roles

Figure 1 shows a component-based system and the roles
and contract types which we have identified. Components
are executed by a runtime environment – the component
container – which provides components with various ser-
vices, most notably:

• Platform Abstraction: The components only interop-
erate with the container, they do not need to know
about the underlying operating system or hardware –
the platform.

1COMponents with QUantitative properties and ADaptivity at
Technische Universität Dresden and Friedrich-Alexander-Universität
Erlangen-N̈urnberg, Germany; supported by German Research Council;
see also www.comquad.org

• Component Communication: The container ensures
that component instances can communicate with other
component instances. To this end, the container cre-
ates and maintains connector instances between the
component instances.

The container itself runs on a platform, consisting of
an operating system which provides resources like cpu-
usage, memory, persistent memory (hard disk space) etc.
Together, components, container, and platform form the
system.

Our notion of a component is similar to EJB [3] ses-
sion beans, but with the possibility to specify used and
provided interfaces. Also, in addition to the normal op-
erational and message based interfaces, components can
define streaming interfaces which are used for continuous
data delivery, such as video or audio streams. For each
component, a QoS-descriptor [4] specifies the provided
QoS under the condition, that the container provides certain
resources and that other components provide their services
with a certain QoS.

There are two roles that actively interoperate with the
system. In the development process there are more roles
which are of interest, but we do not consider these in this
paper. Once the system has been built and is running, there
are mainly two kinds of stakeholders with an interest in
QoS:

1. Operatorsor Service Providerswho use the system to
provide certain services to their clients, and

2. Clientswho are interested in the services offered by
the system.

For example, an organization that provides video-on-
demand services via the internet would be an operator or
service provider in our model. The individuals who access
the service in order to watch specific videos at a specific
time are the clients of the video-on-demand service.

While there can be many individuals who are clients
of a system, there usually is only one entity who is the op-
erator of the system. This entity can be an organization and
need not be an individual.

Between these roles and the system, as well as be-
tween different parts of the system, there exist QoS con-
tracts, which constitute the QoS specification of the sys-

� � � � � �

� � � � � �� � � � � �

� � � 	
 � � 	� � � 	
 � � 	 � � 	 �
 � 	 � �

 �
 � � � � �

�

� � � � �
 � � � � � � � � � �� � � � �
 � � � � � � � � � �

 � � � � 	 � � � � � � � � � � � � 	 � � � � � � � �

�

� �

� � � 	 �
 � 	 � � � � � � � �� � � 	 �
 � 	 � � � � � � � �

�

� � � 	 �
 � 	 � � � �
 � � � � �� � � 	 �
 � 	 � � � �
 � � � � �

� � 	 � �
 � � � �

Figure 1. Roles and contract types in our model.

tem. Some of these contracts arestatic, in that they can be
negotiated off-line, before the system is running, and some
are dynamiccontracts which can only be negotiated in a
running system. Beugnard et al state in [1]: “A contract
carries mutual obligations and benefits. . . ”, i.e., there are
always two parties in a contract, both of which assert some-
thing about their own behaviour, or behaviour that is under
their control. If one of the parties does not fulfill its part of
the contract, the other party also is no longer bound by the
contract. In order to support its assertions in one contract, a
party may need to rely on other contracts with other parties.
If such a contract is broken, the contract it supports may
also be broken. For example, the container needs to con-
clude with the platform a contract about required resources
before it can conclude a contract with a component. If the
platform breaks the container-platform contract, the con-
tainer may not be able to fulfill the container-component
contract.

Consequently, there are four types of contracts in
our model: operator-system, client-system, container-
component, and container-platform contracts. Some of
these contracts exist in support of other contracts. All con-
tracts will be described in more detail – including a classi-
fication as static or dynamic – in the following sections.

3 The Operator-System Contract

The contract between operator and system is a contract
which can be completely negotiated off-line. The operator
asserts to the system a certain load – e.g., a maximum num-
ber of client requests per second or a specific distribution of
the interarrival times of client requests – and in exchange,
the system guarantees to provide a particular QoS – e.g.,
a maximum response time or a minimum frame rate – for
at least a certain percentage of the client requests. In the
latter case, the operator-system contract is a probabilistic
description of the system’s behaviour.

For example, the operator of our video-on-demand
example may assert that there will be no more than 15 client
requests per second, and that nine out of ten clients will
watch “The Matrix” and one out of ten clients will watch
“Much ado about nothing”. In exchange, the system asserts
that it will be able to deliver videos with at least 15 frames
per second at 400× 300 pixels for 80% of all requests.

Under which circumstances can the two parties confi-
dently “sign” such a contract? The operator needs to have
statistic data from previous runs of a similar system. If
such data is not available, she could estimate these values
– e.g., based on relevant market research – and correct the
contracts after some experience with the running system.
Notice that the system may fail to provide the QoS asserted
if client requests come in at a higher rate than estimated.
The container can only conclude an operator-system con-

tract if it can create a plan for component usage that fulfills
the following conditions:

• It allows the container to provide the QoS properties
required by the operator and to serve the load speci-
fied, and

• The container can conclude supporting contracts with
the components and with the platform.

The container uses Container-Based Scheduling [5]
to determine the number of component instances to create
and the size of request buffers to allocate. Based on this
plan it attempts to conclude container-platform contracts
to reserve the required resources and container-component
platforms to ensure the required QoS will be provided by
the component instances.

4 The Client-System Contract

Each individual client who accesses the system negotiates
an individual contract for his usage of the system. There-
fore, client-system contracts can only be negotiated on-
line.

There must be an operator-system contract for each
client-system interaction. A client-system contract is said
to bein accordance toan operator-system contract, iff the
system concludes it to fulfill the operator-system contract.
Cases in which a client-system contract may be construed
not to be in accordance to an operator-system contract in-
clude:

• If the number of clients wishing to be served exceeds
the maximum number of concurrent requests asserted
in the operator-system contract.

• If declining the contract would still allow the system
to provide the QoS asserted in the operator-system
contract at the percentage asserted.

The client asserts the time when she wants to access
the system – e.g., “now” or “in five minutes” – and other
parameters the system needs to know to schedule her re-
quest. For example, if the application uses active compo-
nents to stream a video to the client, the system may need to
know whether or not the client plans to make pauses while
watching the video.

For instance, client Caroline and the system may ne-
gotiate a contract that Caroline can watch “The Matrix”
with at least 15 frames per second at 400× 300 pixels start-
ing “now” – i.e., at the moment the contract is concluded.

5 The Container-Component Contract

The container uses contracts with the components in an ap-
plication to support its assertions in operator-system and
client-system contracts. Depending on which type of con-
tract it supports, a container-component contract can either

be static or dynamic. The container negotiates and con-
cludes such a contract with each component. The com-
ponent asserts to provide a specific QoS. In exchange, the
container guarantees to provide the resources the compo-
nent needs as well as the QoS needed from other compo-
nents. The container finds information on QoS require-
ments and resource demand of a component in that com-
ponent’s QoS-descriptor.

A contract between the container and one component
may depend on contracts between the container and other
components in the application, if the former component
needs services (with a certain QoS) from the latter com-
ponents. In such cases, the container can only conclude the
contract if it has previously concluded contracts with all of
the required components.

6 The Container-Platform Contract

Resources are not managed by the container directly, but
by the platform. If the container wants to guarantee re-
quired resources to components, it needs a guarantee about
these resources from the platform. This is the contents of a
container-platform contract. Container-platform contracts
can be both static or dynamic.

In such a contract, the platform asserts that the con-
tainer may use a certain amount of the resources managed
by the platform. It guarantees that these resources will
be available when needed. On the other hand, the con-
tainer asserts that it will not use more than the contracted
amount of resources. Container-platform contracts need
not be restricted to one-time usage of resources, but may
also cover periodic usage of resources, or even probabilistic
descriptions of resource usage. The platform uses resource-
specific admission algorithms to determine whether or not
to “sign” a contract. The container uses container-based
scheduling [5] and the container-component contracts to
determine the amount of resources it needs to support an
application.

7 Contracts between Components?

When we first started to think about quality of service
contracts for components, the main contract type we were
aware of was contracts between components. We were sur-
prised to find that contracts of this type not only can, but
mustbe, replaced by contracts between the container and
the components2. The reason is, that to provide the service
of component communication (as described in Section 2),
the container potentially needs to interpose management
code between communicating components. This implies,
that component-component contracts cannot be negotiated
without knowledge of the container. We have solved this
problem by making the container the central point of nego-
tiation: Now, all contracts are mediated by the container,

2Notice that forfunctionalcontracts the possibility exists too, but not
thenecessity.

which can thus use its knowledge about effects caused by
management code when negotiating contracts.

Having said this, an application developer may still
find it helpful to consider component-component contracts
at an early stage of development. He will then need to re-
fine his model to use container-component contracts, be-
fore he can implement and deploy the system.

8 Conclusions

In this paper, we have identified two roles with an inter-
est in the QoS properties of a system: the operator and
the client. We have also described the various types of
contracts that are necessary to provide QoS properties of
a component-based system, and how they fit together. Sur-
prisingly, component-component contracts are not only not
necessary, but even incomplete due to QoS effects caused
by the container. They may, hoewever, be helpful in the
early stages of high-level design.

This paper presents work in progess. We plan to im-
plement a component container with QoS support, which
will make use of the contract types outlined. The next steps
in our research will be to formalize the precise contents of
contracts as well as contract negotiation rules. Also, we
need to better understand what happens when contracts are
violated; in particular when a contract is violated because a
supporting contract was violated before. Another point for
future research is to analyse whether we need to consider
other stakeholders (e.g., EJB roles [3]) in our approach.

References

[1] Antoine Beugnard, Jean-Marc Jéźequel, Nöel
Plouzeau, and Damien Watkins. Making components
contract aware. IEEE Computer, 32(7):38–45, July
1999.

[2] Clemens Szyperski.Component Software : Beyond
Object-Oriented Programming. Addison-Wesley Pub-
lishing Company, November 1997.

[3] Sun Microsystems. Enterprise JavaBeans Specifica-
tion, version 2.0. Final Release, August 2001.

[4] Simone R̈ottger and Steffen Zschaler. CQML+:
Enhancements to CQML. InProceedings of the
1st International Workshop on Quality of Service in
Component-Based Software Engineering, pages 43–
56, Toulouse, France, June 2003. Cépadùes-́Editions.

[5] Ronald Aigner, Martin Pohlack, Simone Röttger, and
Steffen Zschaler. Towards pervasive treatment of non-
functional properties at design and run-time. InProc.
16th International Conference on Software and Sys-
tems Engineering and their Applications (ICSSEA),
Paris, December 2003.

