
Department of Computer Science, Institute for Software and Multimedia Technology

OCL
(Object Constraint Language)(Object Constraint Language)

by Example

Dr Birgit DemuthDr. Birgit Demuth

In theory, there is no difference
between theory and practice.

But, in practice, there is.

Jan L. A. van de Snepscheut/Yogi Bera

Dr. Birgit Demuth MINE Summer School, Nida, 2009 2

Main Goals of the Lecture

• Bridge the gap between practically used software
specifications (UML) and formal languages
Introduce into OCL (history outline literature)• Introduce into OCL (history, outline, literature)

• Learn how to specify semantics using OCL
• Learn what are interesting OCL use casesLearn what are interesting OCL use cases
• Inform what OCL tools can already be used

Dr. Birgit Demuth MINE Summer School, Nida, 2009 3

Foundation: Assertions

• An assertion is a predicate (i.e., a true–false statement)
placed in a program to indicate that the developer thinks
th t th di t i l t t th t l [Wiki di]that the predicate is always true at that place [Wikipedia].

• Usage ing
– Hoare logic [Hoare 1969]
– Design by contract [Meyer 1986, Eiffel]

For run time checking (Java (t) JML JASS SQL – For run-time checking (Java (assert), JML, JASS, SQL,
…)

– During the development cycle (debugging)
– Static assertions at compile time

Dr. Birgit Demuth MINE Summer School, Nida, 2009 4

Object Constraint

• Model-based assertion

[d l] d f f ll• [Warmer and Kleppe] define a constraint as follows:

“A constraint is a restriction on one or more values A constraint is a restriction on one or more values
of (part of) an object-oriented model or system.“

• OCL as specification language for object constraints

Dr. Birgit Demuth MINE Summer School, Nida, 2009 5

History of OCL

• Developed at IBM in 1995 originally as a business
engineering language
Adopted as a formal specification language within UML• Adopted as a formal specification language within UML

• Part of the official OMG standard for UML (from
version 1.1 on)

• Used for precisely defining the well-formedness rules
(WFRs) for UML and further OMG-related metamodels

• Current version is OCL 2 0 • Current version is OCL 2.0

Dr. Birgit Demuth MINE Summer School, Nida, 2009 6

OCL (Object Constraint Language)

• Extends the Unified Modeling Language (UML)
• Formal language for the definition of constraints and Formal language for the definition of constraints and

queries on UML models
• Declarative

S d ff f• Side effect free
• Add precise semantics to visual (UML-) models
• Generalized for all MOF based metamodels • Generalized for all MOF based metamodels
• Meanwhile generally accepted
• Many extensions such as for temporal constraints
• „Core Language“ of other OMG languages (QVT, PRR)

Dr. Birgit Demuth MINE Summer School, Nida, 2009 7

Literature

[1] Warmer, J., Kleppe, A.: The Object Constraint Language. [] , , pp , j g g
Precise Modeling with UML. Addison-Wesley, 1999

[2] Warmer, J., Kleppe, A.: The Object Constraint Language
Second Edition.Second Edition.
Getting Your Models Ready For MDA. Addison-Wesley, 2003

[3] OMG UML specification,
www.omg.org/technology/documents/modeling spec catalowww.omg.org/technology/documents/modeling_spec_catalo
g.htm#UML

[4] OMG UML 2.0 OCL,
www omg org/technology/documents/formal/ocl htmwww.omg.org/technology/documents/formal/ocl.htm

[5] Heinrich Hußmann: Formal Specification of Software
Systems. Course, 2000, Technische Universität Dresden

Dr. Birgit Demuth MINE Summer School, Nida, 2009 8

Dr. Birgit Demuth MINE Summer School, Nida, 2009 9

Constraint

Definition
– „A constraint is a restriction on one or more

values of (part of) an object-oriented model or
system “ system.

• A constraint is formulated on the level of classes, but
its semantics is applied on the level of objects.

• originally formulated in the syntactic context of a UML
UML model (i e a set of UML diagrams) UML model (i.e. a set of UML diagrams)

Dr. Birgit Demuth MINE Summer School, Nida, 2009 10

InvariantInvariant

Definition
– An invariant is a constraint that should be true for an

object during its complete lifetime.

• Invariants often represent rules that should hold for the
real-life objects after which the software objects are
modeled.

SyntaxSyntax
context <classifier>
inv [<constraint name>]: <Boolean OCL expression>

Dr. Birgit Demuth MINE Summer School, Nida, 2009 11

p

OCL/UML By Example

Dr. Birgit Demuth MINE Summer School, Nida, 2009 12

Invariant - Examples Invariant - Examples

context Meeting inv: self.end > self.startg

Equivalent Formulations
context Meeting inv: end > startcontext Meeting inv: end > start
-- "self" always refers to the object identifier from which the

constraint is evaluated.

context Meeting inv startEndConstraint:
self.end > self.start
-- Names can be given to the constraint

Dr. Birgit Demuth MINE Summer School, Nida, 2009 13

P econdition /PostconditionPrecondition /Postcondition

• Constraint that specify the applicability and effect of an • Constraint that specify the applicability and effect of an
operation without stating an algorithm or implementation

• Are attached to an operation in a class diagram

Allow a more complete specification of a system• Allow a more complete specification of a system

Dr. Birgit Demuth MINE Summer School, Nida, 2009 14

Precondition

DefinitionDefinition
– Constraint that must be true just prior to the execution

of an operation

Syntax
context <classifier>::<operation> (<parameters>)context <classifier>::<operation> (<parameters>)
pre [<constraint name>]:
<Boolean OCL expression>p

Dr. Birgit Demuth MINE Summer School, Nida, 2009 15

Precondition - Examples

context Meeting::shift(d:Integer)
pre: self.isConfirmed = false

context Meeting::shift(d:Integer)
pre: d>0pre: d>0

context Meeting::shift(d:Integer)
pre: self.isConfirmed = false and d>0

Dr. Birgit Demuth MINE Summer School, Nida, 2009 16

Postcondition Postcondition

Definition
C t i t th t t b t j t ft t th ti – Constraint that must be true just after to the execution
of an operation

• Postconditions are the way how the actual effect of an
operation is described in OCL.

Syntax
context <classifier>::<operation> (<parameters>)context <classifier>::<operation> (<parameters>)
post [<constraint name>]:
<Boolean OCL expression>

Dr. Birgit Demuth MINE Summer School, Nida, 2009 17

Postcondition - Examples

context Meeting::duration():Integer
post: result = self.end – self.start

keyword result refers to the result of the operation-- keyword result refers to the result of the operation

context Meeting::confirm()
post: self.isConfirmed = true

Dr. Birgit Demuth MINE Summer School, Nida, 2009 18

Postcondition – Examples (cont.)

context Meeting::shift(d:Integer)
post: start = start@pre +d and end = end@pre + d

-- start@pre indicates a part of an expressionstart@pre indicates a part of an expression
-- which is to be evaluated in the original state
-- before execution of the operation

-- start refers to the value upon completion of the operation

-- @pre is only allowed in postconditions@pre is only allowed in postconditions

Dr. Birgit Demuth MINE Summer School, Nida, 2009 19

Postcondition – Examples (cont.)

• messaging only in postconditions
• is specifying that communication has taken placeis specifying that communication has taken place
• hasSent (“^“) operator

context Subject::hasChanged()
post: observer^update(2,4)

/* standard observer pattern:/ p
results in true if an update message with arguments 2 and 4
was sent to the observer object during execution of the
operation hasChanged() operation hasChanged()

*/

Dr. Birgit Demuth MINE Summer School, Nida, 2009 20

Building OCL Expressions <OCL expression> (1)g p p ()

• Boolean expressions

• Standard library of
primitive types and associated operations

– Basic types (Boolean, Integer, Real, String)

Collection types: – Collection types:
• Collection
• Set
• Ordered Set (only OCL2)
• Bag
• Sequence

Dr. Birgit Demuth MINE Summer School, Nida, 2009 21

• Sequence

Building OCL Expressions <OCL expression> (2)

User defined types (OCLType)

Cl t (M d l t)• Class type (Model type):
– Classifier in a class diagram (implicitly defined)
– Generalisation among classiefiers leads to Supertypes
– A class has the following Features:

• Attributes (start)
• Operations (duration())• Operations (duration())
• Class attributes (Date::today)

• Class operations
• Association ends („navigation expressions“)

• Enumeration type (Gender, Gender::male)

Dr. Birgit Demuth MINE Summer School, Nida, 2009 22

yp (,)

OCL Type Hierarchy

T

T T T T

Dr. Birgit Demuth MINE Summer School, Nida, 2009 23

OCL Type Conformance Rules yp

OCL is a strongly typed language .

The parser has to check the conformance:
T 1 f T 2 if i f T 1 b • Type1 conforms to Type2 if an instance of Type1 can be
substituted at each place where an instance of Type2 is
expected.

General rules:
E h T f t h f it t• Each Type conforms to each of its supertypes.

• Type conformance is transitive.
• A paramerized type T(X) conforms to T(Y) if X conforms to Y

Dr. Birgit Demuth MINE Summer School, Nida, 2009 24

• A paramerized type T(X) conforms to T(Y) if X conforms to Y.

OCL Constraints and Inheritance

• Constraints are inherited.
• Liskov’s Substitution Principle• Liskov s Substitution Principle

– Wherever an instance of a class is expected, one can
always substitute an instance of any of its subclasses.

• An invariant for a superclass is inherited by its subclass.
A subclass may strengthen the invariant but cannot weaken
it.

• A precondition may be weakened but not strengthened in
a redefinition of an operation in a subclass.

• A postcondition may be strengthened but not weakened in
a redefinition of an operation in a subclass.

Dr. Birgit Demuth MINE Summer School, Nida, 2009 25

Navigation Expressions

• Association ends (role names) are be used to navigate“ • Association ends (role names) are be used to „navigate
from one object in the model to another object.

• Navigations are treated as attributes (dot-Notation).

The type of a navigation expression is either a• The type of a navigation expression is either a
– User defined type

(association end with multiplicity at most 1)

– Collection
(association end with multiplicity > 1)

Dr. Birgit Demuth MINE Summer School, Nida, 2009 26

N i i E i E lNavigation Expressions - Examples

User defined type
– Navigation from Meeting to moderator

results in type Teammember

context Meetingcontext Meeting
inv: self.moderator.gender = Gender::female

Dr. Birgit Demuth MINE Summer School, Nida, 2009 27

Navigation Expressions - Examplesg p p

Collection
– Navigation von Meeting to participants

results in type Set(Teammember)results in type Set(Teammember)

context Meeting
inv: self->collect(participants)->size()>=2

or with shorthand notation:or with shorthand notation:

context Meeting inv: self.participants->size()>=2

Dr. Birgit Demuth MINE Summer School, Nida, 2009 28

Collection Operations (1)

• 22 operations with variant meaning depending on the
collection type such as

– equals (=) and not equals operation (<>)
– Transformations (asBag(), asSet(), asOrderedSet(),

asSequence())
– including(object) and excluding(object)
– flatten() for exampleflatten() for example

Set{Bag{1,2,2},Bag{2}} Set{1,2}

– Typical set operations
(union intersection minus symmetricDifference)(union,intersection,minus,symmetricDifference)

– Operations on ordered collections only (OrderedSet,
Sequence) (such as first(), last(), indexOf())

Dr. Birgit Demuth MINE Summer School, Nida, 2009 29

Collection Operations (2)p ()

Loop operations (Iterators) on all collection types
any(expr)any(expr)
collect(expr)
exists(expr)
forAll(expr)
isUnique(expr)
one(expr)
select(expr)
reject(expr)reject(expr)
sortedBy(expr)

Dr. Birgit Demuth MINE Summer School, Nida, 2009 30

Loop Operation iterate()p p ()

Collection->iterate(element : Type1;
result : Type2 = <expression>result : Type2 = <expression>
| <expression with element and result> }

• All other loop operations can be described as a special
case of iterate() such as in the following simple
example:

Set {1,2,3}->sum()

Set{1,2,3}->
iterate{i: Integer, sum: Integer=0 | sum + i }

Dr. Birgit Demuth MINE Summer School, Nida, 2009 31

Further Examples for Collection Operations (1)

• A teammeeting has to be organized for a whole team A teammeeting has to be organized for a whole team
(forAll()):

icontext Teammeeting
inv: participants->forAll(team=self.for)

context Meeting inv: oclIsTypeOf(Teammeeting)
implies participants->forAll(team=self.for)

Dr. Birgit Demuth MINE Summer School, Nida, 2009 32

Further Examples for collection operations (2)

• Postconditions (select()):(())

context Teammember::numMeeting():Integer
post: result=meetings->size()

context Teammember::numConfMeeting():Integercontext Teammember::numConfMeeting():Integer
post:
result=meetings->select(isConfirmed)->size()g () ()

Dr. Birgit Demuth MINE Summer School, Nida, 2009 33

Flattening of Collections

Automatic flattening rule for all nested collectionsAutomatic flattening rule for all nested collections

self.participants.meetings

in the context „Meeting“

What happens?What happens?
• self.participants delivers a Set(Person)
• self.participants.meetings delivers a p p g

Bag(Set(Person)
• Results in a Bag(Person)

Dr. Birgit Demuth MINE Summer School, Nida, 2009 34

Derivation Rule (derive, OCL2)Derivation Rule (derive, OCL2)

• Derived attribute (size)Derived attribute (size)

context Team::size:Integer
derive:members->size()derive:members->size()

• Derived association (conflict)

– defines a set of meetings that are in conflict with each other

context Meeting::conflict:Set(Meeting)context Meeting::conflict:Set(Meeting)
derive: select(m|m<>self and self.inConflict(m))

Dr. Birgit Demuth MINE Summer School, Nida, 2009 35

Initial Value (init, OCL2)

E lExamples

context Meeting::isConfirmed : Booleang
init: false

context Teammember:meetings : Set(Meetings)context Teammember:meetings : Set(Meetings)
init: Set{}

• Note that an initial value must be valid only at the object
creation time!

Dr. Birgit Demuth MINE Summer School, Nida, 2009 36

Query Operation (body, OCL2)

• Operations that do not change the state of the system
• Can be used as a query language

Power of SQL• Power of SQL

Example

context
Teammember::getMeetingTitles(): Bag(String) g g () g(g)
body: meetings->collect(title)

Dr. Birgit Demuth MINE Summer School, Nida, 2009 37

Let Expression (let)p ()

• Interesting for complex expressions
• Define a local variable (noConflict) that can be used e e a oca a ab e (oCo ct) t at ca be used

instead of a sub-expression

context Meeting inv:
let noConflict : Boolean =

participants meetings-> forAll(m|m<>self andparticipants.meetings > forAll(m|m<>self and
m.isConfirmed implies not self.inConflict(m))

in isConfirmed implies noConflict

Dr. Birgit Demuth MINE Summer School, Nida, 2009 38

Defining New Attributes and Operations(def, OCL2)g p ()

• Adding attributes and query operations to the model
• Syntax is similar to the let expression• Syntax is similar to the let expression
• Helpful for the reuse of OCL expressions in several

constraints

context Meetingcontext Meeting
def: noConflict : Boolean =

participants.meetings->forAll(m|m<>self and
m.isConfirmed implies not
self.inConflict(m))

Dr. Birgit Demuth MINE Summer School, Nida, 2009 39

Packaging OCL Expressionsg g p

package MeetingExample

context Meeting::isConfirmed : Boolean
init: falseinit: false

context Teammember:meetings : Set(Meetings)
init: Set{}

....

endpackage

Dr. Birgit Demuth MINE Summer School, Nida, 2009 40

Limitations of OCLLimitations of OCL

• No support for inconsistency detection for OCLNo support for inconsistency detection for OCL
• „Frame Problem“

– Operations are specified by what they change (in post-
d) h h l h hconditions), with the implicit assumption that everything

else (the frame) remains unchanged
• Limited recursionLimited recursion
• allInstances() Problem:

– Person.allInstances() allowed

– not allowed for infinite types such as
Integer.allInstances()

Dr. Birgit Demuth MINE Summer School, Nida, 2009 41

Building complete models with OCL

• Statechart diagram
• Interaction diagram• Interaction diagram
• Activity diagram
• Component diagramp g
• Use case diagram

Dr. Birgit Demuth MINE Summer School, Nida, 2009 42

OCL in Statecharts – Example (oclInState())

operation on all objects (Typ OclAny)

lI St t (O lSt t) B loclInState(s: OclState) : Boolean

context Vector::removeElement(d:Data)
pre: oclInState(notEmpty)
post: size@pre = 1 implies oclInState(empty)

Dr. Birgit Demuth MINE Summer School, Nida, 2009 43

p p p p y

Undefined Values in OCLUndefined Values in OCL

• An OCL expression can evaluate to „undefined“ (OclVoid)
For example: Access to an attribute value or navigation – For example: Access to an attribute value or navigation
where no value is existent in the respective object

• Strictness Principle

– Whenever a subexpression of an OCL expression
evaluates to undefined, then the whole term evaluates to evaluates to undefined, then the whole term evaluates to
undefined

– Exceptions
T d fi d T• True or undefined = True

• False and undefined = False
• False implies undefined = True

Dr. Birgit Demuth MINE Summer School, Nida, 2009 44

p

The OclVoid Type

• Undefined value is the only instance Undefined value is the only instance
• Operation for testing if the value of an expression is

undefined

oclIsUndefined(): Boolean

-- true if the object is undefined true if the object is undefined
-- otherwise false

Dr. Birgit Demuth MINE Summer School, Nida, 2009 45

Some Tips for Writing OCL Expressions

Constraints should be easy to read and write:
• Avoid complex navigation expressions

h• Choose appropriate context
• Avoid allInstances()
• Split and“ constraints by writing multiple constraints• Split „and constraints by writing multiple constraints
• Use the „collect“ shorthand
• Use association end names (role names) instead of

association names in modeling

Dr. Birgit Demuth MINE Summer School, Nida, 2009 46

Typical Use Cases for OCL

Model Layer Examples

Metamodels: {MOF-, Ecore-based} X {UML, CWM, ODM, SBVR, PRR, DSLs}

M2
(Metamodel)

•Specification of WFRs in OMG standards
•Definition of Modeling Guidelines for DSLs
•Specification of Model Transformations

M1 (Model) •Model Verification (CASE-Tool)
•Evaluation of modeling guidelinesEvaluation of modeling guidelines
•Execution of model transformations

•Specification of Business Rules/Constraints
•Specification of Test Cases

M0
(Objects)

•Evaluation of Business Rules/Constraints
•Testing

Dr. Birgit Demuth MINE Summer School, Nida, 2009 47

(j) Testing

Examples for OCL on Metamodel
• WFR in UML metamodel

context Classifier inv:
not self.allParents->includes(self)()
-- Generalization cycles are not allowed

• UML modeling guideline for Java developers• UML modeling guideline for Java developers

context Classifier inv SingleInheritance:
self.generalization->size()<= 1
-- Multiple inheritance is not allowed

Dr. Birgit Demuth MINE Summer School, Nida, 2009 48

Some UML/OCL Tools

• 12 OCL tools/libraries (see OCL Portal)

• Integrations into UML environments• Integrations into UML environments
– MagicDraw Enterprise Edition v16.5
– Borland Together 2008 (OCL/QVT)
– Eclipse MDT/OCL for EMF Based Models
– ArgoUML
– Fujaba4EclipseFujaba4Eclipse

Dr. Birgit Demuth MINE Summer School, Nida, 2009 49

Decennial Anniversary of Dresden OCL in 2009

Dr. Birgit Demuth MINE Summer School, Nida, 2009 50

Dresden OCL2 for Eclipse

Dr. Birgit Demuth MINE Summer School, Nida, 2009 51

Dresden OCL2 for Eclipse

Dr. Birgit Demuth MINE Summer School, Nida, 2009 52

XMI Import into Dresden OCL2 for Eclipse

• TopCased (EMF UML2 XMI)
• MagicDraw (EMF UML2 XMI)

l d ()• Visual Paradigm (EMF UML2 XMI)
• Eclipse UML2 / UML2 Tools (EMF UML2 XMI)

Dr. Birgit Demuth MINE Summer School, Nida, 2009 53

OCL Support in MagicDraw Enterprise Edition

“OCL validation rules”
(based on Dresden OCL2 Toolkit)

1. Specification on UML metamodel (M2) /
Verification on UML models (M1)

2. Specification of Stereotypes (M2) /
Verification of UML models (M1)

3. Specification on UML models (M1) /
Verification of UML instances (objects)

Dr. Birgit Demuth MINE Summer School, Nida, 2009 54

Dr. Birgit Demuth MINE Summer School, Nida, 2009 55

Dr. Birgit Demuth MINE Summer School, Nida, 2009 56

Dr. Birgit Demuth MINE Summer School, Nida, 2009 57

Dr. Birgit Demuth MINE Summer School, Nida, 2009 58

Acronyms

OCL
OMG
MOF

Object Constraint Language
Object Management Group
M t Obj t F ilitMOF

PRR
QVT

Meta-Object Facility
Production Rule Representation
Query Views TransformationQVT

UML
WFR

Query Views Transformation
Unified Modeling Language
Well-Formedness Rule

Dr. Birgit Demuth MINE Summer School, Nida, 2009 59

Thank you
f tt ti !for your attention!

Dr. Birgit Demuth MINE Summer School, Nida, 2009 60

