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In theory, there is no difference 
between theory and practice. 

But, in practice, there is. 

Jan L. A. van de Snepscheut/Yogi Bera
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Main Goals of the Lecture

• Bridge the gap between practically used software
specifications (UML) and formal languages
Introduce into OCL (history  outline  literature)• Introduce into OCL (history, outline, literature)

• Learn how to specify semantics using OCL
• Learn what are interesting OCL use casesLearn what are interesting OCL use cases
• Inform what OCL tools can already be used
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Foundation: Assertions

• An assertion is a predicate (i.e., a true–false statement) 
placed in a program to indicate that the developer thinks
th t th  di t  i  l  t  t th t l  [Wiki di ]that the predicate is always true at that place [Wikipedia].

• Usage ing
– Hoare logic [Hoare 1969]
– Design by contract [Meyer 1986, Eiffel]

For run time checking (Java ( t)  JML  JASS  SQL  – For run-time checking (Java (assert), JML, JASS, SQL, 
…)

– During the development cycle (debugging)
– Static assertions at compile time 
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Object Constraint

• Model-based assertion

[ d l ] d f f ll• [Warmer and Kleppe] define a constraint as follows:

“A constraint is a restriction on one or more values A constraint is a restriction on one or more values 
of (part of) an object-oriented model or system.“

• OCL as specification language for object constraints
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History of OCL 

• Developed at IBM in 1995 originally as a business 
engineering language
Adopted as a formal specification language within UML• Adopted as a formal specification language within UML

• Part of the official OMG standard for UML (from 
version 1.1 on)

• Used for precisely defining the well-formedness rules 
(WFRs) for UML and further OMG-related metamodels

• Current version is OCL 2 0 • Current version is OCL 2.0 
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OCL (Object Constraint Language)

• Extends the Unified Modeling Language (UML)
• Formal language for the definition of constraints and Formal language for the definition of constraints and 

queries on UML models
• Declarative

S d ff f• Side effect free
• Add precise semantics to visual (UML-) models
• Generalized for all MOF based metamodels • Generalized for all MOF based metamodels 
• Meanwhile generally accepted
• Many extensions such as for temporal constraints
• „Core Language“ of other OMG languages (QVT, PRR)
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Constraint

Definition 
– „A constraint is a restriction on one or more

values of (part of) an object-oriented model or
system “ system.  

• A constraint is formulated on the level of classes, but 
its semantics is applied on the level of objects.

• originally formulated in the syntactic context of a UML 
UML model (i e  a set of UML diagrams) UML model (i.e. a set of UML diagrams) 
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InvariantInvariant

Definition
– An invariant is a constraint that should be true for an 

object during its complete lifetime. 

• Invariants often represent rules that should hold for the 
real-life objects after which the software objects are 
modeled.

SyntaxSyntax
context <classifier> 
inv [<constraint name>]: <Boolean OCL expression>
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OCL/UML By Example
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Invariant - Examples Invariant - Examples 

context Meeting inv: self.end > self.startg

Equivalent Formulations
context Meeting inv: end > startcontext Meeting inv: end > start
-- "self" always refers to the object identifier from which the 

constraint is evaluated.

context Meeting inv startEndConstraint: 
self.end > self.start
-- Names can be given to the constraint
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P econdition /PostconditionPrecondition /Postcondition

• Constraint that specify the applicability and effect of an • Constraint that specify the applicability and effect of an 
operation without stating an algorithm or implementation

• Are attached to an operation in a class diagram

Allow a more complete specification of a system• Allow a more complete specification of a system
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Precondition

DefinitionDefinition
– Constraint that must be true just prior to the execution 

of an operation

Syntax
context <classifier>::<operation> (<parameters>)context <classifier>::<operation> (<parameters>)
pre [<constraint name>]: 
<Boolean OCL expression>p
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Precondition - Examples

context Meeting::shift(d:Integer) 
pre: self.isConfirmed = false

context Meeting::shift(d:Integer) 
pre: d>0pre: d>0

context Meeting::shift(d:Integer) 
pre: self.isConfirmed = false and d>0
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Postcondition Postcondition 

Definition
C t i t th t t b  t  j t ft  t  th  ti  – Constraint that must be true just after to the execution 
of an operation

• Postconditions are the way how the actual effect of an 
operation is described in OCL.

Syntax
context <classifier>::<operation> (<parameters>)context <classifier>::<operation> (<parameters>)
post [<constraint name>]: 
<Boolean OCL expression>
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Postcondition - Examples

context Meeting::duration():Integer
post: result = self.end – self.start

keyword result refers to the result of the operation-- keyword result refers to the result of the operation

context Meeting::confirm()
post: self.isConfirmed = true
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Postcondition – Examples (cont.)

context Meeting::shift(d:Integer)
post: start = start@pre +d and end = end@pre + d

-- start@pre indicates a part of an expressionstart@pre indicates a part of an expression
-- which is to be evaluated in the original state 
-- before execution of the operation

-- start refers to the value upon completion of the operation

-- @pre is only allowed in postconditions@pre is only allowed in postconditions
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Postcondition – Examples (cont.)

• messaging only in postconditions
• is specifying that communication has taken placeis specifying that communication has taken place
• hasSent (“^“) operator

context Subject::hasChanged()
post: observer^update(2,4)

/* standard observer pattern:/ p
results in true if an update message with arguments 2 and 4 
was sent to the observer object during execution of the
operation hasChanged() operation hasChanged() 

*/
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Building OCL Expressions <OCL expression> (1)g p p ( )

• Boolean expressions

• Standard library of                                         
primitive types and associated operations 

– Basic types (Boolean, Integer, Real, String)

Collection types: – Collection types: 
• Collection
• Set 
• Ordered Set (only OCL2)
• Bag
• Sequence
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Building OCL Expressions <OCL expression> (2)

User defined types (OCLType)

Cl  t  (M d l t )• Class type (Model type):
– Classifier in a class diagram (implicitly defined)
– Generalisation among classiefiers leads to Supertypes
– A class has the following Features:

• Attributes  (start)
• Operations (duration())• Operations (duration())
• Class attributes (Date::today)

• Class operations 
• Association ends („navigation expressions“)

• Enumeration type (Gender, Gender::male)
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OCL Type Hierarchy

T

T T T T
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OCL Type Conformance Rules yp

OCL is a strongly typed language .

The parser has to check the conformance:
T 1 f   T 2 if  i  f T 1  b  • Type1 conforms to Type2 if an instance of Type1 can be 
substituted at each place where an instance of Type2 is 
expected.

General rules: 
E h T  f  t  h f it  t• Each Type conforms to each of its supertypes.

• Type conformance is transitive.
• A paramerized type T(X) conforms to T(Y) if X conforms to Y
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OCL Constraints and Inheritance

• Constraints are inherited. 
• Liskov’s Substitution Principle• Liskov s Substitution Principle

– Wherever an instance of a class is expected, one can 
always substitute an instance of any of its subclasses.

• An invariant for a superclass is inherited by its subclass.              
A subclass may strengthen the invariant but cannot weaken 
it.

• A precondition may be weakened but not strengthened in 
a redefinition of an operation in a subclass.

• A postcondition may be strengthened but not weakened in 
a redefinition of an operation in a subclass.
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Navigation Expressions

• Association ends (role names) are be used to navigate“ • Association ends (role names) are be used to „navigate  
from one  object in the model to another object.

• Navigations  are treated as attributes (dot-Notation).

The type of a navigation expression is either a• The type of a navigation expression is either a
– User defined type

(association end with multiplicity at most 1)  

– Collection
(association end with multiplicity > 1) 
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N i i  E i  E lNavigation Expressions - Examples

User defined type
– Navigation from Meeting to moderator            

results in type Teammember

context Meetingcontext Meeting 
inv: self.moderator.gender = Gender::female
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Navigation Expressions - Examplesg p p

Collection  
– Navigation von Meeting to participants

results in type Set(Teammember)results in type Set(Teammember)

context Meeting 
inv: self->collect(participants)->size()>=2

or with shorthand notation:or with shorthand notation:

context Meeting inv: self.participants->size()>=2
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Collection Operations (1)

• 22 operations with variant meaning depending on the
collection type such as

– equals (=) and not equals operation (<>)
– Transformations (asBag(), asSet(), asOrderedSet(), 

asSequence())
– including(object) and excluding(object)
– flatten() for exampleflatten() for example

Set{Bag{1,2,2},Bag{2}} Set{1,2}

– Typical set operations
(union intersection minus symmetricDifference)(union,intersection,minus,symmetricDifference)

– Operations on ordered collections only (OrderedSet, 
Sequence) (such as first(), last(), indexOf())
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Collection Operations (2)p ( )

Loop operations (Iterators) on all collection types
any(expr)any(expr)
collect(expr)
exists(expr)
forAll(expr)
isUnique(expr)
one(expr)
select(expr)
reject(expr)reject(expr)
sortedBy(expr)
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Loop Operation iterate()p p ()

Collection->iterate( element : Type1;
result : Type2 = <expression>result : Type2 = <expression>
| <expression with element and result> }

• All other loop operations can be described as a special 
case of iterate() such as in the following simple 
example:

Set {1,2,3}->sum()

Set{1,2,3}->
iterate{i: Integer, sum: Integer=0 | sum + i }
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Further Examples for Collection Operations (1)

• A teammeeting has to be organized for a whole team       A teammeeting has to be organized for a whole team       
( forAll()):

icontext Teammeeting 
inv: participants->forAll(team=self.for)

context Meeting inv: oclIsTypeOf(Teammeeting)
implies participants->forAll(team=self.for)
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Further Examples for collection operations (2)

• Postconditions (select()):( ())

context Teammember::numMeeting():Integer
post: result=meetings->size()

context Teammember::numConfMeeting():Integercontext Teammember::numConfMeeting():Integer
post: 
result=meetings->select(isConfirmed)->size()g ( ) ()
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Flattening of Collections

Automatic flattening rule for all nested collectionsAutomatic flattening rule for all nested collections

self.participants.meetings

in the context „Meeting“

What happens?What happens?
• self.participants delivers a Set(Person) 
• self.participants.meetings delivers a p p g

Bag(Set(Person) 
• Results in a Bag(Person)
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Derivation Rule (derive, OCL2)Derivation Rule (derive, OCL2)

• Derived attribute  (size)Derived attribute  (size)

context Team::size:Integer
derive:members->size()derive:members->size()

• Derived association (conflict)

– defines a set of meetings that are in conflict with each other 

context Meeting::conflict:Set(Meeting)context Meeting::conflict:Set(Meeting)
derive: select(m|m<>self and self.inConflict(m))
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Initial Value (init, OCL2)

E lExamples

context Meeting::isConfirmed : Booleang
init: false 

context Teammember:meetings : Set(Meetings)context Teammember:meetings : Set(Meetings)
init: Set{}

• Note that an initial value must be valid only at the object 
creation time!
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Query Operation (body, OCL2)

• Operations that do not change the state of the system
• Can be used as a query language

Power of SQL• Power of SQL

Example

context
Teammember::getMeetingTitles(): Bag(String) g g () g( g)
body: meetings->collect(title)
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Let Expression (let)p ( )

• Interesting for complex expressions
• Define a local variable (noConflict) that can be used e e a oca a ab e ( oCo ct) t at ca be used

instead of a sub-expression

context Meeting inv:
let noConflict : Boolean = 

participants meetings-> forAll(m|m<>self andparticipants.meetings > forAll(m|m<>self and
m.isConfirmed implies not self.inConflict(m))

in  isConfirmed implies noConflict
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Defining New Attributes and Operations(def, OCL2)g p ( )

• Adding attributes and query operations to the model
• Syntax is similar to the let expression• Syntax is similar to the let expression
• Helpful for the reuse of OCL expressions in several 

constraints

context Meetingcontext Meeting  
def: noConflict : Boolean =

participants.meetings->forAll(m|m<>self and
m.isConfirmed implies not
self.inConflict(m))
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Packaging OCL Expressionsg g p

package MeetingExample

context Meeting::isConfirmed : Boolean
init: falseinit: false 

context Teammember:meetings : Set(Meetings)
init: Set{}

....

endpackage
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Limitations of OCLLimitations of OCL

• No support for inconsistency detection for OCLNo support for inconsistency detection for OCL
• „Frame Problem“

– Operations are specified by what they change (in post-
d ) h h l h hconditions), with the implicit assumption that everything 

else (the frame) remains unchanged
• Limited recursionLimited recursion
• allInstances() Problem: 

– Person.allInstances() allowed

– not allowed for infinite types such as
Integer.allInstances()
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Building complete models with OCL

• Statechart diagram
• Interaction diagram• Interaction diagram
• Activity diagram
• Component diagramp g
• Use case diagram
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OCL in Statecharts – Example (oclInState())

operation on all objects (Typ OclAny)

lI St t ( O lSt t ) B loclInState(s: OclState) : Boolean

context Vector::removeElement(d:Data)
pre:  oclInState(notEmpty)
post: size@pre = 1 implies oclInState(empty)
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Undefined Values in OCLUndefined Values in OCL

• An OCL expression can evaluate to „undefined“ (OclVoid)
For example: Access to an attribute value or navigation – For example: Access to an attribute value or navigation 
where no  value is existent in the respective object

• Strictness Principle

– Whenever a subexpression of an OCL expression 
evaluates to undefined, then the whole term evaluates to evaluates to undefined, then the whole term evaluates to 
undefined 

– Exceptions
T   d fi d  T• True or undefined = True

• False and undefined = False
• False implies undefined = True
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The OclVoid Type

• Undefined value is the only instance Undefined value is the only instance 
• Operation for testing if the value of an expression is 

undefined 

oclIsUndefined(): Boolean

-- true if the object is undefined true if the object is undefined 
-- otherwise false 
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Some Tips for Writing OCL Expressions 

Constraints should be easy to read and write:
• Avoid complex navigation expressions

h• Choose appropriate context
• Avoid allInstances()
• Split and“ constraints by writing multiple constraints• Split „and  constraints by writing multiple constraints
• Use the „collect“ shorthand
• Use association end names (role names) instead of 

association names in modeling 
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Typical Use Cases for OCL

Model Layer Examples

Metamodels: {MOF-, Ecore-based} X {UML, CWM, ODM, SBVR, PRR, DSLs}

M2 
(Metamodel)

•Specification of WFRs in OMG standards
•Definition of Modeling Guidelines for DSLs
•Specification of Model Transformations

M1 (Model) •Model Verification ( CASE-Tool)
•Evaluation of modeling guidelinesEvaluation of modeling guidelines
•Execution of model transformations

•Specification of Business Rules/Constraints
•Specification of Test Cases

M0 
(Objects)

•Evaluation of Business Rules/Constraints
•Testing
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Examples for OCL on Metamodel
• WFR in UML metamodel 

context Classifier inv: 
not self.allParents->includes(self)( )
-- Generalization cycles are not allowed 

• UML modeling guideline for Java developers• UML modeling guideline for Java developers

context Classifier inv SingleInheritance:
self.generalization->size()<= 1
-- Multiple inheritance is not allowed
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Some UML/OCL Tools

• 12 OCL tools/libraries (see OCL Portal)

• Integrations into UML environments• Integrations into UML environments
– MagicDraw Enterprise Edition v16.5
– Borland Together 2008 (OCL/QVT)
– Eclipse MDT/OCL for EMF Based Models
– ArgoUML
– Fujaba4EclipseFujaba4Eclipse
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Decennial Anniversary of Dresden OCL in 2009
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Dresden OCL2 for Eclipse

Dr. Birgit Demuth MINE Summer School, Nida, 2009 51



Dresden OCL2 for Eclipse
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XMI Import into Dresden OCL2 for Eclipse

• TopCased (EMF UML2 XMI)
• MagicDraw (EMF UML2 XMI)

l d ( )• Visual Paradigm (EMF UML2 XMI)
• Eclipse UML2 / UML2 Tools (EMF UML2 XMI)
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OCL Support in MagicDraw Enterprise Edition

“OCL validation rules”
(based on Dresden OCL2 Toolkit)

1. Specification on UML metamodel (M2) /                     
Verification on UML models (M1)

2. Specification of Stereotypes (M2) /                          
Verification of UML models (M1)

3. Specification on UML models (M1) /                          
Verification of UML instances (objects) 
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Acronyms

OCL
OMG
MOF

Object Constraint Language
Object Management Group
M t Obj t F ilitMOF

PRR
QVT

Meta-Object Facility
Production Rule Representation
Query Views TransformationQVT

UML
WFR

Query Views Transformation
Unified Modeling Language
Well-Formedness Rule
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Thank you 
f   tt ti !for your attention!
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