
Generation of an OCL 2.0 Parser

Birgit Demuth1, Heinrich Hussmann2, and Ansgar Konermann3

1 Technische Universität Dresden, Department of Computer Science
bd1@inf.tu-dresden.de

2 Ludwig-Maximilians-Universität München,
Faculty of Mathematics, Computer Science and Statistics

heinrich.hussmann@ifi.lmu.de
3 Technische Universität Dresden, Department of Computer Science

ansgar.konermann@gmx.de

Abstract. The OCL 2.0 specification defines explicitly a concrete and
an abstract syntax. The concrete syntax allows modelers to write down
OCL expressions in a textual way. The abstract syntax represents the
concepts of OCL using a MOF compliant metamodel. OCL 2.0 imple-
mentations should follow this specification. In doing so emphasis is placed
on the fact that at the end of the processing a tool should produce the
same well-formed instance of the abstract syntax as given in the specifi-
cation. This offers the possibility to implement OCL-like languages with
the same semantics that are for example easier to use for business model-
ers. Therefore we looked for a parser technique that helps us to generate
an OCL parser to a large extent. In this paper we present the technique
we developed and proved within the scope of the Dresden OCL Toolkit.
The resulting Dresden OCL2 parser is especially characterized by using
a generation approach not only based on a context-free grammar but
on an attribute grammar to create the required instance of the abstract
syntax of an OCL expression.

1 Introduction

The OCL 2.0 specification [1] defines explicitly a concrete and an abstract syn-
tax. The abstract syntax represents the concepts of OCL using a MOF compliant
metamodel. In the following, this model is also referred to as OCL metamodel.
The definition of such a model-based abstract syntax is often used for modeling
languages [2, 3]. The concrete syntax allows modelers to write down OCL ex-
pressions in a textual way. OCL 2.0 implementations should follow the OMG
specification. In doing so emphasis is placed on the fact that at the end of the
processing of an OCL expression a tool should produce the same well-formed
instance of the abstract syntax as given in the specification. This offers the
possibility to relatively cost-efficient implement OCL-like languages that are for
example easier to understand and write for business modelers. In [4], an exam-
ple of a Business Modeling Syntax for OCL is described. Implementing a parser
by hand however is a tedious and error-prone process. Thus, instead of man-
ual implementation, all parts of a parser should be generated from one or more

formal specifications. Therefore we developed a parser technique that helps us
to generate an OCL parser to a large extent. This includes the generation not
only based on a context-free grammar but on an attribute grammar to create
the required instance of the abstract syntax of an OCL expression. As a result of
this technique an extended SableCC version of the well-known parser generator
SableCC [5] for lexical and syntactical analyzers has been developed.

Besides the concrete syntax a further subject of variability are the UML and
MOF metaclasses that are used in the OCL metamodel. The current OCL 2.0
specification refers to the UML 1.4 metamodel. In future the OCL metamodel
has to be aligned with the UML 2.0 or other metamodels. Therefore we extended
our generation approach to the overall compiler architecture as explained in [6, 7].
All metamodel classes are implemented by the JMI (JavaTM Metadata Interface
[8]) based generation of their Java Interfaces. Metamodels can be incorporated
by XMI files.

To the best of our knowledge our approach currently provides maximal flex-
ibility and high productivity in the OCL 2.0 parser construction process. We
developed and proved the parser generation approach within the scope of the
Dresden OCL Toolkit [9]. Our solution differs from comparable implementations
such as Octopus [10] by providing a clean separation of code which computes
inherited and synthesized attributes, and code which performs tree walking and
attribute passing to and from nodes. This separation eases implementation of
semantic analysis, since the implementor is not required to deal with the tedious
and error-prone task of attribute handling. Instead, a clean and elegant API to
the attribute evaluator skeleton is provided. In addition, this approach simplifies
the development of the generator for the attribute evaluator skeleton. The ap-
proach also facilitates maintenance of the attribute evaluator in case of changes
or extensions to the OCL language, since large parts of the implementation can
be generated from an L-attribute grammar. Due to this separation, our solution
is superior to those ones mixing tree walking, attribute handling and attribute
computation, as it is often the case with compiler generators employing semantic
actions to specify semantic analysis.

In the following, we analyze the current OCL 2.0 specification and point
out its major problems with respect to automatic parser construction (Section
2). In Section 3 we propose solutions for them. The main part of the paper
(Section 4) explains how we implemented our parser generation approach in the
Dresden OCL2 Toolkit (the reengineered Dresden OCL Toolkit). In Section 5 we
summarize the results and the experience with the parser construction process.
We also give an outlook on further development plans within the scope of the
Dresden OCL2 Toolkit.

2 Deficiencies of the OCL 2.0 Concrete Syntax

The concrete syntax of OCL 2.0 exhibits some properties which complicate au-
tomatic parser construction. This section names those properties and explains
why they make parser construction difficult.

Mixed recognition stages. The concrete syntax specification mixes specifica-
tion means for all three stages of a parser, that is lexical, the syntactical and the
context-sensitive analysis. For example, there is no precise definition of names.1

Thus, a parser built based on this grammar would not take full advantage of the
capabilities provided by the lexical analysis stage.

Instead, valid names are often only recognized by taking context information
into account.2 This also makes syntactical analysis context-sensitive, which is
hard to handle with efficient parsing algorithms. Names can easily be recognized
using regular languages, so the current approach of the specification easily leads
to complex, inefficient parsers. As another example, valid binary operators are
defined using disambiguation rules, typically executed during context-sensitive
analysis. This prohibits successful analysis of binary expressions during the syn-
tactical analysis stage.

In summary, the specification overstrains syntax analysis while underutilizing
lexical analysis and using context-sensitive analysis inefficiently.

No analytic grammar. As above explained, the specification is structured
around concepts of the abstract syntax. For the vast majority of elements of the
abstract syntax, the specification contains one production, potentially consisting
of more than one alternative. Each alternative defines a language making up
valid textual representations of the abstract syntax element. These languages
often bear little to no syntactic similarity. As an example, consider productions
IteratorExpCS or AttributeCallExpCS. For parsing, it is important to group lan-
guages which are syntactically similar. This reduces the risk of parsing conflicts
and is often the key to rendering efficient deterministic parsing possible.

Ineffective disambiguation. On the other hand, alternatives which do bear
syntactic similarity are scattered across the specification. For each ambiguous
production, a set of disambiguation rules is given, intended to disambiguate
the regarding productions. The spatial dispersion of the rules makes it difficult
to check whether they really make the grammar unambiguous. Our analysis
showed in a similar manner as in [11] that in many cases, they do not. Since
the disambiguation rule sets do not impose a defined order of evaluation, each
set of rules must separate the language of the regarding production from all
other productions involved in the ambiguity. An explicit evaluation order would
alleviate the situation, since it introduces an additional implicit rule into each
rule set except the first, ensuring that all previous rule sets did not match.

No model of input artifacts. The transformation from concrete to abstract
syntax is specified in terms of an attribute grammar. Attribute evaluation and
syntactic disambiguation usually take place during context-sensitive analysis and
are specified on top of the concrete syntax. The concrete syntax tree hence is

1 of classifiers, attributes etc.
2 namely, checking whether a name exists in the model

an input artifact for the attribute evaluator. To allow for concise specification of
context-sensitive analysis, an explicit model of the concrete syntax is required.
The specification does not define an explicit model of the concrete syntax, leav-
ing derivation of the eventually existing implicit model to the user of the speci-
fication. This situation is unsatisfactory, as it involves guessing. It is especially
true in the presence of inconsistent use of this model. This manifests itself in
the specification in different notations for referring to the abstract syntax tree
node ast or the inherited attribute env. Most attribute evaluation rules use Pro-
ductionName.ast to denote the current AST node, but TupleLiteralExpCS uses
tuplePart, some attribute evaluation rules also use ProductionName. Most rules
use ProductionName.env to refer to the inherited attribute, but VariableExpCS
uses env.lookup().

Not machine-readable. The specification of the concrete syntax is provided by
the OMG as a PDF file. Although being machine-readable in a narrower sense,
the file format can neither be understood by parser generators, nor be easily
transformed into an appropriate format automatically. The relevant parts of the
specification have to be extracted and converted into the desired input file format
manually. Older versions of the OCL included a link to a machine-readable
grammar of OCL [12] (Chap. 6.9). To alleviate automatic parser generation,
future versions of the specification should again include links to machine-readable
versions of the concrete syntax.

3 Overcoming the Limitations of the Concrete Syntax

During the development of the OCL 2.0 parser for the Dresden OCL2 Toolkit,
we encoutered the problems described in Section 2. This section explains the
measures we took to solve or circumvent those problems.

Separate specifications for each transformation stage. From the OCL 2.0
specification, distinct specifications of lexical and syntactical language structure
were derived, in essence manually. Both were written in SableCC [5] syntax. This
allowed for subsequent testing of completeness and absence of parsing conflicts
by simply feeding the specifications to the generator. The disambiguation and
attribute evaluation rules were first dropped completely and re-introduced later.

Removal of syntactical ambiguities. The resulting grammar exhibited nu-
merous parsing conflicts, resulting from syntactic ambiguities. It can be proved
that no algorithm exists which computes for any given context-free grammar
whether it is ambiguous or not ([13], Chap. 9.10). To allow for systematical
removal of ambiguities, it is useful to construct the appropriate LR(k) automa-
ton and remove any parsing conflict. If no parsing conflicts exist, the grammar
is guaranteed to be unambiguous. We followed this algorithm to iteratively re-
move conflicts. Whenever a run of the SableCC parser generator revealed pars-
ing conflicts, we modified the grammar by merging ambiguous productions. The

language described by a grammar thus modified is usually larger than the one
described by the original grammar. To keep the recognized language identical,
all merged productions were noted. During context-sensitive analysis, they need
to be differentiated and sentences not allowed by the original grammar need to
be sorted out. This quickly led to a grammar partially resembling the OCL 1.x
grammar quite closely [12]. Recognizing this, parts of the OCL 1.x grammar and
the grammar from our older Dresden OCL Toolkit [14] were used as references
during the remaining process of grammar restructuring.

This step resulted in an analytical LALR(1) grammar representing OCL 2.0,
available in SableCC syntax and ready for automatic parser generation. It is a
firm basis for definition of context-sensitive analysis.

Introducing an explicit model of the concrete syntax. Thanks to the use
of SableCC, an explicit model of the concrete syntax comes for free. SableCC is
capable of generating an object-oriented framework of classes representing the
syntax tree. The transformation from grammar to framework classes is explicitly
defined ([15], Chap. 5). Using the API of the framework classes, we can access
each node of the syntax tree in a well-defined manner, including navigation to
child and parent nodes as well as retrieval of token texts.

Redefining context-sensitive analysis. Having modified the OCL 2.0 gram-
mar heavily, the disambiguation and attribute evaluation rules from the specifi-
cation did not fit the new grammar any more. A new definition of the context-
sensitive analysis stage had to be derived by hand. We stipulated that the re-
sulting attribute grammar should be an L-attribute grammar [16]. This allows
attribute evaluation to be performed in a single depth-first, left-to-right tree
walk. We divided the context sensitive analysis stage into two alternating sub-
stages. The first one performs the walk over the concrete syntax tree, automat-
ically passing attributes up and down in the tree. By default, it automatically
creates ASM node instances for each synthesized attribute. It calls hook meth-
ods pertaining to the second substage whenever computation of attribute values
or disambiguation is required. The specification of the first substage was incor-
porated into the tailored SableCC grammar, allowing complete generation of
implementation code for this substage. The second substage comprises of imple-
mentations for the hook methods. These were implemented manually.

4 The OCL Parser of the Dresden OCL2 Toolkit and Its

Generation Process

The Dresden OCL Toolkit is a well-established software package [9] providing
OCL support, either through standalone tools or through libraries which can be
integrated into tools by third parties. It has been developed at the Technische
Universität Dresden and underwent a reengineering process to accomodate it to
the new OCL 2.0 standard, with the new version called Dresden OCL2 Toolkit.

This section describes the build process used to create the OCL2 parser of the
Dresden OCL2 Toolkit. It sketches important aspects of the parser’s architecture,
followed by a detailed explanation of the features of both a SableCC extension
used to generate an attribute evaluator skeleton and of the resulting parser
implementation. A few examples illustrate the features.

�����������	��
 ���

���� � ��� � ��������
 �	������� ������� �
������� ��� � !"�#! �	� �

�����������	��
 ���
$ � � � ��� �&%	� � � �
�(' �	!�) *) ! � �) ��� *)
 �

� ��� � �) ��� � ��+ � �,� ��*) �) �) �����(-
�.�/10
' � �	��� !"�) ����� * � �32&452(6�7 8	9 '	� � � ��� '�
 ���
� � � �) ��� � �#��: ��
 �	� � � ����� � ��� � �) ����;) � � �

< ��� �

� � � � �

$ � � � ��� ��%	� � � �
����	! � � ����
 �
� ����')
 � '	� � � ��� �&%	� � � �

4�� � �) ��� � ��
�: ��
 �	� � � �

= ��'�
 � � � � � � � � �) ��� � �#��: ��
 �	� �) ��� � ��
 � �
�����������	��
 ���

4�� � �) ��� � �#��: ��
 �	� � � � �(+ �
 ��� ���2 412(6�7 8	9 �&%�� � � � ���	��
 %	> ���2 ����) ! ��
����	��
 %	> ���

$
 �) ��������
 �	��� '	� � � ������� � ��� � � � �

? � � ��� � � �
 ������� -�'	� � � ��� �����
� � � �) ��� � �#��: ��
 �	� � � � ��+ �
 ��� ���

@ ������
 �	�A��B
���� � ��� � � @
�����	! � � ����
 � ' � � ��� ���

? � � ��� � � �#����� � ��� � �C������
 �	���
'	� � � ������� � ��� � � � �

Fig. 1. Generation process used to generate the OCL 2.0 parser

4.1 Generation Process

The process employed to generate the parser is outlined by the activity diagram
given in Figure 1. Activities and objects tagged manual are performed or created

by hand, the remaining ones automatically. The process requires the following
tools and input artifacts:

– an unmodified instance of the open-source compiler generator SableCC, ver-
sion 2.18.1 [5]

– an extended version of SableCC, consisting of
• a SableCC grammar for extended grammar files
• enhanced Java source code making SableCC capable of parsing and using

extended grammar files
– an OCL 2.0 grammar in extended syntax
– an attribute evaluator implementation for OCL 2.0

Building the parser system involves three major steps. First, an extended ver-
sion of SableCC has to be created, allowing it to act as a generator for the con-
text sensitive analysis stage implementation. During the next step, the extended
SableCC is used to generate a lexical and syntactical analyzer for OCL 2.0, plus
an attribute evaluator skeleton. This is an abstract base class and has to be im-
plemented according to the OCL 2.0 specification to derive a working attribute
evaluator.

4.2 The Parser Architecture

The resulting parser uses two passes to transform the input text into an Abstract
Syntax Model (ASM). The ASM represents an instance of the OCL metamodel
as defined by the OCL 2.0 specification. During the first pass, it constructs the
concrete syntax tree (CST). This is performed automatically by the SableCC-
generated parser code. In the second pass, an attribute evaluator transforms the
CST into an ASM. The attribute evaluator makes use of a modified visitor design
pattern [17] called tree walkers, as do all of the tree walker classes generated by
SableCC ([15], Chap. 6).

The attribute evaluator is designed to successfully perform attribute evalua-
tion for any L-attribute grammar. Thus it performs a single-sweep, depth-first,
left-to-right tree walk. All visit methods now take one additional argument, rep-
resenting the inherited attributes. The synthesized attributes are passed to their
parent node as return value.

The parser is integrated into the existing metamodel-based OCL 2.0 compiler
architecture of the Dresden OCL2 toolkit [6, 7]. All ASM nodes are created using
a variant of an abstract factory [17], which in turn uses the API exposed by the
compiler architecture to create instances of appropriate OCL 2.0 metamodel
elements.

4.3 Features of the Extended SableCC Generator

Implementing tree walking code for the context-sensitive analysis stage by hand
was soon identified as a tedious and error-prone task. This is even more true
since tree walking alone is not sufficient for an attribute evaluator. It must pass

inherited attribute values into child nodes and collect synthesized attributes pro-
duced for child nodes. Besides, it must perform computation of attribute values,
observing data dependencies between them. Finally, all synthesized attributes
must be stored for later use, and possibly passed to attribute evaluation code
for sibling child nodes.

Lacking a generally available generator for efficient attribute evaluators in
Java, we decided to add some simple attribute evaluation features to SableCC
2.18.1. We also considered using SableCC 3.x and its built-in CST-to-AST trans-
formation techniques. It supports transformation of a CST into an AST made up
of classes generated from appropriate grammar productions. Since we needed to
use our own JMI-based ASM classes, we quickly discarded this approach. Besides,
SableCC 3.x does not support using context information during transformation
from CST to AST. This feature is however elementary for OCL 2.0, since many
transformations depend on model information and are thus context-sensitive.

The section motivates the need for a more elaborate tree walking code than
currently generated by SableCC. It illustrates the main features of our SableCC
extension.

Support for attribute handling. SableCC allows generation of simple tree-
walker classes based on the visitor design pattern [15]. They allow calling of
custom code at the beginning and end of a visit method for each node, but
nowhere in between. This is not sufficient for L-attribute grammars, where in-
herited attribute values may need to be computed between sibling child nodes.
The code does not store the ASM nodes computed during attribute evaluation
of child nodes. The only possibility to achieve this using original SableCC are
two generic maps, called in and out. They are intended to hold data items asso-
ciated with ASM nodes, the ASM node objects acting as map keys. If using this
facility, code to store and retrieve objects from these maps, as well as any type
casting from java.lang.Object, needs to be written by hand. This is error-prone
and should be prevented.

Figure 2 shows the grammar extract we use to describe OCL let expressions.
It is written in extended SableCC syntax. Words in angle brackets, exclama-
tion marks and keywords starting with a hash sign (#) are part of the syntax
extensions, which can be ignored for now.

Figure 3 shows tree walking code generated by the original SableCC for the
production introduced in Figure 2. Custom code can be utilized in line 2 and
13 by overriding methods {in|out}ALetExpCs. For let expressions however, the
OCL 2.0 specification stipulates that all variable declarations must be passed
to the attribute evaluation code of the body expression as part of the inherited
attribute env. This means that somewhere between line 7, where attribute evalu-
ation for the variable declarations occurs, and line 11, where the same occurs for
the body expression, custom code to compute the correct value for env must be
incorporated. Besides, the generated code does allow neither passing inherited
attribute values into the attribute evaluation method, nor passing synthesized
attribute values back to the parent node. Please also note that the code descends

1 Tokens

2 ! in = ’in’;

3 ! let = ’let’;

4 Productions

5 let_exp_cs <LetExp> =

6 let [variables]:initialized_variable_list_cs

7 in [expression]:expression #customheritage

8 ;

Fig. 2. Grammar extract describing let expressions.

into child nodes representing irrelevant syntactic sugar, like the ’let’ token. This
is a waste of computational resources and should be prevented.

1 public void caseALetExpCs(ALetExpCs node) {

2 inALetExpCs(node);

3 if(node.getLet() != null) {

4 node.getLet().apply(this);

5 }

6 if(node.getVariables() != null) {

7 node.getVariables().apply(this);

8 }

9 // ...

10 if(node.getExpression() != null) {

11 node.getExpression().apply(this);

12 }

13 outALetExpCs(node);

14 }

Fig. 3. Original SableCC tree walker code traversing a let expression node (simplified).

Figure 4 shows the code generated by our extended SableCC. First note that
an additional parameter param was introduced, which is automatically casted to
type Heritage. This type is a data container comprising all inherited attributes
ever required during the tree walk, including env. Attributes not used in a specific
context contain null values. The return type of the visit method is now LetExp,
as specified on line 5 of Figure 2. The ASM nodes of child nodes are returned
by their visit methods (lines 8, 17) and stored in a variable. This even works for
lists of CST nodes, which are converted to lists of their ASM nodes.

Computing inherited attributes. Incorporation of custom code for compu-
tation of inherited attributes is performed on demand if the corresponding pro-
duction element is followed by the keyword #customheritage, as it is the case for
expression in Figure 2. The generated code in Figure 4 (lines 14-15) calls an ab-

1 public final LetExp caseALetExpCs(ALetExpCs node, Object param) {

2 Heritage nodeHrtg = (Heritage) param;

3 Heritage childHrtg = null;

4
5 PInitializedVariableListCs childVariables = node.getVariables();

6 List astVariables = null;

7 if(childVariables != null) {

8 astVariables = (List) childVariables.apply(this, nodeHrtg.copy());

9 }

10
11 PExpression childExpression = node.getExpression();

12 OclExpression astExpression = null;

13 if(childExpression != null) {

14 childHrtg = insideALetExpCs_computeHeritageFor_Expression(node,

15 childExpression, nodeHrtg.copy(), astVariables);

16 // ...

17 astExpression = (OclExpression) childExpression.apply(this,

18 childHrtg);

19 }

20
21 LetExp myAst = (LetExp) factory.createNode("LetExp");

22 myAst = computeAstFor_ALetExpCs(myAst, nodeHrtg,

23 astVariables,

24 astExpression);

25 return myAst;

26 }

Fig. 4. Tree-walker code generated by extended SableCC traversing a let expression

node (simplified).

stract method inside<Alternative> computeHeritageFor <Node>. The parame-
ter list of this method has a variable length, determined at generator run-time.
It contains the current CST node, the CST node of the child we are about to
visit, a copy of the current heritage, and the ASM nodes of all left siblings. The
latter is required to fully support L-attribute grammars.

Skipping irrelevant child nodes. The code in Figure 4 does not descend
into all child nodes given in the grammar production. The exclamation mark
in front of a token definition or a production element prevents the attribute
evaluator generator to create code for irrelevant nodes, such as tokens merely
used as syntactic markers (e. g. ’if’, ’let’, etc). This can save some computational
resources.

Creation and computation of ASM nodes. Creation of ASM nodes is
performed automatically by default, using a factory (Figure 4, line 21). This
can be switched off on demand. Computation of the ASM node’s member values
is delegated to an abstract method called computeAstFor <AlternativeName>.
This method is basically responsible for computation of synthesized attributes
according to the attribute evaluation rules defined in [1]. Again, the parameter
list is variable, allowing not only to pass the ASM node to be initialized and
the current Heritage, but also the ASM nodes of all left sibling nodes. This
is required to support L-attribute grammars. Besides, the implementation can
take context information into account, obtained as inherited attribute Heritage,
to perform proper disambiguation.

Automatic node creation can be switched off for each element of a produc-
tion by appending the keyword #nocreate. This will result in a slightly mod-
ified signature for the corresponding createAstFor Xxx method. The feature is
particularly useful for efficient conversion of recursively defined lists into their
equivalent ASM counterparts.

As an example, the relevant grammar extract for context declaration lists is
shown in Figure 5. The grammar recursively describes a simple list of context
declarations. Figure 6 shows the corresponding generated code. The ASM node
type for a context declaration list is a List of OclContextDeclaration instances,
a type specific to our implementation. It is not defined in the OCL 2.0 abstract
syntax.

1 context_declaration_list_cs <List> =

2 [context]:context_declaration_cs

3 [tail]:context_declaration_list_cs? #nocreate

4 ;

Fig. 5. Grammar extract for context declaration lists.

1 public final List caseAContextDeclarationListCs(...) {

2 if(childContext != null) {

3 astContext = (OclContextDeclaration) childContext.apply(...);

4 }

5 if(childTail != null) {

6 astTail = (List) childTail.apply(this, nodeHrtg.copy());

7 }

8 List myAst = computeAstFor_AContextDeclarationListCs(nodeHrtg,

9 astContext, astTail);

10 return myAst;

11 }

Fig. 6. Generated code for context declaration lists (simplified).

In contrast to Figure 4, where the ASM node is created just before the
call to the computeAstFor method (line 21), there is no such call in Figure 6
(line 7-8). Instead, the responsibility to create the ASM node is delegated to the
computeAstFor method (line 8-9). This method will be called for the last context
in the input text first, since the tree walker performs a depth-first descent and all
child nodes are evaluated first, including potential list tails. Thus, the skeleton
code allows for the attribute evaluation code of the last context declaration to
create a list instance containing the ASM couterpart for the currently processed
node. All preceding context declarations can then be added to the head of this
list. Figure 7 shows the actual implementation code for this example.

1 public List computeAstFor_AContextDeclarationListCs(

2 Heritage nodeHrtgCopy, OclContextDeclaration astContext,

3 List astTail)

4 {

5 List result = null;

6 if (astTail != null) {

7 astTail.add(0, astContext);

8 result = astTail;

9 } else {

10 result = new LinkedList();

11 result.add(astContext);

12 }

13 return result;

14 }

Fig. 7. Attribute evaluation code for context declaration lists (simplified).

Automatic attribute passing for chain rules. The concrete syntax spec-
ification contains numerous productions comprising alternatives of the form
A → B, with A and B being nonterminals. Such rules serve to subsume various
syntactical instances of a generic semantic concept under a common produc-
tion, delegating definition of the actual syntax to subordinate productions. We
call these productions chain rules. One example in our modified grammar is
literal exp cs (Fig. 8).

The attribute evaluator code can be simplified for this type of productions. It
is not necessary to compute an ASM node, if the ASM node type of subordinate,
chained alternatives is conforming to the ASM node type of the embracing pro-
duction. Our attribute evaluator generator supports this simplification through
the keyword #chain appended to respective alternatives. The ASM node type
for the embracing production is LiteralExp, which is a supertype of all ASM
node types of the chained alternatives. The generator checks type conformance
at generator run-time and issues an error message if the types do not match.

1 literal_exp_cs <LiteralExp> =

2 {lit_collection} collection_literal_exp_cs #chain

3 | {lit_tuple} tuple_literal_exp_cs #chain

4 | {lit_primitive} primitive_literal_exp_cs #chain

5 ;

Fig. 8. Production for literal expressions (simplified).

1 public final LiteralExp caseALitCollectionL...(...) throws ... {

2 // ...

3 CollectionLiteralExp astCollectionLiteralExpCs = null;

4 if(childCollectionLiteralExpCs != null) {

5 astCollectionLiteralExpCs = (CollectionLiteralExp)

6 childCollectionLiteralExpCs.apply(...);

7 }

8 LiteralExp myAst = astCollectionLiteralExpCs;

9 return myAst;

10 }

Fig. 9. Generated code for chained alternative lit collection of literal exp cs (simpli-
fied).

Figure 9 shows the generated code for this example. After descending into
the (only) child node (lines 4-7), the visit method simply returns the ASM node
created for the child (lines 8-9). This completely removes the need to implement
ASM node computation manually.

4.4 Features of the Attribute Evaluator Implementation.

Some features of the parser belong to the overall implementation and are not
limited to the attribute evaluator. This section sketches them.

Balanced syntactical and semantic analysis for leaner implementa-

tion. During implementation of the attribute evaluator, the structure of the
grammar was further modified to minimize implementation effort. The genera-
tor creates one visit method per alternative. Context-sensitive analysis for each
alternative is to be performed in the corresponding visit method. In situations
where it is possible to distinguish similar languages syntactically, care must
be taken not to overuse this possibility. It can easily lead to a large number
of alternatives describing nearly identical languages. By experience we learned
that context-sensitive analysis for similar alternatives tends to require similar
context-sensitive checks. This would result in sections of the same code in a
large number of visit methods. To prevent code-duplication, we tried to balance
exploitation of syntactical analysis and redundancy of context-sensitive analysis.
Thus, some recognition effort was shifted from syntactical to contextual analysis,
reducing the number of visit methods and thereby leading to a slightly leaner
implementation.

Support for multiple iterator variables. According to [11], it is hard to
implement multiple iterator variables syntactically using the grammar given in
[1]. We were able to solve this problem using different syntactic constructs for
variable declarations with or without initializer values, as assumed by [11].

5 Summary

We have learned that to generate an OCL 2.0 parser according to the OMG
specification is a challenging task. Experimenting with the OCL 2.0 concrete
syntax and changing it, we found a technique that allows to a large extent
automated generation of a parser creating the ASM for a given OCL expression.
The algorithm is based on a L-attribute grammar and has been implemented as
extension of the SableCC parser generator. We plan to prepare this extension as
User Contributed Tool to the Open Source Community ([5]). We implemented
and tested the attribute evaluation based on an L-attribute grammar as part
of the Dresden OCL2 Parser. Furthermore, our OCL2 Parser is integrated into
the Dresden OCL2 Toolkit architecture. A first use case of the parser can be
demonstrated by the OCL22SQL tool that generates SQL code as explained in
[18]. We are currently starting a few new projects around the Dresden OCL2
Toolkit. Among other things we will investigate techniques for code generation
of procedural/object-oriented (e.g. Java or C#) and declarative (e.g. SQL or
XML query languages) code.

Acknowledgment. We would like to thank all people who have contributed
over several years to the Dresden OCL Toolkit project. The project has been
initiated in 1999. In the following years many students accounted both with
research ideas and implementations to the Dresden OCL Toolkit and made their
modules available to the open source community. Concerning the Dresden OCL2
Toolkit, Stefan Ocke created a solid basis for the new toolkit version by his
Dresden OCL2 Repository that manages models and metamodels and has been
an important prerequisite for the running Dresden OCL2 Parser.

References

1. Object Management Group: UML 2.0 OCL Specification. (2004) OMG Document
ptc/2004-10-14.

2. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories. Assembling Ap-
plications with Patterns, Models, Frameworks, and Tools. Wiley (2004)

3. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Metamodelling. A Foun-
dation for Language Driven Development Version 0.1. albini.xactium.com (2005)

4. Warmer, J., Kleppe, A.: The Object Constraint Language Second Edition. Getting
Your Models Ready for MDA. Addison-Wesley (2003)

5. Gagnon, E.M.: Sablecc parser generator. (www.sablecc.org)
6. Ocke, S.: Entwurf und Implementation eines metamodellbasierten OCL-Compilers.

Master’s thesis, Technische Universität Dresden, Department of Computer Science
(2003)

7. Loecher, S., Ocke, S.: A Metamodel-Based OCL-Compiler for UML and MOF.
Electr. Notes Theor. Comput. Sci. 102 (2004) 43–61

8. JCP: The JavaTM Metadata Interface (JMI) Specification.
(www.jcp.org/en/jsr/detail?id=40)

9. Technische Universität Dresden, D.o.C.S.: Dresden OCL Toolkit. (dresden-
ocl.sourceforge.net)

10. Klasse: Octopus: OCL Tool for Precise Uml Specifications.
(www.klasse.nl/english/research/octopus-intro.html)

11. Akehurst, D.H., Patrascoiu, O.: OCL 2.0 - Implementing the Standard for Multiple
Metamodels. Electr. Notes Theor. Comput. Sci. 102 (2004) 21–41

12. Object Management Group: Unified Modeling Language Specification Version
1.4.2. (2004) OMG Document formal/04-07-02, www.omg.org.

13. Grune, D., Jacobs, C.J.H.: Parsing techniques: a practical guide. Ellis Horwood,
Upper Saddle River, NJ, USA (1990)

14. Finger, F.: Design and Implementation of a Modular OCL Compiler. Master’s
thesis, Technische Universität Dresden, Department of Computer Science (2000)

15. Gagnon, E.: SableCC, an Object-Oriented Compiler Framework. Master’s thesis,
McGill University (1998)

16. Grune, D., Bal, H.E., Jacobs, C.J., Langendoen, K.G.: Modern Compiler Design.
Wiley (2000)

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1995)

18. Demuth, B., Hussmann, H., Löcher, S.: OCL as a Specification Language for
Business Rules in Data Base Applications. In Gogolla, M., Kobryn, C., eds.: UML
2001 - The Unified Modeling Language. 4th International Conference. LNCS 2185,
Springer (2001)

