Co-Evolution of Models and Feature Mapping
in Software Product Lines

Christoph Seidl
Technische Universitat
Dresden
Software Technology Group
01062 Dresden, Germany

christoph.seidl@tu-
dresden.de

ABSTRACT

Software Product Lines (SPLs) are a successful approach
to software reuse in the large. Even though tools exist to
create SPLs, their evolution is widely unexplored. Evolving
an SPL manually is tedious and error-prone as it is hard to
avoid unintended side-effects that may harm the consistency
of the SPL. The main contribution of this paper is the con-
ceptual basis of a system for the evolution of model-based
SPLs, which maintains consistency of models and feature
mapping. As further contribution, a novel classification is
introduced that distinguishes evolutions by their potential to
harm the mapping of an SPL. In addition, multiple remap-
ping operators are presented that can remedy the negative
side-effects of evolutions in order to co-evolve the feature
mapping. Finally, an implementation of the evolution system
in the SPL tool FeatureMapper is provided to demonstrate
the capabilities of the presented approach when co-evolving
models and feature mapping of an SPL.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Computer-aided software engineering (CASE); D.2.2
[Software Engineering]: Design Tools and Techniques—
Object-oriented design methods

General Terms
Design, Algorithms

Keywords

Software Product Lines, Evolution, Co-Evolution, Model
Transformation, Feature Modeling, Feature Mapping

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPLC ’12 September 02 - 07 2012, Salvador, Brazil

Copyright 2012 ACM 978-1-4503-1094-9/12/09 ...$15.00.

Florian Heidenreich
Technische Universitat
Dresden
Software Technology Group
01062 Dresden, Germany
florian.heidenreich@tu-
dresden.de

Uwe ABmann
Technische Universitat
Dresden
Software Technology Group
01062 Dresden, Germany
uwe.assmann@tu-
dresden.de

1. INTRODUCTION

In feature-oriented software product lines (SPL), function-
ality of a set of interrelated applications is described in terms
of core functionality and multiple individual features [14],
which can be combined to build one particular program.
The conceptual notion of features is located in the problem
space [7]. Individual products of the SPL are created by
combining the core functionality with a subset of the avail-
able features. To aid this process, all legit combinations of
features are described in a variability model. The work of
this paper employs feature models for this purpose but the
described concepts can be adapted to other approaches such
as decision modeling [17] or orthogonal variability modeling
(OVM) [14] as well. Finally, implementation assets, such as
design models or source code, are located in the solution
space [7]. In this paper, problem and solution space artifacts
are assumed to be models in the sense of EMOF', e.g, im-
plemented in EMF? Ecore. All artifacts can be perceived
as models provided that a suitable metamodel exists. This
is the case for graphical notations such as UML as well as
for the Java programming language (using JaMoPP [6]) or
textual notations in general, such as the over 100 languages
of the EMFText Syntax Zoo®.

In order to assemble a concrete product from a selection of
features, a mapping from the elements in the problem space
to parts of the solution space is required. This feature map-
ping [3] relates logical expressions of features in the feature
model to individual parts of solution space artifacts. The
feature mapping may be implicit, e.g., through annotation of
realization artifacts or conditional compilation, or explicit in
a separate artifact containing the mapping information. For
the approach in this paper, an explicit model-based feature
mapping is assumed. Besides mapping features to entire
solution space assets (e.g., classes), the mapping model may
also be used to target mere fractions of these assets (e.g.,
methods). Creating and maintaining the feature mapping is
both tedious and error-prone so that tool support is a great
aid in the development of an SPL. One tool in this domain
is FeatureMapper? [7], which operates on arbitrary EMF
Ecore-based models.

Similar to other software systems, SPLs have to change

http://omg. org/mof
*http://eclipse.org/emf
3http://emftext.org/zoo
‘http://featuremapper.org

over time in order to meet new requirements or to stay
satisfactory, which is referred to as evolution [11]. However,
the evolution of SPLs poses significant challenges as it is easy
to accidentally harm the feature mapping, which might render
the feature model and the realization artifacts inconsistent
and, thus, prevent the creation of certain products. For
example, if an implementation asset is deleted but a mapping
to the now missing element remains in the system, products
that include the referencing combination of features will be
invalid. Furthermore, modifying solution space assets may
harm the mapping as well, e.g., when parts of a Java method
are extracted but the original mapping is not extended to
include the new method. Due to these reasons, evolutions can
not be applied to elements of an SPL without jeopardizing
the feature mapping in the general case.

In this paper, three contributions are presented to address
this problem. First, a novel classification for evolutions in
SPLs is introduced that captures the effects of model mod-
ifications on the feature mapping. Second, the conceptual
basis for the co-evolution of models and feature mapping is
presented and, third, an implementation that can be used in
practical scenarios is provided. Throughout this paper, we
assume that an SPL is in a consistent state before evolutions
are applied and that its features are properly modularized
in the solution space.

The remainder of the paper is structured as follows. In
Section 2, various evolutions for the problem and solution
space are introduced. In Section 3, the novel classification
for evolutions in SPLs is presented and the introduced evolu-
tions are classified. In Section 4, remapping operators are
introduced, which are employed to modify existing mappings
in order to remedy the negative side-effects of evolutions in
SPLs. In Section 5, the presented evolutions are comple-
mented with adequate remapping operators where necessary.
Furthermore, the implementation of the presented concepts
within FeatureMapper is discussed in Section 6 and an evalu-
ation of the approach is presented in Section 7. Finally, work
related to the area of SPL evolution is examined in Section 8
before the paper is concluded in Section 9.

2. EVOLUTIONS IN PRODUCT LINES

A number of evolutions for the problem as well as the
solution space is introduced in the following, which is later
used to demonstrate the presented classification for evolutions
in SPLs and the introduced remapping operators. In the
problem space, the only type of model that is regarded for
evolution within this approach is the feature model. However,
in the solution space, a multitude of different models has to
be targeted because of the large number of different types of
implementation artifacts. Due to this elementary difference,
evolutions are provided for either space separately depending
on where the changes originate. In the course of this paper, it
is assumed that changes are performed on the SPL itself but
not on individual products. Furthermore, only changes to
models but not to their respective metamodels are considered.

The presented evolutions are exemplified by realistic appli-
cation scenarios taken from the evaluation of the described
evolution system published in [19]. In the evaluation, an
SPL for the software part of a multimedia system in a car
is subject to various modifications. Focussing on the parts
relevant to demonstrating the presented evolutions, the SPL
consists of various options for an audio player (radio, CD
player, cassette player), which each use the speaker system

of the car as well as a display built into its middle console.
Besides modifications on these features and their realization,
the SPL is extended by a personal navigation device.

A variety of evolutions for different models is presented so
that the wide applicability of the co-evolution approach can
be demonstrated later on. In the following, these evolutions
are explained and illustrated by example.

2.1 Evolutions from the Problem Space

Within the presented approach, the feature model is the
only target of evolutions originating in the problem space.
Other assets located in the problem space (such as use cases,
functional requirements etc.) are not regarded. In total, five
different evolutions are presented for the problem space.

Duplicate Feature copies the selected feature (Original-
Feature) and adds the clone (CopiedFeature) as sibling of the
selected feature to the feature model. This evolution is used
to create a new feature that is largely similar to an already
existing feature in terms of the solution space elements it
references. For instance, in the aforementioned automotive
multimedia SPL, a basic version of a feature for a personal
navigation device may be added as clone of the audio player.
In this case, the similarity of the features is exploited as both
employ the speaker system and the display of the car.

Insert Feature creates an entirely new feature (NewFea-
ture) in the feature model as child element of the currently
selected feature. The evolution is intended to be employed
when creating a new feature that has very little to no simi-
larity to already existing features. For example, the newly
created personal navigation device depends on digital geo-
graphical maps in order to calculate routes. A mandatory
feature representing these maps may be added as child of
the personal navigation feature using Insert Feature.

Split Feature is used to model a feature in a more fine-
grained way than was originally intended by distributing its
functionality to an arbitrary number of constituents. For this
purpose, a specified number of child features (Split Features) is
added to the affected feature (OriginalFeature). Semantically,
the sum of all child features comprises the same functionality
as the original feature. An example of Split Feature can be
found in Figure 1, where the geographical mapping material
provided along with the personal navigation device is split
into smaller units representing different continents.

PersonalNavigation
PersonalNavigation
Maps
Maps

Europe Asia America

Figure 1: Example of Split Feature to divide feature
Maps into parts for different continents.

Remove Feature can be applied to delete a selected
feature (OriginalFeature) from the feature model.

Remove Feature and Owned Assets is a more com-
plex evolution, which deletes a selected feature (Original-
Feature) from the problem space and removes all solution
space assets that were used exclusively by this feature but no
other feature (OwnedAssets). Due to this characteristic, the
evolution is used to completely delete a feature and its imple-
mentation from an SPL. The effects of Remove Feature and
Ouwned Assets are presented in Figure 2, where the obsolete
feature Cassette Player is removed from the automotive
multimedia SPL. Along with the feature of the feature model,

the exclusively used implementation assets in the form of a
UML class and aggregation are deleted as well.

AudioPlayer AudioPlayer -
CDPlayer Cassette CDPlayer
Player

Figure 2: Example of Remove Feature and Owned
Assets to delete the feature CassettePlayer and its
implementation.

2.2 Evolutions from the Solution Space

For the solution space, evolutions for multiple types of
models have to be provided as principally any kind of model-
based artifact may be used as target of a feature mapping. In
the course of this paper, two different types of models serve
as representatives of the software development process. The
Unified Modeling Language (UML) is employed as example
of design models via Eclipse MDT® and Java source code is
converted to a model representation by use of JaMoPP® [6]
to demonstrate textual formats.

Replace Method with Method Object for UML is
used when the functionality described by a method (Method)
has to be relocated to a separate class. During this process,
a new class is created (NewClass) and a reference (Refer-
ence) to it from the original class (OriginalClass) is added.
Furthermore, the selected method is moved from the original
class to the new class. Within the automotive multimedia
SPL, the class representing the CD player logic is capable
of decoding audio CD text information. In the evaluation
scenario, the CD player is aided with additional capabilities
to decode the MP3 audio format, for which a new child class
is created. Due to this reason, the method to decode audio
CD text is no longer needed in the base class for the CD
player and can, thus, be moved to a separate class.

Extract Method for Java is employed to restructure the
contents of a method (OriginalMethod) when it becomes
convoluted due to too many lines of code. For the evolution
to be applicable, multiple lines of code of a method have to
be selected (Statements), which are then moved to a newly
created method (NewMethod). At the site of the original
code, a call to the new method is added (MethodCall). Thus,
the semantics of the code fragment are maintained while
improving its structure.

Rename Element, as further evolution for Java, allows
to assign new names to entities such as classes, methods or
attributes (Element). The evolution automatically updates
all relevant occurrences of the name (References), such as
method calls or references to attributes, in order to maintain
the validity of the code fragment. For example, the class CD-
Player of the automotive multimedia SPL may be renamed
to MultiFormatCDPlayer in order to signal its increased ca-
pability to decode MP3 files.

3. CLASSIFICATION OF EVOLUTIONS

In order to adapt an SPL to changed requirements, a vari-
ety of different model evolutions might have to be employed.
Thus, evolutions may add new model elements as well as

Shttp://eclipse.org/uml2
Shttp://jamopp.org

modifiy or delete existing ones. Changes may appear in
models of the problem space, the solution space or both of
them simultanously. According to these criteria, the effects
of an evolution on the SPL in its entirety differ. In order
to precisely address individual types of model evolutions
by their effect on an SPL, a classification is required that
captures the effects of an evolution on all relevant models
and the feature mapping.

3.1 Classifications in the Literature

Unfortunately, classification systems in the literature are
unsuitable for this purpose. For example, a classification
by whether an evolution preserves semantics is defined for
parts of an SPL but not for its entirety covering the seman-
tics of feature model, feature mapping and solution space
assets. The most comprehensive classification of this type
was defined by Borba et al. [4] along with a formal theory
of product line refinement. They classify evolutions by their
effect on the semantics of an SPL by considering feature
model, configuration knowledge and asset mapping, where
the latter two in combination are equivalent to what is re-
ferred to as feature mapping in this paper. However, they
provide only a brief example of a modification to a realization
asset, which modifies the artifact’s semantics (i.e., renaming
a menu option for the user interface). Apart from that, the
semantics of realization assets in the solution space is not
regarded. However, the realization assets ultimately define
the behavior of products derived from the SPL. Thus, when
attempting to classify evolutions by whether they preserve
semantics of an SPL, the effects on semantics of solution
space assets has to be captured as well. Unfortunately, this
seems practically impossible due to the sheer number of dif-
ferent solution space artifacts and their varying definitions
of semantics. For instance, source code defines semantics
as program behavior whereas the semantics of a documen-
tation format are its contents as they are perceived by the
reader. Due to these reasons, it is not feasible to apply a
uniform classification by semantic preservation for evolutions
encompassing an entire SPL.

Further classifications in the literature group model evolu-
tions by various other characteristics such as the relation of
goal and target model. In [15], mapping and update trans-
formations are distinguished. A mapping transformation
relates the elements of a source model to the elements of a
different target model, whereas an update transformation
modifies a given model in place. A very similar classification
is presented in [12] where endogenous and exogenous trans-
formations are differentiated. Endogenous transformations
rephrase elements of one language to different elements of
the very same language. In contrast, exogenous transforma-
tions are a translation of elements from a source language
to elements of a target language. Furthermore, a distinction
of horizontal and vertical evolutions is presented in [12] to
capture a change in abstraction level. Horizontal evolutions
maintain the current level of abstraction whereas vertical evo-
lutions make the transformed artifacts either more concrete
or more abstract.

In addition, the reversibility of evolutions is used for clas-
sification in [1] with the groups for unidirectional and bidi-
rectional modifications. Unidirectional evolutions extend the
configuration options of the feature model in the problem
space of an SPL and, thus, can not be reversed without disal-
lowing certain products. In contrast, bidirectional evolutions

maintain configurability so that they can be reversed. As
the semantics of the problem space are equivalent to the
configuration options of the feature model, this classification
is closely related to a classification by semantics preservation
and, thus, suffers from the same problems as described above.

As all evolutions presented in this paper work directly on
the provided models, each evolution uniformely had to be
considered a horizontal, endogenous update transformation
when the classifications above were employed.Furthermore,
the general problem of the presented classifications is that
they consider only one model at a time but not the entirety of
all models encompassed by an SPL. It would be problematic
to classify changes that, e.g., refine one model and make
another one more abstract within a single evolution step.
Thus, above classifications are not feasible to capture the
effects of evolutions on the feature mapping and models of
an SPL.

3.2 Classification by Semantical Extent of
Model Changes

For an adequate classification of evolutions in the con-
text of an SPL, modifications of problem and solution space
models as well as effects on the feature mapping have to
be considered. Due to this reason, a novel classification is
introduced that uses the semantical extent of model changes
as criterion. For this purpose, evolutions are categorized
into two groups: intraspatial and interspatial evolutions. In-
traspatial evolutions merely affect the space they originate
from (i.e., either problem or solution space) but not the
feature mapping. The semantical extent of changes in in-
terspatial evolutions reaches beyond the boundaries of the
originating space. This group of evolutions is further divided
into interspatial evolutions of the first and second degree.
Interspatial evolutions of the first degree affect their origi-
nating space as well as the feature mapping and interspatial
evolutions of the second degree additionally modify elements
in the opposite space. In Figure 3, a schematic overview of
these groups of evolutions is presented.

Intraspatial Interspatial

(First Degree)

.
o |+

M | s P
Figure 3: Schematic overview of the classification by
semantical extent of model changes.

Interspatial
(Second Degree)

;
»

S

o

P

from
Problem
Space

M

v
2

A

P

|
|
|
|
|
S |
|
|
|
: M| s

from
Solution
Space

An example for an intraspatial evolution in the problem
space could be the change of an optional to a mandatory fea-
ture, which affects configuration options but not the mapping
to solution space elements. Likewise, restructuring internal
details of a mapped element (e.g., statements in a mapped
method) qualifies as intraspatial evolution in the solution
space. An example of interspatial evolutions in either space
is the deletion of elements, such as with Remove Feature.
Further examples for members of each category can be found
in Section 5.

In order to attribute one particular evolution to its ap-
propriate group in the classification, structural changes in
the model as well as the intent of the evolution have to be

considered. For an inspection of structural changes, the op-
erations an evolution performs are separated into the three
abstract groups of adding, modifying (e.g., setting attribute
values) and removing elements. If an evolution exclusively
consists of operations that merely modify existing elements,
the evolution is categorized as intraspatial as the mapping is
not affected. As the approach works on models, it is possbile
for artifacts to hold references to elements of other models,
which are not affected by name changes so that a modifi-
cation of e.g., a feature name does not harm the feature
mapping. When elements are removed from a model, the
evolution is necessarily interspatial as potential mappings of
the removed element have to be deleted as well.

However, when adding new elements to a model, the mere
inspection of structural changes does not suffice for an ad-
equate classification but the intent of the evolution has to
be considered instead. When adding elements to a model,
it has to be determined whether the newly created element
has a logical relation to previously existing ones (e.g., having
largely similar functionality). If that is the case, the evolu-
tion is interspatial as it crosses the boundary to the mapping.
Otherwise, the evolution is intraspatial (see comparison of
Insert Feature and Duplicate Feature in Section 3.3).

Once it was established that an evolution is interspatial in
nature, it remains to be determined whether it is of the first
or the second degree. For this purpose, the space opposite
to the originating space of the evolution has to be examined
for model changes. If at least one model was modified in the
opposite space as well, the evolution is of the second degree,
otherwise it is of the first degree. The steps for classifying
evolutions are summarized in a decision diagram in Figure 4.

Was at least one
element deleted?

Does at least one element have
a logical connection to an

yes existing element?

no

Was at least one new

element added? yes

yes
no Were models of problem and

solution space modified?

Was at least one existing
element modified?

no yes no no yes

No Intraspatial Interspatial Interspatial
Evolution First Degree Second Degree

Figure 4: Decision diagram for the classification by
semantical extent of model changes.

3.3 C(lassification of Presented Evolutions

According to the presented classification, the evolutions of
Section 2 can be attributed to their respective classes.

In the problem space, Duplicate Feature clones a selected
feature by copying it. Due to the semantical connection of
the original and cloned element, the evolution is interspatial
of the first degree. Insert Feature merely adds a new feature
to the feature model that has no connection to previously
existing ones so that the evolution is considered intraspatial
and, thus, does not require remapping. Even though Dupli-
cate Feature and Insert Feature perform similar structural
changes, the evolutions have a different intent so that they
are classified as interspatial and intraspatial respectively.
Split Feature distributes functionality of a selected feature to

various newly created child features. Thus, a logical connec-
tion between original and new elements can be established
and the evolution is considered interspatial. Remove Feature
deletes elements in the problem space so that it is interspatial
by definition. Remove Feature and Owned Assets potentially
deletes elements in the problem as well as in the solution
space. Thus, both spaces are affected by Remove Feature
and Owned Assets, which makes it an interspatial evolution
of the second degree.

In the solution space, Replace Method with Method Object
for UML creates a new class and a reference to it before
the selected method is move to the new class. In order to
classify the evolution, its two constituent operations have
to be examined. The move operation merely modifies a
previously existing element. Futhermore, the newly created
class has a clear semantical link to the already existing class
as it assumes part of the original functionality, which is
signaled by the newly added reference between the original
and new class. Thus, the evolution is interspatial of the first
degree. Eztract Method for Java adds a new element and a
method call at the site of the original code, which establishes
a semantical link between the new method and the previously
existing one. Hence, the evolution is interspatial of the first
degree. Rename Element for Java merely modifies existing
elements by changing their name so that the evolution is
considered intraspatial and does not require remapping.

4. REMAPPING

As intraspatial evolutions do not affect the feature map-
ping, they are unproblematic for consistency of the feature
mapping. However, for interspatial evolutions, the feature
mapping has to be modified in order to ensure consistency as
these evolutions affect the feature mapping as a side-effect.
For this purpose, various remapping operators are provided
for the problem as well as the solution space, which can be
used in conjunction with interspatial evolutions to co-evolve
the feature mapping. The intent of these remapping oper-
ators is to modify existing feature mappings in accordance
with the performed model evolutions but not to introduce
entirely new mappings. In order to disambiguate remap-
ping operators for the problem and solution space, they are
referred to as “feature remapping operators” and “object
remapping operators”, respectively.

4.1 Feature Remapping Operators

The problem space end of a mapping is the feature ex-
pression, which is a logical term referencing various features.
Thus, remapping operators in the problem space modify this
term in order to alter the mapping in accordance with the
performed evolution. Some remapping operators allow to
specify multiple targets for a single operation. In these cases,
users may choose a subset of all targets to use as effective
targets for each affected mapping provided that the designers
of an evolution granted this freedom of choice as they as-
sessed that it is reasonable in this case. In sum, five different
feature remapping operators are provided for the problem
space. Each operator is specified by a number of steps that
have to be carried out in order to perform the remapping.
Graphical examples of all feature remapping operators can
be found in Figure 5.

Move Feature Mapping is used to relocate the mapping
of one feature to another feature by performing the following
steps:

Move Feature Mapping

m Class1
FeatureA —— FeatureA ——
:-I;e.a-taréé: FeatureC m FeatureB FeatureC m
------- - [— 2 [—]
Copy Feature Mapping
m Class1
FeatureA — FeatureA —]
:-I;e.a-thréé: FeatureC m FeatureB FeatureC m
------- - [— 2 [—]
Remove Feature Mapping
Class1 m
FeatureA —— FeatureA ——
FeatureB FeatureC m FeatureB FeatureC m
¥ [— [—]
Split Feature Mapping
FeatureA ——
FeatureB FeatureC m
2 [—]

:@@é —— FeatureA
FeatL:reB FeatureC] FeatureB FeatureC
Legend: Source Feature(s) : : i : :: Target Feature(s)

Figure 5: Graphical examples of all feature remap-
ping operators using UML in the solution space.

1. Parameters: fs the source feature, F; the set of poten-
tial target features

2. Let M be the set of all mappings containing a reference
to feature fs.

3. For each mapping m € M:

(a) If permissible, have users specify the set Fer C F}
of effective target features, otherwise F.; := F}.
(b) Let t be the current term of mapping m.
(c) For each feature f € Fes:
i. Create a copy of term t as term t;.
ii. Replace all occurences of feature fs in term
t; with feature f.
(d) Concatenate all terms ¢; using the OR operator
and set the result as term for mapping m.

Copy Feature Mapping is employed to logically dupli-
cate a mapping of one feature for another one. The steps
to carry out this procedure are identical to those for Move
Feature Mapping except for step 3(d) where the concatena-
tion of all terms ¢; has to be concatenated with the original
term of mapping m using the OR operator before setting the
result as term for mapping m.

Remove Feature Mapping deletes a particular feature
from a mapping by rephrasing the feature expression carrying
out these steps:

1. Parameters: F, the set of source features
2. For each feature f € Fi:

(a) Let M be the set of all mappings containing a
reference to feature f.
(b) For each mapping m € M:

i. Let t be the current term of mapping m.
ii. Remove all occurrences of f and all superflu-
ous operators from term t.
(c) If term ¢t = € (the empty term), delete mapping
m from the system, otherwise set the term of
mapping m to term ¢.

When removing the references to feature f in step 2(b)ii,
some operators may temporarily be rendered invalid (e.g.,
the AND/OR operators with one or less remaining operands
or the NOT operator with no operand). In these cases, the
affected operator is removed and the remaining operands (if
any) are relocated to the respective superordinate operator.
This procedure might reduce the entire term to e (the empty
term). In this case, the mapping is deleted in step 2(c).

Split Feature Mapping is used to distribute the map-
ping from one feature to multiple others. In detail, the
following steps have to be carried out for this remapping:

1. Parameters: fs the source feature, F; the set of poten-
tial target features

2. Let M be the set of all mappings containing a reference
to feature fs.

3. For each mapping m € M:

(a) Have users select an operator o € {AND, OR}.

(b) If permissible, have users specify the set Fe; C F}
of effective target features, otherwise Fet := Fy.

(c) Create a term t as concatenation of all features
f € Fe; using operator o.

(d) Set the term of mapping m to term ¢.

Merge Feature Mapping combines mappings from dif-
ferent source features on one target feature. Through this
operation, the changes created by Split Feature Mapping can
be nullified. The steps for the remapping procedure are as
follows:

1. Parameters: F the set of source features, f: the target
feature

2. Let M be the set of all mappings containing a reference
to at least one feature f € F.

3. For each mapping m € M:

(a) Let ¢ be the current term of mapping m.

(b) Replace all occurrences of feature f € Fs in term
t with feature f;.

(c) Set the term of mapping m to term t¢.

Whether applying a feature remapping operator alters
semantics of a feature expression depends on the concrete
situation. For example, a feature in a feature expression may
be replaced by an OR expression of other features as result
of Move Feature Mapping as well as Split Feature Mapping.
In the former case, semantics would be altered whereas, in
the latter case, semantics would be maintained if the various
features are the split parts of Split Feature.

4.2 Object Remapping Operators

In contrast to the problem space, remapping in the solution
space is performed mostly by altering the reference to a
solution space element in a mapping. In sum, there are three
object remapping operators in the solution space. Graphical
examples of these operators are presented in Figure 6.

Move Object Mapping relocates the mapping of a par-
ticular solution space element to one or multiple other ele-
ments with the following steps:

Move Object Mapping

.Fe/atl@o l— FeatureA ——
FeatureB FeatureC . Featl:reB FeatureC]
Copy Object Mapping

Class1
FeatureA FeatureA —]
FeatureB FeatureC FeatLlJreB FeatureC @
Remove Object Mapping
Class1 Class1
FeatureA —— FeatureA ———
FeatL:reB FeatureC = @ FeatureB FeatureC @
e
Legend Source Element(s) & Target Element(s)

Figure 6: Graphical examples of all object remap-
ping operators using UML in the solution space.

1. Parameters: es the source element, F; the set of target
elements

2. Let m1 be the mapping referencing element es.

3. For each element e; € E;:

(a) Let m2 be the mapping referencing e;.
(b) If m2 = € (the empty mapping):
i. Create a copy of mapping ml as mapping m3.
ii. Set the target element of mapping m3 to ele-
ment e;.
(c) Else
i. Concatenate the terms of mapping ml and
mapping m2 using the OR operator as term
t.
ii. Set the term of mapping m2 to term t.

4. Delete mapping m1 from the system.

Copy Object Mapping faces similar issues when dupli-
cating the mapping of one solution space element to another.
However, unlike with Move Object Mapping, the original map-
ping is not deleted in order to perform the copy operation.
Thus, the steps to perform are equivalent to those for Move
Object Mapping except for step 4, which is not performed.

Remove Object Mapping deletes the mapping of one
or more solution space elements by deleting the respective
mappings from the system provided that they exist. This
procedure is performed by the following steps:

1. Parameters: E; the set of source elements
2. For each element e; € Es:

(a) Let m be the mapping referencing es.
(b) Delete mapping m from the system.

For all feature and object remapping operators affecting
more than one mapping, it might be possible to exclude
individual mappings from remapping (e.g., copy only a subset
of all affected mappings). However, this degree of freedom
may jeopardize SPL consistency in some cases. For example,
not moving all mappings away from an element deleted during
an evolution would render the SPL inconsistent. Due to this
reason, designers of an evolution have to explicitly allow
exclusion of individual mappings when they assessed that it
is reasonable in this case.

5. CO-EVOLUTIONS IN PRODUCT LINES

With the presented remapping operators, it is possible
to aid the evolutions of Section 2 with adequate remapping
support where necessary. Insert Feature Mapping in the
problem space and Rename Element for Java in the solution
space were identified as intrapstial evolutions and, thus,
do not require remapping. The remaining evolutions are
interspatial and have to be extended by remapping operations
in order to be applicable in SPLs without endangering the
feature mapping. For the adequate remapping operations,
the names of participating roles in an evolution from Section 2
are used.

With Duplicate Feature, the original feature should be
cloned. Thus, it is appropriate to also duplicate the respective
mappings. For this purpose, the evolution is complemented
by the Copy Feature Mapping operator, which is parameter-
ized with f; = OriginalFeature and F; = {CopiedFeature}.
In the case of duplicating the feature for the audio player
as basis for a personal navigation device in the automotive
multimedia SPL, only those mappings might be copied to
the new feature that concern the speaker system and the
display as these parts are used by the audio player as well as
the personal navigation device.

For the Split Feature evolution, the analog Split Fea-
ture Mapping operator is utilized with parameters fs =
OriginalFeature and Fy = SplitFeatures. In the example of
splitting a feature for geographical maps to features for spe-
cific continents, users might choose to redirect the original
mapping to geographical mapping material for countries such
as Germany or Poland to the new feature Europe, China and
Japan to Asia as well as USA and Canada to America by
selecting only those targets for the respective mappings.

Remove Feature is accompanied by Remowve Feature Map-
ping, which is employed to delete the mapping of all no longer
existing features, with the parameter Fy, = { OriginalFeature}.

Remove Feature and Owned Assets deletes elements from
the problem and solution space. Due to this reason, the
evolution requires remapping in both spaces. In the problem
space, Remove Feature Mapping is applied to delete the map-
pings of the removed feature with Fs = {OriginalFeature}.
In the solution space, Remove Object Mapping is employed
to delete the mapping of all assets that were removed from
realization artifacts so that Fs = OwnedAssets. In the ex-
ample of deleting the cassette player and its assets from the
SPL, the respective mappings are deleted along with the
feature for the cassette player and its representation in the
UML design model.

Replace Method with Method Object for UML is comple-
mented by Copy Object Mapping to duplicate the mapping of
the original class to the newly created method object as well
as the association to it with parameters f; = OriginalClass
and Fy = {NewClass, Reference}. In addition, the map-
ping of the relocated method is extended to the new con-
taining class and its incoming association by use of Copy
Object Mapping as well so that they are part of all SPL
variants where the method is required (fs = Method and
F, = {NewClass, Reference}).

Extract Method for Java is accompanied by Copy Object
Mapping to clone the mapping of the method originally
containing the extracted lines of code to the newly cre-
ated class and the call to it (fs = OriginalMethod, F; =
{NewMethod, MethodCall}). Furthermore, the new method
and the call to it should be part of all variants that originally

required at least one of the extracted statements. Thus,
the mapping from the statements is extended using the
Copy Object Mapping operator with fs = Statements and
F, = {NewMethod, MethodCall}.

6. IMPLEMENTATION

The concepts described in the paper were implemented
as part of the Eclipse-based FeatureMapper’. The tool
allows to create and maintain model-based SPLs and is
able to assemble assets representing selected features for an
individual product. In order to realize the evolution system
for SPLs, the tool Refactory [16] by Reimann et al. was
employed for the modification of models. Despite its name,
Refactory is not limited to semantic preserving changes but
can be used for the more general task of model evolution
as well. In order to perform remapping, the post processor
mechanism of Refactory was used, which enables execution
of additional operations (i.e., remapping plans) immediately
after an evolution. An extension point of Eclipse is used
to register a remapping plan with a particular evolution.
Immediately after the evolution was executed, all remapping
operators contained in the remapping plan are executed
sequentially. All eight described remapping operators can be
employed in order to maintain consistency of the mapping.
Where applicable, the remapping plan is accompanied by
a user interface for its contained remapping operators that
allows customization of the remapping process. However,
designers of an evolution have to explicitly enable this option
when they assessed that it is reasonable in order to prevent
users from creating illegal remappings (e.g., not all mappings
of duplicated elements may have to be copied to maintain
consistency).

Within the evolution system, a declarative textual format
is used to specify remapping plans, which was designed to
integrate with Refactory’s role-based [20] specification of
evolutions. The so called object remapping specification
(ORSpec) of the evolution system uses the roles specified in
an evolution to express the operands of particular remapping
operations within a remapping plan, e.g. in Listing 1. The
format is used to specify a sequence of remapping operators
that should be executed as remapping plan for a particular
evolution. Besides a textual description of the remapping op-
eration for users, it is possible to specify two types of options:
“OPTIONAL” states that the remapping may be skipped
at users’ request and “SELECTABLE_TARGETS” permits
users to create a subset F.; C F} of effective targets for the
remapping operation according to Section 4. Alternative to
using an ORSpec, remapping plans may be created in source
code by calling the remapping operators on elements of the
problem or solution space programmatically. The respective
Java classes are registered via extension point for a particular
evolution in a similar manner as with the ORSpec.

Using above techniques, 37 different evolutions were re-
alized within the evolution system for SPLs including the
evolutions presented in Section 2 (a full list can be found in
Chapter 3.1 of [19]). In sum, 16 of the implemented evolutions
are intraspatial. The remaining 21 interspatial evolutions are
complemented by adequate remapping plans. In the problem
space, further evolutions were realized ranging from basic
evolutions to change the variation type of features to complex
ones, such as Merge Features, which melds multiple features

"http://featuremapper.org

OBJECT REMAPPING FOR <ExtractMethod>

STEPS {
COPY MAPPING: OriginalMethod => NewMethod, MethodCall;
COPY MAPPING: Statements => NewMethod, MethodCall {
description = "From Statements (optional)";
options = OPTIONAL, SELECTABLE TARGETS;
bi
}

Listing 1: Object remapping specification for Fxtract
Method for Java.

into one in order to create a more coarse-grain abstraction.
In the solution space, various adaptations of refactorings de-
scribed by Fowler in [5] were implemented for UML models
as well as Java source code. Additionally, evolutions to add,
remove and restructure contents of a textual documentation
format called DocBooklet, which is a derivative of DocBook®,
are provided. Furthermore, the system can be extended with
further evolutions and remapping operators if necessary by
use of Eclipse extension points.

7. EVALUATION

The intent of the evaluation of the evolution system was to
assess the practical applicability and usefulness of the remap-
ping operators in conjunction with concrete evolutions in an
SPL setting. For this purpose, the implemented interspatial
evolutions were aided with adequate remapping plans and
implemented within the tool FeatureMapper. A fictitious
SPL for the multimedia system in a car was devised and the
goals of two major revisions of the SPL were defined. The
authors modified the SPL to meet these goals using the im-
plemented evolutions or manually where necessary. Besides
the feature model in the problem space, the SPL consists
of three different types of solution space models: UML, an
automatically created model representation of Java source
code and the textual DocBooklet format for documentation.
The extent and number of presented models were deliber-
ately held small to make it easier to grasp the effects of an
evolution. Nevertheless, essential artifacts of the software
development process are demonstrated by using these three
types of solution space models. The SPL was evolved in the
course of two iterations, which are explained in the follow-
ing. An overview of the changes performed on the feature
model in the evolution iterations is presented in Figure 7 and
the full report on the evaluation can be found in Chapter 5
of [19].

In the initial situation of the evolution process, the feature
model of the SPL consisted of merely two top level features
for the on board computer and an audio player. The audio
player was further divided into child features for a radio, a
cassette player and an audio CD player. The solution space
was comprised of a UML design model, various Java classes
and a user manual in the DocBooklet format.

During the first iteration of evolution, three major changes
were performed. First, the cassette player and its imple-
mentation were removed using Remove Feature and Owned
Assets and its subsequent remapping procedure.

In the second step, a feature for an MP3 CD player as
alternative to the audio CD player was created using Split
Feature. Its subsequent remapping distributed the existing

8http://docbook.org

Initial Feature Model
AutomotiveMultimedia

AudioPlayer OnBoard
Computer

Radio Cassette CDPlayer
Player

Feature Model after Iteration |
AutomotiveMultimedia

AudioPlayer PersonalNavigation OnBoard
Computer
Radio CDPlayer Voice Maps
Recognition
Audio MP3
CDPlayer CDPlayer

Feature Model after Iteration Il
AutomotiveMultimedia

AudioPlayer Voice PersonalNavigation OnBoard
Recognition Computer
Radio CDPlayer Maps
Europe North Central South Asia

America America America

Figure 7: Feature model of the evaluation scenario
over the course of the evolution iterations.

mapping to solution space assets so that some parts were
referenced exclusive by either one of the CD players whereas
others were shared. The solution space was further modified
by Replace Method with Method Object for UML and Dupli-
cate Section for DocBooklet. The content of the new section
in the user manual was altered and additional elements in
the design model and the respective mappings to them were
added manually.

In the third major modification during the first iteration, a
personal navigation device was added as configuration option
for the SPL. The Duplicate Feature evolution was employed
to create the new feature by copying the feature for the
audio player and the majority of its mappings as both the
audio player and the personal navigation device utilize the
car’s speaker system and its display. Furthermore, child
features for the voice recognition to control the navigation
device and the geographical mapping material required for
planning routes were added using Insert Feature. As part
of this change, a new solution space model was added that
represents the geographical maps and a mapping from the
respective feature was added manually.

To conclude the first evolution iteration, the implemen-
tation of the Java class responsible for constructing the
graphical user interface to control the multimedia system
was restructured using Eztract Method for Java and its sub-
sequent remapping operation.

In the second interation, another three major changes were
performed. First, the previous distinction of audio and MP3
CD player was revoked by merging both features and their
respective mappings by employing Merge Features.

As second modification, the capabilities of the voice recog-
nition feature were increased to not only control the personal
navigation device but also the audio player. For this purpose,
the feature model was modified by the intraspatial evolution
Pull Up Feature and the UML design model was adapted
using the aforementioned Extract Super Class evolution. To

complete this evolution step, three references in the UML
model had to be added manually and a mapping needed to
be altered. This was due to the reason, that the creation of
the voice recognition feature required creating entirely new
model elements that had to be mapped immediately and no
evolution existed to handle this case.

During the third modification, the feature for the mapping
material of the personal navigation device was refined to
represent different continents. The mapping of the original
feature was distributed to the newly created child features.

In addition to the three major changes on the SPL in the
second iteration, a minor modification of the CD player’s
internal structure was performed using Inline Method Object
for UML, which relocates a method from one class to another,
and its subsequent move of the feature mapping.

During the evaluation, 20 occasions arose for the use of evo-
lutions on the feature model in the problem space as well as
the UML, Java and DocBooklet models in the solution space.
Within the evolution process, 16 different evolutions out of
the 37 implemented in the evolution system were applied
including intraspatial as well as interspatial evolutions.

For each interspatial evolution, an adequate remapping
procedure was employed so that no existing mapping needed
to be altered as result of employing an evolution. However,
as the creation of entirely new mappings is outside the scope
of the remapping operators, it had to be performed manually
in some cases. Furthermore, the second modification in the
second evolution iteration required manual modification of
an existing mapping as completely new elements were added
to the solution space that had to be included in a complex
feature expression. As this case could principally be handled
with the evolution system as well, further evolutions should
be implemented to create directly mapped solution space
elements in the future. Apart from these exceptions, all cases
could be dealt with employing an evolution of the evolution
system and its respective remapping operations to co-evolve
models and feature mapping in the SPL.

However, the performed evaluation used only few models
of a relatively small size and was carried out by the authors
themself. To address these threats to validity, it is planned to
carry out a more extensive evaluation in the future. Further-
more, a real-world practical example may contain challenges
that the presented approach currently can not cope with. For
example, changing a mandatory feature to optional may be
problematic for SPL consistency if the feature resides on the
uppermost level and not all feature expressions describing
valid products contained a reference to the mandatory fea-
ture. Identifying these issues in a more extensive evaluation
will help to improve the presented approach.

8. RELATED WORK

A survey of related work suggested that a system for per-
forming the evolution of SPLs with capabilities similar to the
presented one has not been conceptualized or implemented
before. However, several authors have treated various differ-
ent areas of SPL evolution.

Schulze et al. [18] extend the notion of refactoring to SPLs
in order to perform variant-preserving modifications on the
code basis of an SPL in the solution space within the context
of feature-oriented programming (FOP). Even though they
have a similar goal of creating an operative approach to
SPL modification, the challanges they address are somewhat
different from those in this paper through their focus on FOP.

As all (partial) assets relevant to a feature are grouped in
a feature module with equal name as the feature in FOP
(which is an implicit form of feature mapping), changes in
the solution space affecting merely a single feature can be
performed without risk. However, with an explicit feature
mapping model, changes, such as extracting a method within
the same class, require the mapping to be adapted to the
newly created method. For modifications targeting more
than one feature, it is merely stated that references have
to be adapted but not how this procedure is performed
programmatically. Furthermore, no modifications for the
feature model in the problem space are presented.

Borba et al. [4] present a theory for product line refinement
describing when evolutions alter the semantics of an SPL.
However, they focus on feature model and mapping and do
not consider the semantics of individual solution space assets.
Furthermore, they do not provide concrete operations for
evolution. However, their work serves as basis for that of
Neves et al. who present a number of templates for safe
product line evolution in [13]. Seemingly, the steps described
in the templates were not automated and have to be carried
out manually by users. Furthermore, adding entirely new
functionality to existing products of an SPL is out of the
scope of their work, which distinguishes it from the approach
presented in this paper.

Additionally, Heider [8] outlines an iterative process for
reactive SPL evolution. He proposes the development of a
tool-supported method for iterative, reactive, model-based
evolution of SPLs. However, the focus is on analyzing appli-
cation requirements from various customer-specific product
extensions to find similar requirements as basis for new fea-
tures and not on performing the modifications of an evolution.
Furthermore, Heider and Rabiser [9] present tool-support
for a rapid feedback loop where custom requirements in
application engineering of a particular SPL product are com-
municated to SPL engineers immediately in order to decide
on their relevance for the SPL in its entirety before custom
assets for individual products are implemented—performing
evolutions is not considered on an operational level.

Moreover, Vierhauser et al. [21] describe their experience
with a tool for flexible and scalable consistency checking
on variability models in SPLs. As part of their work, they
describe various different categories of inconsistencies in SPLs
within problem and solution space as well as in between
spaces that may result from modifications to the SPL. The
authors motivate the need to detect these inconsistencies but
are not concerned with fixing them. Unfortunately, technical
details on the approach are omitted.

In [10], Jirapanthong and Zisman present an approach
to automatically identify semantical traceability links (e.g.,
refines, implements) between SPL artifacts. However, their
approach is currently limited to a predefined set of artifacts,
which conflicts with the goal of generic solution space assets
in our approach. Anquetil et al. [2] present another approach
to trace links between artifacts in an SPL using four dimen-
sions. The time dimension describes how an artifact changes
through evolution so that it could be used to revert the
changes made by an evolution. The variability dimension
relates problem to solution space artifacts and vice versa.
Thus, it is conceptually equivalent to the feature mapping
used in this paper. Finally, the refinement and similarity
dimensions capture relations between artifacts of different or
the same abstraction levels, respectively. The trace links of

both these approaches could be used to automatically propa-
gate changes on one solution space element to other related
elements. For example, modifying the name of a method in
a UML class might cause the equivalent change in a Java
class automatically. Currently, the procedure for change
propagation has to be encoded into an evolution manually.
Thus, the work by Jirapanthong and Zisman as well as that
by Anquetil et al. might serve as basis for future work.

9. CONCLUSION

The work presented in this paper provides the conceptual
foundation for an evolution system for SPLs. As basis, a
classification by semantical extent of model changes was
presented, which groups evolutions by their potential to
jeopardize the feature mapping of an SPL. The category of
intraspatial evolutions does not affect the mapping whereas
interspatial evolutions have the potential to harm the map-
ping and, thus, require remapping in order to ensure consis-
tency of the feature mapping. Therefore, eight remapping
operators for problem as well as solution space were pre-
sented, which are able to remedy the negative side-effects of
interspatial evolutions on the feature mapping.

The presented evolutions for various model types were
attributed to their appropriate groups in the classification.
Furthermore, for each interspatial evolution, the respective
adequate remapping steps were explained in order to allow
co-evolution of models and feature mapping. The conceptual
aspects described in the paper were implemented as part of
FeatureMapper and put to test in an evaluation scenario.

10. ACKNOWLEDGMENTS

The authors would like to thank the reviewers for their
valuable comments and suggestions. This work has been
partially supported by the European Social Fund and the
Federal State of Saxony within project VICCI #100098171.

11. REFERENCES

[1] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba,
and C. Lucena. Refactoring Product Lines. In
Proceedings of the 5th International Conference on
Generative Programming and Component Engineering,
GPCE 06, 2006.

[2] N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J.-C.
Royer, A. Rummler, and A. Sousa. A Model-driven
Traceability Framework for Software Product Lines.
Software and Systems Modeling, 2010.

[3] P. Borba. An Introduction to Software Product Line
Refactoring. In J. a. Fernandes, R. Lammel, J. Visser,
and J. a. Saraiva, editors, Generative and
Transformational Techniques in Software Engineering
II1. Springer Berlin/Heidelberg, 2011.

[4] P. Borba, L. Teixeira, and R. Gheyi. A Theory of
Software Product Line Refinement. In A. Cavalcanti,
D. Deharbe, M.-C. Gaudel, and J. Woodcock, editors,
Theoretical Aspects of Computing (ICTAC 2010).
Springer Berlin/Heidelberg, 2010.

[5] M. Fowler. Refactoring - Improving the Design of
Euxisting Code. Addison-Wesley Longman, 1999.

[6] F. Heidenreich, J. Johannes, M. Seifert, and C. Wende.
Closing the Gap between Modelling and Java. In
M. van den Brand and J. Gray, editors, Proceedings of

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

21]

the 2nd International Conference on Software Language
Engineering (SLE 2009), Revised Selected Papers, 2010.
F. Heidenreich, J. Kopcsek, and C. Wende.
FeatureMapper: Mapping Features to Models. In
Companion of the 30th international conference on
Software engineering, ICSE Companion 08, 2008.

W. Heider. Reactive and Iterative Evolution of
Model-based Product Lines. In Proceedings of the
Doctoral Symposium at the 18th IEEE International
Requirements Engineering Conference (RE’10), 2010.
W. Heider and R. Rabiser. Tool Support for Evolution
of Product Lines through Rapid Feedback from
Application Engineering. In Proceedings of the 4th
International Workshop on Variability Modelling of
Software-intensive Systems, VaMoS 11, 2010.

W. Jirapanthong and A. Zisman. XTraQue:
Traceability for Product Line Systems. Software and
Systems Modeling, 2009.

M. M. Lehman. Programs, Life Cycles, and Laws of
Software Evolution. Proceedings of the IEEE, 1980.

T. Mens, K. Czarnecki, and P. van Gorp. A Taxonomy
of Model Transformations. In J. Bezivin and R. Heckel,
editors, Language Engineering for Model-Driven
Software Development, 2005.

L. Neves, L. Teixeira, D. Sena, V. Alves, U. Kulezsa,
and P. Borba. Investigating the Safe Evolution of
Software Product Lines. In Proceedings of the 10th
International Conference on Generative Programming
and Component Engineering, GPCE ’11, 2011.

K. Pohl, G. Bockle, and F. J. van der Linden. Software
Product Line Engineering - Foundations, Principles
and Techniques. Springer Berlin/Heidelberg, 2005.

I. Porres. Model Refactorings as Rule-based Update
Transformations. In UML 2003 - The Unified Modeling
Language. Modeling Languages and Applications.
Springer Berlin/Heidelberg, 2003.

J. Reimann, M. Seifert, and U. Aimann. Role-Based
Generic Model Refactoring. In D. Petriu, N. Rouquette,
and @. Haugen, editors, Model Driven Engineering
Languages and Systems. Springer Berlin/Heidelberg,
2010.

K. Schmid, R. Rabiser, and P. Griinbacher. A
Comparison of Decision Modeling Approaches in
Product Lines. In Proceedings of the 5th International
Workshop on Variability Modelling of
Software-Intensive Systems, VaMoS ’11, 2011.

S. Schulze, T. Thiim, M. Kuhlemann, and G. Saake.
Variant-Preserving Refactoring in Feature-Oriented
Software Product Lines. In Proceedings of the 6th
Workshop on Variability Modeling of Software-Intensive
Systems, VaMoS 12, 2012.

C. Seidl. Evolution in Feature-Oriented Model-Based
Software Product Line Engineering. Diploma Thesis,
Technische Universitdt Dresden, 2011.

F. Steimann. On the Representation of Roles in
Object-oriented and Conceptual Modelling. Data and
Knowledge Engineering, 2000.

M. Vierhauser, P. Griinbacher, A. Egyed, R. Rabiser,
and W. Heider. Flexible and Scalable Consistency
Checking on Product Line Variability Models. In
Proceedings of the International Conference on
Automated Software Engineering, 2010.

