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Abstract—Energy efficiency is gaining more and more im-
portance, since well-known ecological reasons lead to rising
energy costs. In consequence, energy consumption is now also an
important economical criterion. Energy consumption of single
hardware resources has been thoroughly optimized for years.
Now software becomes the major target of energy optimization.
In this paper we introduce an approach called energy auto-tuning
(EAT), which optimizes energy efficiency of software systems
running on multiple resources. The optimization of more than one
resource leads to higher energy savings, because communication
costs can be taken into account. E.g., if two components run
on the same resource, the communication costs are likely to
be less, compared to be running on different resources. The
best results can be achieved in heterogeneous environments
as different resource characteristics enlarge the synergy effects
gainable by our optimization technique. EAT software systems
derive all possible distributions of themselves on a given set of
hardware resources and reconfigure themselves to achieve the
lowest energy consumption possible at any time. In this paper
we describe our software architecture to implement EAT.

I. INTRODUCTION

The energy use of servers is steadily raising and soon will
pass the asset costs as the U.S. Environmental Protection
Agency (EPA) shows in their report on server and data center
energy efficiency [1]. According to this report, the energy con-
sumption of servers doubled from year 2000 to 2006 and will
double again until 2011. More than 100 billion kWh (approx.
$7.4 billion) will be the annual electricity consumption in the
U.S. in 2011. The EPA recommends research and development
activities to improve the energy efficiency of servers and also
points out the necessity to investigate potential savings by
power management across multiple resources [1, p. 118].

The energy used by hardware resources should be propor-
tional to their utility for end users. In other words, if the end
user does not utilize resources by using software running on
top of them, the resources should not use any energy. This
issue is known under the term of energy proportionality [2].
Recent work shows that we are far from energy proportion-
ality. In [3] Tsirogiannis et. al. reveal that over 50% of the
overall power consumption is caused by servers with idle
load. Moreover, they detected that resource utilization does
not directly correlate to its energy use. The actual energy use
depends on the kind of task the resource has to accomplish.
They show a 60% variation of power consumption for the
same level of resource utilization. These results substantiate
the nonexistence of energy proportionality. (On the other
hand they show, that energy is proportional to performance,
having idle power as offsets). Tsirogiannis et. al. point out the
optimization of multiple, jointly used resources as a promising

direction, too [3, p. 242].
Several problems derive from the energy-unawareness of

IT infrastructures used to run distributed software. First, the
energy consumption of software components is hard to predict.
This is, because energy consumption of software components
depends on the hardware they are running on and the user
that interacts with the components. The users demand as
well as the users utility w.r.t. service requests need to be
considered. Energy efficiency is the balance between user
utility and energy consumption. However, resource usage by
software components and the user’s workload are not explicitly
taken into account in current software development processes.
Hence, to predict energy consumption of software components
and correlate it with user’s requirements, an energy-aware
software architecture and runtime environment are required.

In this paper we introduce an approach for energy auto-
tuning (EAT) software systems. Such systems derive all possi-
ble distributions of their software on a given set of hardware
resources and reconfigure themselves to achieve the lowest
energy consumption possible at any time. Our focus are dis-
tributed, component-based applications. We therefore propose
the Cool Component Model (CCM) together with the Energy
Contract Language (ECL) as appropriate means to capture
energy-aware software architectures. Furthermore, we propose
the THEATRE as our energy-aware runtime environment. We
thus also investigate a development process for energy-aware
software systems and do not solely focus on energy auto-
tuning. This is, because energy auto-tuning requires such an
energy-aware software architecture.

The rest of this paper is structured as follows. In Section II
we introduce a running example. Afterwards, we highlight
requirements for EAT systems in Section III. Our proposed
software architecture and runtime environment are presented
in Section IV. Finally, we outline related work in Section V
and conclude and give pointers for future work in Section VI.

II. VIDEO SERVER EXAMPLE

In this section we present an example of a small component-
based system that can be energy-optimized using EAT.
The example was adapted from a case study depicted in
[4]. It describes a simple video server scenario consist-
ing of two software components: a VideoServer and
a VideoPlayer (cf. Fig. 1). The VideoServer is lo-
cated at a server whereas the VideoPlayer is deployed
at clients. The VideoServer provides services to select
and transmit videos that are stored on a FileServer. The
VideoPlayer can receive video streams via a network
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Fig. 1. The components of the VideoServer example; cf. [4].

Connection, decodes the video frames and displays them
on the screen.

Besides software components, hardware resources are
involved in the presentation of a video. First, the
VideoServer requires a FileServer to select and deliver
file streams to clients. Furthermore, a network Connection
is required. On the client side, CPU and Memory are used
to decode and display the video. One may argue, that further
resources like a monitor and speakers are required to present
the video. Anyhow, the example was designed to illustrate the
concepts and thus, remained as simple as possible.

Different clients require to display videos in different
qualities, e.g., a mobile phone does not require the same
resolution as a desktop PC. Hence, the VideoServer and
the VideoPlayer provide their services in different qualities
that can differ in resolution and frame rate. Resources can
provide different quality profiles for their services as well.
E.g., a Connection can provide different bandwidths, or
a Memory unit can provide different amounts of space.
Using these quality profiles in combination with component-
to-component and component-to-resource dependencies allows
to switch between different configurations of the system at run-
time. E.g., the application could use a low-quality resolution if
a video was requested from a mobile phone to save bandwidth,
CPU and, most importantly to us, energy.

III. REQUIREMENTS FOR EAT SYSTEMS

After giving a running example we now highlight re-
quirements for an EAT system, which can be classified into
component modeling facilities, expressing hardware/software
dependencies and requirements regarding an energy-aware
runtime environment. These requirements are the basis for
our main contributions, namely the CCM component model,
the ECL contract language and the energy-aware runtime
environment THEATRE.

A. Modeling of Software and Hardware Components

An EAT system requires a special software architecture,
whose building blocks are explicitly connected to resources.
With resources, we do not just denote hardware resources, like
a central processing unit, but virtual resources, like operating
systems and files, too. We propose components [5] to describe
both, software and hardware elements of an EAT architecture.

Furthermore, our proposed component model CCM has to
fulfill the following requirements:

1) HW-SW modeling: Software only consumes energy in
an indirect way by using hardware resources where the soft-
ware components run, i.e. the hardware consumes energy by
executing software components. In order to increase energy
efficiency of IT infrastructures, it is not sufficient to capture
the architecture of software components. It is also necessary
to take hardware resources of the infrastructure into account.

2) Quality-of-Service (QoS) properties: The component
model should also provide facilities to express quality of
service properties of hardware and software components (e.g.,
energy consumption of a CPU). Such QoS properties are the
basis for optimizing energy efficiency at runtime.

3) Variant modeling: Each component of an EAT archi-
tecture can exist in different implementation variants with a
common interface. Offered services from the component can
differ in quality and therefore in the energy consumption of
their underlying hardware. Hence, the CCM has to provide
concepts to express implementation variants of software com-
ponents including implementation specific QoS properties.

4) Behavior modeling: Hardware components are able to
reside in different performance states (e.g., as defined in the
ACPI specification [6]). Each performance state implies a
specific energy consumption of hardware resources. Such per-
formance states as well as the underlying behavior should be
regarded in a suitable component model. Behavior modeling
of software components is also necessary because it implies
which hardware resources are used by a component.

B. Modeling of Software/Hardware Dependencies
Besides defining central building blocks of software, a

software architecture defines, how these building blocks are
connected to each other. Due to the different variants of
provided and required services we propose to use contracts
as connectors for components. They can be realized by our
contract language ECL, which has the following requirements:

1) Dependencies between components: The contract lan-
guage should be able to express dependencies between differ-
ent software components and between software components
and required resources.

2) Energy Consumption: The contract language should
allow to define energy consumption of resources according
to their current state. The energy consumption of software
components should be computable via their component and
resource dependencies. Energy consumption, which is not
caused by running software on resources, e.g. of resources in
idle mode, is described in the behavior part of the component
model.

3) Quality Modeling: Besides energy consumption, the
contract language should support other functional and/or non-
functional requirements for components and resources (e.g.,
qualities like frame rates, response times and resolutions).

4) Variant modeling: Similar to the component model the
contract language should allow to describe different states
for components that lead to different QoS for provided and
required services.
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Fig. 2. Autonomic Control Loop of auto-tuning Systems, cf. [7]

C. Energy Auto-Tuning Runtime Environment

Components, with explicitly defined resource usage, do not
improve energy efficiency on their own. The problem is, that
there is no energy-aware authority that manages requests of
software on hardware. Such an authority is our proposed
THree-layer Energy auto-tuning Runtime Environment (THE-
ATRE). To optimize the efficiency of software systems w.r.t.
user requests and energy consumption the authority needs to
enforce the best system configuration for current and forth-
coming user requests. A system configuration describes which
component implementations are being used and at which
resources the corresponding instances are deployed. Therefore,
THEATRE has to fulfill four requirements conforming to the
autonomic control loop principle of auto-tuning systems [7],
which is depicted in Fig. 2.

1) Collect: The EAT system should be aware of the existing
software components and hardware resources (either directly
or indirectly via hierarchies of sub-systems).

2) Analyze: For every user request, the EAT system should
be able to analyze the request according to its required compo-
nents, resources and, in consequence, its energy consumption.
All possible deployments of the required components should
be computed and evaluated w.r.t. their energy consumption.

3) Decide: The EAT system should select the energy-
optimal configuration for current and future service requests.

4) Act: Finally, the EAT system must be able to reconfigure
the system according to the energy-optimal configuration
computed before.

IV. ENERGY AUTO-TUNING SYSTEMS

This section elaborates on our energy-aware software ar-
chitecture, which consists of our proposed component model
and contract language, and our energy auto-tuning runtime
environment (THEATRE).

A. An Energy-aware Software Architecture

According to the requirements presented above, our pro-
posed software architecture consists of components and con-
tracts, which are described in the following.

1) Components: To model the parts of an IT infrastruc-
ture (user, hardware resources and software components) we
designed the Cool Component Model (CCM). CCM extends
and combines ideas of the SPEEDS meta model [8] and
the MADAM component model [9] to allow modeling of a
system’s structure, behavior and energy consumption. Besides
these three aspects, defining variations is a major concern
in CCM. As the definition of energy consumption will be
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Fig. 3. The structure package of CCM

discussed in Section IV-A2, this section will focus on structure,
behavior and variation modeling. For each of these three
aspects our component model has an own package. Never-
theless, these packages cannot be seen as distinct parts, but
are interconnected.

To model the structure of a system CCM provides concepts
which are grouped in the structure package illustrated in
Fig. 3. This package can be used to define a hierarchical IT
infrastructure, it’s interfaces, interactions between interfaces as
well as contracts that are valid between them. Furthermore, it
acts as a type system for architectural concepts in CCM. These
types can be used later on to define variations of specific parts
of the system to allow energy auto-tuning.

A central concept in CCM are components, which are
represented by ComponentTypes in the structure package.
UserType, ResourceType and SWComponentType are
specific components referring the different parts of an IT in-
frastructure, where the latter two concepts form a hierarchy us-
ing self containments. Furthermore, ComponentTypes con-
tain a number of PortTypes, which define the component’s
external interface. A PortType contains a Direction
to specify whether the component offers (OUT) or requires
(IN) a service via this port or if it does both (INOUT).
PortConnectorTypes enable components to combine
(sub)components via their ports and model interactions in
this way. Finally a ComponentType has a Contract that
specifies what the component requires and provides.

To model behavior, CCM provides concepts which are
contained in the behavior package presented in Fig. 4. This
package can be used to define a behavior template of a
component and workloads that invoke this behavior at cer-
tain points in time. Modeling the behavior is of special
importance to the components and resource simulation (see
Sec. IV-B) as it allows to define energy consumption over
time. The central concept of the behavior package is the
BehaviorTemplate. It defines the behavior of a compo-
nent and contains CostParameters which need to be sub-
stituted by a concrete variant of the component. For instance,
a BehaviorTemplate can be a StateMachine while
states and transitions might contain energy consumption or
time as CostParameters. Moreover, additional subclasses
of BehaviorTemplates like heuristics are possible. Each
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BehaviorTemplate contains Pins which are equivalent to
Ports in the structure package. A Pin defines the external
interface of a BehaviorTemplate and is connected via
NavigatingElements to parts of the StateMachine.
Later on, a concrete variant of a component connects a pin
with a port and that way can model what happens if the service
of a port gets invoked.

To model variation, CCM provides concepts which are
contained in the variation package depicted in Fig. 5.
This package can be used to define concrete variants of
components by connecting one ComponentType to one
BehaviorTemplate and substituting its parameters. Fur-
thermore, it allows to define variants of complete (sub)systems
which can be used by THEATRE to decide which system
configuration fits to the user’s needs and in that way is the
most energy efficient. Central to the variation package are the
concepts Component and Behavior. A Component refers
to a ComponentType and can be specialized in the same
way (User, Resource, SWComponent - not depicted in Fig. 5).
Furthermore, it contains Ports and PortConnectors,
which refer to their types respectively. These two concepts
and the ability to define sub-variants allow to specify com-
plex variations of complete systems. The Behavior refers
to a BehaviorTemplate and substitutes its cost param-
eters using CostParameterSubstitutions. Finally, a
Behavior owns Links that connect Ports of the compo-
nent variant to Pins of the BehaviorTemplate.

Given the three packages structure, behavior and variation
CCM provides advantages regarding the following three as-
pects. First, it allows to specify the architecture of software
components and resources and hence to build a repository of
IT infrastructure parts. Second, it allows to define behavior
independently of a component’s structure and in that way
increases reuse. Third, CCM provides concepts to model
alternatives, which enables THEATRE to find the most energy
efficient system configuration.

2) Contracts: To describe and compute the energy con-
sumption of software components, we use the Energy Contract
Language (ECL). ECL is an advancement of the Component
Quality Modeling Language (CQML) [10] and CQML+ [11]
w.r.t. energy consumption. ECL allows to define QoS-contracts
using characteristics, qualities and profiles for resources and
software components. ECL contains the description of the
dependencies between software components and resources and
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the variability of these compositions.
Characteristics are measuring units used to express qualities

in profiles. E.g., the frameRate of a VideoStream can be
specified as shown below, defining the type of frameRate
and how its values are derived from VideoStreams.

1 c h a r a c t e r i s t i c f r ameRa te ( s t r e a m : VideoSt ream ) {
2 domain numeric i n t e g e r f r a me s / second ;
3 va lue s t r e a m . ge tF rameRa te ( ) ;
4 }

The major concept of ECL are profiles that specify the
different states of resources and software components. E.g.,
the resource Network has two different states which are
connected and disconnected:

1 p r o f i l e N e t w o r k S t a t e s f o r Network {
2 s t a t e c o n n e c t e d {
3 energy−e f f e c t 0 . 8 Watt ;
4 p r o v id e s c h a r a c t e r i s t i c bandwid th = 600 ;
5 }
6 s t a t e d i s c o n n e c t e d {
7 energy−e f f e c t 0 . 4 Watt ;
8 }
9 t r a n s i t i o n c o n n e c t e d −> d i s c o n n e c t e d {

10 whenever event−occurs d i s c o n n e c t ( ) ;
11 de lay 1 . 0 s e c o n d s ;
12 energy−e f f e c t 5 . 0 Watt ;
13 }
14 t r a n s i t i o n d i s c o n n e c t e d −> c o n n e c t e d {
15 whenever event−occurs send ( ) ;
16 de lay 1 0 . 0 s e c o n d s ;
17 energy−e f f e c t 3 0 . 0 Watt ;
18 }
19 i n i t i a l −s t a t e d i s c o n n e c t e d ;
20 }

The different profile states contain an energy-effect
that specifies, how much energy is consumed for a resource
being in this state. Optionally, a state can provide characteris-
tics for software components using this resources, such as the
bandwidth provided in the connected state. Transitions
between profile states can be defined specifying their duration
and energy-cost. Events declare when such transitions should
be performed. Finally, profiles for resources have to specify
an initial-state for their instances.

Besides profiles for resources, profiles have to be defined
for software components as well. Below, a profile for the
VideoServer component introduced in Sec. II is shown:
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1 p r o f i l e S e r v e r P r o f i l e f o r V i d e o S e r v e r {
2 s t a t e h i g h Q u a l i t y {
3 uses c h a r a c t e r i s t i c bandwid th = 450 ;
4 p r o v id e s c h a r a c t e r i s t i c f r ameRa te = 30
5 and c h a r a c t e r i s t i c imageWidth = 352
6 and c h a r a c t e r i s t i c imageHe igh t = 288 ;
7 }
8 s t a t e l o w Q u a l i t y {
9 uses c h a r a c t e r i s t i c bandwid th = 150 ;

10 p r o v id e s c h a r a c t e r i s t i c f r ameRa te = 10
11 and c h a r a c t e r i s t i c imageWidth = 176
12 and c h a r a c t e r i s t i c imageHe igh t = 144 ;
13 }
14 t r a n s i t i o n any−s t a t e −> any−s t a t e {}
15 precedence h i g h Q u a l i t y , l o w Q u a l i t y ;
16 }

As specified, the VideoServer provides two different
states, these are a highQuality and a lowQuality
state. The states differ in the resolution (imageWidth
and imageHeight) and frameRate of their provided
video stream. Besides the provided resolution and frame
rate, both states require a characteristic bandwidth
provided by Network resources. But as expected, the
highQuality requires a higher amount of bandwidth
than the lowQuality state. The VideoServer profile is
now used as a basis for a profile of the VideoPlayer
introduced in Section II:

1 p r o f i l e P l a y e r P r o f i l e f o r V i d e o P l a y e r {
2 s t a t e h i g h Q u a l i t y {
3 uses p r o f i l e S e r v e r P r o f i l e : : h i g h Q u a l i t y
4 and c h a r a c t e r i s t i c bandwid th = 450
5 and c h a r a c t e r i s t i c cpu usage = 6 6 . 7
6 and c h a r a c t e r i s t i c ram = 2 0 0 . 0 ;
7 p r o v id e s c h a r a c t e r i s t i c f r ameRa te = 30
8 and c h a r a c t e r i s t i c image wid th = 352
9 and c h a r a c t e r i s t i c i m a g e h e i g h t = 288 ;

10 }
11 s t a t e l o w Q u a l i t y {
12 uses p r o f i l e S e r v e r P r o f i l e : : l o w Q u a l i t y
13 and c h a r a c t e r i s t i c bandwid th = 150
14 and c h a r a c t e r i s t i c cpu usage = 2 5 . 0
15 and c h a r a c t e r i s t i c ram = 5 0 . 0 ;
16 p r o v id e s c h a r a c t e r i s t i c f r ameRa te = 10
17 and c h a r a c t e r i s t i c image wid th = 176
18 and c h a r a c t e r i s t i c i m a g e h e i g h t = 144 ;
19 r e s o u r c e s
20 }
21 t r a n s i t i o n any−s t a t e −> any−s t a t e
22 }

Like the VideoServer, the VideoPlayer provides
two different states highQuality and lowQuality. As
illustrated above, the states provide the same qualities as
the VideoServer, but require a specific state of the
VideoServer to provide their own service. This depen-
dency information is required to specify, which components
can be deployed and composed to provide specific QoS at
runtime. Required resources can be reserved; the resource
profiles can be used to predict the energy consumption of a
specific provided software service. Currently, ECL is still in
an early development state. Initial tool support, including a
text editor with editing support like syntax highlighting and
code completion, has been realized using EMFText [12].
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B. THEATRE - A Runtime Environment for Energy Efficient
Distributed, Component-based Software Systems

Using software components and contracts to design and
implement software systems does not lead to better energy
efficiency on its own. Instead the knowledge about the different
system variants, along with their cost and utility, needs to
be used by a runtime environment, which is able to recon-
figure the running system. The decision, which variant is
best, depends on the user’s needs, which vary over time. In
consequence, the best alternative is known only at runtime and
is likely to change over time. A system variant denotes a map-
ping of specified component implementations onto resources.

We propose to use a runtime environment, which consists of
three layers: a user, software and resource layer as depicted
in Fig. 6. On the user layer contextors are used, to collect
data about the user’s needs. Analogously, on the resource
layer, resource managers are used, to collect information about
the energy behavior of resources. It is important to note that
resources are not just hardware resources, but complex, virtual
resources, like the operating system or files. The centered
layer comprises software components and energy managers,
which use the knowledge of contextors, resource managers
and their own knowledge about existing components and their
variations (implementations), to choose the currently most
energy efficient system variant. If the energy manager decides
on a system variant, which is not the current, it forces a re-
configuration. This includes the migration of components from
one resource to another. In consequence, resource managers
need to provide functionality to steer resources. For example,
when a resource is unused, after the last software component
has migrated somewhere else, it should be powered down in
order to save energy. In the following, each layer is examined
in more detail.

1) User layer: To reason about the user’s utility, the expec-
tations of the user need to be collected by so-called contextors.
User utility can be quantified using user metrics [13] – human-
perceptible qualities of software, like response time or resolu-
tion. The easiest way to collect information about the user’s
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expectations is by letting the user define her expectations
explicitly. A well known example is the ’high quality’ button
of the YouTube video player, which allows the user to state that
she expects to see a video in high quality. More sophisticated
approaches, like using an ontology to define user-metrics
and probabilistic or heuristic approaches to predict the user’s
expectations can be used as well. Additionally, the user’s
demand need to be predicted or collected by the contextor. This
is, because the demand determines which software components
are required.

2) Resource layer: The resource layer comprises hierarchi-
cal interconnected resources, in which each has a dedicated
resource manager. This manager has to fulfill five require-
ments. First, it needs to know about the infrastructure. That
is, which other resources can be reached. Second, it needs to
know about its resource’s properties: What services does the
resource offer? What energy states does the resource have?
Third, it needs to be able to predict the energy behavior for
a workload, which is a timed sequence of service requests.
We use a simulation approach, based on energy state charts
(ESC) [14], to realize the prediction. The central feature of
ESCs is, that states have a defined power consumption rate
and transitions have defined delays as well as energy costs.
Various other approaches exist. Flinn et. al. use models of
linear functions [15] and Fei et. al. use heuristics [16]. Models
of linear functions and heuristics only provide a possibly good
prediction, whereas ESCs allow for predictions, which are as
precise as the parameters provided to the charts. Therefore
we decided to use ESCs. Last, the resource manager needs
to be able to steer the resource and force it into some other
energy state. At least, it should offer to switch off the resource
and to switch it on again. We distinguish between a global
resource manager and local resource managers. Whereas
local resource managers are tied to their resource, the global
resource manager abstracts the whole infrastructure. In [17]
we elaborate on resource managers.

3) Software layer: The software layer comprises software
components and energy managers, which reason about valid
system variants of the software. In other words, the energy
manager assesses mappings of component implementations to
resources with energy usage as cost and the fulfillment of
user expectations as utility. The system variant with the best
combination of cost and utility will be chosen by the manager,
which then forces a reconfiguration of the system, if necessary.
We distinguish between a global energy manager and local
energy managers. The local managers are tied to software
components and know about their composability by using
the ECL contracts specified during software development.
The global energy manager knows the local ones and uses
their information about valid mappings (system variants) to
combine it with energy usage information from the resource
layer and utility information from the user layer. It directly
communicates with the global resource manager. If a recon-
figuration was forced, the utilization of resources changes
and might fall below or above thresholds. In consequence,
these resources should be forced into another energy state,

like a sleep or special performance mode. It is important, that
the global energy manager considers the energy required to
process the reconfiguration. This is, because reconfigurations
swiftly become very energy consuming, for example due to
the need to initialize new resources.

In conclusion, information of all three layers is used by
the global energy manager which steadily initiates reconfig-
urations of the system to keep the highest possible ratio of
utility and cost (i.e. energy efficiency) at any time.

V. RELATED WORK

In this section we outline related work from three research
areas, which we combined in our overall approach. These areas
are: auto-tuning techniques, approaches for energy efficiency
in general and quality-aware component models.

A. Auto-Tuning

auto-tuning is a well established optimization technique in
the high performance computing (HPC) community. Running
numerical algorithms (e.g., for matrix multiplication or Fourier
transform) near to the peak performance of parallel computers
is an important goal in HPC. The performance of a numerical
algorithm’s implementation depends strongly on its underlying
hardware platform as well as the problem size (e.g., matrix
size). Therefore, platform specific as well as problem specific
optimizations are necessary for such algorithms.

During recent years, several successful numerical libraries
with auto-tuning facilities have been developed [18], [19],
[20], [21], [22]. auto-tuning capability means that libraries
are able to adapt themselves to specific hardware architec-
tures. Approaches behind these libraries can be distinguished
between optimization at installation time and optimization at
runtime. Libraries with optimization facilities at installation
time (e.g., ATLAS [18], PhiPac [21], Spiral [22]) analyze
properties of a target platform to generate highly optimized
code. For instance, in ATLAS analyses are realized based
on certain hardware parameters (e.g., capacity of L1 data
cache, number of registers) to determine additional parameters
like loop unrolling factors for the following code generation
phase. Generated code is then executed for benchmarking
purposes. Achieved MFLOPS are traced back into the anal-
ysis component of ATLAS. Other auto-tuning libraries like
OSKI [20] optimize not only the implementation code but
provide also optimized data structures. Optimization at runtime
is for instance provided by FFTW [19], which can be used
for Fourier transform. FFTW provides a set of optimized
composable code blocks (codelets) performing a specific part
of transform. An optimized transform is created by composing
several codelets to a so called plan. Internally plan generation
is realized by measuring the performance of available plans
and selecting the fastest implementation. For executing a plan
FFTW provides an separate executor.

The commonality behind the auto-tuning approaches men-
tioned above is the autonomic control loop principle [7].
As explained in Section III we consider this principle as a
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main requirement for our energy-aware runtime environment
THEATRE.

B. Approaches for Energy Efficiency

The energy efficient coordination of software applications
on mobile devices has been investigated by Yunsi Fei et.
al. [16]. Like low-power states of hardware resources, they
target low-power states of software applications, based QoS
constraints. They specify QoS as human-perceptible charac-
teristics of applications. E.g., for a video player these are
framerate, framesize and dither (color/gray/...). The aim of the
authors’ work is to energy efficiently run multiple applications
on a single mobile device, whereby the user’s intension
(utility) is regarded in terms of priorities set by the user.

Their approach is a middleware tier sitting on top of the
operating system (OS). The OS needs to provide a process
manager, which knows about all running processes, and a re-
source manager, which is able to monitor hardware resources
(at least the battery). However, if the resource managers
would have control over resources, higher energy savings
could be achieved by, for example, powering down unused
resources. Our approach goes further than Fei’s in that it
targets multiple applications running on multiple mobile and
stationary devices. It will furthermore provide a more powerful
mechanism for multi dimensional QoS.

Jason Flinn et. al. investigated energy efficiency of mobile
devices, too [15]. Their focus was on the decision, whether
a method shall be run on a mobile phone or remotely on
a server. To measure resource usage, the /proc file system
and special drivers are used. To predict resource usage and
demand Flinn et. al. use mathematical models (linear and
more complex), which are approximated for the near future.
The decision, where to run a method, is made by a heuristic
solver, which looks for an optimal trade-off between the user’s
utility and the required energy usage. Because the solver uses
heuristics, it does not always make the best decision. Our
approach differs from Flinn’s in the way that we focus on the
decision where to deploy interconnected software components
and which implementations of them shall be used.

Chiyoung Seo et. al. [23] compared software architecture
styles for distributed software systems in regard to their
energy consumption. They developed an energy estimation
framework, which does not only consider energy used due
to computation, but also energy used for communication. In
contrast to other approaches, Seo et. al. measured how much
energy was consumed by instructions on the level of the virtual
machine and derived the total energy use based on this data.
Notably, only energy costs were taken into account. The end
user’s utility, and thus energy efficiency, were not examined
by their approach. Nevertheless, we follow Seo’s proposal to
consider energy use due to communication, too.

C. Quality aware component models

The Palladio component model (PCM) [24] focuses the
performance point of view of component based software archi-
tectures. It provides concepts for modeling hardware and soft-

ware in order to analyze and evaluate systems’ performance.
Facilities for modeling QoS properties are limited regarding
the performance perspective, i.e. energy consumption of hard-
ware resources can not be expressed. Since PCM is used for
analyzing concrete system architectures it is not possible to
model component variants. Behavior modeling is provided by
so called service effect specifications, however, just from a
performance point of view. Ongoing research towards self-
aware performance and resource management techniques is
part of the Descartes research project, which was started in
2009. Kounev et. al. [25] aim for developing a runtime system
that is able to predict the runtime performance of a software
application using PCM. Based on these predictions an online
reconfiguration process is invoked in order to fit performance
requirements of the application. Improving energy efficiency
is also addressed by authors however only from a performance
point of view. In contrast, our focus is to improve energy
efficiency by focusing the user’s utility.

Geihs et. al. developed a component model for self-adaptive
applications on mobile devices [9] in the MADAM project. In
this component model hardware and software components can
be modeled including their QoS properties and implementation
variants of components. Describing energy consumption of
hardware resources is possible in a limited manner because
the component model does not provide concepts for specifying
component behavior (e.g., energy behavior of hardware).

The SPEEDS meta model [8] was developed in the Euro-
pean SPEEDS project and allows to model component-based
embedded systems. Therefore, it offers concepts to specify
hardware, software and behavior. As SPEEDS was designed
for reuse, it provides variation to some degree, but doesn’t
support explicit runtime variants. Finally SPEEDS allows to
model QoS properties in a contract language. But, even though
SPEEDS models multi dimensional QoS with so called view
points, only qualities like performance or functionality can
be part of contracts. For energy modeling there isn’t any
view point available. Nevertheless, as SPEEDS is a mature
component model we decided to reuse selected concepts in
our own energy-aware component model.

In [26], Göbel et al. presented a component model for a
QoS scheduling component environment developed during the
COMQUAD project. Their component model separates com-
ponents into component specification, component implemen-
tation, installed components and component objects. Although
dependencies between software components and hardware
resources can be described using QoS contracts specified in
CQML+ [11], resources are not modeled in the component
model but are only defined in the CQML+ contracts. At run-
time a resource manager is responsible to allocate and deallo-
cate resources required by software components to provide
their QoS.

VI. CONCLUSION AND FUTURE WORK

In this paper we introduced our energy-aware software
architecture. We showed, that bridging the gap between user
utility and energy consumption requires a component-based
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architecture with contracts as connectors. Based on this ar-
chitecture we introduced THEATRE: the three-layer energy
auto tuning runtime environment. The aim of this runtime
environment is to keep the best ratio of user utility and en-
ergy consumption for a distributed, component-based software
system.

As mentioned, our work is at an early stage. Many concepts
have not been tested yet and will require further testing, re-
finement and evaluation. This includes a design of contextors,
collecting the user’s QoS requirements and deriving energy
utility functions required to parameterize THEATRE.

Yet, first parts of our energy-aware software architecture
and THEATRE have been implemented, including a first parser
for ECL contracts and a simulator for resource energy profiles.
These first investigations show promising results. Nevertheless,
the feasibility of our approach requires further investigation
and evaluation. For future work we plan to evaluate THEATRE
using multiple case studies, including the presented video
server example, cloud computing applications and simple
algorithms having multiple implementations varying in QoS
(e.g., sorting algorithms). We plan to measure the energy
consumption of whole computer systems and single hardware
resources and to compare these results with our predicted en-
ergy consumption based on CCM models and ECL contracts.

ACKNOWLEDGMENT

The authors thank their colleagues J. Waltsgott, R. Fritzsche
and Prof. K. Meißner of the research project CoolSoftware,1

part of the CoolSilicon Spitzencluster, funded by the Bun-
desministerium für Bildung und Forschung (BMBF).

REFERENCES

[1] U.S. Environmental Protection Agency, ENERGY
STAR Program, “Report to congress on server and
data center energy efficiency public law 109-431,”
http://www.energystar.gov/ia/partners/prod development/downloads/
EPA Datacenter Report Congress Final1.pdf, 2007.

[2] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, vol. 40, no. 12, pp. 33–37, 2007.

[3] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah, “Analyzing the
energy efficiency of a database server,” in SIGMOD ’10: Proceedings of
the 2010 international conference on Management of data. New York,
NY, USA: ACM, 2010, pp. 231–242.

[4] M. Mulugeta Dinku, “Qos contract negotiation in distributed component-
based software,” Ph.D. dissertation, Technische Universität Dresden,
Dresden, Germany, July 2007.

[5] C. Szyperski, D. Gruntz, and S. Murer, Component Software Beyond
Object-Oriented Programming, C. Szyperski, Ed. Addison-Wesley and
ACM Press, 1999.

[6] Hewlett-Packard, Intel, Microsoft, P. Technologies, and Toshiba, “Ad-
vanced configuration and power interface specification, revision 4.0a,”
http://www.acpi.info/spec.htm, April 2010.

[7] S. Dobson, S. Denazis, A. Fernández, D. Gaı̈ti, E. Gelenbe, F. Massacci,
P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli, “A survey of
autonomic communications,” ACM Trans. Auton. Adapt. Syst., vol. 1,
no. 2, pp. 223–259, 2006.

[8] The SPEEDS Consortium, “D.2.1.5 speeds l-1 meta-model,”
http://speeds.eu.com/downloads/SPEEDS Meta-Model.pdf, May 2009.

[9] K. Geihs, M. U. Khan, R. Reichle, A. Solberg, and S. O. Hallsteinsen,
“Modeling of component-based self-adapting context-aware applica-
tions for mobile devices,” in SET, ser. IFIP, K. Sacha, Ed., vol. 227.
Berlin/Heidelberg, Germany: Springer, 2006, pp. 85–96.

1http://www.cool-software.org/

[10] J. O. Aagedal, “Quality of service support in development of distributed
systems,” Ph.D. dissertation, University of Oslo, Norway, 2001.
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