Towards Generic Weaving of Adaptation Aspects for XML

Sven Karol!, Matthias Niederhausen', Uwe ABmann’, Klaus Meifiner', Martin Steinfeldt!
'Fakultit Informatik, Technische Universitit Dresden, Dresden, Germany

Abstract— XML is one of the most used languages in the
Web and is frequently used to describe large parts of web
applications. A common approach to reduce complexity of
web applications relying on XML is to use a multistaged
architecture in form of a transformation pipeline. These
pipelines usually employ a fixed set of complex transforma-
tions to convert an XML source document into a displayable
output format. A second common principle is to separate a
web application’s context-independent part from the context-
dependent adaptation facet.

In this paper, we present a generic approach that uses
aspect-oriented programming (AOP) to separate and weave
the adaptation facet of XML-based web applications using a
multistaged architecture. We introduce an AOP-based termi-
nology for adaptation aspects and present an existing aspect
weaver prototype that realises our approach.

Keywords:aspect-oriented programming, xml, adaptive hyperme-
dia, multi-staged weaving

1. Introduction

The eXtensible markup language (XML) is used in a wide
range of applications in the World Wide Web. From web-
sites (XHTML) over databases and repositories (RDF/XML),
data exchange protocols (XMI, SOAP), documentation tech-
nologies (Docbook) to configuration files — few application
domains renounce it nowadays.

Common to many XML applications is the principle
that XML files are subject to multi-staged transformations,
i.e., they undergo a number of transformations during the
application’s life-cycle (e.g., when fragments of XML are
composed to a complex document). Frequently deployed
stages of such a pipeline are, for instance, generation of
data representations for visualization, conversion between
different XML dialects or homogenization of different XML
sources. In this process, typically, each stage generates its
own, intermediate document.

A common approach to reduce the complexity of the
design of such stages is to introduce a separation of concerns.
In the field of web engineering, for example, a separation of
core application and the facet of adaptation can be achieved
[12], [10]. Furthermore, one can distinguish transformations
that generate consistent results for the same input from
transformations that additionally depend on context informa-
tion (e.g., user preferences, interaction history, user location,
device data or pipeline state). The latter ones are also called
adaptation transformations since they do not change the
basic execution path, but add transformations to the pipeline
that adapt intermediate results to take a certain context into
account.

However,  current  adaptation  approaches  like
aspectWebML [12], aspectUWE [2] or OOHDM [11]]
are limited to a specific web application architecture and
cannot be applied in other areas. Furthermore, designing
adaptive transformation chains remains a complex task —
with changing contexts, adaptation transformations may
interact in unforeseen ways, causing headaches to developers
of web application frameworks and to authors who use these
frameworks to publish content.

Since adaptation transformations do not belong to the
functional core of a web application [10], aspect-oriented
programming (AOP) [8]] can be used to specifiy adaptation
transformations in separation from the actual core transfor-
mations. General AOP languages like Aspect] [7] can be used
to weave adaptation transformations into an XML transfor-
mation pipeline, however, they require in-depth knowledge
of the pipeline engine and provided APIs (e.g., DOM, the
engine’s public API or the context model) or even specific
weaving hooks that have to be introduced manually for
each pipeline. To support authors in specifying their own
adaptation transformations, a more XML-specific approach
is needed, including abstractions to access pipeline state and
context model.

In this paper, we present our tool PX-Weave (Pipe-based
XML Weaver), an aspect-oriented weaver for generic adap-
tation transformations in a multi-staged XML transformation
environment. Being an offspring of our existing adaptation
environment HyperAdapt in C0coorﬂ it provides an XML-
based language for defining adaptation aspects that can
be woven into multi-staged XML transformation pipelines.
Aspects in PX-Weave can depend on a complex context and
pipeline state. The design of the context model will not be
deepened in this paper, as the focus of this paper lies more
on transparently adding adaptation stages to the pipeline.
To ease implementation and testing, the weaver manages an
aspect depency graph for determining the weaving order and
allows to integrate schema-based well-formedness checks at
arbitrary execution states of the pipeline.

This paper is structured as follows: Section [2] introduces
a sample multi-staged web application and shows how plain
AOP, based on Aspect], can be used to weave adaptation
transformations. Section [3] explains the concepts behind our
tool together with the achieved improvements and the general
architecture of PX-Weave. Next, Section E] compares PX-
Weave to other approaches that use aspects for adaptating
web applications. Section [ then provides details on its
implementation. Finally, Section [6] concludes the paper and
presents our extension plans for PX-Weave.

http://cocoon.apache.org/


http://cocoon.apache.org/

Online -
Context Song Web-
Model service Database

Client Request

%

Generated Answer

Request - Context - Webservice - SQL Data

II Generator Generator Trafo Trafo
XHTML - Layout - AJAX /
Renderer Trafo Trafo

Servlet Container

Fig. 1: SoundNexus portal architecture

2. Case Study

In this section, we will introduce SoundNexus, an example
adaptive web application based on Cocoon. Afterwards, we
will show how Aspect] can be used to weave adaptation
transformations into the transformation chain that is executed.

Cocoon is a Java-based web application framework which
allows to create XML transformation pipelines. To this
end, the web application developer specifies several XML
transformations and links them into one or more nested
transformation pipelines. Cocoon then deploys them as a
servlet on the web server. Though mainly geared towards
transformations based on XSLT stylesheets, it also supports
plain Java code using SAX or DOM APIs. The main ad-
vantages of Cocoon are its optimisation capabilities and the
Separation of Concerns (SoC) principle, which is also at
the heart of AOP. In contrast to a single, monolithic trans-
formation, each pipeline stage handles a different concern.
To achieve acceptable processing speeds in comparison to
monolithic transformations, the framework supports trans-
formation chaining by pushing a SAX stream through the
pipeline instead of processing the stages successively.

2.1 A Simple Web Application

SoundNexus is an adaptive web application featuring an
online music database which is aggregated from multiple
sources, such as traditional SQL data sources or web services.
It uses Cocoon’s multi-staged transformations to transform a
requested page from an abstract page description format into
XHTML. This format lets web application authors specify
single pages, data source configurations and adaptations.
Further, an authoring toolkit and a set of graphical editors
to control page structure, layout, linking and style of a page
are provided.

Figure [I] gives an overview over the different pipeline
stages and data sources of SoundNexus. A request is triggered
by an arbitrary client device capable of processing HTTP
requests and responses as well as rendering XHTML pages.

Every request is first sent to a Servlet container which con-
tains the pipeline. A RequestGenerator selects and ini-
tialises the adequate pipeline resource from the Cocoon con-
figuration”| In the second stage, the ContextGenerator
initialises the context model by first evaluating standard
HTTP request parameters (e.g., language or browser), and af-
terwards data collected by context sensors, for instance, Geo

2Request Generators are built-in Cocoon components.

IP services or SoundNexus’ client-side Javascript sensors. If
a page requires additional data from a web service, e.g., to
request the current top 10 charts, the WebServiceTrafo
translates requests embedded within the document into stan-
dardized SOAP requests and sends them to the specified
Online Song Database. The result is then added to
the document by using a template specified by the author.
Similar steps are taken by the SQLDatabaseTrafo which
evaluates embedded SQL queries by delegating them to the
local song database. After the content has been injected, the
AjaxTrafo component derives a view from the transformed
document. This way, only those parts of the page requested
by the client will be delivered (local update in the browser).
Finally, LayoutTrafo and XHTMLRenderer compile the
page into a layouted XHTML document that can be rendered
by standard browsers.

2.2 Adapting the Transformation Pipeline Us-
ing Aspect]

In order to provide SoundNexus users with a custom-
tailored experience, the document traversing the pipeline
must be adapted according to the user’s context. Adapta-
tion can be performed by inserting specialized adaptation
transformers into the Cocoon pipeline. However, there is no
optimal single point for adaptation, as this depends on the
type of adaptation (e.g., adaptation of web service requests
must be performed in the beginning while changing the
page layout is ideally done at the end). Because inserting
an adaptation transformer between every two stages would
bloat the pipeline definition and is susceptible to pipeline
changes, we propose to use aspect-oriented programming to
weave in additional adaptation stages as needed. AOP is a
well-established paradigm in software engineering. Aspect
components allow to separate parts of an object-oriented
program from its functional core. Hence, aspects separate so-
called cross-cutting concerns from functional core concerns.
Typical examples for cross-cutting concerns are logging, per-
sistency or security. Such concerns would normally require
programmers to insert identical or only slighty modified lines
of code at multiple places throughout the whole program
or to spread code which semantically belongs together. As
a result, AOP increases maintainability and leads to more
comprehensible and decomposed programs.

In Aspect], aspects contain advices and pointcut expres-
sions. Pointcuts capture sets of joinpoints during program
execution that can be used to weave in additional behaviour
and to change programs. Joinpoints mark the places where as-
pects can be woven and consist of different parts. Their static
part is related to elements of a program’s abstract syntax tree
(AST), for example, a method in a class. Accordingly, the
dynamic part is related to the actual program state (e.g., all
method calls within a specific control flow). Advices specify
what has to be woven at a joinpoint and how it has to be
woven. The basic kinds of advices are before, after and
around. The first two kinds of advices add program code
directly before or after a joinpoint has been reached, while
the third kind may replace a joinpoint completely.

In the following, we exemplify how plain Aspect] can be



LN —

OO0~ W —

pointcut webServiceTrafoHook (Document doc):
execution (x AmacontWSTransformer. transform (Document)) &&
args (doc);

Listing 1: Weaving hook webSeriveTrafoHook

used to specify parts of a “device independence” adaptation
concern for SoundNexus. In this example, the concern is
implemented by a single Aspect] aspect. We first need to
specify the hooks where to weave. In our case, these are the
pipeline stages presented in Section [2.1] Listing [I] shows the
hook definition for the WebServiceTrafo component.

Note that it uses pointcut expressions for addressing
the execution joinpoint of the transform method in the
AmacontWSTransformer class. This method contains the
actual implementation of the execution of embedded web
service calls. The remaining stages’ hooks can be specified
in a similar Wayﬂ

before (Document doc):
webServiceTrafoHook (doc)&&this (AmacontWSTransformer) {

OntModel model = ContextOntology.getCurrentOntology ();
injectRules (model);

log.info ("Weaving_Device_Independence_...");
if (model. getIndividual ("...#image_Capability") == null) {
// 1. Setting optimised Query

Element queryNode = findElementNode (...);
computeNewQuery (queryNode );

// 2. Removing image components
Element[] imageComponents = findElementNodes (...);
for (Element e:imageComponents) removeComponent(e);

// 3. Removing references
Element[] refComponents = findElementNodes (...);
for (Element e:refComponents) removeComponent(e);

1

Listing 2: Advice contributing to the device independence
concern

For the sake of brevity, we only discuss the one advice
shown in Listing 2] although there are numerous advices
imaginable for adapting a SoundNexus page’s content. Our
advice’s objective is to check whether the current device is
capable of displaying images (e.g., the page may be displayed
in a text browser or it may have a too small screen) and
to safely remove the images otherwise. The first two lines
indicate to weave the advice’s body before the webService-
TrafoHook, i.e., before the AmacontWSTransformer’s
transform method is executed. Lines 4 and 5 access the
current context model and inject rules to reason about the
available context data in order to derive the device’s image
processing capabilities. If this data cannot be derived, all
image components are removed by inserting a new database
query which does no longer select the image data field (lines
9-11), deleting the actual images from the current page (lines
13-15) and removing the layout nodes which reference the
image containers (lines 17-19).

3The RequestGenerator and XSLT-based transformations are built-
in Cocoon components and thus may require to consider framework-internal
call protocols and weaving of deployed classes.

2.3 Case Study Observations

Since current AOP languages like Aspect] are not designed
w.r.t. to the specifics of XML documents and multi-staged
XML transformations, handling such content is difficult. To
specify an adaptation aspect, authors have to have a deep
insight into the source code of the framework running the
pipeline and need to know how and when each stage of
interest is called by the host application. Furthermore, authors
have to be aware of the context model’s access routines and
how to inject the rules they would like to query.

Additionally, general aspects may interact with each other
and the base program in unpredictable ways [9]. Since the
program code is changed invasively, general aspects can eas-
ily break implicit and explicit contracts of the program’s base
components, e.g., by changing a method’s implementation
through adding or removing some parts of its implemen-
tation code. Although changing a method’s implementation
is also possible with subclassing in plain object-oriented
programming languages, subclassing neither touches the base
class nor does it overwrite private methods. Approaches for
statically or dynamically detecting aspect interactions have
been extensively studied in literature [Sl], [9], [4]. While we
are not aware of any general solution to aspect interactions,
we have to consider this problem in our approach.

To improve over using general AOP languages in web
applications, our approach has the following objectives, based
on the above observations:

1) Transformation pipeline elements should be supported
by the pointcut language.

2) Advices have to support XML adaptation transforma-
tions with precise semantics.

3) The weaver tooling must support intermediate, mixed
content at any pipeline stage and should support weav-
ing of schema-aware adaptation advices (e.g., for test-
ing purposes).

4) A static aspect analyser should provide authoring
support for aspect interactions/interference at shared
joinpoints.

5) The context model should be accessible through an
API and reasoning facilities should be available if an
ontology is used.

3. Aspect-orientation for XML

Starting from the requirement of precise semantics for
advices, we distinguish at least three kinds of concerns that
may occur in XML documents. Content concerns are pieces
of text related to a specific topic distributed over the docu-
ment. Presentation concerns deal with machine-interpretable
information on how to display and structure things (e.g.,
layout, order). And finally, adaptation concerns modify other
concerns according to context-dependent objectives (for ex-
ample, device independence, accessibility, personalisation).

In contrast to the pure programmatic approach in general
AOP, we consider component-based transformation environ-
ments together with well-defined context models. In par-
ticular, we focus on adaptation concerns in general XML
documents. In the following we present a terminology for



Advice C . c Application
Groups etz Condition
Adaptation C Adaptation Programmatic User
Concerns Aspects Pointcuts Profile
Pointcuts Content-based Domain-Specific

Pointcuts Context

Fig. 2: A taxonomy for adaptation aspects

adaption aspects and a basic set of adaptation advices. A
discussion about interaction of adaptation aspects concludes
this section.

3.1 A Terminology for Adaptation Aspects

Our approach builds around a basic terminology for adap-
tation aspects, derived from terms used in AOP.

Figure [2| gives an overview in form of a concept hier-
archy. Adaptation aspects are manifestations of adaptation
concerns, which — at a very abstract level — group one or
more aspects contributing to the concern’s objectives. Advices
in XML adaptation aspects do not only adapt documents at
joinpoints, inserting or removing program code, but also have
to consider other concerns within documents. Advice groups
are introduced to limit the scope of a set of adaptation advices
to a fragment of a document, which is essential to make
advices on top of complex, nested documents manageable
for developers. In our scenario, the advice’s application
condition is built on top of the context model, which can be
split into two parts. In its general, user profile part, a context
model provides information common to most application do-
mains (like a basic user profile or location data). In contrast,
the domain-specific context provides domain-specific data,
depending on the concrete application (delivered by specific
context information providers). Furthermore, context models
may include support for reasoning about context. Adaptation
aspects, however, do also have pointcuts. Given the XML
nature of our approach, a pointcut can either address points
in the pipeline execution — as a programmatic pointcut
— or the XML content that flows through the pipeline —
as a content-based pointcut. By combining both types of
pointcuts, an aspect has the power to select a point in time
and space of an XML document in transformation.

In the following section, we discuss the set of basic advices
that we provide for adaptation aspects.

3.2 Classes of Adaptation Advices

Adaptation aspects can either be realized as arbitrary
transformations or as a sequence of well-defined primitive
operations. While the former offers the definite maximum in
flexibility, it lacks an important property: ease of analysis.
With two arbitrary adaptation aspects, the combined result
is hard to predict. Therefore, we decided to use the latter
approach, providing an extensible set of primitives. These
primitives were conceived as to fulfill two opposed goals.
On the one hand, they should be generic, independent of
the application domain, so they can be utilized in any
kind of XML application. On the other hand, they should
form more than a kind of “assembler language” for XML

A

ChooseVariant ChangeOrder MoveElement EnrichContent ReduceContent

c D | Chang

Fig. 3: Classes of adaptation advices

transformations. That is, they must be powerful enough to
easily implement the more complex adaptation patterns that
are widely recognized in the domain of web engineering
[3]. The compromise we found, offering moderately powerful
operations while still being generic to all XML domains, are
the following ten advice classes.

Figure [3] gives a graphical impression of the different
advice classes explained subsequently.

e ChooseVariant selects a variant from a set of exchange-
able instances of an element node, according to the
current context. The document author can define every
variant individually in advance. A pointcut expression
can then match them such that the most appropriate
variant is selected at runtime. Example: A common use
case for this kind of advice is language adaptation. Con-
sider a multilingual document which provides different
language versions of each paragraph. Language inde-
pendence can be achieved by specifying an adaptation
aspect that selects the correct variant according to the
reader’s language — ideally as early as possible in the
pipeline.

o ChangeOrder changes the order of child nodes of an
element node, according to a given permutation ex-
pression. Example: The order of elements is important
when it comes to layout adaptations for different types
of devices and their displays. Furthermore, elements
may be ordered to reflect user preferences, e.g., after
a transformation that aggregated data from multiple,
inhomogenous sources.

o MoveElement removes an element at a joinpoint and
inserts it at a different position in the document tree.
Although this advice is quite simple, it is very useful
for adaptations that perform restructuring. Example:
Different display formats might require different doc-
ument layouts, e.g., a generated XHTML page may
use a table-based, vertical layout by default. From this
default representation, a complex adaptation advice can
create a horizontal layout by moving the elements into
a horizontally arranged table if a widescreen display is
used.

o EnrichContent adds or inserts additional text fragments
in textual parts of a document, based on a text selection
expression. This kind of advice allows to encapsulate



related parts of text in adaptation aspects at a very fine
granularity. Example: An adaptive website may provide
different kinds of access levels, e.g., for registered
users and unregistered users. Registered users may see
an adapted webpage with content annotated by user
comments while unregistered users have only access to
standard content.

e ReduceContent removes text fragments in plain textual
parts of a document according to a text selection ex-
pression. This advice is the inverse of EnrichContent.
Example: For advanced users, prerequisite steps of an
installation tutorial can be omitted to increase readabil-
ity.

o CollapseElement can be used to replace a complete
subtree of a document with plain text. Example: In
order to provide devices with small screens or little
processing power with an appropriate representation
of complex content elements (like Flash movies or
JavaScript-intense containers), the author may decide to
replace these elements with a short, textual abstract.

e ExpandElement substitutes a text fragment in the doc-
ument with a more complex element or subtree. This
advice is the inverse of CollapseElement. Example: A
translation service can be extended to provide paying
customers not only with the textual translation, but an-
notate the single words or phrases with the possibility to
click them in order to find out how they are pronounced.

o DeleteElement is a basic advice that removes a subtree
from a given XML document at a specific joinpoint. It
can be compared to the around advice in AOP. Example:
Administrative links on a blog can be removed for
unregistered users.

o InsertElement is a basic advice that adds an element
before or after a specific joinpoint. This kind of advice
can be considered the closest relative of the before and
after advices in AOP. Example: Additional information
can be embedded in popup layers when users request
help.

e ChangeValue is a basic advice that can change attribute
values at a certain joinpoint. Example: According to
the user’s interests, an adaptation concern may require
the author to highlight different concerns within the
document by changing text colors or adding boxes
around affected text paragraphs.

3.3 Interaction of Adaptation Advices

Similar to aspects in AOP, there is a risk for aspect inter-
action, i.e., that aspects influence each other. For example,
an aspect A which is applied sequentially before an aspect
B in the transformation chain may influence or even hinder
the application of B. By default, aspect interaction is not
a problem, since influencing another aspect’s execution is a
common case. However, problems arise if interactions cannot
be foreseen, e.g., when too many aspects or blackbox aspects
(i.e., from third parties) are deployed. Many approaches
investigate semantic interactions, e.g., by monitoring program
state [4] or simulating state spaces through graph rewrit-
ing [1]. In contrast to that, Kniesel [9] analyses weaving

interferences, which occur when woven aspects show an
unintended behaviour. In the following, we transfer terms
coined in [9]] to our domain. We use doc for the document to
which adaptation advices are applied and Lg4,. for the set of
possible documents, which may be given by an XML schema.
The set of nodes in doc is denoted by Ng,.. Furthermore,
we use ppc(a) and cpe(a, doc) to refer to the programmatic
pointcut and content-based pointcut of an advice a w.r.t.
doc. The application of an advice to a document is denoted
by a e doc. The following equation defines when adaptation
advices directly affect other deployed advices by influencing
their content-based pointcutsﬂ

Va,b € Advices : Adoc € Lyee :
ppc(a) N ppe(b) # O A epe(a, doc) # O A cpe(b, doc)
# cpe(b,a e doc) = af fects(a,b) (1)

Based on affection, two special kinds of interactions can be
derived (see equation [2). Triggering applies when one aspect
modifies the set of joinpoints such that another one’s pointcut
now matches additional joinpoints. For example, consider an
aspect that uses CollapseElement to replace images with a
textual abstract. If there is another aspect responsible for
internationalisation of text content, this aspect will now also
match the newly created abstract.

Va,b € Advices : 3doc € Ly : An € Nyoe -
af fects(a,b) An ¢ cpe(b, doc) An € cpe(b, a o doc)
= triggers(a,b) (2)

The opposite interaction type is inhibition, preventing
another aspect from applying (see equation [3)). For example,
one aspect could use ExpandElement to replace a piece of text
with an image. In this case, our internationalisation aspect
from above would no longer match the intended piece of
text in its pointcut.

Va,b € Advices : Adoc € Lgoe : An € Nyoe
af fects(a,b) An € cpe(b,doc) An & cpe(b,a e doc)
= inhibits(a,b) (3)

Until now we considered interaction of adaptation advices
in a general way. However, there are subtle differences
w.r.t. the specific advices of Section Advices such as
ChangeOrder and MoveElement can be regarded as harmless
or passive since they do not add or remove content. Hence, if
sufficiently robust poincuts w.r.t. the XML tree structure are
used, they should never affect advices of other adaptation
aspects. The same holds for ChangeValue, EnrichContent
and ReduceContent if other adaptation advices do not rely
on the values manipulated by these advices. In contrast
to that, InsertElement, ExpandElement, DeleteElement and
CollapseElement add new nodes or remove nodes from the
tree and thus actively trigger or inhibit other advices. Hence,
as a rule of thumb, harmless advices should be applied
subsequently to active ones, such that their effects are also
applied to newly introduced parts of the document. A special

4For now, we only consider advices applied to the same programmatic
joinpoints and do not consider context-dependent application conditions.



Output

Generator Weaver Core Transformation Weaver Serializer Document

Il
%

Active Advices Context

Fig. 5: Execution of weaving at a single stage

kind of advice is ChooseVariant, which may inhibit other
advices by choosing a remaining node and removing the
others. Since these inhibitions are intended (only the selected
variant should remain in the document), they may be ignored
during analyses.

4. Initial Tool Architecture and Proto-
type Implementation

In this section we present a first prototype implementation
of our tool, PX-Weave. While our approach is generic in the
sense that it can be applied to arbitrary XML transformation
pipeline environments, PX-Weave is a Java-based, Cocoon-
specific realisation. Its main components are a weaving
engine, an XML-based aspect languageﬂ a validation engine
and an aspect analyser.

Figure [] shows the weaving engine embedded in a short
cocoon pipeline consisting of a single, complex core transfor-
mation transformer, which is the only programmatic joinpoint
in this pipeline. A close-up view of the weaving engine is
presented in Figure [5] It takes an ordered set of adaptation
advices at a certain programmatic joinpoint (i.e., before or
after a pipeline stage is executed) and applies them to the
specified content-based joinpoints in the current intermediate
XML document (i.e., which is input or output of the current
pipeline element). The set of active adaptation advices is
determined by the aspect analyser which maintains a set of
deployed adaptation aspects. Active advices can be identified
by monitoring the pipeline state and selecting the currently
applicable advices. The default advice order is derived from
the order of aspects in the filesystem and by the advice order
in the aspect specification. To avoid non-deterministic be-
haviour, authors can specify their own orderings over aspects.
Even though such an ordering is sufficient to resolve aspect
interactions unintended by the author, we intend to extend
our aspect analyser component to provide static analyses for
discovering such unintended interactions.

SIn the future, we intend to include sophisticated editing support for such
aspects.

<aspect name='"'DeviceIndependence'>

<interface> <!— context parameters—> </interface>
<adviceGroup>
<depends> <!— application condition —> </depends>
<scope>

<xpath>//aco:AmaSetComponent[ @id="a56zuaa’ ]/ </xpath>
<before>wstransformer</before>
</scope>
<advices>
<changeValue>
<pointcut> <!— query location —> </pointcut>
<value> .... </value>
</changeValue>
<delete>
<pointcut> <!— images location —> </pointcut>
</delete>
<delete>
<pointcut> <!— references location —> </pointcut>
</delete>
</advices>
</adviceGroup>
</aspect>

Listing 3: PX-Weave advice for device independence

A validation engine is provided for two reasons: Invalid
intermediate XML documents and errors during weaving may
yield unexpected results. However, since validation of XML
files is a computationally expensive process, it should only
be used to a minimal extent (or for testing purposes) in
a specific weaving scenario. The validation engine can be
run in different validation modes. The first mode allows
to enable validation before and/or after all active advices
of a pipeline element have been applied. A second, more
expensive validation mode is offered for checking the validity
of single XML transformations of an advice. In the prototype,
this procedure is restricted to globally declared elements
in the XML schema. Given that any XML schema can be
transformed into a form that only incorporates such elements,
this does not pose a far-reaching limitation of the validation
mode’s applicability.

Finally, Listing [3] shows an example PX-Weave adaptation
aspect for the concern of device independence in Sound-
Nexus, which we introduced in Section 2.1} The aspect
interface in line 2 declares context parameters, the core
document format to be adapted and imports additional XML
fragments. The adviceGroup contains a context-based
application condition declared by the depends element in
line 4. The scope element declares a common context for all
adaption advices within the advice group. Note that currently,
we simply use XPath expressions for content-based pointcuts.
The actual programmatic joinpoint (i.e., the pipeline stage
where the advice should be applied) is declared by the
before element. As in Section [2] the aspect is hooked in
before the webservice transformation component.

In the following section, we compare our method and
prototype to existing approaches that support modeling of
context-dependent adaptation in web applications.

5. Related Work

GAC: The Generic Adaptation Component (GAC) [6] is
an approach to rule-based adaptation of XML documents.
Although it has been discontinued, it shares a number
of similarities with our approach. GAC and PX-Weave

O 00~ WU B WD —



both apply pre-defined transformation patterns to XML
documents. These pre-defined patterns are instantiated and
parametrized by an application developer and executed by a
transformation pipeline. The execution of rules is bound to
conditions that refer to a context model holding information
on the user, his device and the environment. However,
GAC does not include support for selecting programmatic
joinpoints. Furthermore, GAC does not offer any support
for ensuring validity of intermediate transformation results.
Especially if there are multiple GAC rules applied, their
combined effect cannot be predicted. While the author has
the chance to supply an order over his rules, he is left on his
own on how to determine this order and whether it results
in a valid document. Additionally, our approach also aims at
providing support for static analyses of aspect interactions
while GAC only supports ordering of adaptation rules and
analyses at run-time.

UWE: [2] propose an extension of the UWE framework,
treating adaptivity in web applications as a crosscutting
concern. Similar to PX-Weave, they introduce a number
of transformation templates which an author can apply to
parts of his web application. However, their approach is
based on a specific model (UWE), in contrast to our generic
XML weaver. Accordingly, the transformation templates are
also targeted on a higher level, resembling Brusilovsky’s
adaptation techniques [3l].

AspectWebML: Similar to UWE, aspectWebML [12] is
an effort to add aspect-orientation to the development of web
applications, namely to the prominent language WebML.
However, just like UWE, aspectWebML is concerned with
the model level. By introducing an additional aspect layer,
it becomes possible to extend or replace parts of an existing
WebML model. While this is useful in the domain of
web engineering, it is not as universally applicable as our
approach.

Doxpects: Doxpects are an AOP approach for XML-based
web services [13]], which uses XPath expressions for content-
based pointcuts. A doxpect contains one ore more request
or response advices to transform a web service message
before sending or receiving it. Transformations are based on
XML Beans, i.e., statically typed objects representing XML
fragments. Weaving is realised by compiling doxpects into
web service handlers. In contrast to our approach, doxpects
are applied to web service messages, but not to multi-staged
XML transformations. Furthermore, XML Beans are less
adequate for multi-staged transformation environments, since
they would be required not just for transformation input and
output but also for intermediate results.

6. Conclusion

In this paper, we presented a generic approach to context-
specific adaptation of XML-based web applications. The
approach combines previous work on adaptation aspects and
aspect-oriented software development. In comparison to plain
Aspect], our tool allows to specify adaptation aspects in

a declarative and easily understandable way, not requiring
authors to learn complex technologies. The approach has
the potential to help web application authors to organise
authoring of adaptive XML documents, however this still has
to be proven in a more complex case study. Furthermore,
while PX-Weave is in its early prototype stage, authoring
support for adaptation aspects is still missing. In the future,
this will be provided through a user interface or a feature-rich
textual editor with a user-friendly syntax.

In Section [3] we introduced a novel basic terminology
for adaptation aspects and adaptation advices and discussed
the problem of aspect interaction for adaptation advices. It
remains future work to extend the aspect analyser component
of PX-Weave to achieve automatic detection of such inter-
actions. We also need to investigate to which extent static
analyses can help authors with understanding their adaptation
interdependencies and finding good strategies for handling
them.

Acknowledgment

This work is funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) within the
project “HyperAdapt’.

References

[1] Mehmet Aksit, Arend Rensink, and Tom Staijen. A graph-
transformation-based simulation approach for analysing aspect inter-
ference on shared join points. In Proceedings of AOSD, pages 39-50,
Charlottesville, Virginia, USA, 2009. ACM.

[2] Hubert Baumeister, Alexander Knapp, Nora Koch, and Gefei Zhang.
Modelling adaptivity with aspects. In Proceedings of ICWE, number
3579 in LNCS, pages 406—416. Springer, 2005.

[3] Peter Brusilovsky. Adaptive hypermedia. User Modeling and User
Adapted Interaction, 11(1-2):87-110, 2001.

[4] Rémi Douence, Pascal Fradet, and Mario Siidholt. A framework for
the detection and resolution of aspect interactions. In Proceedings of
GPCE, volume 2487 of LNCS, pages 173-188, London, UK, 2002.
Springer-Verlag.

[5] Pascal Durr, Lodewijk Bergmans, and Mehmet Aksit. Static and
dynamic detection of behavioral conflicts between aspects. In Pro-
ceedings of RV, volume 4839 of LNCS, pages 38-50. Springer-Verlag,
2007.

[6] Zoltan Fiala and Geert-Jan Houben. A generic transcoding tool for
making web applications adaptive. In Proceedings of CAISE, pages
15-20. FEUP, June 2005.

[7]1 Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of Aspect]. In
Proceedings of ECOOP, volume 2072 of LNCS, pages 327-353,
London, UK, 2001. Springer-Verlag.

[8] Gregor Kiczales, Anurag Mendhekar, John Lamping, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
Oriented programming. In proceedings of ECOOP, volume 1241 of
LNCS, Finland, June 1997. Springer-Verlag.

[9] Giinter Kniesel. Detection and resolution of weaving interactions.
Transactions on Aspect-Oriented Software Development (Special issue
‘Dependencies and Interactions with Aspects’), LNCS, April 2006.

[10] M. Niederhausen, Z. Fiala, N. Kopcsek, and K. Meissner. Web software
evolution by aspect-oriented adaptation engineering. In Proceedings
of WSE, pages 3-7. IEEE Computer Society, Oct. 2007.

[11] Gustavo Rossi, Daniel Schwabe, and R.M. Guimaraes. Designing
personalized web applications. In Proceedings of WWW, pages 275—
284. ACM, 2001.

[12] Andrea Schauerhuber, Manuel Wimmer, Wieland Schwinger, Elisabeth
Kapsammer, and Werner Retschitzegger. Aspect-oriented modeling
of ubiquitous web applications: The aspectwebml approach. In
Proceddings of ECBS, pages 569-576. IEEE Computer Society, 2007.

[13] Eric Wohlstadter and Kris De Volder. Doxpects: aspects supporting
XML transformation interfaces. In Proceedings of AOSD, page 108.
ACM, 2006.


http://www.hyperadapt.net

	Introduction
	Case Study
	A Simple Web Application 
	Adapting the Transformation Pipeline Using AspectJ
	Case Study Observations

	Aspect-orientation for XML
	A Terminology for Adaptation Aspects
	Classes of Adaptation Advices 
	Interaction of Adaptation Advices

	Initial Tool Architecture and Prototype Implementation
	Related Work
	Conclusion 
	References

