
Aspects of Software’s Energy

Consumption

C. Wilke,S. Götz, S. Cech,

J. Waltsgott, R. Fritzsche

Institut für Software- und Multimediatechnik

TUD-FI11-04-Sept. 2011

Technische Berichte

Technical Reports
ISSN 1430-211X

Fakultät Informatik

Technische Universität Dresden
Fakultät Informatik
D−01062 Dresden
Germany
URL: http://www.inf.tu−dresden.de/





Aspects of Software’s Energy Consumption

Claas Wilke, Sebastian Götz, Sebastian Cech,
Johannes Waltsgott, Ronny Fritzsche

Technische Universität Dreden, Dresden, Germany

Abstract. The CoolSoftware project focuses on optimizing software’s
energy consumption due to energy auto-tuning at runtime. A prerequi-
site for software’s energy consumption optimization was to identify the
different aspects that influence the energy consumption. This report sum-
marizes the results of a literature study w.r.t. energy consumption inves-
tigations on software applications. Furthermore, it outlines the different
identified aspects that have to be considered when optimizing software
w.r.t. its energy consumption.

1 Introduction

The CoolSoftware1 project focuses on building an energy auto-tuning (EAT)
runtime environment for software components [14]. A central question of the
project is, which aspects influence the energy consumption of software compo-
nents. The major focus of this analysis comprised an intense study of existing
literature, focusing on software’s energy consumption and its profiling as well as
its prediction. This document presents a summary of the analysis’ results and
gives an outlook to further research challenges and tasks. This report is related
to two other reports documenting the results of similar literature analyses for
hardware components [12,30].

The remainder of this report is structured as follows: Sect. 2 contains the
results of our literature study focusing on current state-of-the-art solutions for
energy optimization of IT infrastructures. Following, in Sect. 3, we outline the
identified aspects of software application’s energy consumption and how we plan
to address them. Finally, Sect. 4 summarizes and concludes this report.

2 Literature Analysis

This section discusses related work w.r.t. energy consumption by hardware is-
sued through software. The different approaches are presented in chronological
order and their relation to software applications’ energy consumption is shortly
discussed.

In 1998 Luca Benini et al. [1] used generated workloads as input for the simu-
lation of hardware’s energy consumption. They did not focus on the application

1 http://www.cool-software.org/



2 Wilke et al.

tier, but on how to compose embedded systems from hardware-components.
They took software into account, but abstracted it to workloads, which they
use as input for their simulation. Furthermore, they focused on single devices.
They simulated state charts, whose states and transitions are weighted in terms
of energy and time. Utilization-depended energy consumption was modeled us-
ing activity levels (i.e., 60% utilization of RAM). The idea has been realized
and evaluated with a real world case study, showing that the simulated energy
consumption is in between 5% of the actual energy consumption. Later pub-
lications often qualify this approach as inaccurate and offer other approaches
for energy consumption simulation, which are more accurate. For example the
cycle-accurate simulation approach of Simunic, Benini and Micheli published in
1999 [26].

Jason Flinn et al. investigated energy-efficiency of mobile devices [10]. They
focused on the decision, whether a method shall be run on a mobile phone or
remotely on a server. To measure resource usage, the /proc file system and
special drivers were used. The measured energy consumption was correlated
with software processes and procedures. Their overall approach is termed Pow-
erScope [11]. To predict resource demand Flinn et al. used mathematical models
(linear and more complex), which allow to approximate a process’ energy con-
sumption for the near future.

The energy-efficient coordination of software applications on mobile devices
has been investigated by Fei et al. [7,8]. Like low-power states of hardware re-
sources, they target low-power states of software applications, based on quality
of service (QoS) constraints. They specify QoS as human-perceptible character-
istics of applications (e.g., for a video player these include frame rate and size).
The aim of Fei’s work is to energy-efficiently run multiple applications on a sin-
gle mobile device, whereby the user’s intension (utility) is regarded in terms of
priorities set by the user.

Mahesri and Vardhan [19] performed a benchmarking case study identifying
the major energy consumers of a standard laptop. They used an oscilloscope
to measure energy consumed by the laptops’ hardware components (hard drive,
LCD/back-light, speakers, cooling fans, CPU, memory, graphics, WLAN, opti-
cal drive, modem, USB ports) either directly (i.e., cable for oscilloscope avail-
able) or subtractive (i.e., on-board components, subtracting energy consumption
from total consumption) for different workloads. The workloads included stan-
dard benchmarks such as PCMark and 3DMark as well as micro-benchmarks for
playing audio CDs or utilizing the network devices via FTP up- and download.
Their results show that the laptop’s total consumption varies a lot depending on
the executed workload (i.e. software). The major consumer is the CPU—which
always dominates the energy consumption if utilized. The laptop’s display is
another main consumer. Furthermore, the work identified that different OSs
consume different amounts of energy—even for the same workloads.

Lafond et al. [18] focused on predicting the average energy consumption of
Java-based applications. They profiled Java bytecode instructions by executing
them on a specific JVM and a specific hardware landscape. They profiled the



Aspects of Software’s Energy Consumption 3

energy consumption rate for a large subset of the Java bytecode instruction set
and evaluated their results on several benchmarks. However, their results are
only usable for a specific hardware as the bytecode’s energy consumption highly
depends on the hardware the Java application is executed on.

In [22] Suzanne et al. proposed an energy-aware sorting benchmark. Besides
the benchmark, influences on the energy consumption of sorting algorithms are
depicted. They proposed to measure the benchmarked system’s energy consump-
tion from the wall. Cooling systems and fans are proposed to be considered as
well; AC/DC transformations were proposed to be ignored because they may
consume more energy than the rest of the system.

Matthew Garrett investigated the energy consumption of hardware resources
from an optimizer’s point of view [13]. He points out LED displays, which can be
partially dimmed to save energy, the tradeoff between frequent spin-down/-up
cycles of disk drives and the lowering of their lifetime. Furthermore I/O-devices
usually provide many power-modes, but to the expense of their functionality
(e.g., parts of an USB-controller can be powered off, while connected devices
still work, but hot-plugging of new devices is not supported). Garrett identi-
fied several causes of energy waste due to software. These comprise fixed-tick
schedulers, which prohibit the CPU to scale down, because it is always in use.
Drivers, waiting for hardware response by polling them are another flaw leading
to unnecessary energy use. Most importantly, he presents the race-to-idle prin-
ciple: it is best to run tasks on the system in the highest performance modes to
get them done quick (race). According to Garrett, frequently switching to lower
power modes rarely leads to energy savings.

In [6] Ellis provided a lecture on managing energy consumption of mobile
devices. The book claims that effective power management will cut across the
different levels of system design including software and hardware components.
A good overview on different influences for energy consumption like hardware
resources, network connections, local or remote software execution is provided.
The book concludes by identifying the operating system as the appropriate layer
to serve as the center of power management. Another conclusion is the statement
that in general, application programs have been developed with little or no
attention paid to their energy-efficiency. Thus, an application’s design may have
a significant impact on the hardware’s energy consumption.

Chiyoung Seo et al. [24,25] compared software architecture styles for dis-
tributed software systems in regard to their energy consumption. They developed
an energy estimation framework, which does not only consider energy used due
to computation, but also energy used for communication. Similar to Lafond [18],
Seo et al. measured how much energy was consumed by instructions on the level
of virtual machines (VMs) (bytecode) and derived the total energy usage based
on this data. Notably, only energy costs were taken into account. The end user’s
utility, and thus energy-efficiency, were not examined by their approach.

Bircher and John [2] presented an approach predicting a specific PC hard-
ware’s power consumption based on performance events of the hardware’s per-
formance counters. They profiled the system using resistors for voltage detection



4 Wilke et al.

and executed several workloads based on standard benchmarks for their profiling
results. They built a performance model for CPU, memory, disk, chip-set and
I/O. According to their own results, their model allows predicting the compo-
nents’ power consumption with an error of about 9%. They identified CPUs as
the largest power consumers whereas the rest of the system was identified as
consuming 40%–60%.

In 2007, Lachenmann et. al [17] presented their Levels approach for au-
tomated reconfiguration of nodes in a wireless sensor network w.r.t. available
battery lifetime at runtime. Levels allows defining different levels of utility for
application code that are used to activate or deactivate more or less function-
ality w.r.t. available energy at runtime. Lachemann et al. outlined that energy
consumption of individual code blocks can highly differ w.r.t. the node (i.e.,
the hardware) on which they are executed. They further identified two types of
energy consumption: hardware components’ base energy consumption and fur-
ther consumption depending on both the hardware’s and the executed software’s
internal state.

In 2008, Poess and Nambiar published a benchmark for power consumption
of transaction-based systems [21]. They used the TPC-C benchmark and devel-
oped a power consumption model to approximate the power consumption based
on TPC-C results. Their power consumption model defines energy consumption
constants for hardware components of the system under test and sums them up
to the total power consumption of a benchmark run. The power consumption
model includes CPUs (their energy consumption was taken from manufacturer
specifications), memory (assumed consuming 9W per DIMM), disks (consump-
tion taken from specification), server chassis (assumed to consume 30% of their
components plus 100W overhead) and disk enclosures (assumed to consume 20%
of their disks’ consumption). The power consumption model was evaluated using
similar measurement setups as described in [22]. The workload of the TPC-C
benchmark was identified as a major influence on the power consumption since
it utilizes the components under test. It was argued that the model is only ac-
curate if all hardware components are utilized in a balanced way during the
benchmark’s run. Environmental parameters such as server room temperature
were identified as further influences. The differences between estimated an mea-
sured values varied from 10% up to 25%.

Kansal et al. [15] developed the tool JouleMeter that allows predicting the
energy consumption of processes running on a Windows PC. The tool can be
calibrated using either the battery sensor of a laptop or an external measuring
tool when running on a continuous power supply. Afterwards, JouleMeter is
able to estimate the power consumption of processes by profiling their resource
utilization (e.g., CPU usage and memory allocation).

A framework for the resource utilization analysis of Java applications has
been built by Navas et al. [20]. It applies formal methods and control-flow analy-
sis to predict a method’s energy consumption depending on its input parameters.
The framework’s energy prediction is based on the results profiled by Lafond et
al. [18] and is thus only applicable for a specific hardware platform.



Aspects of Software’s Energy Consumption 5

In [23] Eric Saxe identified resource managers and resource consumers as two
different points for energy-efficiency optimization. He motivated energy-efficient
software by stating, that in the past only few resources existed, which where
either utilized or not, but now many, heterogeneous resources comprise a system
and usually only parts of them are utilized during applications’ execution. This
partial utilization requires an energy-aware resource management for the soft-
ware being executed. He investigated energy-efficiency from three viewpoints: a
spatial viewpoint, a temporal viewpoint, and a combination of both of them.
The spatial viewpoint considers locality (i.e., on which core to deploy a thread
or where to store data). It also contains the power states of the different re-
sources (which resource to put into which power state). Saxe considered power
states as sets of tradeoffs (e.g., performance vs. energy-efficiency). The temporal
viewpoint is about scheduling, for example the ability to batch requests. Saxe
proclaimed energy proportionality and showed that base energy consumption
hinders this proportionality. Additionally he showed that concurrent programs
do not scale in terms of efficiency (work done / energy consumed). Saxe identi-
fied the evil breed of energy wasting software: periodic time-based pollers, like
Matthew Garrett [13]. PowerTop2 from Intel is a tool which excels these energy
wasting programs.

In [29], Tsirogiannis et al. presented results of improving energy-efficiency of
database servers focusing on queries and operations commonly used in analy-
sis and data warehousing tasks. For database energy optimization they demon-
strated that the use of different CPU operators can vary the power consumption
by more than 60%. Their test infrastructure’s power consumption was mea-
sured for the total system at the power supply. Additionally, the voltage of the
SSD’s, HDD’s and CPU’s power supply were measured to calculate their energy
consumption. A first result was that memory energy consumption seems not
to vary depending on its workload. Although disks provide different operation
states like idle and active, energy consumption was measured by using workload
profiles, resulting in energy/utility functions. Energy consumption of SSDs was
measured as proportional, while energy consumption of HDDs was measured as
non-proportional. CPUs were claimed to consume 85% of the full system’s power
consumption when running under full workload.

Caroll et al. [4] profiled a smart phone using several micro- and macro-
benchmarks utilizing the different electronic devices of the phone to derive a
mathematical model of its power consumption. Their profiled electronic devices
included CPU, memory, touchscreen, graphics hardware, audio, storage, and net-
work devices. To measure the device’s consumption, sense resistors where added
to the phones hardware board. The results identified the following main energy
consumers: graphical devices, CPU and the phone’s GSM module. The results
were validated by themselves using two other smart phones showing that the
general assumptions for the major energy consumers seem to be accurate [4].

2 http://www.linuxpowertop.org/



6 Wilke et al.

3 Aspects of Software’s Energy Consumption

This section presents the different aspects that influence software applications’
energy consumption identified during the literature study outlined above. The
measurement and/or prediction of software components’ energy consumption is
a non-trivial task since software components do not consume energy themselves,
but are executed on hardware that consumes energy. Nevertheless, software com-
ponents and their workload influence the hardware’s energy consumption as they
can trigger hardware resources to switch their inner state (e.g., from sleep to ac-
tive) during their execution. We identified the following aspects and influences:

1. HW resources as CPU and hard drives,
2. HW infrastructure as power supply and fans,
3. Middleware as the operating system (OS),
4. Communication as network devices,
5. Users’ workloads and expected utility,
6. Software itself (i.e., code).

A detailed discussion of all the identified aspects is given below.

3.1 Hardware Resources

Hardware resources are one of the major impacts on the energy consumption of
software component execution, since the software is executed on and thus, con-
trols the hardware. The energy consumption of software can differ significantly
when redeploying the software to different hardware [3,6,9,16,17,18,23,25,29].
Hence, to predict software’s energy consumption, the hardware resources used
by the software must be known explicitly. Hardware resources to be considered
include: CPUs, RAM, hard drives, CD and DVD drives, Buses, I/O devices,
graphic and sound cards, monitors (especially for laptop PCs), as well as network
devices. For laptops, tablet PCs, and smart phones, graphical devices as LCD
displays and touch screens are major energy consumers to be considered [4,19].

We propose to use cool component model (CCM) models and energy contract
language (ECL) contracts for the modeling of explicit dependencies between
software and hardware components [14].

3.2 Further Hardware Infrastructure

Besides classical hardware resources such as CPU and RAM, further hardware
can be identified that consumes energy as well. These hardware devices are not
required for the software’s execution in a direct manner; although they fun-
damentally enable the complete IT infrastructure’s availability. Such devices
include power supply devices, AC/DC transformers, battery chargers and fans.
Related work demonstrated that such devices can significantly alter the soft-
ware’s energy consumption [6,13,21,22].



Aspects of Software’s Energy Consumption 7

We propose not to measure such energy consumers, since they can manipulate
the results significantly [22]. Thus, measurements between the system under test
and its power supply (AC/DC transformer) are more promising than in front
of the transformer. However, probably subtractive measurement approaches [22]
can handle such influences when no other measurement and profiling tools are
available.

3.3 IT Middleware

Besides hardware resources, classical IT infrastructures have middleware soft-
ware providing the overall operability of the IT infrastructure. Such middleware
includes OSs, VMs, and software component containers providing services avail-
able for software components.

The services of typical OSs can cause significant energy consumption, even
if no end user software services are executed at all [13,16,23] (e.g., a pull service
checking every thirty seconds if a network connection is still available can cause
unnecessary energy consumption by prohibiting a state transition of hardware
resources from idle to sleep modes). Furthermore, different OSs can consume
different amounts of energy, even if executing the same software workloads [19].

We propose to consider middleware software as container resources, that are
required for software component’s execution and to use CCM and ECL to specify
these dependencies as well.

3.4 Communication

Communication between software components may cause energy consumption
as well [4,24] (e.g., two components communicating in a distributed software
system may communicate via network connections). Since network connections
often use failure-tolerant approaches that use multiple communication paths
and possible different paths for every message sent, the communication cost of
software components is hard to predict and even hard to measure [27].

Indeed communication costs can be seen as costs by using hardware resources
realizing the communication. We postpone the analysis of energy consumption
due to different variants of communication to the end of the project or even for
future work.

3.5 Load and User Settings

The users’ settings and configuration of a software system influence the its energy
consumption, too. Do the users want a high definition video stream or is a smaller
resolution sufficient; which frame rate is required for video presentation, which
bandwidth is required?

Besides user-specific settings, the load given by parameters to a software
service can influence the execution time and energy consumption of a software
component as well [21] (e.g., the energy consumption of a sort algorithm depends



8 Wilke et al.

on the given amount and their preorder in the given collection of data to be
sorted). Seo et al. identified three different types of service interfaces w.r.t. energy
consumption [25]:

1. Services always behaving the same w.r.t. their energy consumption,
2. Services behaving proportionally to the given parameters,
3. Services behaving unpredictable (e.g., database queries or services using

caches).

Whereas the energy consumption of the first two categories of services can
be predicted or simulated, the third category’s energy consumption can only be
computed or predicted in a heuristic or probabilistic way. Indeed, services of the
third kind relate to some external/extra source of information (e.g., database
or cache). Taking these extra sources into account during modeling the system
allows understanding methods of the third kind as one of the first two kinds.

We propose to use contextors [5] to collect the users’ expectations and set-
tings and workload description languages to model the load of load-dependent
services. Different levels of abstraction exist. The top-most layer is a user inter-
face. Offered services can be seen as domain concepts in a domain-specific lan-
guage (DSL). Business logic defines, how service requests from the user interface
are translated into internal service requests. It is not uncommon to have multi-
ple internal software layers. The lowest software layer is translating requests to
the software component container. Therefore, the translation from user interface
service requests down to the hardware requires DSL-transformations.

3.6 Software

Finally, the implementation of software components itself can influence the soft-
ware’s energy consumption. Control flow based on parameters like if/else-
expressions or while-loops can significantly influence the energy consumption.
Furthermore, unnecessary or unoptimized code can influence the required re-
sources and thus, the energy consumption of software components as well. Fur-
thermore, building software applications consuming hardware in an suboptimal
way (e.g., polling a network device to often, avoiding it switching into a sleep
mode) can increase the software’s energy consumption as well [6,13].

We propose to describe the internal behavior of software components in an
abstract way like automata or simplified control flow graphs. Probably formal
methods as abstract interpretation may help to predict the software’s energy
behavior [20]. Further research has to investigate the best solution for software
behavior descriptions w.r.t. their energy consumption. A foundation for these
challenges has been done by Peter Süttner during his diploma thesis [28].

4 Summary

In this report we outlined the results on our literature study and identification of
different aspects that can influence a software’s energy consumption during its



Aspects of Software’s Energy Consumption 9

execution. These aspects are: (1) hardware resources, (2) hardware infrastruc-
ture, (3) middleware (e.g., OSs), (4) communication, (5) load and user settings,
and (6) the software’s implementation itself. We further outlined how the plan
to respect these aspects during our EAT approach using the CCM and ECL for
both software and hardware modeling and the description of their dependencies.

Acknowledgments

This work emerged from research project CoolSoftware being part of the Leading-
Edge Cluster CoolSilicon, which is sponsored by the Federal Ministry of Educa-
tion and Research (BMBF) within the scope of its Leading-Edge Cluster Com-
petition. It has been co-funded by the European Social Fund and Federal State
of Saxony within the research project ZESSY #080951806 and the DFG within
CRC 912.

References

1. Luca Benini, Robin Hodgson, and Polly Siegel. System-level power estimation
and optimization. In Proceedings of the International Symposium on Low Power
Electronics and Design (ISLPED-98), pages 173–178, New York, August 10–12
1998. ACM Press.

2. W.L. Bircher and L.K. John. Complete system power estimation: A trickle-down
approach based on performance events. In IEEE International Symposium on
Performance Analysis of Systems & Software (ISPASS2007), pages 158–168. IEEE,
2007.

3. David J. Brown and Charles Reams. Toward energy-efficient computing. Commun.
ACM, 53(3):50–58, 2010.

4. A. Carroll and G. Heiser. An analysis of power consumption in a smartphone. In
Proceedings of the 2010 USENIX conference on USENIX annual technical confer-
ence, pages 21–21. USENIX Association, 2010.

5. Simon Dobson, Spyros Denazis, Antonio Fernández, Dominique Gäıti, Erol Ge-
lenbe, Fabio Massacci, Paddy Nixon, Fabrice Saffre, Nikita Schmidt, and Franco
Zambonelli. A survey of autonomic communications. ACM Trans. Auton. Adapt.
Syst., 1(2):223–259, 2006.

6. Carla Schlatter Ellis. Controlling Energy Demand in Mobile Computing Devices.
Synthesis Lectures in Mobile and Pervasive Computing. Morgan & Claypool, San
Rafael, CA, USA, 1 edition, 2007.

7. Yunsi Fei. System-level Energy Analysis and Optimization of Embedded Systems.
PhD thesis, Department of Electrical Engineering, Princeton University, 2004.

8. Yunsi Fei, Lin Zhong, and Niraj K. Jha. An energy-aware framework for dynamic
software management in mobile computing systems. ACM Trans. Embed. Comput.
Syst., 7(3):1–31, 2008.

9. Jason Flinn. Extending Mobile Computer Battery Life through Energy-Aware
Adaptation. PhD thesis, School of Computer Science, Computer Science Depart-
ment, Carnegie Mellon University, Pittsburgh, PA, December 2001.

10. Jason Flinn, SoYoung Park, and M. Satyanarayanan. Balancing performance,
energy, and quality in pervasive computing. In ICDCS ’02: Proceedings of the
22 nd International Conference on Distributed Computing Systems (ICDCS’02),
page 217, Washington, DC, USA, 2002. IEEE Computer Society.



10 Wilke et al.

11. Jason Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the energy
usage of mobile applications. In WMCSA ’99: Proceedings of the Second IEEE
Workshop on Mobile Computer Systems and Applications, page 2, Washington,
DC, USA, 1999. IEEE Computer Society.

12. Ronny Fritzsche, Johannes Waltsgott, Sebastian Götz, Claas Wilke, and Sebastian
Cech. State of the Art: Optimization of Energy Consumption in Storage Systems.
Technical Report TUD-FI 11-05-Sept. 2011, Technische Universität Dresden, 2011.

13. Matthew Garrett. Powering down. ACM Queue, 5(7):16–21, 2007.

14. Sebastian Götz, Claas Wilke, Matthias Schmidt, Sebastian Cech, and Uwe Aß-
mann. Towards Energy Auto Tuning. In Proceedings of First Annual International
Conference on Green Information Technology (GREEN IT).

15. Aman Kansal and Feng Zhao. Fine-Grained Energy Profiling for Power-Aware Ap-
plication Design. In First Workshop on Hot Topics in Measurement and Modeling
of Computer Systems (HotMetrics08) at ACM Sigmetrics, Annapolis, MD, USA,
2008. Association for Computing Machinery, Inc.

16. Jeff Kramer and Jeff Magee. Towards robust self-managed systems. Progress in
Informatics, 5:1–4, 2008.

17. A. Lachenmann, P.J. Marrón, D. Minder, and K. Rothermel. Meeting lifetime
goals with energy levels. In Proceedings of the 5th international conference on
Embedded networked sensor systems, pages 131–144. ACM, 2007.

18. Sébastien Lafond and Johan Lilius. An Energy Consumption Model for an Em-
bedded Java Virtual Machine. In Werner Grass, Bernhard Sick, and Klaus Wald-
schmidt, editors, Architecture of Computing Systems - ARCS 2006, volume 3894 of
Lecture Notes in Computer Science, pages 311–325. Springer Berlin / Heidelberg,
2006.

19. Aqeel Mahesri and Vibhore Vardhan. Power Consumption Breakdown on a Modern
Laptop. In Babak Falsafi and T. VijayKumar, editors, Power-Aware Computer
Systems, volume 3471 of LNCS, pages 165–180. Springer Berlin / Heidelberg, 2005.

20. J. Navas, M. Méndez-Lojo, and M.V. Hermenegildo. Safe Upper-bounds Inference
of Energy Consumption for Java Bytecode Applications. In Proceedings of The
Sixth NASA Langley Formal Methods Workshop, pages 29–32, 2008.

21. Meikel Poess and Raghuanath Othayoh Nambiar. Energy Cost, The Key Challenge
of Today’s Data Centers: A Power Consumption Analysis of TPC-C Results. In
Proceedings of the PVLD08, pages 1229–1240, New York, NY, USA, 2008. ACM
Press.

22. Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, and Christos
Kozyrakis. Joulesort: a balanced energy-efficiency benchmark. In SIGMOD ’07:
Proceedings of the 2007 ACM SIGMOD international conference on Management
of data, pages 365–376, New York, NY, USA, 2007. ACM.

23. Eric Saxe. Power-efficient software. ACM Queue, 8(1):10–17, 2010.

24. Chiyoung Seo, George Edwards, Sam Malek, and Nenad Medvidovic. A Framework
for Estimating the Impact of a Distributed Software System’s Architectural Style
on its Energy Consumption. In WICSA ’08: Proceedings of the Seventh Working
IEEE/IFIP Conference on Software Architecture (WICSA 2008), pages 277–280,
Washington, DC, USA, 2008. IEEE Computer Society.

25. Chiyoung Seo, Sam Malek, and Nenad Medvidovic. An energy consumption frame-
work for distributed java-based systems. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, Atlanta,
Georgia, USA, New York, NY, USA, 2007. ACM Press.



Aspects of Software’s Energy Consumption 11

26. Tajana Simunic, Luca Benini, and Giovanni De Micheli. Cycle-accurate simulation
of energy consumption in embedded systems. In in Proc. Design Automation Conf,
pages 867–872, 1999.

27. M. Stemm and R. H. Katz. Measuring and reducing energy consumption of network
interfaces in hand-held devices. IEICE Transactions on Communications, Special
Issue on Mobile Computing, 80(8), 1997.

28. Peter Süttner. Abstrakte Verhaltensbeschreibung von CCM Softwarekomponenten.
Diploma Thesis, Technische Universität Dresden, March 2011.

29. Dimitris Tsirogiannis, Stavros Harizopoulos, and Mehul A. Shah. Analyzing the
energy efficiency of a database server. In SIGMOD ’10: Proceedings of the 2010
international conference on Management of data, pages 231–242, New York, NY,
USA, 2010. ACM.

30. Johannes Waltsgott, Sebastian Götz, Ronny Fritzsche, Sebastian Cech, and Claas
Wilke. State of the Art: Hardware Energy Management. Technical Report TUD-
FI11-06-Sept. 2011, Technische Universität Dresden, 2011.


	Aspects of Software's Energy Consumption

