
Extended Version of Multi-Perspectives on
Feature Models

Julia Schroeter1, Malte Lochau2,
Tim Winkelmann2

1Institut für Software- und Multimediatechnik, TU
Dresden, 2Institut für Programmierung und

Reaktive Systeme, TU Braunschweig

TUD-FI11-07-Dezember 2011

Technische Berichte
Technical Reports

ISSN 1430-211X

Fakultät Informatik

Technische Universität Dresden
Fakultät Informatik
D−01062 Dresden
Germany
URL: http://www.inf.tu−dresden.de/

Extended Version of
Multi-Perspectives on Feature Models

Julia Schroeter1, Malte Lochau2 and Tim Winkelmann2

1 TU Dresden
Institute for Software- and Multimedia-Technology

julia.schroeter@tu-dresden.de
2 TU Braunschweig

Institute for Programming and Reactive Systems
{m.lochau,t.winkelmann}@tu-bs.de

Abstract. Domain feature models concisely express commonality and
variability among variants of a software product line. For separation
of concerns, e.g., due to legal restrictions, technical considerations, and
business requirements, multi-view approaches restrict the configuration
choices on feature models for different stakeholders. However, recent ap-
proaches lack a formalization for precise, yet flexible specifications of
views that ensure every derivable configuration perspective to obey fea-
ture model semantics. Here, we introduce a novel approach for cluster-
ing feature models to create multi-perspectives. Such customized per-
spectives result from composition of multiple concern-relevant views. A
structured view model is used to organize feature groups, whereat a fea-
ture can be contained in multiple views. We provide formalizations for
view composition and guaranteed consistency of the resulting perspec-
tives w.r.t. feature model semantics. Thereupon, an efficient algorithm
to verify consistency for entire clusterings is provided. We present an
implementation and evaluate our concepts on two case studies.

1 Introduction

In software product line (SPL) engineering, the variability and commonality
among product variants of the same domain are expressed in a domain feature
model [13, 25, 32]. It organizes features in a hierarchical structure as well as de-
pendencies and constraints between them. In general, the entire domain feature
model is used to derive product variants. However, there are various case sce-
narios which require the variant space defined by the domain feature model to
be further restricted. Reasons for those restrictions are driven by business or
legal concerns, e.g., to enable a variable pricing strategy for offering features as
packages to various stakeholders [22]. Other concerns may be of technical nature,
e.g., to restrict the overall variant space to a representative subset for efficiently
testing complete SPLs (cf e.g. [21]).

It seams promising to express these concerns by grouping features in a sepa-
rate model orthogonally to the domain feature model. Prior the derivation of a

Fig. 1. Perspectives are created by joining multiple views on a domain feature model.
The result is a filtered feature model, that is subsequently used to derive variants.

product by a specific stakeholder, concern-related groups are selected and the do-
main feature model will be filtered accordingly to ensure that restricted features
are not available for selection. Those groups are perceived as overlapping views
on the feature model. According to the ISO/IEC/IEEE 42010:2011, Systems and
software engineering3 standard, “a view is a representation of the whole system
from the perspective of a related set of concerns”. In other words, a view shows
only features that belong to concerns a stakeholder is interested in. Multiple
approaches to create views on feature models exist [1, 4, 11, 24]. Though, these
approaches focus on the multi-dimensional separation of concerns (MDSoC) and
a particular view is not intended to derive a complete product variant, but rather
to allow for specific configuration decisions only. To the best as our knowledge,
there are neither approaches to tailor the variant space using views on the do-
main feature model nor is there any work on aggregating and integrating multiple
views to achieve that.

To tackle these challenges, we propose multi-perspectives on feature models.
Therefore, in a perspective we aggregate multiple views to refine the variant space
of the original domain feature model, as shown in Fig. 1. We define further con-
sistency requirements to guarantee soundness of the potential multi-perspectives
and introduce viewpoints to explicitly define allowed view combinations. Every
viewpoint requires to incorporate a feature model perspective that states a spe-
cialization, i.e., a refinement of the original feature model semantics. A domain
feature model and a view model are unified in a cluster model, which imposes a
conservative extension to the domain feature model.

Ensuring cluster model consistency is, in general, hard to maintain due to
the crosscutting nature w.r.t. the feature model and the potential overlapping
of feature groups in a view model. Therefore, besides a comprehensive brute-
force approach, we also provide an incremental heuristic for verifying cluster
model consistency efficiently. Furthermore, our concepts support customization
on feature model level in the way that stakeholder-specific features added to the
domain feature model are restricted to that particular stakeholder’s perspective.

3 http://www.iso-architecture.org/ieee-1471/

2

The structure of this report is as follows. We explain preliminaries in Sect. 2.
In Sect. 3, we formalize our concepts of multi-perspectives on feature models, we
outline cluster model consistency requirements and provide an efficient algorithm
for their verification. Subsequently, in Sect. 4 we show how to apply those con-
cepts in SPL engineering. We present two case studies to evaluate the concepts
of our approach and the performance of consistency insurance in Sect. 5 and
document our technical realization. Finally, we present related work in Sect. 6
and conclude our work in Sect. 7.

2 Preliminaries

In this section, we review some basic notions concerning syntax and semantics
of feature models A multitude of feature modeling variants exists in the litera-
ture [7]. Here, we refer to the approach introduced in the feature oriented domain
analysis (FODA) study by Kang et al. [20].

2.1 Concrete Syntax of Feature Models

The concrete syntax of a feature model is usually given in a graphical layout, i.e.,
feature diagrams capturing hierarchies, dependencies, and constraints between
domain features. Feature diagrams organize features in a tree structure. Four
kinds of edges represent different hierarchical decomposition relations between
a parent feature and its groups of child features. These concepts are graphically
represented in the sample feature model shown on the left hand side of Fig. 2.

The intuitive semantics of the four kinds of edges are explained as follows:

1. a mandatory feature will be contained in every variant, in which it’s parent
feature is contained,

2. an optional feature may be included in a variant, where it’s parent feature
is contained,

3. if a group of child features is alternative, exactly one of its features is present
in every variant, in which the parent feature is included, and

4. if a group of child features is or related, at least one of its features is present
in every variant, in which the parent feature is contained.

For a feature diagram language of a domain feature model to be concep-
tional complete, i.e., fully expressive, further constraints are to be provided [28],
e.g.,requires and exclude cross-tree edges. Those constraints are often repre-
sented as additional propositional formulas over features that cross-cut the fea-
ture diagram tree [8] in arbitrary ways. Further constructs for enhancing feature
models are mentioned in the literature, e.g., feature cardinalities, feature at-
tributed, and feature references which are out of scope of this report.

2.2 Abstract Syntax of Feature Models

Please note, that we consider the two notions feature model and feature diagram
as synonyms in the following. Therefore, we introduce an abstract syntax for
cardinality-based feature models.

3

Definition 1. (Feature Model)
A feature model is a 4-tuple FM = (F,≺, λ, , Φ), where F is a finite set of feature
nodes, ≺⊆ F × F is a decomposition relation on F , λ : P(F) ⇀ N0 × N0 is a
partial cardinality function assigning intervals to feature groups, and Φ is a set
of propositional formulas over F .

For feature model FM being well-formed, it must satisfy the following rules:

1. Relation ≺ forms a rooted tree on F , i.e., the reflexive, transitive closure �∗
defines a partial order on F , and for every node f ∈ F despite the unique
root node fr ∈ F , there is exactly one predecessor node f ′ ∈ F with f ′ ≺ f .

2. In feature groups F ′ ∈ dom(λ), except the singleton group Fr solely contain-
ing the root feature, all features have the same parent node, thus:

∀F ′ ∈ dom(λ) \ {Fr} : ∃f ′′ ∈ F : ∀f ′ ∈ F ′ : f ′′ ≺ f ′

3. Function λ partitions F , i.e.:

(a) ∀F ′, F ′′ ∈ dom(λ) : F ′ 6= F ′′ ⇒ F ′∩F ′′ = ∅ , and (b)
⋃

F ′∈dom(λ)

F ′ = F.

4. Feature groups are non-empty: ∅ 6∈ dom(λ)

5. Cardinalities λ(F ′) = (k, l) of feature groups F ′ ⊆ F define reasonable
intervals for child features, i.e, k ≤ l and l ≤| F ′ | holds.

Cardinalities emulate the four decomposition types for feature groups F ′ ∈
dom(λ), where n =| F ′ | as follows:

1. λ(F ′) = (n, n) for mandatory features/groups,

2. λ(F ′) = (0, n) for optional features/groups,

3. λ(F ′) = (1, 1) for alternative groups, and

4. λ(F ′) = (1, n) for or groups.

For the group Fr of the root feature, we assume λ(Fr) = (1, 1) by conventions.
Propositional formulas φ ∈ Φ are boolean formulas φ ∈ B(F) expressing cross
tree constraints on FM. In particular, we consider:

1. requires edges leading from feature f to feature f ′ introducing implications
φrq = f → f ′, and

2. excludes edges introducing implications φex = f → f ′.

The set Φ is interpreted as the conjunction
∧
φ∈Φ φ of all constraints.

By FM(F) we refer to the set of all t’syntactically well-formed feature mod-
els over feature names F . Please note, that for the sake of simplicity of later
discussions we also assume well-formed feature model FM′ built only over a sub
set F ′ ⊆ F of features to be also part of the syntactical domain FM(F).

4

2.3 Semantics of Feature Models

The semantics of a feature model FM defines the variant space, i.e., the set
of valid product configurations. A product configuration is given as a subset
Fpc ⊆ F of features selected for a concrete product variant. Hence, the semantical
function

[[·]] : FM(F)→ P(P(F))

maps feature models FM ∈ FM(F) built over features F into the domain of sets
of valid product configurations obeying the decomposition types and constraints,
i.e.,

[[FM]] ∈ P(P(F)), where FM ∈ FM(F)

The semantical evaluation function defines the maximum set of valid product
configurations such that:

[[FM]] ={Fpc ∈ P(F) | fr ∈ Fpc ∧
(f ∈ Fpc ∧ f ≺ F ′ ∧ λ(F ′) = (k, l)⇒ k ≤| {f ′ ∈ F ′ ∩ Fpc} |≤ l) ∧

(f ′′ ∈ Fpc ∧ f ′′′ ≺ f ′′ ⇒ f ′′′ ∈ Fpc) ∧ Fpc |=
∧
φ∈Φ

φ}

where f ≺ F ′ ⇔: ∀f ′ ∈ F ′ : f ≺ f ′.
Thus, validity of configurations Fpc ∈ P(F) requires:

1. the root node fr to be contained in every configuration,
2. satisfaction of group cardinalities concerning features f ′ in all groups F ′

decomposing selected nodes f ,
3. justification of a selected feature f ′′ by means of the presences of its parent

feature f ′′′, and
4. satisfaction of global constraints in Φ on Fpc.

Although, a given feature model is syntactically well-formed, it potentially lacks a
useful configuration semantics. We use the semantics introduced above to review
the notion of feature model satisfiability (cf. [17]).

Definition 2. (Satisfiable Feature Model)
A feature model FM is satisfiable, if [[FM]] 6= ∅.

Thus, satisfiability requires the existence of at least one non-empty feature se-
lection Fpc ⊆ F , that satisfies the conditions over features as imposed in the
feature model. In other words, a feature model is satisfiable, if the configuration
space is non-empty. We assume any given feature model under consideration to
be satisfiable in the following.

A further semantical property crucial for the approach presented in this re-
port, is the notion of refinement.

Definition 3. (Feature Model Refinement)
A feature model FM′ is a refinement of a feature model FM, if [[FM′]] ⊆ [[FM]].

5

Thus, a refined feature model semantics defines a sub space of the configuration
space of the original feature model, i.e., refinement restricts the variability [31].

For explicitly reasoning about (staged) configuration processes on multi-
perspectives on feature models in future work, we also provide an alternative
semantical representation. In the next section, we provide a formalized staged
configuration semantics based on our feature model definition.

2.4 Staged Configuration Semantics for Feature Models

Feature Models are commonly used:

1. to model valid feature combinations for product families during domain en-
gineering, and

2. to support the process of configuring (and assembling) valid product variants
during application engineering [9, 18].

Considering 2), staged configuration semantics describes the incremental process
of deriving product configurations in an operational way [14, 12, 27].

Configuration processes are carried out in stages/steps, where stages may be
associated with different phases of the configuration process and/or with views
dedicated to different stakeholders. In each configuration step Cop, a configura-
tion operation op is performed on the feature model. Therefore, a configuration
step transforms a feature model FM ∈ FM(F) to a modified feature model
FM′ ∈ FM(F).

Here, we consider positive, as well as negative configuration steps. This
means, that configuration choices made by a stakeholder w.r.t. feature parame-
ters, is either a selection, or a deselection of a feature for a product configuration.
Thus, when conducting a sequence of configuration steps, the variability is incre-
mentally removed from the feature model until reaching a fully specified product
configuration.

Formally, this kind of configuration operation has the following signature:

Cop : FM(F)× F → FM(F)

where we write op ∈ {+,−} to either denote a selection operation C+(FM, f),
or a deselection operation C−(FM, f) of feature f on feature model FM. The
semantics of a configuration step:

Cop(FM, f) = FM′ = (F,≺, λ′op, Φ)

considering feature f ∈ F , where f ∈ F ′ ∈ dom(λ) and for λ(F ′) = (k, l),
transforms feature model FM = (F,≺, λ, Φ) to feature model FM′. The adaption
of λ to λ′op depends on op and is defined as follows:

– if | F ′ |> 1, then:
1. feature f is moved from group F ′ into a fresh singleton group:

dom(λ′op) := (dom(λ) \ F ′) ∪ F ′′ ∪ {f}, where F ′′ = F ′ \ {f}

6

2. group cardinalities are adjusted:
(a) the interval of the former group of f is decremented:

λ′op(F
′′) :=

{
(k − 1, l − 1), if op = ‘ + ‘ ∧ k > 0

(k, l − 1), else

(b) the singleton group of f is set to either mandatory, or exclusion:

λ′op({f}) :=

{
(1, 1), if op = ‘ + ‘

(0, 0), if op = ‘− ‘

– else, if | F ′ = {f} |= 1 and λ(F ′) = (k, l), then:

λ′op(F
′) :=

{
(1, 1), if op = ‘ + ‘ ∧ l = 1

(0, 0), if op = ‘− ‘ ∧ k = 0

i.e., either single optional features are (de-)selected, or feature (de-)selections
already performed are preserved.

– feature constraints in Φ relevant for application of Cop(FM, f) = FM ′ =
(F,≺, λ′op, Φ) are recursively applied:
1. features f ′ required for selected features f are also selected:

∀f → f ′ ∈ Φ : λ′+ := λ′′+, where (F,≺, λ′′+, Φ) = C+((F,≺, λ′+, Φ), f ′)

2. features f ′ requiring a deselected feature f are also deselected:

∀f ′ → f ∈ Φ : λ′− := λ′′−, where (F,≺, λ′′−, Φ) = C−((F,≺, λ′−, Φ), f ′)

3. features f ′ excluded by selected features f are deselected:

∀f → f ′, f ′ → f ∈ Φ : λ′+ := λ′′−,

where (F,≺, λ′′−, Φ) = C−((F,≺, λ′+, Φ), f ′)

Hence, in a configuration step, two transformation phases take place:

1. the selected/deselected feature is moved from its feature group into a sibling
singleton group, whose cardinality imposes the configuration choice, and

2. the recursive selection/deselection of further features is triggered according
to constraints potentially affected by the configuration choice and/or previ-
ous recursion steps.

Please note, that the termination of recursive constraint evaluations that imply
cyclic dependencies on a feature model is ensured via case 2). Further note, that
case 2) also ensures that no (syntactically ill-formed) empty groups arise during
a configuration step, as singleton groups are preserved.

In general, the semantics allows features f ∈ F to be (de-)selectable in FM ∈
FM(F) in any stage of the configuration process even though contradicting

7

feature model semantics. For instance, attempting to deselect a mandatory fea-
ture should, by intuition yield an erroneous configuration result FM′ 6∈ FM(F).
The same holds for selecting a feature that was already deselected in a previous
configuration step.

Correspondingly, a configuration step Cop(FM, f) for f on feature model FM
is invalid, written Cop(FM, f) = ⊥, if it yields an ill-formed feature model FM′.

Semantically, a configuration process defines a sequence of configuration
choices, where each step imposes a a feature model refinement:

FM′ = Cop(FM, f) ⇒ [[FM′]] ⊆ [[FM]]

The resulting specialized product configuration space of FM′ is either partially
specified, if | [[FM′]] |> 1, or it is fully specified if | [[FM′]] |= 1. For a configura-
tion process that ends up in fully specified product configuration, the concrete
product configuration results from the sequence of (explicit and implicit) feature
selection operations.

3 Formalization of Model-Based Multi-Perspectives

In this section, we identify requirements an approach for multi-perspectives on
feature models must address. Subsequently we introduce our concepts to address
these requirements and give a formalization of our approach.

3.1 Requirements of Multi-Perspectives on Feature Models

From the case scenarios described in Sect. 1, we obtain the following requirements
an approach for multi-perspectives on feature models has to satisfy.

Requirement 1 Aggregation of multiple views for creating perspectives on the
domain feature model.

Requirement 2 An explicit concept constitutes aggregations of views, that are
allowed to form perspectives.

Requirement 3 Preservation of feature model semantics in perspectives is ef-
ficiently decidable.

Requirement 4 Group features according to concerns that are crosscutting to
the domain feature model hierarchy in a separate view model. Thereto, use a
hierarchical structure to enable step-wise refinement of groups and an overlapping
structure to express crosscutting concerns.

Requirement 5 The view model contains a common group, that references all
features which are not explicitly mapped to other groups of the view model. Those
core features are available per default in every perspective.

Requirement 6 Express customization on feature model level.

8

Fig. 2. The cluster model consists of a feature model, a view model and an assignment
of features to groups.

To address the identified requirements, we introduce the concept of clustering
feature models. It means, that features of the domain feature model are grouped
according to multiple concerns, which crosscuts the feature model hierarchy.
Therefore, a cluster model consists of the domain feature model, a view model
and a mapping between both, as we show in Fig. 2. Features are assigned to
groups of the view model, whereat a feature may be assigned to multiple groups.
In turn, each group forms a partial view on the domain feature model, whereat
views may overlap. The view model addresses Req. 4.

Nuseibeh et al. use the concept of viewpoints to describe a concrete per-
spective of a system [15, 23]. Hence, in our approach, a viewpoint is an explicit
definition of groups of the view model that are aggregated to form a valid per-
spective. That addresses Req. 1 and Req. 2.

A perspective represents a filtered domain feature model or in other words,
is a specialization of a feature model [31]. Variants that can be derived from
a perspective are a valid sub set of the variants derivable from the domain
feature model. A viewpoint defines which features are available in the according
perspective and the view model structure implies, that all subgroups of a group
include the viewpoint of that group as well.

In addition to purely hierarchical inclusions, modeling arbitrary overlappings
among groups allows for capturing further interrelations between concerns of cor-
responding views addresses Req. 4. A unique root group contains every viewpoint
and is therefore called core group. This addresses Reg. 5 as the core group ref-
erences all features that are not explicitly assigned to other groups. In addition,
Req. 3 is addressed by an efficient algorithm for the cluster model consistency
verification that is explained in Sect. 3.5. Req. 6 is addressed by introducing a
special kind of groups which is discussed in Sect. 3.3.

9

3.2 Views and Perspectives on Feature Models

Views use a sub set of configuration parameters to restrict the access to a given
domain feature model. Formally, a view projects from a feature model FM ∈
FM(F) a sub set of features F ′ ⊆ F and related constraints.

Definition 4. (Feature Model View)
A feature model view VFM = (FV , ΦV) of a feature model FM ∈ FM(F) consists
of a subset FV ⊆ F of selectable features, and a subset ΦV ⊆ Φ of constraints
such that φV ∈ B(FV) for each φV ∈ ΦV .

By VFM, we refer to the set of all views of a feature model FM. In general,
a view VFM ∈ VFM contains an arbitrary selection of features FV ⊆ F and
corresponding constraints φV ∈ ΦV .

Example 1. In Fig. 2, four views on the feature models are highlighted via dif-
ferent hatchings marking feature groups selected into the same view. Note, that
the lower most feature on the left is selected into two views.

Views restrict domain feature models, thus each view is associated with a per-
spective that interprets a view as a variability-reduced feature model, i.e., a
partial tree of the original feature tree. For the sake of simplicity, we assume

FM(FV) ⊆ FM(F), where FV ⊆ F

for the following discussions, i.e., FM(F) to also contain feature models built
over only a sub set of features F .

Perspectives. A perspective FMV ∈ FM(F) for a view VFM ∈ VFM is defined
via a projection function:

pFM : VFM ⇀ FM(F)

where
pFM(VFM) = (FV ,≺V , λV , ΦV)

for a view V such that:

1. ≺V⊆ FV × FV ⊆≺, i.e., the restriction of ≺ onto FV , and
2. λV is reduced to FV as follows:

– if F ′ ∈ dom(λ), then F ′ ∩ FV ∈ dom(λV), if F ′ ∩ FV 6= ∅
– if λ(F ′) = (k, l), then λV (F ′ ∩ FV) = (k, l− | F ′ \ {FV ∩ F ′} |)

Note, that pFM is a partial function, because views VFM ∈ VFM exist, whose pro-
jection application would yield an ill-formed feature model pFM(VFM) 6∈ FM(F).
Furthermore, even if pFM(VFM) ∈ FM(F) holds, the perspective pFM(VFM) is
not necessarily semantically refining FM, i.e., [[pFM(VFM)]] 6⊆ [[FM]]. Therefore,
we introduce the notion of FM-consistent views.

Definition 5. (FM-consistent View)
A view VFM ∈ FM(F) is FM-consistent if:

10

1. pFM(VFM) ∈ FM(F),
2. [[pFM(VFM)]] ⊆ [[FM]], and
3. pFM(VFM) is satisfiable.

The first property holds, if the selected features in a view preserve the feature
tree structure of FM and obey feature group constraints. For the second property,
constraints are to be considered. In general, for each constraint φ ∈ Φ \ Φv and
F ′ ⊆ F to be the sub set of features appearing in φ, we require F ′ ∩ Fv = ∅.
We weaken this property as we focus only on feature models with binary require
and exclude constraints. Thus, the feature selection must solely support feature
implications to be satisfiable, as exclude constraints are either fully supported, or
they cannot be invalidated in a view, because one of the features is not selectable.

Lemma 1. A feature model view VFM ∈ VFM is FM-consistent, if:

1. fr ∈ FV ,
2. if f ∈ FV and f ′ ≺ f , then f ∈ FV ,
3. if f ∈ FV and f ≺ F ′ with λ(F ′) = (k, l), then | F ′ ∩ FV |≥ k
4. if f ∈ FV and f → f ′ ∈ Φ, then f ′ ∈ FV , thus f → f ′ ∈ ΦV

Properties 1.) and 2.) enforce preservation of the feature model (partial) tree
structure, property 3.) ensures group cardinalities to be satisfiable also by the
remaining features in the view, and property 4.) ensures the view to be closed
w.r.t. the transitive closure of feature implication constraints.

Example 2. In Fig. 2, only the view marked in solid gray is FM-consistent.

By VcFM ⊆ VFM we refer to the sub set of FM-consistent views on a feature
model FM. Views VFM 6∈ VcFM are called partial views.

View Composition. For the aggregation of multiple views, we introduce a com-
position operator on views:

⊕ : VFM × VFM → VFM

such that:
VFM ⊕ V ′FM = V ′′FM = (FV ∪ FV ′ , ΦV ′′)

where:

– ΦV ′′ ⊆ Φ, and
– φ ∈ ΦV ′′ ⇔ φ ∈ B(FV ′′).

Due to the definition of view composition via set union and conjunction, we
obtain the following properties.

Lemma 2. The view composition operator is commutative and associative.

The proof follows directly from the operator definition. Due to the cross cutting
nature of constraints in feature models, feature model semantics is, in general, not
compositional [2]. Accordingly, view composition does, in general, not commute
with feature model semantics.

11

Proposition 1. (Non-commutativity of View Composition)
For two feature model views VFM, V

′
FM ∈ VFM

[[pFM(VFM ⊕ VFM′)]] 6= [[pFM(VFM)]] ∪ [[pFM(V ′FM)]]

holds.

The proof follows directly from the usual counter-examples addressing non-
compositional feature model semantics due to cross-cuttings of constraints. In
particular, from ΦV ′′ 6= ΦV ∧ΦV ′ , it follows that constraints φ ∈ ΦFV ′′ ∩ΦF with
φ 6∈ ΦFV

∪ ΦFV ′ may exist.

Fortunately, view composition is closed under FM-consistent views, i.e., join-
ing two FM-consistent views yields, again, an FM-consistent view.

Proposition 2. (Closedness of FM-consistent view composition)
For two FM-consistent views VFM, V

′
FM ∈ VcFM, VFM ⊕ V ′FM ∈ VcFM holds.

Proof: Well-formedness of the tree structure and group constraints is preserved,
as both views are FM-consistent for the same feature model FM and composition
is monotone on F . For imply constraints φ = f → f ′ with f, f ′ ∈ FV ′′ , φ ∈ ΦV ′′ is
guaranteed as φ must be already contained in V and/or V ′. Otherwise, one view
must have contained f without f ′ which would contradict the FM-consistency
assumption. Summarizing, the relation between the different syntactical and
semantical domain discussed in this section, are illustrated in Fig. 3. The subset

Fig. 3. A visualization of the formalized concepts on feature models, views, and vari-
ants.

VcFM ⊆ VFM of FM-consistent views of a feature model FM ∈ FM(F) are
mapped to perspectives FM′ that semantically refine FM by restricting the set
of variants to a subset.

Based on these results, we use view composition to join multiple views for the
derivation of viewpoint-specific perspectives on feature models. The aggregation
of those perspectives for particular stakeholders depend on the organization of
their viewpoints in View Models.

12

3.3 View Models

Recent multi-view approaches on feature models usually assume a one-to-one
correspondence between a set of views on a feature model and a set of disjoint
stakeholders [12, 33, 18, 19, 4, 26, 27]. Hence, views are considered to encapsulate
a particular concern and multi-view approaches on feature models aim at a
separation of concerns.

Here, we also assume views to modularize feature models for certain concerns.
But, as concerns are potentially interrelated, we suppose views to overlap in arbi-
trary ways and to be organized in groups. In addition, depending on the concerns
relevant for a stakeholder, various (abstract) views are aggregated into concrete
well-defined viewpoints for deriving a tailored feature model perspective [23].
For capturing the relationships between views and viewpoints, we introduce a
view model.

Definition 6. (View Model)
A view model is a pair VM = (VP, G), where VP = {vp1, vp2, . . . , vpm} is a
finite set of m viewpoints and G = {g1, g2, . . . , gn} is a finite set of n groups,
i.e., a collection of predicates gi ⊆ VP over viewpoints.

Group predicates gi ∈ G indicate the corresponding sub set gi ⊆ VP of view-
points as members of that group, thus sharing common concerns dedicated to
that group. Furthermore, sub sets introduce an implicit group hierarchy relation
<G⊆ G×G, as follows:

g <G g′ :⇔ g ⊂ g′

thus defining a predecessor relation among groups via inclusion of their view-
points. Relation <G is a strict partial order, because we allow groups with equal
predicates gi = gj to be distinguished in G by their indices i and j. Correspond-
ingly, two groups gi and gj are either related under <G, or they are incomparable,
i.e., either (1) disjoint, or (2) overlapping (including set equality). We define the
overlapping group relation uG ⊆ G×G to be:

gi uG gj :⇔ i 6= j ∧ gi ∩ gj 6= ∅ ∧ gi 6<G gj ∧ gj 6<G gi

therefore being irreflexive, symmetric, and not transitive. For well-formed view
models, we require <G to be upwards closed in G, i.e., there exists a unique core
group gcore ∈ G with gcore = VP, thus g <G gcore for each g ∈ G. Furthermore,
for (optional) singleton groups g ∈ G, where g = {vpi}, used to exclusively
assign customization properties to particular viewpoints vp ∈ VP, we also require
uniqueness in G. We use the following notations:

– a group g′ ∈ G is a direct predecessor of g ∈ G, if g <G g′ and there is no
g′′ ∈ G such that g <G g′′ <G g′.

– a group g ∈ G is most specific for a viewpoint vp ∈ VP, if (1) vp ∈ G, and
there is no g′ ∈ G with vp ∈ G and g′ <G g.

The core group has no (direct) predecessors. Without any further restrictions,
due to overlapping groups, a view model VM allows for any other groups to have

13

multiple direct predecessors and viewpoints with multiple most specific groups.
We further distinguish between abstract and concrete groups: a group g ∈ G is
concrete, if it is most specific to at least one viewpoint vp ∈ VP, otherwise it is
abstract.

Example 3. A sample graphical representation of a view model is presented in
Fig 2. Here, circles denote groups, where a tree-like structure is used to visualize
inclusion hierarchies among groups. Accordingly, g3 <G g1 <G gcore and g2 <G
gcore holds, whereas g2 and g2 are unrelated under <G Viewpoints are denoted
by eye-like symbols and dashed lines mark the sets of groups the viewpoint is
part of. Therefore, g1uG g2 holds, because vp2 ∈ g1∩g2, and vp2 has both g1 and
g2 as its most specific groups. Group g3 is a singleton group solely containing
viewpoint vp3.

Each viewpoint in a view model aggregates the views assigned to groups of that
viewpoint to build a perspective. The potential multi-perspectives on the feature
model are specified in a cluster model.

3.4 Cluster Models

The integration of feature model views and view models imposes a cluster model
applied to feature models by inferring multiple perspectives from joined views
of viewpoints.

Definition 7. (Cluster Model)
A cluster model is a triple CM = (FM,VM, σ), where FM ∈ FM(F) is a feature
model, VM = (VP, G) is a view model, and σ : G→ VFM is mapping function.

We require every feature of feature model FM to be mapped to at least one view,
i.e., for each f ∈ F , there is some g ∈ G with σ(g) = (Fg, Φg) such that f ∈ FG.

Example 4. The mapping σ between the feature model and the view model in
Fig. 2 is denoted by the same hatchings of features and groups. For instance,
the core group maps to the gray features, whereas singleton group g3 maps to a
customization feature as well as to a feature shared with group g2.

For accessing a clustered feature model, a stakeholder chooses a viewpoint ac-
cording to the corresponding concerns of relevance. Viewpoints vp ∈ VP refer
to aggregated views Vvp, i.e., views that result from joining all views mapped to
groups of that viewpoint:

Vvp = σ(gcore)⊕ σ(g1)⊕ σ(g2) · · · ⊕ σ(gk)

where vp ∈ gi, 1 ≤ i ≤ k. By VCM ⊆ VFM, we denote the set of all views
of viewpoints in a cluster model CM on FM. The clustering of feature models
into sets of views VCM of all viewpoints introduces multi-perspectives, i.e., a set
FMvp = p(Vvp) of feature models. Clusterings should preserve the constraints
of the original domain feature model, i.e., we require the semantics of multi-
perspectives to be consistent with the feature model.

14

3.5 Consistency of Cluster Models

Despite multi-views, multi-perspectives on feature models do not enforce all
views to obey consistency properties, but only those being non-partial, i.e., vis-
ible to at least one viewpoint. Therefore, for a cluster model to be consistent
we require all derivable perspectives to be projected from viewpoints of FM-
consistent views.

Lemma 3. A cluster model CM = (FM,VM, σ) is consistent, if VCM ⊆ VCFM.

Brute-Force Algorithm. A corresponding intuitive brute-force approach for ver-
ifying consistency of a cluster model CM = (FM,VM, σ) is outlined in Algo-
rithm 1. The algorithm iterates over every view point vp ∈ VP defined in the

Algorithm 1 Brute-Force Cluster Model Consistency Check

input: cluster model CM
for all viewpoints vp ∈ VP do

for all groups g ∈ G where vp ∈ G do
Vvp := Vvp ⊕ σ(g)

end for
FMvp := p(Vvp)
check(FM,FMvp)

end for

view model VM of CM. The set of view σ(g) of (partial) groups g ∈ G containing
viewpoint vp are composed as described previously. The restricted feature model
perspective FMvp for viewpoint vp is projected from FM and procedure check
performs the FM-consistency checks according to Lemma 1. However, ensuring
consistency this way, i.e., viewpoint by viewpoint, is in general not efficiently
computable. Even for the simpler case that no equal groups gi = gj , i 6= j exist
in CM, the maximum number of groups is O(2|VP|), and the maximum number
of group views to be composed for a viewpoint vp ∈ VP is O(|G|). Checking FM-
consistency of viewpoints includes (1) traversal of the feature tree in O(|F |) to
check well-formedness and refinement properties (cf. Sect. 3.2), and (2) to decide
satisfiability of the resulting perspective, which is known to be NP-complete, i.e.,
reducible to SAT [6].

However, because of inclusions and overlapping within the group hierarchy,
many redundant checks are performed that way due commonality between views
of viewpoints within related groups. As a solution, we propose a more conserva-
tive criterion for cluster model consistency imposing a sufficient, but not neces-
sary requirement, that is verifiable in an efficient, incremental way. Based on the
the closedness property of the view composition operator (cf. Prop. 2, we make
the following assumptions: (1) the original feature model FM is satisfiable, and
(2) the consistency of all potential group views in separate ensures consistency
of all joined views of every viewpoint.

15

Incremental Heuristic Algorithm. To check large-scale cluster models, we pro-
pose a more conservative criterion imposing a sufficient, but not necessary re-
quirement, that is verifiable in an efficient, incremental way by iterating over
groups instead of viewpoints. Therefore, we interpret view models VM = (VP, G)
as graphs (Gc,→) where:

– nodes g ∈ gc refer to concrete groups Gc ⊆ G, and
– edges g → g′ connect groups g and g′ if g′ <∗G g and each g′′ ∈ G with
g′ <∗G g′′ <∗G g is abstract, hence g′′ 6∈ Gc. In other words, there is no
further concrete group in the group hierarchy between g′ and g.

Starting from the core group, Algorithm 2 incrementally checks for every edge
g → g′ the preservation of FM-consistency by considering sets of features added
via partial views of abstract groups passed from g to g′ (denoted by Fg→g′)
and those added by g. Thus, a depth-first-traversal on (Gc,→) is performed,
where each path segment g → g′ is checked separately based on previous steps.
This incremental heuristic is reliable as it ensures consistency of a given cluster
model.

Algorithm 2 Incremental Heuristic for Cluster Model Consistency Check

Input: FM, (Gc,→), σ
Require: gcore ∈ Gc

∀g ∈ Gc : g.F = σ(g) {feature sets mapped and aggregated to groups}
∀g ∈ Gc : g.cons = true {flag for group views FM-consistency}
gcore.cons := check(gcore.F, FM) {consistency checks, cf. Lemma 1}
∀g ∈ Gc : g.done = false {predecessor nodes of node completely checked}
gcore.done := true
for all g ∈ Gc where g.done = true do

for all g′ ∈ Gc where g → g′ do
g′.F := g′.F ∪ g.F ∪ Fg→g′ {add features from predecessors between g and g′}
g′.cons := check(g′.F, FM) ∧ g′.cons {check consistency preservation}
if ∀g′′ ∈ Gc where g′′ → g′ : g′′.done = true then
g′done := true {all predecessors of g′ checked}

end if
end for
Gc := Gc \ g {check of g done}

end for
return true if ∀g ∈ Gc : g.cons = true

Summarizing, the algorithm uses the following data structures:

– GC ⊆ G – the sub set of concrete groups, i.e., groups being most specific to
at least one viewpoint. Note that we require GC to always contain the core
group, even though it might be abstract.

– g → g′ – the group hierarchy relation lifted to GC .
– g.cons – flag for group consistency. The flag is set to false (and stays false)

as soon as one potentially inconsistent group view is detected.

16

– g.done – flag is set to true if all predecessor groups of that group are com-
pletely checked. Thus, the traversal can continue at this group.

– g.F – set of features in views of that group incrementally collected from all
predecessor group views of that group.

– function check(F, FM) is defined according to the requirements of lemma 1.
– Fg→g′ – the union of features mapped into views of abstract groups g′′ be-

tween g and g′.

Theorem 1. (Cluster Model Consistency)
If a cluster model CM passes Algorithm 2 successfully, then CM is consistent.

Proof: First, we have to show that algorithm terminates. According to the
definition of the view model hierarchy, the construction of (Gc,→) results in a
connected, directed, and acyclic graph. Therefore, (1) predecessor nodes always
exists for the traversal and (2) no cyclic traversals may arise. The preservation of
FM-consistency can be shown by induction over the traversal of paths in (Gc,→
). The induction starts by ensuring FM-consistency of the core group view,
which is the predecessor of any other group. Then, the algorithm incrementally
ensures in every step, i.e., for every edge g → g′ to be consistency preserving by
(1) assuming the view of g to be already checked as FM-consistent (induction
hypothesis), and (2) the aggregated views for the set Fg→g′ to preserve FM-
consistency. Thus, the incremental traversal ensures concrete views aggregated
from views of groups via hierarchical inclusions to preserve FM-consistency, if all
its predecessors under <G are FM-consistent. Finally, consistency of overlapping
group views is given as follows. According to Prop. 2, closedness of FM-consistent
view composition implicitly ensures views arbitrarily joined for groups g uG g′
to also preserve FM-consistency, even though never explicitly checked.

The opposite direction of Theorem 1 does not hold, i.e., the algorithm may
produce false negatives as it may mark groups to be inconsistent, even though
all its potential viewpoints have consistent views after aggregation of the over-
lapping views. For instance, even if the core group is not concrete, the algorithm
requires its view to be FM-consistent.

4 Multi-Perspective SPL Engineering

In SPL engineering, we distinguish the processes of domain engineering and
application engineering [13, 25, 32]. In this section we describe, how to extend
these processes with the concepts formalized in the section before to support
multi-perspectives on feature models and customization.

4.1 Domain Engineering

In addition to modeling commonality and variability among products in a do-
main feature model, we propose to model a cluster to support the creation of
perspectives in the application engineering process. The domain feature model,
as defined in Sect. 2, is created independently. As our cluster approach is a

17

conservative extension to the domain feature model, it can also be applied to
existing feature models. The cluster combines the domain feature model with
a view model as formalized in Sect. 3.4. After the view model is created and
features are assigned to groups of the view model, viewpoints can be identified
to create perspectives in the application engineering process.

4.2 Application Engineering

We extend the application engineering process by creating a valid perspective
on the domain feature model before deriving variants for a stakeholder. A stake-
holder can choose from groups of the view model. Those groups form the stake-
holder’s viewpoint.

Due to the fact that the view model is hierarchically structured, all ancestor
groups of the groups the stakeholder selects are contained in the viewpoint as
well including the core group. A selection of groups forms a viewpoint only,
if a valid perspective can be created. Deriving a perspective from a viewpoint
is an automated task. This perspective is then used to derive variants in the
application engineering process.

4.3 Customization

Stakeholders may have requirements that do not match the features currently
available in the domain feature model. To decide about adding new features,
a cost-benefit analysis is performed. If the stakeholder’s requirements lead to
stakeholder-specific features that must only be available for that particular stake-
holder, those features could only be added to the domain feature model, if it is
possible to restrict their access.

Our multi-perspective approach supports this customization on feature level
by introducing the concept of a stakeholder’s most specific group. Such a group
is only accessible by a single stakeholder and will only be contained in this stake-
holder’s perspective. Therefore, features that are referenced by this group will
not be available in other perspectives than of this particular stakeholder. Thus,
stakeholder-specific features are added to the domain feature model without
polluting it.

In addition, a feature of the domain feature model can be replaced by a
stakeholder-specific feature in a stakeholder’s perspective. Therefore, both fea-
tures, the original and the customized one, must have the same ancestor feature
in the domain feature model. Furthermore, the customized feature must be ref-
erences by the stakeholder’s singleton group and the original feature must be
referenced by a group that is not contained in the stakeholder’s perspective.

4.4 Good Modeling Practices

In our research we identified some good practices in modeling the cluster. The
following good modeling practices help to create meaningful models and reduce
the computation complexity:

18

– Core Features Features that will be contained in every derived variant are
called core features [7]. As the core group of the view model will be included
in every perspective, core features must be contained in this group.

– Optional Features Features that should not be contained in all perspectives
must be declared as optional features in the feature model. This can also be
used to make whole sub trees optional. Those sub trees can then be explicitly
excluded from perspectives.

– Potential Dead Features Due to grouping features in the view model, it is
possible to create dead features. A feature is dead, when it is excluded from
any perspective [7]. To prevent this, all created groups must be used in at
least one perspective.

– Hierarchical Restriction Features that are in the lower tree level of the feature
model hierarchy should not be referenced by higher level groups in the view
model.

– Constraint Relation In the case that a feature requires another feature in
the feature model and a group in the view model references one of those
features, then this group must reference the other feature as well.

– Exclude a Feature from a Perspective To restrict the selection of a feature,
this feature will excluded from a perspective. That can be achieved by a
group that references the feature, but is not contained in the perspective.

– Replace a Feature in a Perspective A feature of the domain feature model
can be replaced by a customized feature in the stakeholder’s perspective.
Therefore, both features, must have the same ancestor feature and the cus-
tomized feature must be references by the stakeholder’s most specific group,
whereas the original feature must not be contained in the perspective.

5 Application of Multi-Perspective SPL Engineering

In this section we show the applicability of our approach and explain it’s technical
realization. In addition, we use two case studies to evaluate the generality and
scalability of our multi-perspective approach. The first case study describes an
SPL for document management systems and consists of 22 features. The second
case study describes an SPL for crisis management and consists of 84 features.

5.1 Document Management Case Study

Fig. 4 shows the domain feature model of a document management SPL, a view
model and a valid perspective. The domain feature model contains 22 features.
The root node DocumentManagementSystem represents the document manage-
ment application.

The application is capable of handling documents of different DocumentTypes,
which are UnicodeTextType, TextType, PDFType and ImageType. At least one
document format must be handled by the document management. Text from
images can be extracted by using OCR, which is an optional functionality. Two

19

Fig. 4. A perspective on the domain feature model of our document management sys-
tem case study created by a viewpoint in the view model. Black-colored features and
constraints are visible in the perspective, whereas gray-colored ones are not available.

OCR-extractors are provided, the PDFOCR and the ImageOCR. Each of them re-
quires the according document type. The Indexing mechanism is needed to
analyze the documents content and prepare it for an efficient search. A File-

NameIndex is a mandatory feature. Two further index mechanisms could be se-
lected alternatively, MetaDataIndex and GeneralIndex. The latter one analyzes
the document’s plain content without considering the structure of the document.
In contrast, the MetaDataIndex allows for fine grained document analysis and
implies the TitleIndex and the ContentIndex. Optionally, if AuthorIndex is
selected, the author of a document will be indexed. Hence, the document man-
agement system provides Search mechanisms. Whereas, each search capability
implies that the according index is available.

We group the features according to business concerns in the view model
shown on the right side of Fig. 4. Beside the Core group, the groups Premium,
Silver, Gold, Basic and Customized are hierarchically ordered in the view
model. Features of the feature model are assigned to these groups, whereat the
ImageType feature is assigned to two groups (Basic and Gold). A viewpoint of
the stakeholder “SpecialUser”, references the groups (Customized, Basic, Pre-
mium and Core). Note, that the group Customized represents the most specific
group of the stakeholder and the assigned feature UnicodeTextType and the
according constraint are only available in this stakeholder’s perspective. The
perspective defined by the viewpoint is visualized on the left side of Fig. 4,
whereat black-colored features and constrains are visible and gray-colored ones
are not included.

5.2 Crisis Management Case Study

The crisis management SPL allows to derive variants for multiple crisis scenarios,
e.g., car or flood crisis. Its feature model contains 84 features and is explained
in detail in [16]. We use this case study to show the scalability of our approach
by conducting performance measurements.

20

0 10 20 30 40 50 60
0

20

40

60

80

100

Viewpoints

T
im

e
[m

s]

Brute Force Algorithm
Incremental Heuristic Algorithm

Fig. 5. The performance of the heuristic algorithm is compared to the performance of
the brute force algorithm for checking the cluster model consistency.

We implemented the algorithms presented in Sect. 3.5 to check the consis-
tency of the cluster model and measured their performance according to different
numbers of viewpoints. We show the results in Fig. 5. As the number of view-
points increases, the number of groups assigned to a viewpoint increases, accord-
ingly. We evaluate the incremental heuristic algorithm (cf. Algorithm 2) against
the brute force algorithm (cf. Algorithm 1) and show the results in Fig. 5. Com-
paring both algorithms, for a small number of viewpoints the computing time
is almost the same, but for larger numbers the curves detach. The curve of the
brute force algorithm start to ascend rapidly at about 35 viewpoints, but slows
down at 40 viewpoints, whereas the incremental heuristic algorithm increases
only slightly at about 40 viewpoints. The measurements confirm our assump-
tions from Sect. 3.5 in terms of scalability.

5.3 Technical Realization of Multi-Perspectives

We implemented our concepts of multi-perspectives as plug-ins for the Eclipse4

integrated development environment (IDE) and combined them with the existing
feature modeling and mapping environment FeatureMapper5. Further informa-
tion, the source code and a screencast are provided online6.

Conceptual Design To realize our cluster approach as described in Sect. 3, we
need to implement the concepts of view models, feature models and mappings
between them. In addition, mechanisms to derive consistent perspectives are
needed.

View Model A View Model captures the relationship between views and view-
points. We implement this concept using the Eclipse modeling framework (EMF).
We decided on EMF, because it allows to define own structured meta-models in

4 http://www.eclipse.org
5 http://featuremapper.org
6 https://github.com/multi-perspectives/cluster/wiki

21

Ecore and provides a comprehensive application programming interface (API) to
handle meta-models and models [30]. Furthermore, EMF based models seamless
integrate with the FeatureMapper and allow to reuse those software artifacts.

Fig. 6. The view meta-model.

In Fig. 6 we show the Ecore meta-model that is used to instantiate view
models according to the definition given in Sect. 3.3. The central root element is
the GroupModel. It contains the CoreGroup and a ViewPointContainer. Core-
Group and Group implement the interface IGroupContainer and may contain
multiple Sub-Groups. The ViewPointContainer collects all ViewPoints. A sin-
gle ViewPoint may be contained in multiple Groups, and in turn a Group may
be referenced by multiple Viewpoints. Both have a unique identifier represented
by the attribute name. In addition, a Group may be a stakeholder’s most spe-
cific group. That is expressed by specifying the attribute flag mostSpecific.
Such a group is only referenced by the stakeholder’s viewpoint and contains
stakeholder-specific features only.

Feature Model The FeatureMapper offers a common feature meta-model that
allows to specify feature models according to the preliminary explanation in
Sect. 2. As this meta-model is EMF-based, we reuse it in our approach to create
feature model instances.

Mapping between Feature Model and View Model The FeatureMapper defines
mappings between feature models in the problem space and EMF-based solu-
tion space artifacts. We use this functionality to create the assignment between
features of the feature model and groups of the view model. Therefore, we do
not implement a new mapping strategy, but we reuse the one provided by the
FeatureMapper.

Cluster Tooling The tooling for our cluster approach is fully integrated in
the Eclipse IDE and is a non-invasive extension to the FeatureMapper tool. We
provide various editors for focussing on different aspects of the cluster model.

Group View This view represents the view model as a tree, whereas the core
group is the root node. Therefore, it is a top down view and is used during

22

domain engineering to create view groups and viewpoints. In combination with
the mapping view provided by the FeatureMapper, features are assigned to view
groups using this view. In In Fig. 7 we show the Group View used in the docu-
ment management case study, that is explained above.

Fig. 7. The group view: Starting from a single viewpoint, its referring groups of views
and their inclusion hierarchy are shown.

Viewpoint View This view complements the Group View as it represents the
view model as a tree, whereas the root node is a selected viewpoint. Therefore it
is a bottom up view. The purpose of this view is to show all direct and indirect
referenced view groups that belong to a certain viewpoint. In Fig. 8 we show the
Viewpoint View of the cluster model used in the document management case
study described above. In this figure, the viewpoint for a stakeholder named
“SpecialUser” is shown.

Cluster View The Cluster View visualizes the mapping between feature model
and the view model. It shows how features are assigned to view groups and which
features belong to a certain view point. In Fig. 9 we show the Cluster View of the
document management case study described above. In this figure, the viewpoint
for a stakeholder named“SpecialUser” is selected, and the referenced view groups
and features are highlighted.

FeatureMapper Mapping View We use the Mapping View provided by the Fea-
tureMapper to assign features to view groups.

23

Fig. 8. The viewpoint view: Starting from a single viewpoint, its referring groups of
views and their inclusion hierarchy are shown.

Fig. 9. The cluster view: Visualization of the mapping between view model and feature
model. All features and groups that are referenced by the viewpoint “SpecialUser” are
highlighted.

24

Cluster Consistency Check The incremental heuristic algorithm (cf. Algorithm 2)
is used to check the consistency of the entire cluster. The algorithm is available
as an action in the editor menu.

Create a Perspective By selecting a view point in one of the editors, it is possible
to derive a perspective from. This action is available in the context menu. By
executing it, a consistency check of the resulting filtered feature model is per-
formed. As the check succeeds the perspective is persisted as a filtered feature
model in the workspace. This perspective is subsequently used as input for the
FeatureMappers variant editor to derive product variants from. Fig. 10 shows

Fig. 10. Comparison between the SpecialUser’s perspective (left) and the original do-
main feature model (right).

the perspective created by the viewpoint of stakeholder “SpecialUser” on the left
hand side in comparison with the original domain feature model on the right
hand side. Elements that are not contained in the perspective are highlighted by
dotted lines in the domain feature model.

25

6 Related Work

In this section we present related work in the area of views on feature models
and the composition of them.

Views on Feature Models Multiple approaches to create views on feature models
already exist. Various authors propose to use views in a staged configuration
process to partition the feature model [1, 4, 12, 14, 19, 27, 33]. Those approaches
address MDSoC, whereas each view restricts the configuration space, dedicated
to a stakeholder. Each stakeholder configures parts of the feature model in his
own view until all variability is bound. [19] uses the term perspective to ad-
dress such a stakeholder’s view. Acher et al. [3] uses a technique called slicing
to create restricted views on feature models. This is similar to the approaches
discussed before. Clarke et al. provide a theoretical framework for feature model
views that focuses on reasoning about compatibility and reconciliation of ini-
tially separated views [11], thus mainly addressing the integration of multiple
SPLs. Another approach that addresses MDSoC is the concept of a hyperspace,
presented by Ossher et al. [24]. The multi-dimensional hyperspace groups all
concerns of system stakeholders in multiple dimensions, whereat a hyperslice en-
capsulate one concern. Conveying the hyperspace approach to feature modeling,
a hyperslice can be considered as a view on a feature model. In contrast to these
approaches, we compose multiple views to create a perspective, which we use to
restrict the variant space of a feature model. Furthermore, we define explicitly
which views form a valid perspective by using viewpoints.

Composition of Views on Feature Models Closely related to our work are ap-
proaches that compose views to create integrated views on feature models. Mul-
tiple approaches propose to combine disjoint views on multiple domain feature
models of independent SPLs [5, 10, 26, 29]. An aspect-oriented approach to com-
pose feature models is proposed by Acher et al. [2]. Thus, the domain feature
model is modularized into a base feature model and multiple aspect feature mod-
els. Each of them is partial view on the domain and resulting feature models will
have incomparable variant spaces. In those approaches, the set of derivable vari-
ants of the resulting feature model will contain all variants of the constituents.
This is converse to our approach, as we create a perspective by composing views
of the same feature model. Therefore, in our approach, variants derivable from
a perspective are a subset of the variants of the domain feature model.

7 Conclusion

In this report we present our approach for extending SPL engineering with multi-
perspectives on feature models. We give a sound formalization of the cluster con-
cepts and apply them on a case study. In addition, we identified good modeling
practices that help to create meaningful clusters. We propose an efficient algo-
rithm to check the cluster consistency and evaluate its performance on another

26

case study. As the cluster approach is conservative, we could reuse the existing
large-scale case study of a crisis management SPL therefore. In future work,
we plan to apply our concepts to other scenarios and improve the implemented
tooling. We will identify design pattern and propose a work flow for creating and
using cluster models. Furthermore, we plan to apply satisfiability (SAT) solver
to reason about the satisfiability of perspectives. As a long term goal, we will use
our concepts in model-based testing to organize testing concerns, e.g., coverage
criteria and technical prerequisites, in view models and to derive reduced repre-
sentative variant spaces under test. Another long term goal is to use the concepts
in a dynamic SPL to create customized perspectives and tailor the reconfigura-
tion space. Therefore, we plan to extend the approach to support different forms
of customizations. For instance, we will support the explicit removal of feature in
groups to replace them by customized ones. In addition, we will define semantics
to use perspectives for restricting edits on features. Concluding, the presented
approach for multi-perspectives on feature models bears good prospects for fu-
ture research in various case scenarios. We consider it a promising concept for
tailoring the variant space of a domain feature model to multiple stakeholders.

Acknowledgements The presented work is co-funded by the European Social
Fund, Federal State of Saxony and SAP AG within the project #080949335.

References

1. Abbasi, E., Hubaux, A., Heymans, P.: A toolset for feature-based configuration
workflows. In: Proceedings of SPLC’11. pp. 65–69 (2011)

2. Acher, M., Collet, P., Lahire, P., France, R.: Composing feature models. In: Pro-
ceedings of SLE’09. pp. 62–81 (2009)

3. Acher, M., Collet, P., Lahire, P., France, R.: Slicing feature models. In: Proceedings
of ASE’11 (2011)

4. Arnaud Hubaux, Patrick Heymans, P.Y.S.D.D.: Towards multi-view feature-based
configuration. In: Proceedings of REFSQ’10. pp. 106–112 (2010)

5. Aydin, E.A., Oguztuzun, H., Dogru, A.H., Karatas, A.S.: Merging multi-view fea-
ture models by local rules. In: Proceedings of SERA’11. pp. 140–147 (2011)

6. Batory, D.S.: Feature models, grammars, and propositional formulas. In: Proceed-
ings of SPLC’05. pp. 7–20 (2005)

7. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: A literature review. Information Systems 35, 615–636 (2010)

8. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature mod-
els. In: Proceedings of CAiSE’05. pp. 381–390 (2005)

9. Botterweck, G., Nestor, D.: Towards supporting feature configuration by interactive
visualisation. In: Proceedings of ViSPLE’07. pp. 77–86 (2007)

10. van den Broek, P., Galvão, I., Noppen, J.: Merging feature models. In: Proceedings
of SPLC’10. pp. 83–89 (2010)

11. Clarke, D., Proença, J.: Towards a theory of views for feature models. In: Proceed-
ings of FMSPLE’10 (2010)

12. Classen, A., Hubaux, A., Heymans, P.: A formal semantics for multi-level staged
configuration. In: Proceedings of VaMoS’09. pp. 51–60 (2009)

27

13. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-
plications. Addison-Wesley (2000)

14. Czarnecki, K., Helsen, S., Ulrich, E.: Staged configuration using feature models.
In: Proceedings of SPLC’04. pp. 266–283 (2004)

15. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: View-
points: A framework for integrating multiple perspectives in system development.
International Journal of Software Engineering and Knowledge Engineering 2 (1992)

16. Heidenreich, F., Sanchez, P., Santos, J., Zschaler, S., Alferez, M., Araujo, J.,
Fuentes, L., Kulesza, U., Moreira, A., Rashid, A.: Relating feature models to other
models of a software product line: A comparative study of featuremapper and vml*.
Transactions on Aspect-Oriented Software Development VII LNCS 6210, 69–114
(2010)

17. Heymans, P., Schobbens, P.Y., Trigaux, J.C., Bontemps, Y., Matulevicius, R.,
Classen, A.: Evaluating formal properties of feature diagram languages. IET Soft-
ware 2(3), 281–302 (2008)

18. Hubaux, A., Classen, A., Heymans, P.: Formal modelling of feature configuration
workflows. In: Proceedings of SPLC ’09. pp. 221–230 (2009)

19. Hubaux, A., Heymans, P., Schobbens, P.Y.: Supporting multiple perspectives in
feature-based configuration: Foundations. Tech. Rep. P-CS-TR MPFD-000001,
PReCISE Research Centre, Univ. of Namur (2010)

20. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
oriented domain analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-
21, Carnegie Mellon University Pittsburgh, Software Engineering Institute (1990)

21. Lochau, M., Oster, S., Goltz, U., Schürr, A.: Model-based pairwise testing for
feature interaction coverage in software product line engineering. Software Quality
Journal to appear, 1–38 (2011)

22. Nagle, T.T., Holden, R.K.: The strategy and tactics of pricing. Prentice Hall (2002)
23. Nuseibeh, B., Kramer, J., Finkelstein, A.: Viewpoints: meaningful relationships are

difficult. In: Proceedings of ICSE’03. pp. 676–681 (2003)
24. Ossher, H., Tarr, P.: Multi-dimensional separation of concerns using hyperspaces.

Tech. Rep. IBM Research Report 21452, IBM Research (1999)
25. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering -

Foundations, Principles, and Techniques. Springer (2005)
26. Rosenmüller, M., Siegmund, N.: Automating the configuration of multi software

product lines. In: Proceedings of VaMoS’10. pp. 123–130 (2010)
27. Rosenmüller, M., Siegmund, N., Thüm, T., Saake, G.: Multi-dimensional variability

modeling. In: Proceedings of VaMoS ’11. pp. 11–20 (2011)
28. Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature diagrams: A survey and a

formal semantics. In: Proceedings of RE’06. pp. 136–145 (2006)
29. Segura, S., Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated merging of

feature models using graph transformations. In: Post-Proceedings of GTTSE’07.
pp. 489–505 (2008)

30. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison-Wesley, Boston, MA, 2. edn. (2009)

31. Thüm, T., Batory, D., Kästner, C.: Reasoning about edits to feature models. In:
Proceedings of ICSE ’09. pp. 254–264 (2009)

32. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering: A Family-Based
Software Development Process. Addison-Wesley Professional (1999)

33. White, J., Dougherty, B., Schmidt, D.C., Benavides, D.: Automated reasoning for
multi-step feature model configuration problems. In: Proceedings of SPLC’09. pp.
11–20 (2009)

28

