

Abstract— The current trend for innovation management is

going upward, the startup scene is more active than ever and
new processes and trends to foster these innovations are
developed constantly. Although we can see such an upwards
trend, there is not as much development in software
architectures supporting innovation management. In this work,
a requirements analysis for such a software architecture was
done based on various innovation processes. Finally, we
propose this architecture as a system of systems together with
our current reference implementation. The system is evaluated
in various user studies, e.g., teaching, practical use at a
university, and innovation competitions.

Index Terms—	 Architecture, design thinking, innovation,
lean startup, system of systems.

I. INTRODUCTION
Innovation management is usually a collaborative task

done in small groups. To foster innovation, there exist
various processes, methodologies and principles. With these,
the development of new products is stream-lined causing
more and more companies to utilize these techniques.
Current approaches are mostly centered around physical
interaction, drawing on whiteboards or post-it notes. This
falls short, when physical presence is not possible (e.g., in
globalized companies or companies supporting remote
working) or the created artifacts have to be duplicated and
further edited.

Collaborating on a project in innovation management
usually requires the physical presence of all stakeholders in
customer interview meetings, stand-up meetings, canvas
workshops, etc. Alas, current tools do not support lean
technologies in a distributed setting well, because they do
not support distributed idea management, distributed canvas
development, and distributed document creation for business
cases.

Our objective is to support innovation in a distribution
and collaborative manner for user groups all over the world.

This paper presents LINC (Lean INnovation Center), a
web portal with a tool suite to support distributed lean
development. LINC is a distributed innovation platform
with a holistic approach. Current innovation platforms
usually fall short when supporting multiple representation
formats or processes, e.g., the innovation platform just
supports the ideation process or just the creation of business
model canvases. With LINC, we want to propose an

Manuscript received October 9, 2018; revised December 29, 2018.
All authors are with the Technische Universität Dresden, Germany (e-mail:
firstname.lastname@tu-dresden.de).

integrated innovation platform which supports many
existing innovation processes. This work is structured as
follows: first we give an overview of the related work. In
Chapter III, several influential innovation concepts are
presented. From these, requirements for our platform are
derived, which gets introduced in Chapter IV together with
the implementation details for all components. Chapter V
further details our targeted reference architecture and how to
model it with advanced concepts from SoS design. The first
prototypes of the LINC platform are evaluated in several
qualitative case studies in Chapter VI. Finally, we give a
conclusion and an outlook.

II. RELATED WORK
The related work, to our approach is quite sparse. To our

knowledge, there are no innovation platforms, which
integrate as many tools as we do. Especially in academic
works, the focus has been always on single applications.
Therefore, we will give a short overview of the related work
from our core platforms: idea- and canvas- management.

For idea management, there was a survey done by [1]
with a comparison of multiple idea management platforms.
One of the broader used platforms is Neurovation [2], which
is an innovation challenge platform. Businesses can create
innovation competitions here and an interested community
will create ideas. Each competition has a set of prizes which
are distributed among the best ideas. The Neurovation
platform was also the basis used by TÜV Austria in
InnovaTÜV [1]. From the book [1], no platform was shown,
which supported more than just idea management, although
InnovaTÜV depicted in their process, that a form of canvas
management and project planning is required.

Idea-Mirrors are a research prototype suggested for
companies to collaboratively create and edit ideas. The main
goal of the idea mirror is to support the idea creation process
in its earliest phases, when it is depending on a lot of
communication and collaboration. It is meant to be used in
conjunction with an existing idea portal which provides an
interface for accessing its data [3]. Therefore, it could also
be integrated into the LINC-ecosystem.

Digital canvas editing tools were reviewed according to
their features in [4, 5, 6]. In [6], all existing tools were
compared against a set of 31 features. The most features are
implemented by Realtime Board with 30. Our proposed
solution Fridolean reaches 19 features. Since the Fridolean
development only started 1 year ago, we are confident to
achieve most features soon.

III. CONCEPT
With LINC, our goal is to build an integrated online

An Architecture for a Distributed Lean Innovation
Management System

Carl Mai, Dominik Grzelak, Mariam Zia, Diana Lemme and Uwe Aßmann

platform supporting multiple innovation processes. The
main driver behind this platform is the lean innovation
process [7] and design thinking methodology [8]. The next
chapter will review existing innovation processes and
methodologies to derive our requirements from.

A. Innovation Processes and Methodologies
In Fig. 1, we depict the process of the Platform

Innovation Kit [9], which is following 5 consecutive steps.
We want to explain each step and inspect it to derive
requirements for our system.

1. Environment Scan: The goal is to understand the
market, including market & industry forces, key trends and
economic forces. To handle this information, documents
must be managed and shared, tasks must be created and
assigned.

2. Ideation Phase: Here a plethora of ideas are generated
based on the previous environment scan. For this a
structured way to enter ideas is needed. During the ideation
phase it is important to provoke new ideas, e.g., by
combining different ideas or other creative processes. At the
end of the ideation phase the resulting ideas must be
filterable and ranked.

3. Value Proposition: From a generated idea, a value
proposition or business model canvas should be filled to
understand more on the subject. This step requires a
collaborative canvas management tool.

4. Service Design: In this step, a prototype is created or a
possible architecture invented. This phase is highly
application specific. A platform could support this phase
best by improving the communication within the team. As a
requirement we derive from this an agile task management
tool and a chat platform to share intermediate results and
coordinate the development.

5. Strategy: The final phase of the Platform Innovation kit
is coming up with a good strategy, involving the
investigation into competitors, stakeholders, business case
and required resources. This step can be supported with
suitable canvases, collaborative documentation and task
management.

The TÜV Austria group also developed a process for their

global innovation strategy in 2016 called InnovaTÜV [1].
The process involves their internal sources (i.e., employees),
customers and external sources & trends. In a first step ideas
are created, rated and prioritized. The result of this step is an

innovation fact sheet. The second step is implementation
planning, where a concept is developed together with project
planning and budget planning. The results of this step is a
business plan. The third step is called innovation project.
Within this step the project is carried out by execution and
controlling. The result is a completed project. In the last
step, broad commercialization is performed and controlled
over the span of 6 years.

The lean startup process has a 3-phase cycle of
build—measure—learn. The main goal is to speed up every
aspect of this cycle because a good product has to go
through this cycle multiple times. The build phase is the
development of the product or prototype. The measure phase
is getting customer feedback on the product by interviews or
usability tests. Based on this data, the learn phase starts
which will incorporate the data in the business model canvas
or use this data to refine the idea. [10]

February 23, 2011 16:1 WSPC/0219-8770 195-ijitm S0219877011002192

Lean Innovation–Introducing Value Systems to Product Development 47

a promotion of individual responsibility has the fundamental advantage of a higher
motivation of the employees. Correspondingly, over three quarters of the organiza-
tions mentioned to systematically promote the adoption of individual responsibility
of their employees in development. The tools and methods used for this purpose
differ: the majority focuses on “black box” process modules with the design of
sequences of actions in one’s own responsibility as well as the design of components
in one’s own responsibility within certain constraints.

The findings of this survey disclose important success factors, which significantly
affect the implementation of lean innovation. Especially, the analysis of outperform-
ers has shown promising patterns of behavior: systematic waste identification, focus
on customer value by time compliance, reuse of proven solutions and concepts, flex-
ible allocation of budgets and capacities, product standards, and a strong position
of project leaders.

3. The Lean Innovation System

Maintaining a competitive advantage in R&D requires not only increases in effec-
tiveness, but also in efficiency of R&D. Significant product differentiation needs
to be achieved also under a reduced deployment of resources. This is the central
objective of lean innovation — by applying the lean thinking principles to R&D
management.

So far, this transfer has been initiated in first attempts, but has not been carried
out systematically yet. Comparable guiding themes to lean production are still not
identified for lean innovation. Lean innovation today is on its way, getting more
systematic. The lean innovation approach presented here relies on 10 key principles
that need to be implemented in R&D (Fig. 5). The 10 principles are abstracted
into the guiding theme of lean innovation, which uses three steps: “structure early,
synchronize easily, and adapt securely.”

Product Architecture
Technology-and Function Model

Product Line Optimisation
Feature Clusters

Value System
Target Hierarchy

Design-Sets
Design Space Management

Capacity Planning
Balancing Model

Synchronization
Rhythm

Perfection
Robustness Model

Value Stream Definition
Value Stream Mapping

Derivation
Release Management Strukturieren

Synchronisieren

Ad
ap

tie
re

n

Lean
Innovation

Motivation
Product Identity

Structure
Early

Synchronise Easily

Ad
ap

t S
ec

ur
el

y

Fig. 5. The lean innovation principles.

In
t.

J.
In

no
va

tio
n

Te
ch

no
l.

M
an

ag
em

en
t 2

01
1.

08
:4

1-
54

. D
ow

nl
oa

de
d

fro
m

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 D
RE

SD
EN

 U
N

IV
ER

SI
TY

 O
F

TE
CH

N
O

LO
G

Y
 o

n
10

/1
6/

18
. R

e-
us

e
an

d
di

str
ib

ut
io

n
is

str
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n

A
cc

es
s a

rti
cl

es
.

Fig. 2. Lean Innovation Process [7].

Lean Innovation is a set of principles which are shown

in Fig. 2. It is based on three core principles: structure early,
synchronize easily and adapt securely. These are further
refined into 10 aspects. It is difficult to come up with
concrete requirements for these principles as they are of
abstract nature. Nevertheless, the three core principles are
explained here and requirements are deduced. Structure
early is the requirement to have as early as possible the
goals defined and the basis analyzed. Stakeholder
involvement is here already an important task. Synchronize
easily is a method to avoid waiting times in the creative
process by facilitating the synchronization of intermediate
results. This step is usually supported by working in the
same office. But nowadays within large companies, this
often also means an easy form of document sharing and

Fig. 1. Process of Platform Innovation Kit [8]

collaboration.

B. Dynamic Workflows
From the previous section it can be seen, that most

innovations follow a specified process or workflow. In [7],
the conflict on the level of specification of a workflow was
detailed. On one hand it is required to give good guidelines.
On the other hand, these guidelines should be open enough
to support dynamic changes. Products and projects are very
individual and could even change within one process [7, 11].

Traditionally, only fixed processes are supported in
workflow systems. To implement dynamic behavior there
are generally two approaches: modeling all possible
alternatives at design time or dynamically modifying the
workflow system at run time. Each approach has its
advantages and disadvantages. While modeling all possible
alternatives has the advantage to previously model check the
whole system, the dynamic modifications to the workflow
system prevent such checks in advance. On the other hand,
the approach which previously models the alternatives
cannot express unanticipated processes.

A solution for a dynamic workflow system are the ad-hoc
workflows, these kind of workflow systems model a basic
process which can be later refined and modified according
to the dynamic needs. In [12] such a concept was proposed
on the basis of Petri nets. During the execution, the net is
extended and shrinked. With each such modification an
analyzer is utilized to check global properties of the net.
Furthermore, it is possible to store these dynamic nets for
later use.

An alternative based approach are adaptive Petri nets
[13]. The alternatives can be expressed with context places,
which can prevent the execution of particular sub nets.

For the LINC-system we want to use a hybrid approach,
which can utilize as much of the static knowledge as
possible within adaptive Petri nets, while still supporting
deviations from this model with dynamic modifications to
the net — similar to ad-hoc workflows.

A workflow system has several tasks to fulfil: teaching,
structuring and documenting. By teaching the user, we
expect that the process is not yet known to the user and he or
she requires each step laid out in detail. With structuring, we
want to support experienced users, who have enough
knowledge to modify the process according to their needs
but still want to utilize some milestones. Finally,
documentation should persist the route a user took to come
up with the resulting product. This is mainly relevant for
research purposes to discover the best processes and
methodologies.

C. System of Systems (SoS)
SoS is defined as an “emergent class of systems that are

built from components which are large scale systems in their
own right” [14, 15]. Some examples of SoS are integrated
air defence systems, traffic management systems and smart
grids. Characteristic features of SoS [14, 15] that
distinguishes it from monolithic systems are

1. Operational independence: An SoS is composed of
constituent systems that are autonomous, independent and
are useful in their own right i.e., a constituent system
disassembled from an SoS, can continue to fulfil its own

valid purpose.
2. Managerial independence: Constituent systems operate

independently and are managed to achieve their own
purpose. The constituent systems are individually acquired
and integrated to SoS while they are continuously managed
for their own operational purpose independent from SoS.

3. Emergent behaviour: Behaviour of SoS emerges as a
result of interaction among constituent systems and cannot
be achieved by any one of the constituent systems alone.

4. Geographic distribution: Constituent systems are
geographically distributed that can exchange only
information and knowledge from one another and not
physical quantities of mass and energy.

5. Evolutionary development: SoS is never complete,
rather it evolves continuously over time as requirements
change. New functionalities and systems may be added and
removed which might change the structure of SoS over time,

Properties 1, 2 and 3 are the most important for an SoS.
By properties 1 and 2 it is assured that an SoS is composed
of individual systems that are autonomous and
independently owned that can perform new functions when
placed together. Property 3 is also important because if the
SoS does not give new properties or functions that are not
possessed by constituent systems, then the system is not
considered as a whole. Property 4 and 5 are not absolutes
and may or may not exist. Another property identified by
[16] is (6) heterogeneity, i.e., an SoS is composed of
dissimilar systems but again as discussed in [15] this is also
not absolute. Properties 4, 5 and 6 are common but not
required and are not distinguishing for an SoS.

IV. ARCHITECTURE
In this chapter the technology and constituent components

of the LINC platform are explained. As discovered in the
previous chapter, our required platforms are as follows:

P1 Idea management / Innovation platform
P2 Canvases
P3 Project management
P4 Document management
P5 Communication platform

With following general requirements:
R1 Central authentication
R2 Synchronization between the platforms
R3 Easy installation and administration

The main building blocks here, are the Docker-based

containers, supporting R3, and the central authentication
system (R1). Furthermore, each platform should have a
REST-API, which can be used for synchronization (R2).
Besides these three commonalities, the platforms are quite
heterogeneous. An overview of all current components from
the LINC-system can be seen in Fig. 3.

In this chapter, we will first give an overview of the
central authentication system, then all the different services
and their implementation are explained. In the end a short
sub-section explains how we utilize Docker in the
deployment process.

A. [R1] Authentication System: Keycloak
Because we are integrating multiple different platforms,

which otherwise have their own authentication mechanisms,

we need a central user management tool. We decided to use
the open source software Keycloak, developed by Redhat
and based on WildFly. This platform implements many open
standards (e.g. SAML, OpenId-Connect) and provides many
adapters for different programming languages (e.g. Java,
JavaScript, Python). While the integration with new
platforms was not always easy, using such a large supported
platform was a good choice. Keycloak itself brings a
minimal user management system. A user can be part of
multiple groups and roles. Attributes can be manually set by
the connected services. Which we use right now for a
mapping from the Keycloak-user to the service user-id. In
the LINC-ecosystem, we allow the creation and
participation in groups by the users. Roles are set by
administrators only and currently distinguish only between
admin and normal user.

B. Platforms
LINC consists of five platforms, which we want to

explain here.
[P1] Idea Management: Watch Our Ideas. This

platform was developed for Technische Universität Dresden
in the context of the Open4Innovation project [17]. The
backend is the Java-framework WildFly 13, which in turn is
providing a REST-API for a JavaScript frontend. Ideas are
always created as part of a board, which contains related
ideas. An idea consists of a description and artifacts like
images and documents. Access permissions can be given on
a group and user level. After an idea is created, it gives
several options to synchronize with other LINC-platforms: a
new Fridolean project is created if it not exists,
synchronizing also all access permissions of the idea. If a
Fridolean project exists, all existing canvases are listed on
the idea-page. Similarly, the synchronization works with

Taiga and CodiMD.
An example, how viewing an idea within Watch our Ideas

looks like, can be seen in Fig. 4.
 [P2] Canvas Management: Fridolean. Fridolean, was

initially developed by students as part of a mandatory
software development course at our university. Frontend and
backend are based on JavaScript, utilizing the libraries React
and Express with a MongoDB database. The platform
supports the creation of projects, which can contain multiple
canvases. The canvas editing supports multi user real-time
collaboration. The changes of one user are reflected on the
screen of all other users. This is an important feature, as
canvas editing is a highly collaborative task.

[P3] Task Management: Taiga. For the task
management, we utilize the open source software Taiga. The
backend is Python with the web-framework Django and a
frontend written in CoffeeScript. The decision for this
platform was mainly its support for all the different task
management methodologies. It supports SCRUM and
Kanban [18] and would even allow a waterfall model of
issue management. All these methodologies can be used and
combined in a single project.

[P4] Document Management: CodiMD. CodiMD is an
open source collaborative document editor. Each participant
gets its own cursor inside the document and each edit is
synchronized to all users.  This platform is JavaScript
based in frontend and backend.

[P5] Chat Platform: Rocket.Chat. As an open source
chat platform Rocket.Chat is used. Besides giving users the
possibility to chat with each other, it is also our portal for
important announcements and collection of error logs.

[R3] Health Monitor: Checkup. Important for the
system administration is the health monitor. This monitor

Watch our Ideas [P1]

Frontend

JQuery

Backend

Wildfly

Fridolean [P2]

Frontend

React

Backend

ExpressJS

Taiga [P3]

Frontend

CoffeeScr.

Backend

Django

CodiMD [P4]

Frontend + Backend

JQuery, ExpressJS

Rocket.Chat [P5]

Frontend + Backend

Meteor, ExpressJS

Keycloak [R1]

Frontend

HTML+JS

Backend

Wildfly

Database

MariaDB

Database

PostgreSQL

Database

MariaDB

Database

PostgreSQL

Database

MongoDB

Database

MongoDB

Checkup [R3]

Frontend + Backend

HTML+JS, go

Database

Filesystem

User

Fig. 3. Overview of all components within the LINC system. The arrows denote the information flow.

will poll in a specified period each deployed resource and
warn the administrator when a platform is not available. As
solution for this, we decided for Checkup. This open source
tool allows direct integration with our chat platform with
webhooks and therefore can give the administrator a timely
warning, when one of the system fails.

C. [R2] Synchronization
Integration of all systems is done with two key

technologies: single sign on with Keycloak and by utilizing
the REST API of all platforms. The best integrated
platforms are innovation (P1) and communication (P5).
After creating an idea, it is possible  to generate a
Fridolean and Taiga project, as well as a document. This
synchronization is especially helpful for initializing the tools
with a description and to synchronize the access control
across the platforms (i.e., all collaborators of an idea are also
added to the project or document). The communication
platform is also well integrated, as some of the used open
source tools already support the generic webhook API.

D. [R3] Deployment
Deployment was of special interest because the

integration of so many different platforms make an easy
deployment difficult. Each platform requires different
system components which also sometimes contradict each
other (e.g., conflicting database versions). Furthermore,
innovation is one of the most important goods a company
possesses. These companies will not follow the current trend
to put these into the cloud, so that a security breach would
expose all their future plans.

The solution must be some form of virtualization to
provide an isolated environment for each platform. A
lightweight virtualization technique are Linux containers
with the most popular implementation being Docker, which
is explained in the next section.

E. Docker
Docker is a popular container implementation for the

Linux kernel. Containers are a virtualization mechanism
with very small overhead. Besides sharing the kernel of the
host system, containers are isolated in most aspects from the
host: the processes run in a different namespace and
filesystem access is only granted at predefined points.
Docker offers to define containers based on a sequence of
shell commands for the installation. One fetches a

Fig. 4. Watch Our Ideas (P1): An idea management software. The image shows an idea with title, author, description and images. At the bottom the
connection to other LINC-components, such as Fridolean, can be seen.

base-image, on which additional dependencies can be
installed. This allows to customize the desired image, so that
it fits with all individual applications.

Each Dockerfile should contain just one application.
When a service requires multiple applications (e.g. the
service and a database), one can use Docker-compose to
structure these. A Docker-compose file defines which
container work together and sets their environment
variables, on which location of the filesystem they can write
and which ports to expose.

Deployment: The deployment of the LINC platform is
described in a single archive containing two
Docker-compose files for each service: one file for a default
configuration and one for the individualized configuration.
Furthermore a single .env-file is used to configure variables,
which are expanded within the Docker-compose files (e.g.
ports, usernames, passwords or other configurations).

Most services expect to be in the root of a domain:
therefore, a subdomain for each service is recommended. A
reverse-proxy, like Nginx or Apache2, is utilized. Some
platforms require some manual configuration on their
webpages: e.g., copying secrets from Keycloak or setting
some configurations. In a future version this will be
automated.  The current setup time of a new server is ca.
30 minutes, but our goal is to minimize these actions further,
so that a reverse-proxy becomes self-configuring and that
the configurations can be extracted automatically.
Furthermore, the deployment should later support
Kubernetes or Docker-swarm, so that the services can be
easily distributed across a network of servers.

V. REFERENCE ARCHITECTURE: LINC AS SYSTEM OF
SYSTEMS (SOS)

In this chapter we want to take a closer look on the LINC
architecture in regards to SoS modelling. As mentioned in
Chapter IV, all 5 platforms of LINC were developed and
managed independently for their own valid purpose and
therefore holds property 1 and 2 of SoS, which are described
in Section III-C. These independent systems are brought
together to create a LINC SoS that enable us to perform lean
innovation management, which cannot be achieved by any
of the individual systems alone. This lean innovation is the
emergent behaviour achieved as a result of interaction of

constituent system of LINC and thus it adheres to the
property 3 of an SoS. In addition to the three critical
properties of SoS, LINC also fulfils the evolutionary
development and heterogeneity. Regarding the property 4 of
geographic distribution LINC may or may not be
geographically distributed. Property 5 describing an SoS in
constant evolution is true for our current implementation.
Property 6, the SoS consists of heterogeneous components is
definitely true for LINC, which consist of a many different
programming languages and frameworks.

A. Emergent behavior, ensemble modelling and dynamic
workflows
Constituent systems in SoS can perform various tasks

since they are autonomous systems that can be used for
various purposes. SoS creates a dynamic context in which
constituent systems perform SoS specific tasks and
collaborate to exhibit desired emergent behaviour. An SoS
runs in a dynamic environment where the context and
requirements might change over time. In response to these
changes, the emergent behaviour must also adapt (adaptive)
to ensure continued valid operation. Emergent behaviour
might appear (or is created) in response to some
environmental change (transient) then it might grow i.e.,
more systems are added to SoS or shrink over time (elastic)
and is finally dissolved. Thus, emergent behaviour is a
dynamic context for constituent systems that has adaptable,
transient and elastic properties.

Ensembles [19], [20] are defined as group of components
that interact to achieve a certain goal. Notion of ensemble
used by [19] can be used to present the emergent behaviour
with elastic properties. Ensemble defines a membership
predicate that evaluates whether the system qualifies to be a
part of SoS or not. Therefore, systems can add or leave the
SoS. Another notion of dynamic context was defined in [21]
as emergent gummy modules that defines transient nature
by defining construction and destruction predicates. A
dynamic context is created in response to a construction
predicate qualifying to true and then it is removed when
destruction predicate is satisfied. To add the concept of
dynamic adaptation, architecture of ensemble can be
represented using adaptive Petri nets [13] that can be
adapted in response to changes.

Fig. 6. Reference architecture for an ensemble based LINC SoS

Currently, no version of ensembles (dynamic contexts)
fulfil above mentioned properties. In our future work we
plan to develop a notion of ensembles that uses a
construction / destruction predicate to account for the
transient nature, a membership predicate to account for the
elastic nature, an adaptive petri net [13] for the adaptive
nature

Since constituent systems are autonomous and perform a
variety of tasks. The tasks that constituent systems must
perform in the context of current SoS interaction is defined
by an ensemble in the form of role assignment [22].
Ensembles also define the interaction between the roles
necessary to carry out the task. Interaction between the
systems is event based to ensure loose coupling, distributed
nature and heterogeneity of an SoS. When architectural
configuration changes the role assignment and interaction
among the constituent systems change as well.

Dynamic workflows in LINC can be represented using
the concept of ensembles where a dynamic workflow can be
created on demand (user request), adapted to a certain
context and can eventually involve more and less platforms
in different roles depending on the context. Configuration of
the workflow may change as context changes.

B. Keycloak in SoS
Keycloak is responsible for authentication. With the

proposed architecture for LINC with ensembles, Keycloak
will be a part of construction predicate. Construction
predicates are evaluated before a dynamic workflow is
initiated. It checks whether all requirements are fulfilled or
not for starting the dynamic workflow. Before a workflow is
established the construction predicate with Keycloak can
check if the user who requested the workflow has the access
and has the right role to initiate the desired workflow.

C. Proposed Reference Architecture
We propose an event based architecture for ensemble

modelling for the LINC-SoS. Monitor component runs the
construction predicate with Keycloak. Adaptation manager
runs the context Petri nets [13] that generate the initial
configuration for ensemble. This configuration will be
updated as monitor receives further update events from the
queue indicating a change in the context. Each ensemble
(workflow) might not involve all the constituent systems, for
instance in Fig. 6, it involves only 3 components.
Participants of an ensemble communicate through a global
event queue.

VI. EVALUATION
For developing the platform, we used the lean startup

methodology with the build—measure—learn cycle. Within
each iteration, we let users test our platform and
incorporated their feedback. Because of our small user-base,
we mostly evaluated the results on an individual basis. To
attract enough users, we conducted innovation competitions,
utilized the platforms ourselves and used it in teaching.

A. Innovation Competition
We performed two innovation competitions within the

IoSense Project (an EU ECSEL Project). The first
competition was used to evaluate our platform and invite

stakeholders of the project to generate new ideas in the area
of IoT. Central for this competition was the idea platform
and partially the canvas system. To attract a higher
audience, the best ideas could win prizes. As a result, more
than 20 ideas were entered within 2 months and we got 30
new registrations. For some ideas a BMC (business model
canvas) was created in the canvas platform.

B. Project Management
Within our group at the university, we employ some parts

of the LINC-platform to support PhD students with
organizing the research projects and progress with their
dissertation and paper writing. After 8 month of use, the
platforms for task management, document management and
chat are utilized a lot. Every research project is now
documented inside the task management system, which
improved the quality of the research a lot. Publications are
often structured within the collaborative document editor.
Protocols for presentations are also often collaboratively
written within this tool. The chat platform unified other
(commercial) chat platform and most emails. It helped our
group to come closer together by an improved
communication.

C. Teaching
As of this writing, the platform is used in teaching the

Software as a Business course at Technische Universität
Dresden (Germany). Around 15 students are learning in this
course how to create a business from a software project. The
course is based on design thinking and Lean Innovation
principles. The course is divided in 50% lecture and 50%
practical work. During the lecture the students learn agile
project management and how to derive an MVP (minimum
viable product). Which then is practically used with the
tasks and canvas platform in LINC. Ideas, documents and
chat are also utilized for collaborative innovation. In the end
of this course, we let the students evaluate LINC with a
questionnaire.

VII. CONCLUSION AND OUTLOOK
We presented in this work a collaborative platform for

lean innovation. It is a generic solution, which supports
various innovation processes. It is targeted for innovation in
small, medium and large businesses as well as research and
technology organizations. Furthermore, this platform was
designed with the intent to teach students on the steps in
lean innovation. To reach the current state of the platform,
we reviewed existing innovation processes and analyzed
them, which software platforms and general requirements
are needed. Based on this, 5 platforms and 3 general
requirements were identified. The platforms were
instantiated with a system of systems architecture. Finally,
the suitability was evaluated with several user studies. While
each user study created new feature requests, the general
result was that this kind of system is highly required in
teaching as well as in industry and research. Future research
will go in two directions: improve the platforms teaching
capabilities with a better user-guidance concept based on
dynamic workflows; further improve the architecture to
allow better scaling to more easily integrate new platforms.

ACKNOWLEDGMENT
We gratefully acknowledge support from the German

Excellence Initiative via the Cluster of Excellence “Center
for advancing Electronics Dresden” (cfAED).

This project has received funding from the Electronic
Component Systems for European Leadership Joint
Undertaking under grant agreement No 692480. This Joint
Undertaking receives support from the European Union’s
Horizon 2020 research and innovation programme and
Germany, Netherlands, Spain, Austria, Belgium, Slovakia.”

REFERENCES
[1] C. Seja and J. Narten, Creative Communities / Ein Erfolgsinstrument

für Innovationen und Kundenbindung Springer Gabler, 2017.
[2] A. Stocker, G. Granitzer, P. Hoefler, V. Pammer, R. Willfort, A. M.

Koeck, K. Tochtermann, “Towards a framework for social web
platforms: The neurovation case,” Third International Conference on
Internet and Web Applications and Services, Athens, Greece, 2008,
pp. 227-232.

[3] M. Koch, F. Ott, “Idea Mirrors – Einsatz großer Wandbildschirme zur
Förderung diskontinuierlicher Innovation in der Softwarebranche,”
Workshop Virtuelle Organisation und Neue Medien, Dresden,
Germany, 2008, pp 241-252.

[4] T. Schoormann, D. Behrens, R. Knackstedt, “Softwaregestützte
Modellierung von Geschäftsmodellen – Vergleich und
Weiterentwicklungsperspektiven am Beispiel der Business Model
Canvas,” Informatik 2016, Bonn, Germany, 2016, pp. 1333-1347.

[5] M. Oddoy, “Entwicklung eines Frameworks für Kollaboratives
Systemdesign mit Interaktiven, Digitalen Canvases,” Master thesis,
Dept. Software Engineering, Technische Universität Dresden,
Dresden, Germany, 2014.

[6] T. D. Pham, “Anforderungsanalyse und Konzeption eines
Allgemeinen Modells für Canvases,” Bachelor thesis, Dept. Software
Engineering, Technische Universität Dresden, Dresden, Germany,
2018.

[7] G. Schuh, M. Lenders, S. Hieber, “Lean innovation–introducing value
systems to product development,” International Journal of Innovation
and Technology Management 8.01, pp. 41-54, 2011.

[8] I. Rauth, B. Jobst, E. Köppen, C. Meinel, “Design thinking: An
educational model,” Proceedings of the 1st international conference
on design creativity, 2010.

[9] M. Walter, M. Lohse, and S. Guzman. “Platform Innovation Kit, 5
steps to a new platform business model," Retrieved Oct. 2018
https://medium.com/platform-innovation-kit/in-5-steps-to-a-new-platf
orm-business-model-7660391cafdd.

[10] R. Kaiser, G. Püschel, S. Götz, K. Kahle, U. Aßmann, “Von der
software-dissertation zum lean startup,” Software-engineering and
management, Dresden, Germany, 2015.

[11] B. Vandenbosch, A. Saatcioglu, S. Fay, “Idea management: A
systemic view,” Journal of Management Studies 43.2, pp. 259-288,
2006.

[12] M. Voorhoeve, W. V. d. Aalst, “Ad-hoc workflow: problems and
solutions,” Database and Expert Systems Applications. 8th
International Conference, pp. 36–40, 1997.

[13] C. Mai, R. Schöne, J. Mey, T. Kühn, U. Aßmann, “Adaptive petri nets
– a petri net extension for reconfigurable structures,” The Tenth
International Conference on Adaptive and Self-Adaptive Systems and
Applications, Barcelona Spain, pp. 15–23, 2018. 

[14] M. W. Maier, “The Role of Modeling and Simulation in System of
Systems Development,” Modeling and Simulation Support for System
of Systems Engineering Applications, 2015.

[15] M. W. Maier, “Architecting principles for systems-of-systems,” Syst.
Engineering, 1, pp. 267-284, 1998.

[16] D. DeLaurentis,“Understanding Transportation as System-of-Systems
Design Problem,” 43rd AIAA Aerospace Sciences Meeting and
Exhibit, 2008.

[17] A. Graning, S. Rottger, “Innovationsforum Open4Innovation 2012
regional kooperativ-global innovativ“, Technical Reports Technische
Universität Dresden, 2012.

[18] K. Schwaber, and M. Beedle “Agile software development with
Scrum” Vol. 1. Upper Saddle River: Prentice Hall, 2002.

[19] J. Keznikl, T. Bures, F. Plasil, and M. Kit, “Towards Dependable
Emergent Ensembles of Components: The DEECo Component
Model. 2012 Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software Architecture,
Helsinki, pp. 249-252, 2012.

[20] R. Hennicker and A. Klarl, “Foundations for Ensemble
Modelling-The Helena Approach,” Lecture Notes in Computer
Science, vol 8373, Springer Berlin Heidelberg, pp. 359-381, 2014.

[21] S. Malakuti, “Programming with Emergent Gummy Modules,” Trans.
Modularity and Composition. Vol 1, pp. 80-119, 2016.

[22] T. Kühn, M. Leuthäuser, S. Götz, C. Seidl, and U. Aßmann, “A
metamodel family for role-based modeling and programming
languages,” International Conference on Software Language
Engineering, Springer, Cham., pp. 141-160, 2014.

	
Carl Mai is a PhD student and research assistant at the Technical
University of Dresden. His research focuses on adaptive petri nets and
model-driven software development. Mai received his Dipl-Inf. from
Technische Universität Dresden.

Dominik Grzelak is a PhD student and research assistant at the Technische
Universität Dresden. His research interests include distributed computing
applications and bigraphs. Grzelak received a M.Sc. in computer science
from BTU Cottbus-Senftenberg.

Mariam Zia is a PhD student and research assistant at the Technische
Universität Dresden. Her research focuses on SoS and role oriented
programming. Zia received a M.Sc. in computer science from Technische
Universität Dresden.

Diana Lemme is a PhD student and research assistant at the Technical
University of Dresden. Her interests are on software ecosystems and
innovation processes. She received her Dipl-Inf. from Technische
Universität Dresden.

Uwe Aßmann is Professor and Dean of the faculty of Computer Science at
the Technische Universität Dresden. He leads the Software Technology
group. His research interests lie in the area of software engineering, with
emphasis on model-driven development, software composition and
component-based software.

