Component-Based Software Engineering Exercise Sheet No. 1
Dlpl—Inf Florian Heidenreich Software Techno]ogy Group

%fgcgolggursz Wednesdays, 1000-1100 hours Institute for Software and Multimedia Tech-

. . nology
http://st.inf.tu-dresden.de/teaching/cbse

Department of Computer Science
Technische Universitat Dresden
01062 Dresden

Metamodelling and Metaprogramming

Task 1: Reflection in Java (9 Points)

la)

Write a program that reads the name of a class from the command line and emits the interface
of the class in Java syntax (interface or class, modifiers, constructors, methods, fields, no method
bodies).

Apply the program to a set of classes and interfaces as test input. Also use the program on itself.

Hints: You can load a class whose name you know with java.lang.Class.forName(). java.-
lang.Class offers a rich interface to allow you to inspect the interface of any class.

1b)

Now write a program that reads a class name and a list of arguments from the command line, and
creates an object of that class with the read arguments.

Hints: Treat arguments as strings. A java.lang.Class can enumerate its constructors. Choose
a constructor with the appropriate parameter count. Then, find the parameter types. To create
typed argument objects, call the appropriate constructors that take a string as their only argument.
Call dynamic constructors using java.lang.reflect.Constructor.newInstance().

1c)

Extend the solution of the previous task by reading a method name and a list of method arguments.
Dynamically call the method on a newly created object.

Use your program to invoke your solution from subtask (a) to print the interface of your solution
of this subtask.

Hint: Use java.lang.reflect.Method.invoke() to dynamically call methods.



Task 2: Static Metaprogramming with OpenJava

This task looks at static metaprogramming in particular with the OPENJAVA language extensions
to JAVA.

2a)| Download and install OPENJAVA. Use the package I provided on the exercise website, at least

if you’re working on a Windows box. The original website for OPENJAVA is: http://openjava.sourceforge.net /.
Work through the tutorial to get a first idea of how OPENJAVA works.

2b)

The following listing (DataContainer.oj) is an OpenJava program that represents a simple data
container:

package dataaccess;
import javax.swing.JOptionPane;

VAT

x @author sz9

* @since 01.08.2005
*/

public class DataContainer instantiates metaclasses. PWDProtectedClass {
private String m_sMylmportantData;

public DataContainer () {
super ();

m_sMylmportantData = ” Initial _.important._data.”;

}

public String getData () {
return m_sMylmportantData;

}

public pwdprotected void setData (String sNewData) {
m_sMyImportantData = sNewData;

}

public static void main (String args[]) {
DataContainer container = new DataContainer ();
System.out.println (”Current_.contents:.” + container.getData ());

container .setData (
JOptionPane.showInputDialog (”Enter_data_to._set”,
container .getData())
);

System.out.println (”Current_contents:.”

+ container.getData ());

container.setData (
JOptionPane.showInputDialog (”Enter_data_to._set”,
container .getData())
);

System.out.println (”Current_contents:.”

+ container.getData ());



System . exit (0);

}
}

Implement an OPENJAVA metaclass PWDProtectedClass that wraps all methods with the pwdpro-
tected modifier in password protection code. The code should use a javax.swing.JOptionPane
to obtain a password from the user whenever such a method is called. If the user enters the right
password, the actual method code should run, otherwise the method returns directly. Once the
user has entered the password correctly, he/she should not be asked to enter the password for any
calls to the same object again. Calls to other objects, however, still require the password to be
entered.

Test your code by using it to translate DataContainer.oj and running the resulting program.

Task 3: Dynamic Metaprogramming with DynaMOP

In this task we are going to go all the way and have a look at dynamic metaprogramming. There
are a few languages out there, which provide ways of dynamically influencing the structure of a
program—for example, MetaML, LISP, or Smalltalk—but they are typically pretty complex and
difficult to get used to. So, in order to give you a chance to try out some dynamic metaprogramming
without having to learn a complete language, I have devised DYNAMOP, a very simple, interpreted,
object-oriented language, which essentially cannot do anything but dynamic metaprogramming. I
have provided a package with the corresponding sources and some documentation on the exercise
web page. Download and install (i.e., unzip into a directory of your choice) the package.

3a)

Implement a simple associative array Associations. This class provides one operation getAsso-
ciation (key: String): String, which returns the string value associated with the given
string key. If the key is still unknown, getAssociation asks the user to enter a corresponding
value and then stores and returns this value.

Here is the main operation that you can use to exercise your class:

main {
Associations cache = Associations.new;
String key = 7af”;
while (key != 7 Schluss”) {

key = System.getStringInput (”Please_enter_key:”);

String val = cache.getAssociation (key);
System . println (” Corresponding._data:”);
System . println (val);
b
}

Hint: Use method redefinition to store the values.



3b)

Implement a class Singleton, which enforces that there can never be more than one instance of
the class. How can dynamic metaprogramming help you here?

Hint: Remember that you may redefine a class’s new operation. The original new is defined in
Object, which is the super class of all classes.

Task 4: Knowledge Metaprogramming (8 Points)

4a)| Enumerate and explain several times in system construction.
4b)| Explain the difference between static and dynamic metaprogramming.

What is the difference between reflection in Java and dynamic metaprogramming?



