Component-Based Software Engineering Exercise Sheet No. 5
Dlpl—Inf Florian Heidenreich Software Techno]ogy Group

%fgcgolggursz Wednesdays, 1430-1530 hours Institute for Software and Multimedia Tech-

. . nology
http://st.inf.tu-dresden.de/teaching/cbse

Department of Computer Science
Technische Universitat Dresden
01062 Dresden

Software Architecture

Task 1: Keyword in Context

In 1972, David Parnas proposed the following problem [1]:

The KWIC (Key Word In Context) index system accepts an ordered set of lines; each
line is an ordered set of words, and each word is an ordered set of characters. Any line
may be “circularly shifted” by repeatedly removing the first word and appending it at
the end of the line. The KWIC index system outputs a listing of all circular shifts of
all lines in alphabetical order.

In this exercise, we are going to discuss some ways of realising such a system.
la)

Develop a rough system architecture for this problem, where a central master control component
invokes components for the individual processing steps. How can you share data between the
processing steps?

Use boxes and lines to present your architectural design. Provide a legend of what your boxes and
lines stand for.

1b)

Develop a rough system architecture for the same problem, but this time use a pipes-and-filters
approach, where the individual processing steps are performed by filter components connected by
appropriate pipes.

Use boxes and lines to present your architectural design. Provide a legend of what your boxes and
lines stand for.

1lc)

Compare your solutions from above. In particular, discuss properties such as performance, evolv-
ability /flexibility, robustness, reusability of individual components, etc. of the resulting application.



Bibliography

[1] David L. Parnas: On the criteria to be used in decomposing systems into modules. Commu-
nications of the ACM, 15(12):1053-1058, December 1972.
http://doi.acm.org/10.1145/361598.361623

Task 2: KWIC in Java

ArchJava (www.archjava.org) is a pre-processor for java that allows to encode architectural infor-
mation in Java programs and restricts communication between components to the channels defined
by explicit connections between components. Download and install ArchJava.

2a)
How are components, ports, and connections represented in ArchJava?
2b)

Implement the pipe-and-filter solution for the KWIC example from the last task using ArchJava.

Task 3: Starting to Fly with Wright

Download and read [1]. Do not necessarily read the complete paper, just as much as you need to
complete the tasks below.

Use WRIGHT to model a simple application consisting of a sensor component, which period-
ically sends out sensor values, and an alarm component which reads data and sends out an
alarm signal, if the data is higher than a certain value. Connect the two components using
a pipe connector. The following figure gives a graphical overview of the application structure.

Sensor |-~ > Alarm

3a)

Write a WRIGHT specification of the components, connector, and the complete system, but leave
out the formal specification of ports, roles, components, and glue. Instead, use comments explaining
informally what happens in each element.

3b)| *

Enhance your specification from the previous subtask by providing CSP-specifications of the ports,
roles, components and glue.



Bibliography

[1] Robert Allen and David Garlan. The Wright Architectural Specification Language, Technical
Report CMUCS-96-TB, School of Computer Science, Carnegie Mellon University, Pittsburgh,
Sept. 1996. http://citeseer.ist.psu.edu/allen96wright.html



