.S Mandatory Literature

2. Metamodelling and

Metaprogramming ISC, 2.2.5 Metamodelling

D Rony G. Flatscher. Metamodeling in EIA/CDIF — Meta-Metamodel
and Metamodels. ACM Transactions on Modeling and Computer
Simulation, Vol. 12, No. 4, October 2002, Pages 322-342.

1. Metalevels and the http://doi.acm.org/10.1145/643120.643124

metapyramid

Metalevel architectures

Metaobject protocols (MOP)

Metaobject facilities (MOF) Prof. Dr. Uwe ARmann
Component markup Technische Universitat Dresden

Institut fir Software- und
Multimediatechnik

http://st.inf.tu-dresden.de

@ 11-0.1, Apr 5, 2011
Software
Technology

CBSE, © Prof. Uwe ARmann 1 =) Prof. U. ARmann, CBSE 2

ok wbd

A | Other Literature
*

Ira R. Forman and Scott H. Danforth. Metaclasses in SOM-C++ D 2' 1' An IntrOdUCtlon ’nto Metalevels

(Addision-Wesley)

Squeak — a reflective modern Smalltalk dialect
http://www.squeak.org

Hauptseminar on Metamodelling held in SS 2005

OMG MOF 2.0 Specification
http://www.omg.org/spec/MOF/2.0/

MDA Guide
http://www.omg.org/cgi-bin/doc?omg/03-06-01

J. Frankel. Model-driven Architecture. Wiley, 2002. Important book on

“A system is about its domain.
A reflective system is about itself”

MDA. Maes, 1988
G. Kizcales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the A

Metaobject Protocol. MIT Press, Cambridge, MA, 1991

Gregor Kiczales and Andreas Paepcke. Open implementations and @

Prof. U. ABmann, CBSE CBSE, © Prof. Uwe ARmann 4

metaobject protocols. Technical report, Xerox PARC, 1997 e D
I 3

Metadata

Meta: greek for “describing”

Metadata: describing data (sometimes: self describing data). The type

system is called metamodel

Metalevel: the elements of the meta-level (the meta-objects) describe

the objects on the base level

Metamodeling: description of the model elements/concepts in the

metamodel

Metalanguage: a description language for languages

Meta level
Concepts level

I
v

Base level

Prof. U. ABmann, CBSE I 5

|

Metalevels in Programming Languages

(The Meta-Pyramid)

Conceptual level Modelling Metalanguage concepts
Concept Modelling concepts
M 3 A metametamodel is a 1 (Metametaclasses in the
metalanguage description metametamodel)
Language Language
_ Class Method Attribute ONCePts
M 2 A metamodel is a "N (Metaclasses in the
language description / metamodel)
Software Classes I
. : Application
M 1 (meta-objects) Car void proc() Color concepts
(Model)
M 0 car1 car1.drive() carl.color World
Software Objects 1 + 4 concepts

i M - 1Real World car

driving

car color I
Prof. U. ABmann, CBSE 6

Different Types of Semantics and their
Metalanguages (Description Languages)

Structure

« Described by a context-free grammar or a metamodel

« Does not regard context

Static Semantics (context conditions)

= Described by context-sensitive grammar (attribute grammar, denotational

semantics, logic constraints), or a metamodel
« Describes context constraints, context conditions
= Can describe consistency conditions on the specifications
“If | use a variable here, it must be defined elsewhere”
“If | use a component here, it must be alive”

Dynamic Semantics

« Interpreter in an interpreter language (e.g., lambda calculus), or a metaobject

protocol
« Sets of runtime states or terms

— .l—
Prof. U. ABmann, CBSE 7

=

Notation

We write metaclasses with dashed lines, metametaclasses with

dotted lines

<<instance-of>>

<<instance-of>>

Class

Class:Mode

lingConcept

<<instance-of>>

Car

<<instance-of>>

Car:Class

Sottware
Technolosy
roup.

<<instance-of>>

car1

<<instance-of>>

car1:Car

— l—
Prof. U. ABmann, CBSE 8

.3 Classes and Metaclasses .S Creating a Class from a Metaclass
| |
Metaclasses are schemata for classes, i.e., describe what is in a Using the constructor of the metaclass (Pseudojava used here)
class Then, classes are special objects, instances of metaclasses
. . Classes in a software system
class WorkPiece { Object belongsTo; } Class WorkPiece = new Class(
class RotaryTable { WorkPiece placel, place2; } new Attribute[]{ "Object belongsTo" },
class Robot { WorkPiece piecel, piece2; } new Method[]{})
class Press { WorkPiece place; } Class RotaryTable = new Class(
class ConveyorBelt { WorkPiece pieces[]; } new Attribute[]{ "WorkPiece placel", "WorkPiece place2" },
new Method[]{}):
Class Robot = new Class(
) new Attribute[]{ "WorkPiece piecel", "WorkPiece piece2" },
public c.:lass Class {) Metaclasses new Method[]{});
Attribute[] fields; Class Press = new Class(
Method[] methods; new Attribute[]{ "WorkPiece place" }, new Method[]{});
Class (Attribute[] £, Method[] m) { Class ConveyorBelt = new Class(

fields = £; new Attribute[]{ "WorkPiece[] pieces" }, new Method[]{});
methods = m; }}

public class Attribute { Robot Class Press
Object type;

Object value; } .
<<instance-of>>
public class Method {

String name; List parameters, MethodBody body; } RotaryTable WorkPiece ConveyorBeIt l
%ﬂ; public class MethodBody { ... } Prof. U. ABmann, CBSE I 9 "2':-55' Prof. U. ABmann, CBSE I 10
A | Reflection (Self-Modification, Intercession, All In trospection
®5, | Metaprogramming) o
omputation about the metamodel in the model is reflection ead-only reflection is called introspection
C tat bout th t del in th del flect Read-only reflect lled int t
« Reflection: thinking about oneself with the help of metadata = The component can look at the skeleton of itself or another component and learn
. The application can look at their own skeleton and change it from it (but not change it!)
Allocating new classes, methods, fields Typical application: find out features of components
Removing classes, methods, fields = Classes, methods, attributes, types

This self modification is also called intercession in a meta-object

Very important in component supermarkets
protocol

Metadata
Meta level
Metadata
Data,
Code, Data
Information Base level Code, (IZ:)ata,
A ode,
Information .
Information

Seire — ll— Setere l—
) Prof. U. ARmann, CBSE 11 Ngoys Prof. U. ABmann, CBSE 12

.3 Reading Reflection (Introspection)

Used for generating something based on metadata information

for all ¢ in self.classes do
generate for_class_start(c);

for all a in c.attributes do
generate_ for attribute(a);
done;

for all m in c.methods do
generate_for method(m) ;

done;

generate_for class_end(c);
done;

) Prof. U. ABmann, CBSE I 13

.a Full Reflection (Intercession)

Generating code, interpreting, or loading it

for all c in self.classes do
helperClass = makeClass (c.name+”Helper") ;

for all a in c.attributes do
helperClass.addAttribute (copyAttribute(a)) ;
done;

self.addClass (helperClass) ;
done;

A reflective system is a system in which the application domain
is causally connected with its own domain.
Patti Maes

ey Prof. U. ABmann, CBSE

.a Metaprogramming on the Language Level

e | <<instancé-ofz>

Attribute Class Method

enum { Singleton, Parameterizable } BaseFeature;
public class LanguageConcept {
String name;
BaseFeature singularity;
LanguageConcept(String n, BaseFeature s) {
name = n;
singularity = s; }

Metalanguage concepts
Language description concepts
(Metametamodel)

}

Language concepts
(Metamodel)

LanguageConcept Class = new LanguageConcept("Class", Singleton);
LanguageConcept Attribute = new LanguageConcept("Attribute”, Singleton);
LanguageConcept Method = new LanguageConcept("Method", Parameterizable);

.a Made It Simple

Level MO: objects
» Level M1: programs, classes, types
» Level M2: language

v

Level M3: metalanguage, language description language

v

Sotoasrs
@ Prof. U. ABmann, CBSE

Metapyramid in Workflow Systems

Use of Metamodels and Metaprogramming and Web Services (e.g., BPEL)

g S
g S

To model, describe, introspect, and manipulate all sorts of objects, » It is possible to specify workflow languages with the metamodelling
models, and languages: hierarchy
» UML » BPEL and other workflow languages can be metamodeled
» Workflow systems
» Databases (Common Warehouse Model, CWM) M 3 '(\ﬂ,leéggg?ac;ztssses) Workflow Concept
» Programming languages (Metametamodel) T
» Component systems, such as CORBA
» Composition systems, such as Invasive Software Composition M 2 (VR’,.";"JE?;”SSC;’S”)”"‘S Data (Wzg'g:grc\’,?ce) Ressource
» ... probably all systems... (Metamodel) / \ \
M 1 m’;gm;g;ware Classes Cliént Order Material

(Model) T T T
M 0 Workflow Software Objects | | |

fred orderForGoods nail

———————— bt T ——
i -I— s -I—
& Prof. U. ABmann, CBSE 17 @ Prof. U. ABmann, CBSE 18

H
¢

4| Metaprymid CASE Data Interchange Format
®; | (CDIF)

CDIF uses entities and relationships on M3 to model CASE concepts
on M2 D

2.2 Metalevel Architectures

M 3 I(\Ill\/leetggc;rt]:;gtssses) Entity-Relationship Diagrams (ERD)
(Metametamodel) / T

CASE Concepts

Mz (Metaclasses) Class Association Attribute
(Metamodel) / \ \
Classes

; P Ord Material
M 1 Emggaeﬁ)bjects) erTson rT er a Terla A

Software Objects | ‘ [souare
M fred order lipstick Group D
G I 20
Prof. U. ABmann, CBSE 19 CBSE, © Prof. Uwe ARmann

......
Technology
roup.

Reflective Architecture

A system with a reflective architecture maintains metadata and a
causal connection between meta- and base level.

« The metaobjects describe structure, features, semantics of domain objects. This
connection is kept consistent

Metaprogramming is programming with metaobjects

Metaobjects

Repository

with Concepts/ L ‘ Metalevel
Types/Description \ .

as Artefacts) <> HH

Reflection

Base Level

3 5 E
Repository eta- \
with Objects v
as Artefacts l
L Prof. U. ABmann, CBSE 21

.3 Examples

24/7 systems with total availability
= Dynamic update of new versions of classes
« Telecommunication systems

= Power plant control software
= Internet banking software
Self-adaptive systems

. Systems reflect about the context and themselves and, consequently, change
themselves

Reflection is used to think about versions of the systems
= Keeping two versions at a time

Softue — -I—
NG/ Prof. U. ABmann, CBSE 22

Metalevel Architecture

In a metalevel architecture, the metamodel is used for computations,
« but the metaprograms execute either on the metalevel or on the base level.
« supports metaprogramming, but not full reflection
Special variants that separate the metaprogram from the base level
programs
= Introspective architecture (no self modification)

. Staged metalevel architecture (metaprogram evaluation time is different from
system runtime)

— .l—
Prof. U. ABmann, CBSE 23

.S Metalevel Architecture

Metaobjects Metalevel

Base Level

D L‘\é <

— l—
Prof. U. ABmann, CBSE 24

.3 Examples

» Integrated development environment
Refactoring engine
Code generators

Metric analyzers (introspective)

) Prof. U. ABmann, CBSE I 25

.a Introspective Architectures

Metalevel
Metaobjects . Metaobjects
L l Introspection L '
T <

Base Level

i, — .I_
N Prof. U. Atmann, CBSE 26

A | Staged Metalevel Architecture
®,, | (Static Metaprogramming Architecture)

/\ Metaobjects

Metalevel

ta- e -
Dynamic Time
Base Level
Static Time
\:A
)

.a Compilers

.
Programs in Programs i
So
Code
. Generation,
Parsmg, Pretty
Analysing Printing

L <

L)
L r
AST % L D ASG
/ \ « <
>

Intermediate >

Representation I
Prof. U. ABmann, CBSE 28

Compilers Are Static Metaprograms

So

Software
Technoloy
Group.

Programs in /If

a_

~—
>

AST A
/&

2.3 Metaobject Protocols (MOP)

CBSE, © Prof. Uwe ABmann 30

g S

Metaobject Protocol (MOP)

» A MORP is an reflective implementation of the methods of the
metaclasses

. It specifies an interpreter for the language, describing the semantics, i.e., the
behavior of the language objects

= in terms of the language itself.
» By changing the MOP (MORP intercession), the language semantics is
changed
. or adapted to a context.

= If the MOP language is object-oriented, default implementations of metaclass
methods can be overwritten by subclassing

= and the semantics of the language is changed by subclassing

Prof. U. ABmann, CBSE | 31

’3 A Very Simple MOP

public class Class {
Class(Attribute[] f, Method[] m) {
fields = f; methods = m;

}
Attribute]] fields; Method[] methods;

public class Attribute {

public String name; public Object value;

Attribute (String n) { name =n; }

public void enterAttribute() { }

public void leaveAttribute() { }

public void setAttribute(Object v) {
enterAttribute();
this.value = v;
leaveAttribute();

}

public Object getAttribute() {
Object returnValue;
enterAttribute();
returnValue = value;
leaveAttribute();

return returnValue;

O

public class Method {
public String name;
public Statement[] statements;
public Method(String n) { name =n; }
public void enterMethod() { }
public void leaveMethod() { }
public Object execute {
Object returnValue;
enterMethod();
for (inti = 0; i <= statements.length; i++) {
statements]i].execute();

leaveMethod();
return returnValue;

}

public class Statement {
public void execute() { ... }

Prof. U. ABmann, CBSE I 32

g S

Adapting a Metaclass in a MOP By
Subclassing

public class TracingAttribute extends Attribute {

public void enterAttribu — e

System.out.printin("Here | am, accessing attribute "> name);
—nere fam, : >ing attribute

Class Robot = new Class(new Attribute[[{ "WorkPiece piece1", "WorkPiece piece2" },
new Method[[{ "takeUp() { WorkPiece a = rotaryTable.place1; } "});
Class RotaryTable = new Class(new TracingAttribute[]{ "WorkPiece place1",
"WorkPiece place2"}, new Method[]{});

dlam Ieavmg attribute place1: value WorkPiece #5

Prof. U. ABmann, CBSE I 33

Adaptation of Components by MOP Adaptation

/I Adapter is hidden in enterMethod
Method EventAdapterMethod extends Method {
Object piece;

public Object execute() {
/I event communication
notifyRotaryTable();
piece = listenToRotaryTable();

super.execute();
return piece;
}
}

/I Create a class Robot with the new semantics for takeUp()

Class Robot = new Class(new Attribute[[{ },
new Method[]{ new EventAdapterMethod("takeUp") });
Prof. U. ABmann, CBSE I 34

An Open Language with Static MOP

.. has a static metalevel
architecture (static [Program with Language J

metaprogramming Extensions
architecture), with a static
MOP

.. offers its AST as
metamodel for static
metaprogramming

= Users can write static
metaprograms to adapt
the language

= Users can override
default methods in the [
metamodel, changing
the static language
semantics or the
behavior of the compiler

Language Extensions

Open Metamodel
Compiler

Metaobject Protocol

Program in
Standard Language

Standard
Compiler

.

CBSE

An Open Language

.. can be used to adapt components at compile time
= During system generation
Static adaptation of components
Metaprograms are removed during system generation, no runtime
overhead
= Avoids the overhead of dynamic metaprogramming

Open Java, Open C++

— {—
Prof. U. ABmann, CBSE 36

2.4 Metaobject Facilities (MOF)

Software
Technology
Group

CBSE, © Prof. Uwe ABmann 37

.a Metaobject Facility (MOF)

» Rpt: A metalanguage is used to describe languages
. Context-free structure (model trees or abstract syntax trees, AST)

. Context-sensitive structure and constraints (model graphs or abstract syntax
graphs, ASG)

. Dynamic semantics (behavior)

A metaobject facility (MOF) is a language specification language
(metalanguage) to describe the structure of a language (context-
free, context-sensitive).

» MOF is a metalanguage to to describe model graphs / ASG
» MOF provides the modeling concepts

« Classes, relations, attributes; methods are lacking

« Logic constraints (OCL) on the classes and their relations

= Usually, a MOF does not describe an interpreter for the full-fledged |
38

G2 language, but provides only a structural description Jra—

g S

Metaobject Facility (MOF)

» A MOF is not a MOP
« The MOF is generative
The MOP is interpretative

» The OMG-MOF (metaobject facility) was first standardized Nov. 97,
available now in version 2.0 since Jan 2006

Prof. U. ABmann, CBSE I 39

Al| MOF Describes, Constrains, and Generates
¢ I Structure of Languages on M2

| Meta-Concepts in the Programming
metametamodel Language Concept

M 3 (metalanguage +
language description)

Class ! 1 Method Attribute

Language concepts
M 2 (metaclasses in the
metamodel)

Software Classes

M 1 (meta-objects) ar void drive() Color
(Model) I I
M 0 car1 car1.drive() car1.color
Software Objects + *

Prof. U. ABmann, CBSE

‘ M'1Rea| World car driving carcolor —— I40

MOF

g S

With MOF, context-sensitive structure of languages are described,
constrained, and generated
« Type systems
to navigate in data with unknown types

to generate data with unknown types
Describing IDL, the CORBA type system
. Describing XML schema
« Modelling languages (such as UML)
= Relational schema language (common warehouse model, CWM)
. Component models
= Workflow languages

From a language description in MOF,
« Generative mappings (transformer, generator) from the metalanguage level (M3)

to the language level (M2) can be generated
= Also mappings from different languages on M2
Prof. U. ABmann, CBSE I 41

.SI Describing Type Systems with the

MOF

Meta-Concepts Concept
M3 (Meta-meta model) / 4

(Meta-object facility MOF)

Software Concepts
(Meta-classes)

M 2 (Type Systems such as

Class Method
IDL, UML, C++, C, Cobol) 1

IDL Type System

Attribute C#

Type System

void drive()

M 1 Software Classes Cf"

(Types)

Color

cari.drive ()

M 0 carl
Software Objects

cari.color

@ Meta-meta-models describe general type systems! — _I_
o Prof. U. ABmann, CBSE

42

A Typical Application of MOF:
Mapping Type Systems

g S

The type system of CORBA is a kind of “mediating type
system” (least common denominator)

« Maps to other language type systems (Java, C++, C#, etc)

« For interoperability to components written in other languages, an interface
description in IDL is required

Problem: How to generate Java from IDL?
= You would like to say (here comes the introspection):

for all ¢ in classes do
generate class_start(c);
for all a in c.attributes do
generate_attribute (a) ;
done;
generate_class_end(c) ;

done;

Other problems:

. How to generate code for exchange between C++ and Java?

= How to exchange data of OMT and UML-based CASE-tools?

= How to bind other type systems as IDL into Corba (UML, ...)? I
43

Prof. U. ABmann, CBSE

.3' Mapping Type Systems in CORBA

Meta-Concepts Concept
M3 (Meta-meta model) /1 T

(Meta-object facility MOF)

Software Concepts
(Meta-classes)

M 2 (Type Systems such as “Class

va
Attribute

IDL, UML, C++, C, Cobol Methog
++
’ ’ + G, Cobol) Class (7 Attribute
/ \ Method
M 1 Software Classes Car void ﬂrive() Co
(Types)
l |
carl cari.color
M 0 car1.drive ()
Software Objects

@ Meta-meta-models describe general type systems! — _I_
N Prof. U. ABmann, CBSE

44

Automatic Data Transformation with the
Metaobject Facility (MOF)

g S

» Given:
« 2 different language descriptions
= An isomorphic mapping between them
» Produced helper functionality:
« A transformer that transforms data in the languages
» Data fitting to MOF-described type systems can automatically be

transformed into each other
« The mapping is only an isomorphic function in the metametamodel

Exchange data between tools possible

Prof. U. ABmann, CBSE I 45

iy
i

Group.

Language Mappings for Program and Object
®5, | Mappings

» Comparing the MOF language descriptions s1 and s2, transformers
on classes and objects can be generated

Concept

M3

M 2 Class I’gj:b“te :.: :E Chss/\:fi‘z:l;f Method
~ u
]
Ny

g e

Program transformer

I
Jn’

H
—

Object transformer

MO0 @&

Prof. U. ABmann, CBSE I 46

A | Reason: Similarities of Type Systems

» Metalevel hierarchies are similar for programming, specification, and

modeling level
= Since the MOF can be used to describe type systems there is hope to describe
them all in a similar way
» These descriptions can be used to generate
Conversions

Mappings (transformations) of interfaces and data

— l—
Prof. U. ARmann, CBSE 47

A The MOF as Smallest Common Denominator
®- | and “Mediator”

» From the mappings of the language-specific metamodels to the IDL
metamodel, transformation, query, navigation routines can be

generated

.

A

.

M1
MO L
Query/Navigation
2 - Data
Instance

o
Instance Transformation
@ routines

Prof. U. ABmann, CBSE

L

Bootstrap of MOF

The MOF can be bootstrapped with the MOF

= The structure and constraints of the MOF language can be described with itself
IDL for the MOF can be generated

« With this mechanism the MOF can be accessed as remote objects

= MOF descriptions be exchanged

« Code for foreign tools be generated from the MOF specifications

« The MOF-IDL forms the interface for metadata repositories (MDR)
http://mdr.netbeans.org

« Engines in any IDL-mapped language can access an MDR, by using the IDL-
generated glue code

= Example: OCL Toolkit Dresden
(which also supports EMF/Ecore besides of MDR)

Prof. U. ABmann, CBSE I 49

Summary MOF

The MOF describes the structure of a language

« Type systems

. Languages

. itself
Relations between type systems are supported

« For interoperability between type systems and -repositories

= Automatic generation of mappings on M2 and M1
Reflection/introspection supported
Application to workflows, data bases, groupware, business
processes, data warehouses

Prof. U. ABmann, CBSE I 50

2.5 Asserting Embedded Metadata
] with Component Markup

.. A simple aid for introspection and reflection...

Software
Technology
Group

CBSE, © Prof. Uwe ARmann 51

Markup Languages

Sottware
Technolosy
roup.

Markup languages convey more semantics for the artifact they
markup

« For a component, they describe metadata

« XML, SGML are markup languages
A markup can offer contents of the component for the external world,
i.e., for composition

« Remember: a component is a container

« It can offer the content for introspection

= Or even introcession

A markup is stored together with the components, not separated

— l—
Prof. U. ABmann, CBSE 52

.3 Example: Generic Types

<< ClassBox >>

<generi P genericType> elem
SimpleLis! e

<genericTyp enericType>
getNext() {

return next.elem;

}

<< ClassBox >>

ctass SimpleList {
elem;
implelist next;
getNext()
{
return next.elem;

}
}

Prof. U. ABmann, CBSE I 53

.3 Markup with Hungarian Notation

» Hungarian notation is a markup method that defines naming
conventions for identifiers in languages
to convey more semantics for composition in a component system
but still, to be compatible with the syntax of the component language
so that standard tools can be used
» The composition environment can ask about the names in the
interfaces of a component (introspection)
and can deduce more semantics

i _— .I_
N Prof. U. Atmann, CBSE 54

.3 Generic Types with Hungarian Notation

<< ClassBox >>

<< ClassBox >>

ass SimpleList {
CEomoiduin
getNext()

return next.elem;

}
}

Prof. U. ABmann, CBSE I 55

Al| Java Beans Naming Schemes use Hungarian

®-, | Notation

» Property access
. setField(Object value);
Object getField();
» Event firing
« fire<Event>
« register<Event>Listener
« unregister<Event>Listener

s —_— .I_
N, Prof. U. Amann, CBSE 56

.S Markup and Metadata Attributes

Many languages support metadata attributes

by Structured Comments
« Javadoc tags
Qauthor @date @deprecated
Java 1.5 annotations and C# attributes are metadata
= Java 1.5 annotations:
@Override (@Deprecated @SuppressWarnings
« C#/.NET attributes
[author (Uwe Assmann)]
[date Feb 24]
[selfDefinedData(...)]
« User can define their own metadata attributes themselves
« Metadata attributes are compiled to byte code and can be inspected by tools of an
IDE, e.g., linkers, refactorers, loaders
UML stereotypes and tagged values
= <<Account>> { author="Uwe Assmann”}

Prof. U. ABmann, CBSE 57

Al| Markup is Essential for Component
®-, | Composition

Composition operators need to
know where to compose

because it supports
introspection and intercession

= Components that are not Markup marks the variation
marked-up cannot be points and extension points of
composed components

Every component model has to The composition operators
introduce a strategy for introspect the components

Component mal’kup And Compose
Insight: a component system

that supports composition
techniques must have some E
form of reflective architecture!

N »

v

58

.g What Have We Learned?

Metalanguages are important (M3 level)
« Reflection is modification of oneself
« Introspection is thinking about oneself, but not modifying
« Metaprogramming is programming with metaobjects
= There are several general types of reflective architectures
A MOP can describe an interpreter for a language; the language is
modified if the MOP is changed
= A MOF specification describes the structure of a language
« The CORBA MOF is a MOF for type systems mainly
Component and composition systems are reflective architectures
« Markup marks the variation and extension points of components
« Composition introspects the markup
. Composition can also use static metaprogramming or open languages

Prof. U. ABmann, CBSE 59

Prof. U. ABmann, CBSE 60

