
CBSE, © Prof. Uwe Aßmann 1

21) Composition Filters - A Filter-Based
Grey-Box Component Model

Prof. Dr. Uwe Aßmann
Florian Heidenreich

Technische Universität Dresden
Institut für Software- und

Multimediatechnik
http://st.inf.tu-dresden.de

Version 11-0.1, Juni 7, 2011

1.  Inheritance Anomaly
2.  Design Pattern Decorator
3.  Composition Filters
4.  Implementations of the Filter

Concept in Standard Languages
5.  Composition Filters and Role-

Object Pattern
6.  Evaluation

Prof. U. Aßmann, CBSE 2

Literature (To Be Read)

n  L. Bergmans, M. Aksit, K. Wakita, A. Yonezwa. An Object-Oriented
Model for Extensible Concurrent Systems: The Composition-Filters
Approach.

►  http://trese.cs.utwente.nl

Prof. U. Aßmann, CBSE 3

Other Literature

►  L. Bergmans. Composition filters. PhD thesis, Twente University,
Enschede, Holland, 1994.

►  On the TRESE home page, there are many papers available for CF
http://trese.cs.utwente.nl/

Prof. U. Aßmann, CBSE 4

Goal

►  Composition Filters (CF) are a solution to many composition
problems

►  The first approach to grey-box components
►  Understand the similarty to decorator/adapter-based component

models, and why grey-box provides an advantage

CBSE, © Prof. Uwe Aßmann 5

21.1) Inheritance Anomaly

Prof. U. Aßmann, CBSE 6

Inheritance Anomaly - Why Software
Composition Is Necessary

►  In a parallel program, where
should synchronization code be
inserted?
■  Stack?
■  Queue?
■  OrderedCollection?
■  Collection?
■  Object?

OrderedCollection

add()

Stack

pop() enter()

wait(s);
super.pop();
free(s);

LockedStack PlainStack

Queue

PriorityQueue

s: semaphor;

pop()

Prof. U. Aßmann, CBSE 7

Inheritance Anomaly

►  At the beginning of the 90s, parallel object-oriented languages failed,
due to the inheritance anomaly problem

►  Inheritance anomaly: In inheritance hierarchies, synchronization code
is tangled (interwoven) with the algorithm,
■  and cannot be easily exchanged
■  when the inheritance hierarchy should be extended
■  Ideally, one would like to specify algorithm and function independently

Prof. U. Aßmann, CBSE 8

Algorithm and Synchronization are Almost
Facets

►  But they depend on each other
►  How to mix them appropriately?

OrderedCollection

add()

Stack

pop() enter()

Queue

PriorityQueue

LockProtocol

Semaphor
wait()
free() enter()

Binary
Semaphor

Counting
Semaphor

Monitor

HoareMonitor HansenMonitor

CBSE, © Prof. Uwe Aßmann 9

21.2 The Decorator Design Pattern
(Rpt.)

Prof. U. Aßmann, CBSE 10

Decorator Pattern

►  A Decorator is a skin of another object
►  It is a 1-ObjectRecursion (i.e., a restricted Composite):

■  A subclass of a class that contains an object of the class as child
■  However, only one composite (i.e., a delegatee)

►  Combines inheritance with aggregation
■  Inheritance from an abstract Handler class
■  That defines a contract for the mimiced class and the mimicing class

:Client

ref
A:Decorator

hidden

B:Decorator

hiddden

C:RealObject

Prof. U. Aßmann, CBSE 11

Decorator – Structure Diagram

MimicedClass

mimicedOperation()

ConcreteMimicedClass

mimicedOperation()

Decorator

mimicedOperation()

mimiced.mimicedOperation();

mimiced

ConcreteDecoratorA

mimicedOperation()

ConcreteDecoratorB

mimicedOperation()
super.mimicedOperation();

additionalStuff():

1

Prof. U. Aßmann, CBSE 12

Decorator for Widgets

Widget

draw()

TextWidget WidgetDecorator

mimiced.draw()

mimiced

Frame

draw()

Scrollbar

draw()

draw()

draw()

super.draw();
drawScrollbar(): super.draw();

drawFrame():

1

Prof. U. Aßmann, CBSE 13

Decorator for Persistent Objects

Record

access()

TransientRecord PersistentDecorator

mimiced.access()

mimiced

PersistentRead
OnlyRecord

PersistentRecord

access()

access()
boolean loaded()

boolean modified()
load()

dump()

access()

if (!loaded()) load();
super.access();

if (modified()) dump():
access()

boolean loaded()
load()

if (!loaded()) load();
super.access();

1

Prof. U. Aßmann, CBSE 14

Purpose Decorator

►  For extensible objects (i.e., decorating objects)
■  Extension of new features at runtime
■  Removal possible

►  Instead of putting the extension into the inheritance hierarchy
■  If that would become too complex
■  If that is not possible since it is hidden in a library

Library

New Features

Library

Decorator with
New Features

Prof. U. Aßmann, CBSE 15

Variants of Decorators

►  If only one extension is planned, the abstract superclass Decorator
can be saved; a concrete decorator is sufficient

►  Decorator family: If several decorators decorate a hierarchy, they can
follow a common style and can be exchanged together

New Features

New Features

New Features

New Features

New Features

New Features

Prof. U. Aßmann, CBSE 16

Decorator Relations

►  Decorators can be chained to each other
►  Dynamically, arbitrarily many new features can be added
►  A decorator is a special ChainOfResponsibility with

■  The decorator(s) come first
■  Last, the mimiced object

CBSE, © Prof. Uwe Aßmann 17

21.3 Composition Filters

Prof. U. Aßmann, CBSE 18

Filters are Layers

►  Composition Filters (CF) wraps
objects with filters

►  Messages flow through the
filters
■  are accepted or rejected
■  are modified by them

►  A filter is an interceptor that is
part of an object

Prof. U. Aßmann, CBSE 19

Filters are Special Decorators

►  Filters are decorators that do not suffer from object schizophrenia

Object Facade

Output filters

Input filters

Object
Implementation

Decorator Inner

Self

Prof. U. Aßmann, CBSE 20

Filter Types

►  Error. An error filter tests whether a message is available.
■  If not, it stops filtering and execution.

►  Wait. A wait filter accepts methods only if a condition is true,
otherwise it waits until the condition becomes true.
■  The condition may refer to a semaphore that is shared by all objects of the class
■  In case the semaphore is not free, the wait filter blocks execution

►  Dispatch. A dispatch filter dispatches the message
■  to the internal implementation,
■  to other external objects, to a superclass,
■  or to sequences of objects.

►  Meta. A meta filter converts the message to an instance of class
Message and passes it on to the continuation method. Then, the
method can evaluate the new message.

►  RealTime. Specify a real-time constraint.

Prof. U. Aßmann, CBSE 21

Filters in SINA

►  Grammar:
InputFilters = ‘inputfilters ‘'<' Filter* '>'.
OutputFilters = ‘outputfilters’ '<' Filter* '>'.
Filter ::= Name ':' Type '=' '{' FilterElement // ',' '}.
FilterElement ::=
 Guard '=>' Match
 | Guard '~>' Match
 | Replacement
Replacement ::= Guard '=>' '[' Match ']' Match .
Guard ::= BooleanFunctionCall.
Match ::= TargetObject '.' MethodName | MethodName .
TargetObject ::= 'self' | 'inner' | '*' .
MethodName ::= Name | '*' .

-- All matching messages are accepted
-- All matching messages are rejected
-- All matching messages are resent

Prof. U. Aßmann, CBSE 22

Filters in SINA

►  Sync Filter example:
■  sync:Wait = { NonEmpty => pop,

 True => * }

►  Meaning:
■  if (sync.Semaphore free)

.  if (NonEmpty())

n  if (function.name == “pop”) inner.pop

.  else if (True)

n  if (function.name == X) inner.X

Action

Guard
(Condition)

Prof. U. Aßmann, CBSE 23

Wrapping Methods with Calls

►  Meta-filter example:
■  Full => [put] bufferDistribute.Distribute;

■  Empty => [get] bufferDistribute.Distribute;

►  Wrapping Methods with Calls with the Meta filter:
counterWrapper: Meta {

 isCounting => [put] Counter.increaseCount();

 True => [*] inner.*;

}

Match
(name of
incoming
message)

Action Guard
(Condition)

Prof. U. Aßmann, CBSE 24

A Larger Example

class PressOrAnimatedPress interface
 internals:
 visualize;
 doIt;
 externals:
 animatedDevice:AnimatedDevice;
 conditions:
 isAnimating;
 isInTracingMode;
 noOneElseIsAnimating;
 methods:
 inputTraceMethod;
 outputTraceMethod;
 inputfilters:
 tracing: Meta = {
 isInTractingMode => [*] inputTraceMethod }
 lockingDisplay: Wait = {
 noOneElseIsAnimating => *; }
 dispatch: Dispatch = {
 isAnimating => [*.*] animatedDevice.*;
 True => [*] inner.*; }
 outputfilters:
 tracing: Meta = {
 isInTracingMode => [*] outputTraceMethod }
end

• A press is modeled, either with or without animation.
• There are two Meta filters that call tracing methods when
the press is in animation mode (precondition isAnimating).

• The filters match all messages (pattern [*]) and call
tracing methods.
• Then, they pass on control to the next filter.

• As an input filter, a Wait filter is executed.
• It collaborates with other animated devices and
guarantees with a semaphore that only one device
at a time uses the display.
• If another device is animating, the wait filter blocks
execution until the display is free again.

• The Dispatch filter selects a method for the real
implementation work.

• It contains two filter elements.
• If the press is in animation mode, it forwards every
message from an arbitrary object (pattern [*.*]) to the
animated device delegatee, otherwise calls its inner
object.

Prof. U. Aßmann, CBSE 25

Main Advantage of the Filter Concept

►  Filters are built into an object, they are grey-box decorators
►  Filters are specified in the interface, not in the implementation

■  Implementations are free of synchronization code
■  Separation of concerns (SOC): synchronization and algorithm are separated
■  Filters and implementations can be varied independently

►  Filters are specified statically, but can be activated or deactivated
dynamically

►  Filters are statically composed with multiple inheritance
■  One dimension from algorithm,
■  one from synchronization strategy
■  Filters can be overwritten during inheritance

Prof. U. Aßmann, CBSE 26

Filters Can be Multiply Inherited

Object
Implementation

inheritance

Object
Implementation Object

Implementation

Filters are composed
by boolean AND

Prof. U. Aßmann, CBSE 27

Composing a Locking Stack

►  Additionally, filter composition
has to be specified:

class LockingState interface

internals

 superStack: Stack

 locker:BinarySemaphor

inputfilters

 <locker.locking;

 superStack.sync;

 disp:Dispatch={superStack.*,

 locker.*};

 >

OrderedCollection

add()

Stack

pop()

LockingStack

LockProtocol

Semaphor
wait()
free()

Binary
Semaphor

sequential
AND

composition

superclasses

CBSE, © Prof. Uwe Aßmann 28

21.4 Implementations of the Filter
Concept in Standard Languages

Prof. U. Aßmann, CBSE 29

Implementation with Decorator

►  The superclass of the Decorator pattern implements the object
interface
■  The decorating classes are the filters
■  Problem: Decorators do not provide access to the “inner” object or the “self” object

►  Filters also can be regarded as ChainOfResponsibility
■  However, there is a final element of the Chain, the object implementation

Prof. U. Aßmann, CBSE 30

Filters Can be Composed From Outside

►  Filter superimposition

Object Facade

Output filters

Input filters

Object
Implementation

NewDecorator

Prof. U. Aßmann, CBSE 31

Filters Can be Composed From Outside

Object
Implementation

Object
Implementation

NewDecorator

superimposition

Object
Implementation Object

Implementation

Prof. U. Aßmann, CBSE 32

Superimposing a Decorator in Hand-Written
Code

►  Walk through the list of decorators
►  Insert a new decorator where appropriate

►  Example: superimposing synchronization:
■  Do for all objects involved:

.  Get the first decorator

.  Append a locking decorator, accessing a common semaphore

►  Removing synchronization
■  Do for all objects involved:

.  Get the synchronizing decorator

.  Dequeue it

Prof. U. Aßmann, CBSE 33

Superimposing Several Filters Produces Filter-
Connector Pattern

►  All Decorator-Connectors can be realized with filters

Object
Implementation

Object
Implementation

Connector

connector

Object
Implementation Object

Implementation

Prof. U. Aßmann, CBSE 34

Filters in MOP-Based Languages

►  In languages with a MOP, a filter can be implemented as a specific
object that is called during the functions
■  enterObject
■  accessAttribute
■  callMethod

Prof. U. Aßmann, CBSE 35

A MOP-based Implementation of Filters

class FilteredClass extends Class {
 Filter[] inputFilters;
 public FilteredClass() { .. }
 public void enterMethod() {
 // First assign the called inner method to be the continuation
 Method continuation = thisMethod;
 // Run the input filters and calculate the real continuation
 for (int i = 0; i < inputFilters.size(); i ++) {
 if (filter.matches(continuation))
 continuation = filter.acceptAction(continuation);
 else
 continuation = filter.rejectAction(continuation);
 // If the filter returned null, stop here
 if (continuation == null)
 return;
 // Continue at next filter
 if (continuation == inputFilters.getNext())
 continue;
 // Otherwise, continue at continuation
 else
 continuation.execute();
 }
 }
 // Similar for output filters...
 Filter[] outputFilters;
 ...

class Filter {
 // Test whether the filter can be applied to a method.
 public boolean matches(Method method) { .. }
 // Filter executes accept. Also, it substitutes a
continuation.
 public Object acceptAction(Method method) {
 ..
 return substitute(method);
 }
 // Filter executes reject. Also, it substitutes a continuation.
 public Object rejectAction(Method method) {
 ..
 return substitute(method);
 }
 public Object substitute(Method method) {
 if (<<filtering should be stopped>>)
 return null;
 ..
 return <<continuationMethod>>;
 }
}

Prof. U. Aßmann, CBSE 36

A Specialized Filter

class TracingFilter extends Filter {
 public void matches(Method method) { return true; }
 public Object acceptAction(Method method) {
 trace();
 return substitute(method);
 }
 public Object substitute(Method method) {
 return method;
 }
 public void trace() {
 System.out.println("Here is the class "+getClass().getName());
 }
}
Class WorkPiece = new FilteredClass("WorkPiece",
 new Filter[]{TracingFilter},
 new Filter[]{});

CBSE, © Prof. Uwe Aßmann 37

21.5 Filters and The Role Object
Pattern

Prof. U. Aßmann, CBSE 38

Filter Layers

►  Instead of role objects, filter objects can be used
►  Then, filters belong to layers

■  Layers are like slices through the application
■  We get a layered object model

►  The filters are separate objects (role objects)
■  Which can be exchanged separately
■  Which can be superimposed appropriately

Prof. U. Aßmann, CBSE 39

Personalization Layer

Security Layer

Core Layer

Aksit's Filter Pattern in Framework Layers

Customer

TrustedCustomer

Personalized
Customer

CustomerCore CustomerRole *

Account

Safe
Account

Personalized
Account

AccountCore AccountRole

<<filter layer>>

<<filter layer>>

Prof. U. Aßmann, CBSE 40

Using Filters

►  Filters can implement a supercall (upcall) in the inheritance hierarchy
■  Delegating to an object of the superclass
■  In languages without inheritance

►  Filters can implement multiple and mixin inheritance in languages
with single inheritance

►  Filters are applicable to all types of components
■  Filters are appropriate to implement the DCOM/COM+ facade-based component

model
.  The dispatch filter delegates to aggregated objects

■  or to UML components

Prof. U. Aßmann, CBSE 41

Filters In UML

►  Realize as inner components

Robot
Implementation

<<FilteredComponent>>
Robot

move Decorator
inputfilters:Filter

Filter
* outputfilters:Filter

*

Prof. U. Aßmann, CBSE 42

Insight: Greybox Composition Relies on
Extensibility

►  Composition Filters is a greybox composition technology
■  Because it inlines Decorators into objects

►  Superimposition of filters can be used for greybox composition
■  Adding filters changes objects extensively, but the “self” identity does not change
■  Connectors can be made grey-box with the Filter-Connector pattern

Object
Implementation

self

CBSE, © Prof. Uwe Aßmann 43

21.6 Evaluation as Composition
System

Prof. U. Aßmann, CBSE 44

CF - Component Model

Parameterization

Binding points

Contracts Business
services

Infrastructure

Secrets

Development
environments

Types

Versioning

Distribution

Filters

Prof. U. Aßmann, CBSE 45

CF – Composition Technique and Language

Separation of Concerns

Fully scalable
distribution

Scalability

Adaptation

Metacomposition Aspect Separation

Extensibility Software process

Connection
Product quality

Filters

Prof. U. Aßmann, CBSE 46

CF as Composition System

Component Model Composition Technique

Composition Language

Content: Filtered objects

Binding points: ports

Dynamic adaptation by filters

Scaling by exchange of filters

Simple composition language

Prof. U. Aßmann, CBSE 47

What Have We Learned?

►  CF extends the standard object model to a new component model
FilteredComponent
■  The objects have filters and can be adapted easily

►  Any component model that provides interceptors or decorators can be
used as filtered component

►  Filtered components support
■  Adaptation
■  Greybox composition

Prof. U. Aßmann, CBSE 48

The End

