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Model for Extensible Concurrent Systems: The Composition-Filters 
Approach.  
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Other Literature 

►  L. Bergmans. Composition filters. PhD thesis, Twente University, 
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http://trese.cs.utwente.nl/ 
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Goal 

►  Composition Filters (CF) are a solution to many composition 
problems 

►  The first approach to grey-box components 
►  Understand the similarty to decorator/adapter-based component 

models, and why grey-box provides an advantage 



CBSE, © Prof. Uwe Aßmann 5 

21.1) Inheritance Anomaly 
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Inheritance Anomaly - Why Software 
Composition Is Necessary 

►  In a parallel program, where 
should synchronization code be 
inserted? 
■  Stack? 
■  Queue? 
■  OrderedCollection? 
■  Collection? 
■  Object? 

OrderedCollection 

add() 

Stack 

pop() enter() 

wait(s);  
super.pop();  
free(s); 

LockedStack PlainStack 

Queue 

PriorityQueue 

s: semaphor; 

pop() 



Prof. U. Aßmann, CBSE 7 

Inheritance Anomaly 

►  At the beginning of the 90s, parallel object-oriented languages failed, 
due to the inheritance anomaly problem 

►  Inheritance anomaly: In inheritance hierarchies, synchronization code 
is tangled (interwoven) with the algorithm,  
■  and cannot be easily exchanged  
■  when the inheritance hierarchy should be extended 
■  Ideally, one would like to specify algorithm and function independently 
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Algorithm and Synchronization are Almost 
Facets  

►  But they depend on each other 
►  How to mix them appropriately? 

OrderedCollection 

add() 

Stack 

pop() enter() 

Queue 

PriorityQueue 

LockProtocol 

Semaphor 
wait() 
free() enter() 

Binary 
Semaphor 

Counting 
Semaphor 

Monitor 

HoareMonitor HansenMonitor 
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21.2 The Decorator Design Pattern 
(Rpt.)  
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Decorator Pattern 

►  A Decorator is a skin of another object 
►  It is a 1-ObjectRecursion (i.e., a restricted Composite): 

■  A subclass of a class that contains an object of the class as child 
■  However, only one composite (i.e., a delegatee) 

►  Combines inheritance with aggregation 
■  Inheritance from an abstract Handler class 
■  That defines a contract for the mimiced class and the mimicing class 

:Client 
 

ref 
A:Decorator 

 
hidden 

B:Decorator 
 

hiddden 

C:RealObject 
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Decorator – Structure Diagram 

MimicedClass 

mimicedOperation() 

ConcreteMimicedClass 

mimicedOperation() 

Decorator 

mimicedOperation() 

mimiced.mimicedOperation(); 

mimiced 

ConcreteDecoratorA 

mimicedOperation() 

ConcreteDecoratorB 

mimicedOperation() 
super.mimicedOperation(); 

additionalStuff(): 

1 
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Decorator for Widgets 

Widget 

draw() 

TextWidget WidgetDecorator 

mimiced.draw() 

mimiced 

Frame 

draw() 

Scrollbar 

draw() 

draw() 

draw() 

super.draw(); 
drawScrollbar(): super.draw(); 

drawFrame(): 

1 
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Decorator for Persistent Objects 

Record 

access() 

TransientRecord PersistentDecorator 

mimiced.access() 

mimiced 

PersistentRead 
OnlyRecord 

PersistentRecord 

access() 

access() 
boolean loaded() 

boolean modified() 
load() 

dump() 

access() 

if (!loaded())  load(); 
super.access(); 

if (modified()) dump(): 
access() 

boolean loaded() 
load() 

if (!loaded()) load(); 
super.access(); 

1 
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Purpose Decorator 

►  For extensible objects (i.e., decorating objects) 
■  Extension of new features at runtime 
■  Removal possible 

►  Instead of putting the extension into the inheritance hierarchy 
■  If that would become too complex 
■  If that is not possible since it is hidden in a library 

Library 

New Features 

Library 

Decorator with  
New Features 
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Variants of Decorators 

►  If only one extension is  planned, the abstract  superclass Decorator 
can be saved; a concrete decorator is sufficient 

►  Decorator family: If several decorators decorate a hierarchy, they can 
follow a common style and can be exchanged together 

New Features 

New Features 

New Features 

New Features 

New Features 

New Features 



Prof. U. Aßmann, CBSE 16 

Decorator Relations 

►  Decorators can be chained to each other 
►  Dynamically, arbitrarily many new features can be added 
►  A decorator is a special ChainOfResponsibility with  

■  The decorator(s) come first 
■  Last, the mimiced object 
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21.3 Composition Filters 
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Filters are Layers 

►  Composition Filters (CF) wraps 
objects with filters  

►  Messages flow through the 
filters  
■  are accepted or rejected 
■  are modified by them 

►  A filter is an interceptor that is 
part of an object 
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Filters are Special Decorators 

►  Filters are decorators that do not suffer from object schizophrenia 

Object Facade 

Output filters 

Input filters 

Object 
Implementation 

Decorator Inner 

Self 
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Filter Types 

►  Error. An error filter tests whether a message is available.  
■  If not, it stops filtering and execution. 

►  Wait. A wait filter accepts methods only if a condition is true, 
otherwise it waits until the condition becomes true.  
■  The condition may refer to a semaphore that is shared by all objects of the class 
■  In case the semaphore is not free, the wait filter blocks execution 

►  Dispatch. A dispatch filter dispatches the message  
■  to the internal implementation,  
■  to other external objects, to a superclass,  
■  or to sequences of objects. 

►  Meta. A meta filter converts the message to an instance of class 
Message and passes it on to the continuation method. Then, the 
method can evaluate the new message. 

►  RealTime. Specify a real-time constraint. 
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Filters in SINA 

►  Grammar: 
InputFilters = ‘inputfilters ‘'<' Filter* '>'. 
OutputFilters = ‘outputfilters’ '<' Filter* '>'. 
Filter ::= Name ':' Type '=' '{'  FilterElement // ',' '}. 
FilterElement ::=  
             Guard '=>' Match  
           | Guard '~>' Match 
           | Replacement 
Replacement ::= Guard '=>'  '[' Match ']' Match . 
Guard ::= BooleanFunctionCall. 
Match ::= TargetObject '.' MethodName | MethodName . 
TargetObject ::= 'self' | 'inner' | '*' . 
MethodName ::= Name | '*' . 

-- All matching messages are accepted  
-- All matching messages are rejected  
-- All matching messages are resent  
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Filters in SINA 

►  Sync Filter example: 
■  sync:Wait = { NonEmpty => pop,  

              True => * } 
 
 

►  Meaning: 
■  if (sync.Semaphore free)  

.  if (NonEmpty()) 

n  if (function.name == “pop”) inner.pop 

.  else if (True) 

n  if (function.name == X) inner.X 

Action 

Guard 
(Condition) 
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Wrapping Methods with Calls 

►  Meta-filter example: 
■  Full => [put] bufferDistribute.Distribute; 

■  Empty => [get] bufferDistribute.Distribute; 

►  Wrapping Methods with Calls with the Meta filter: 
counterWrapper: Meta {  

    isCounting => [put] Counter.increaseCount(); 

    True => [*] inner.*;  

} 

Match 
(name of 
incoming 
message) 

Action Guard 
(Condition) 
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A Larger Example 

class PressOrAnimatedPress interface  
  internals: 
    visualize;  
    doIt; 
  externals: 
    animatedDevice:AnimatedDevice; 
  conditions: 
    isAnimating;  
    isInTracingMode; 
    noOneElseIsAnimating; 
  methods: 
    inputTraceMethod; 
    outputTraceMethod; 
  inputfilters: 
    tracing: Meta = {  
      isInTractingMode => [*] inputTraceMethod } 
    lockingDisplay: Wait = {  
      noOneElseIsAnimating => *; } 
    dispatch: Dispatch = {  
      isAnimating => [*.*] animatedDevice.*;  
      True => [*] inner.*; } 
  outputfilters: 
    tracing: Meta = {  
      isInTracingMode => [*] outputTraceMethod } 
end 

• A press is modeled, either with or without animation. 
• There are two Meta filters that call tracing methods when 
the press is in animation mode (precondition isAnimating). 

• The filters match all messages (pattern [*]) and call 
tracing methods. 
• Then, they pass on control to the next filter. 

• As an input filter, a Wait filter is executed. 
• It collaborates with other animated devices and 
guarantees with a semaphore that only one device 
at a time uses the display. 
• If another device is animating, the wait filter blocks 
execution until the display is free again. 

• The Dispatch filter selects a method for the real 
implementation work. 

• It contains two filter elements. 
• If the press is in animation mode, it forwards every 
message from an arbitrary object (pattern [*.*]) to the 
animated device delegatee, otherwise calls its inner 
object. 
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Main Advantage of the Filter Concept 

►  Filters are built into an object, they are grey-box decorators 
►  Filters are specified in the interface, not in the implementation 

■  Implementations are free of synchronization code 
■  Separation of concerns (SOC): synchronization and algorithm are separated 
■  Filters and implementations can be varied independently  

►  Filters are specified statically, but can be activated or deactivated 
dynamically 

►  Filters are statically composed with multiple inheritance 
■  One dimension from algorithm,  
■  one from synchronization strategy 
■  Filters can be overwritten during inheritance 
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Filters Can be Multiply Inherited 

Object 
Implementation 

inheritance 

Object 
Implementation Object 

Implementation 

Filters are composed  
by boolean AND 
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Composing a Locking Stack 

►  Additionally, filter composition 
has to be specified: 
 
 

class LockingState interface 

internals 

  superStack: Stack 

  locker:BinarySemaphor 

inputfilters 

  <locker.locking; 

    superStack.sync; 

    disp:Dispatch={superStack.*, 

   locker.*}; 

  > 

OrderedCollection 

add() 

Stack 

pop() 

LockingStack 

LockProtocol 

Semaphor 
wait() 
free() 

Binary 
Semaphor 

sequential  
AND 

composition 

superclasses 



CBSE, © Prof. Uwe Aßmann 28 

21.4 Implementations of the Filter 
Concept in Standard Languages 
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Implementation with Decorator 

►  The superclass of the Decorator pattern implements the object 
interface 
■  The decorating classes are the filters 
■  Problem: Decorators do not provide access to the “inner” object or the “self” object 

►  Filters also can be regarded as ChainOfResponsibility 
■  However, there is a final element of the Chain, the object implementation 
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Filters Can be Composed From Outside 

►  Filter superimposition 

Object Facade 

Output filters 

Input filters 

Object 
Implementation 

NewDecorator 
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Filters Can be Composed From Outside 

Object 
Implementation 

Object 
Implementation 

NewDecorator 

superimposition 

Object 
Implementation Object 

Implementation 
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Superimposing a Decorator in Hand-Written 
Code 

►  Walk through the list of decorators 
►  Insert a new decorator where appropriate 

 
 

►  Example: superimposing synchronization: 
■  Do for all objects involved: 

.  Get the first decorator 

.  Append a locking decorator, accessing a common semaphore 

►  Removing synchronization 
■  Do for all objects involved: 

.  Get the synchronizing decorator 

.  Dequeue it 
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Superimposing Several Filters Produces Filter-
Connector Pattern 

►  All Decorator-Connectors can be realized with filters 

Object 
Implementation 

Object 
Implementation 

Connector 

connector 

Object 
Implementation Object 

Implementation 
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Filters in MOP-Based Languages 

►  In languages with a MOP, a filter can be implemented as a specific 
object that is called during the functions 
■  enterObject 
■  accessAttribute 
■  callMethod 
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A MOP-based Implementation of Filters 

class FilteredClass extends Class { 
   Filter[] inputFilters; 
   public FilteredClass() { .. } 
   public void enterMethod() { 
      // First assign the called inner method to be the continuation 
      Method continuation = thisMethod; 
      // Run the input filters and calculate the real continuation 
      for (int i = 0; i < inputFilters.size(); i ++) { 
         if (filter.matches(continuation)) 
             continuation = filter.acceptAction(continuation); 
         else 
             continuation = filter.rejectAction(continuation); 
         // If the filter returned null, stop here 
         if (continuation == null)  
             return; 
         // Continue at next filter 
         if (continuation == inputFilters.getNext())  
             continue; 
         // Otherwise, continue at continuation 
         else 
             continuation.execute(); 
      } 
   } 
   // Similar for output filters... 
   Filter[] outputFilters; 
   ... 

class Filter { 
   // Test whether the filter can be applied to a method. 
   public boolean matches(Method method) { .. } 
   // Filter executes accept.  Also, it substitutes a 
continuation. 
   public Object acceptAction(Method method) {  
       .. 
       return substitute(method); 
   } 
   // Filter executes reject.  Also, it substitutes a continuation. 
   public Object rejectAction(Method method) {  
       .. 
       return substitute(method); 
   } 
   public Object substitute(Method method) {  
      if (<<filtering should be stopped>>) 
          return null; 
      ..  
      return <<continuationMethod>>; 
   } 
} 
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A Specialized Filter 

class TracingFilter extends Filter { 
   public void matches(Method method) { return true; } 
   public Object acceptAction(Method method) {  
      trace(); 
      return substitute(method); 
   } 
   public Object substitute(Method method) {  
      return method;  
   } 
   public void trace() { 
      System.out.println("Here is the class "+getClass().getName());  
   } 
} 
Class WorkPiece = new FilteredClass("WorkPiece",  
                                new Filter[]{TracingFilter}, 
                                new Filter[]{}); 
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21.5 Filters and The Role Object 
Pattern 
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Filter Layers 

►  Instead of role objects, filter objects can be used 
►  Then, filters belong to layers  

■  Layers are like slices through the application 
■  We get a layered object model 

►  The filters are separate objects (role objects) 
■  Which can be exchanged separately 
■  Which can be superimposed appropriately 
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Personalization Layer 

Security Layer 

Core Layer 

Aksit's Filter Pattern in Framework Layers 

Customer 

TrustedCustomer 

Personalized 
Customer 

CustomerCore CustomerRole * 

Account 

Safe 
Account 

Personalized 
Account 

AccountCore AccountRole 

<<filter layer>> 

<<filter layer>> 
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Using Filters 

►  Filters can implement a supercall (upcall) in the inheritance hierarchy 
■  Delegating to an object of the superclass 
■  In languages without inheritance 

►  Filters can implement multiple and mixin inheritance in languages  
with single inheritance 

►  Filters are applicable to all types of components 
■  Filters are appropriate to implement the DCOM/COM+ facade-based component 

model 
.  The dispatch filter delegates to aggregated objects 

■  or to UML components 
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Filters In UML 

►  Realize as inner components 

Robot 
Implementation 

<<FilteredComponent>> 
Robot 

move Decorator 
inputfilters:Filter 

Filter 
* outputfilters:Filter 

* 
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Insight: Greybox Composition Relies on 
Extensibility  

►  Composition Filters is a greybox composition technology 
■  Because it inlines Decorators into objects 

►  Superimposition of filters can be used for greybox composition 
■  Adding filters changes objects extensively, but the “self” identity does not change 
■  Connectors can be made grey-box with the Filter-Connector pattern 

Object 
Implementation 

self 
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21.6 Evaluation as Composition 
System 
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CF - Component Model 

Parameterization 

Binding points 

Contracts Business 
services 

Infrastructure 

Secrets 

Development 
environments 

Types 

Versioning 

Distribution 

Filters 
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CF – Composition Technique and Language 

Separation of Concerns 

Fully scalable 
distribution 

Scalability 

Adaptation 

Metacomposition Aspect Separation 

Extensibility Software process 

Connection 
Product quality 

Filters 
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CF as Composition System 

Component Model Composition Technique 

Composition Language 

Content: Filtered objects 

Binding points: ports  

Dynamic adaptation by filters 

Scaling by exchange of filters 

Simple composition language 



Prof. U. Aßmann, CBSE 47 

What Have We Learned? 

►  CF extends the standard object model to a new component model  
FilteredComponent 
■  The objects have filters and can be adapted easily 

►  Any component model that provides interceptors or decorators can be 
used as filtered component 

►  Filtered components support 
■  Adaptation 
■  Greybox composition 
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The End 


