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Software Composition 

Component Model Composition Technique 

Composition Language 
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25.1) Invasive Software Composition -  
A Fragment-Based Composition Technique 



Prof. U. Aßmann, CBSE 6 

Invasive Software Composition 

►  A fragment component is a fragment 
group (fragment container, fragment 
component, fragment box) 
■  a set of fragments or fragment forms 

►  Uniform representation for 
■  a fragment 

.  a class, a package, a method 

■  a fragment group 
.  an advice or an aspect 
.  some metadata 
.  a composition program 

.  A generic fragment (group) 

  Invasive software composition parameterizes and extends 
fragment components 

at hooks 
by transformation 
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The Component Model of Invasive 
Composition 

►  Fragment components have hooks (change points) 
►  A change point can be  

■  An extension point (hook) 
■  A variation point (slot) 

►  Example:  
■  Extension point: method entries/exits 
■  Variation point: Generic parameters 

 
Hooks are change points of a fragment component: 

 
fragments or positions, 

which are subject to change 
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Implicit Hooks  

►  A hook (extension point) is given by the component's language 
►  Hooks can be implicit or explicit (declared)  

■  We draw implicit hooks inside the component, at the border 

►  Example: Method Entry/Exit 

Method.entry 

Method.exit 

m (){ 
 
    abc.. 
    cde.. 
 
} 
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Slots (Declared Hooks) 

►  A slot is a variation point (a code parameter) 
►  Slots are always declared, i.e., declared or explicit hooks 

■  They are never implicit, i.e., must be declared by the component writer  
■  We draw slots as crossing the border of the component 

Declarations 
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The Composition Technique of Invasive 
Composition 

 
 Invasive Software Composition 

 parameterizes and extends 
fragment components 

at implicit and declared hooks 
by transformation 

An invasive composition operator treats  
declared and implicit hooks uniformly 
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Composer 

Invasively transformed code 

The Composition Technique of Invasive 
Composition 

►  A composer (composition operator) is a static metaprogram (program 
transformer) 
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component.findHook(„mod“).bind(“synchronized”); 
 
component.findHook(„mid“).bind(“f();”); 

mod 

mid 

<<mod:Modifier>> 
m (){ 
 
    abc.. 
    <<mid:Statement>> 
    cde.. 
 
} 

synchronized m (){ 
    abc.. 
    f(); 
    cde.. 
} 

Bind Composer Parameterizes Fragment 
Components 
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component.findHook(„MethodEntry“).extend(“print(\”enter m\”);”); 
 
component.findHook(„MethodExit“).extend(“print(\”exit m\”);”); 

MethodEntry MethodEntry 

MethodExit MethodExit 

m (){ 
 
    abc.. 
    cde.. 
 
} 

m (){ 
    print(“enter m”); 
    abc.. 
    cde.. 
    print(“exit m”); 
} 

Extend Operator Extends the Fragment 
Components 
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Merge Operator 

merge(Component C1, Component C2) := 
      extend(C1.list, C2.list) 
where list is a list of inner components, inner fragments, etc.  
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On the Difference of Declared and Implicit 
Hooks 

►  Invasive composition unifies generic programming (BETA) and view-
based programming (merge composition operators)  
■  By providing bind (parameterization) and extend for all language constructs 

synchronized public print () { 
 if (1 == 2)  

             System.out.println(“Hello World”); 
             return;  
       else 
              System.out.println(“Bye World”); 
              return; 
} 

/* @genericMYModifier */ public print() { 
     // <<MethodEntry>> 
       if (1 == 2)  
             System.out.println(“Hello World”); 
             // <<MethodExit>> 
             return;  
       else 
              System.out.println(“Bye World”); 
              // <<MethodExit>> 
              return; 
} 

Hook h = methodComponent.findHook(“MY”); 
if (parallel)  
      h.bind(“synchronized”); 
else 
      h.bind(“ ”); 
methodComponent.findHook(“MethodEntry”).bind(“”); 
methodComponent.findHook(“MethodExit”).bind(“”); 
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When Do you Need Invasive Composition 

►  When static relations have to be adapted 
■  Inheritance relationship: multiple and mixin inheritance 
■  Delegation relationship:;When delegation pointers have to be inserted 
■  Import relationship 
■  Definition/use relationships (adding a definition for a use)  

►  When physical unity of logical objects is desired 
■  No splitting of roles, but integration into one class 

►  When the resulting system should be highly integrated 
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 Invasive Extension Integrates Feature Groups  

►  ... and roles, because a feature group can play a role 
►  The invasive extension lies between inheritance and delegation 

Extend 
invasively 

K

K-private KK-subclass K

Inherit Delegate 
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When To Use What? 

►  Deploy Inheritance  
■  for consistent side-effect free composition 

 

►  Deploy Delegation 
■  for dynamic variation 
■  Suffers from object schizophrenia 

 

►  Deploy Invasive Extension  
■  for non-foreseen extensions that should be integrated   
■  to develop aspect-orientedly   
■  to adapt without delegation   
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Invasive Composition 

Adds a full-fledged composition language to generic and view-based 
programming 

Combines architectural systems, generic, view-based and aspect-
oriented programming 

Invasive 
Composition 

Architectural 
development 

Generic 
Programming 

View-Based 
Programming 
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Composition Programs 

Imperative languages: Java (used in COMPOST), C, .. 
Graphical languages: boxes and lines (used in Reuseware) 
Functional languages: Haskell 
Scripting languages: TCL, Groovy, ... 
Logic languages: Prolog, Datalog, F-Datalog 
Declarative Languages: Attribute Grammars, Rewrite Systems 

Basically, every language may act as a composition language, if 
its basic operators are bind and extend. 
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25.2) What Can You Do With  
Invasive Composition? 
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Universally Generic Programming 

In contrast to BETA, ISC offers a full-fledged composition language 

<< ClassBox >> 

class SimpleList { 
  genericTType elem; 
  SimpleList next; 
  genericTType getNext() { 
     return next.elem; 
  } 
} 

T 

class SimpleList { 
  WorkPiece elem; 
  SimpleList next; 
  WorkPiece getNext() { 
     return next.elem; 
  } 
} 

<< ClassBox >> 
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Client Library 

Client Library 

Blackbox connection with glue code 

Client Library 

Invasive Connection 

Blackbox 
Composition 

Invasive 
Composition 

Invasive Connections 

In contrast to ADL, ISC offers invasive connections 
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inherit 

■  inheritance := 
■  copy first super class 
■  extend with second 

super class 

 Mixin Inheritance  

►  Extension can be used for inheritance (mixins) 
►  In contrast to OO languages, ISC offers tailored inheritance 

operations, based on the extend operator 
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inherit 

Mixin Inheritance Works Uniformly for 
Languages that don't have it 

►  Invasive composition can model 
mixin inheritance  uniformly for 
all languages 

►  e.g., for XML 
►  inheritance := 

■  copy first super document 
■  extend with second super 

document 
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Invasive Document Composition for XML 

►  Invasive composition can be used for document languages, too 
[Hartmann2011] 

►  Example List Entry/Exit of an XML list 
►  Hooks are given by the Xschema 

<UL> 
 
    <LI>... </LI> 
    <LI>... </LI> 
 
</UL> 

List.entry 

List.exit 
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List Entry List Entry 

List Exit List Exit 

<UL> 
 
    <LI>... </LI> 
    <LI>... </LI> 
 
</UL> 

XMLcomponent.findHook(„ListEntry“).extend(„<LI>... </LI>”); 
 
XMLcomponent.findHook(„ListExit“).extend(“<LI>... </LI>”); 
 

<UL> 
    <LI>... </LI> 
    <LI>... </LI> 
    <LI>... </LI> 
    <LI>... </LI> 
</UL> 

Hook Manipulation for XML 



Prof. U. Aßmann, CBSE 28 

Composers can be Used as Weavers in AOP 
(Core and Aspect Components) 

Distributor 

►  Complex composers distribute 
aspect fragments over core 
fragments 

►  Distributors extend the core 
►  Distributors are more complex 

operators, defined from basic 
ones 

►  Static aspect weaving can be 
descirbed by distributors 

Aspect 

Core 
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Invasive Model Composition with Reuseware 
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25.3) Composition and Functional 
Interfaces 
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Declared 
Hooks 

Implicit Hooks 

Provided  
Method 

Program Elements  
or Code Positions 

Output Port 

Input Port Required 
Method 

Composition vs Functional Interfaces 

Composition interfaces contain hooks and slots 
 static, based on the component model at design time  

Functional interfaces are based on the component model at run time and 
contain slots and hooks of it 
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Composition Interface (Boxes with  
Declared Hooks) 

Functional Interface (Classes or 
Modules with Methods) 

Functional Interfaces are Generated from 
Composition Interfaces 

2-stage process 
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C1 C2 C3 

C2 C3 

C3 

Execution of a Composition Program 

►  transforms a set of fragment components step by step, binding their 
composition interfaces (filling their slots and hooks), resulting in an 
integrated program with functional interfaces 
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25.4) Different Forms of Greyboxes 
(Shades of Grey) 
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Invasive Composition and Information Hiding 

►  Invasive Composition modifies components at well-defined places 
during composition 
■  There is less information hiding than in blackbox approaches 
■  But there is... 
■  ... that leads to greybox components 
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Refactorings 
Transformations 
 

Refactoring is a  
Whitebox Operation 

►  Refactoring works directly on the AST/ASG 
►  Attaching/removing/replacing fragments  
►  Whitebox reuse 
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Composition 
with implicit 
hooks 

Refactorings 
Transformations 
 

Modifying Implicit Hooks is a Light-Grey 
Operation 

►  Aspect weaving and view composition works on implicit hooks (join 
points) 

►  Implicit composition interface 
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Refactorings 
Transformations 
 

Parameterization as Darker-Grey Operation 

►  Templates work on declared hooks 
►  Declared composition interface 

Composition 
with declared 
hooks 
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Composition 
with declared 
hooks 

Composition 
with implicit 
hooks 

Refactorings 
Transformations 
 

Systematization Towards Greybox Component 
Models 
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Refactoring 

Refactoring Builds On Transformation Of 
Abstract Syntax 
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Composer 

Invasively transformed code 

Invasive Composition Builds On 
Transformation Of Implicit Hooks 



Prof. U. Aßmann, CBSE 42 

Composer 

Invasively transformed code 

Invasive Composition Builds On 
Transformation on Declared Hooks 
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25.5 Invasive Software Composition 
as Composition Technique 
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Invasive Composition:  Component Model 

►  Fragment components are graybox components  
■  Composition interfaces with declared hooks 
■  Implicit composition interfaces with implicit hooks 
■  The composition programs produce the functional interfaces 

.  Resulting in efficient systems, because superfluous functional interfaces are 
removed from the system  

■  Content: source code 
.  binary components also possible, poorer metamodel 

►  Aspects are just a special type of component 
►  Fragment-based parameterisation a la BETA 

■  Type-safe parameterization on all kinds of fragments 
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 Invasive Composition: Composition 
Technique 

►  Adaptation and glue code: good, composers are program 
transformers and generators 

►  Aspect weaving 
■  Parties  may write their own weavers 
■  No special languages 

►  Extensions:  
■  Hooks can be extended 
■  Soundness criteria of lambdaN still apply 
■  Metamodelling employed 

►  Not yet scalable to run time 
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Composition Language 

►  Various languages can be used 
►  Product quality improved by metamodel-based typing of 

compositions 
►  Metacomposition possible 

■  Architectures can be described in a standard object-oriented language and 
reused  

►  An assembler  for composition 
■  Other, more adequate composition languages can be compiled  
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Conclusions for ISC 

►  Fragment-based composition technology 
■  Graybox components 
■  Producing tightly integrated systems 

►  Components have composition interface 
■  From the composition interface, the functional interface is derived 

■  Composition interface is different from functional interface 
■  Overlaying of classes (role model composition) 

•  COMPOST framework showed applicability of ISC for Java 
•  (ISC book) 

•  Reuseware Composition Framework extends these ideas 
•  For arbitrary grammar-based languages 
•  For metamodel-based languages 

•  http://reuseware.org 
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Invasive Composition as Composition System 

Component model Composition technique 

Composition language 

Source or binary components 

Greybox components 

Composition interfaces  
with declared an implicit hooks 

Algebra of composition operators 

Uniform on declared and implicit hooks  

Complex composition operators can be 
defined by users 

Standard Language  
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What Have We Learned  

►  With the uniform treatment of declared and implicit hooks, several 
technologies can be unified: 

•  Generic programming  
•  Connector-based programming 
•  Refactorings  
•  Inheritance-based programming  
•  View-based programming 
•  Aspect-based programming 
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The End 


