
CBSE, © Prof. Uwe Aßmann 1

25) Invasive Software
Composition (ISC)

Prof. Dr. Uwe Aßmann
Florian Heidenreich

Technische Universität Dresden
Institut für Software- und

Multimediatechnik
http://st.inf.tu-dresden.de

Version 11-0.5, Juli 6, 2011

1.  Invasive Software Composition -
A Fragment-Based Composition
Technique

2.  What Can You Do With
Invasive Composition?

3.  Functional and Composition
Interfaces

4.  Different forms of grey-box
components

5.  Evaluation as Composition
Technique

Prof. U. Aßmann, CBSE 2

Obligatory Literature

►  ISC book Chap 4
►  www.the-compost-system.org
►  www.reuseware.org

Prof. U. Aßmann, CBSE 3

Other References

Jakob Henriksson. A Lightweight Framework for Universal Fragment
 Composition. Technische Universität Dresden, Dec. 2008

 http://nbn-resolving.de/urn:nbn:de:bsz:14-
ds-1231251831567-11763

Jendrik Johannes. Component-Based Model-Driven Software
Development. Technische Universität Dresden, Dec. 2010
 http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63986

Jendrik Johannes and Uwe Aßmann, Concern-Based (de)composition
of Model-Driven Software Development Processes. Model Driven
Engineering Languages and Systems - 13th International
Conference, MODELS 2010, 2010,Part II, Springer, 2010, LNCS
6395, URL = http://dx.doi.org/10.1007/978-3-642-16129-2

Falk Hartmann. Safe Template Processing of XML Documents. PhD
thesis. Technische Universität Dresden, July 2011.

Prof. U. Aßmann, CBSE 4

Software Composition

Component Model Composition Technique

Composition Language

CBSE, © Prof. Uwe Aßmann 5

25.1) Invasive Software Composition -
A Fragment-Based Composition Technique

Prof. U. Aßmann, CBSE 6

Invasive Software Composition

►  A fragment component is a fragment
group (fragment container, fragment
component, fragment box)
■  a set of fragments or fragment forms

►  Uniform representation for
■  a fragment

.  a class, a package, a method

■  a fragment group
.  an advice or an aspect
.  some metadata
.  a composition program

.  A generic fragment (group)

 Invasive software composition parameterizes and extends
fragment components

at hooks
by transformation

Prof. U. Aßmann, CBSE 7

The Component Model of Invasive
Composition

►  Fragment components have hooks (change points)
►  A change point can be

■  An extension point (hook)
■  A variation point (slot)

►  Example:
■  Extension point: method entries/exits
■  Variation point: Generic parameters

Hooks are change points of a fragment component:

fragments or positions,

which are subject to change

Prof. U. Aßmann, CBSE 8

Implicit Hooks

►  A hook (extension point) is given by the component's language
►  Hooks can be implicit or explicit (declared)

■  We draw implicit hooks inside the component, at the border

►  Example: Method Entry/Exit

Method.entry

Method.exit

m (){

 abc..
 cde..

}

Prof. U. Aßmann, CBSE 9

Slots (Declared Hooks)

►  A slot is a variation point (a code parameter)
►  Slots are always declared, i.e., declared or explicit hooks

■  They are never implicit, i.e., must be declared by the component writer
■  We draw slots as crossing the border of the component

Declarations

Prof. U. Aßmann, CBSE 10

The Composition Technique of Invasive
Composition

 Invasive Software Composition

 parameterizes and extends
fragment components

at implicit and declared hooks
by transformation

An invasive composition operator treats
declared and implicit hooks uniformly

Prof. U. Aßmann, CBSE 11

Composer

Invasively transformed code

The Composition Technique of Invasive
Composition

►  A composer (composition operator) is a static metaprogram (program
transformer)

Prof. U. Aßmann, CBSE 12

component.findHook(„mod“).bind(“synchronized”);

component.findHook(„mid“).bind(“f();”);

mod

mid

<<mod:Modifier>>
m (){

 abc..
 <<mid:Statement>>
 cde..

}

synchronized m (){
 abc..
 f();
 cde..
}

Bind Composer Parameterizes Fragment
Components

Prof. U. Aßmann, CBSE 13

component.findHook(„MethodEntry“).extend(“print(\”enter m\”);”);

component.findHook(„MethodExit“).extend(“print(\”exit m\”);”);

MethodEntry MethodEntry

MethodExit MethodExit

m (){

 abc..
 cde..

}

m (){
 print(“enter m”);
 abc..
 cde..
 print(“exit m”);
}

Extend Operator Extends the Fragment
Components

Prof. U. Aßmann, CBSE 14

Merge Operator

merge(Component C1, Component C2) :=
 extend(C1.list, C2.list)
where list is a list of inner components, inner fragments, etc.

Prof. U. Aßmann, CBSE 15

On the Difference of Declared and Implicit
Hooks

►  Invasive composition unifies generic programming (BETA) and view-
based programming (merge composition operators)
■  By providing bind (parameterization) and extend for all language constructs

synchronized public print () {
 if (1 == 2)

 System.out.println(“Hello World”);
 return;
 else
 System.out.println(“Bye World”);
 return;
}

/* @genericMYModifier */ public print() {
 // <<MethodEntry>>
 if (1 == 2)
 System.out.println(“Hello World”);
 // <<MethodExit>>
 return;
 else
 System.out.println(“Bye World”);
 // <<MethodExit>>
 return;
}

Hook h = methodComponent.findHook(“MY”);
if (parallel)
 h.bind(“synchronized”);
else
 h.bind(“ ”);
methodComponent.findHook(“MethodEntry”).bind(“”);
methodComponent.findHook(“MethodExit”).bind(“”);

Prof. U. Aßmann, CBSE 16

When Do you Need Invasive Composition

►  When static relations have to be adapted
■  Inheritance relationship: multiple and mixin inheritance
■  Delegation relationship:;When delegation pointers have to be inserted
■  Import relationship
■  Definition/use relationships (adding a definition for a use)

►  When physical unity of logical objects is desired
■  No splitting of roles, but integration into one class

►  When the resulting system should be highly integrated

Prof. U. Aßmann, CBSE 17

 Invasive Extension Integrates Feature Groups

►  ... and roles, because a feature group can play a role
►  The invasive extension lies between inheritance and delegation

Extend
invasively

K

K-private KK-subclass K

Inherit Delegate

Prof. U. Aßmann, CBSE 18

When To Use What?

►  Deploy Inheritance
■  for consistent side-effect free composition

►  Deploy Delegation
■  for dynamic variation
■  Suffers from object schizophrenia

►  Deploy Invasive Extension
■  for non-foreseen extensions that should be integrated
■  to develop aspect-orientedly
■  to adapt without delegation

Prof. U. Aßmann, CBSE 19

Invasive Composition

Adds a full-fledged composition language to generic and view-based
programming

Combines architectural systems, generic, view-based and aspect-
oriented programming

Invasive
Composition

Architectural
development

Generic
Programming

View-Based
Programming

Prof. U. Aßmann, CBSE 20

Composition Programs

Imperative languages: Java (used in COMPOST), C, ..
Graphical languages: boxes and lines (used in Reuseware)
Functional languages: Haskell
Scripting languages: TCL, Groovy, ...
Logic languages: Prolog, Datalog, F-Datalog
Declarative Languages: Attribute Grammars, Rewrite Systems

Basically, every language may act as a composition language, if
its basic operators are bind and extend.

CBSE, © Prof. Uwe Aßmann 21

25.2) What Can You Do With
Invasive Composition?

Prof. U. Aßmann, CBSE 22

Universally Generic Programming

In contrast to BETA, ISC offers a full-fledged composition language

<< ClassBox >>

class SimpleList {
 genericTType elem;
 SimpleList next;
 genericTType getNext() {
 return next.elem;
 }
}

T

class SimpleList {
 WorkPiece elem;
 SimpleList next;
 WorkPiece getNext() {
 return next.elem;
 }
}

<< ClassBox >>

Prof. U. Aßmann, CBSE 23

Client Library

Client Library

Blackbox connection with glue code

Client Library

Invasive Connection

Blackbox
Composition

Invasive
Composition

Invasive Connections

In contrast to ADL, ISC offers invasive connections

Prof. U. Aßmann, CBSE 24

inherit

■  inheritance :=
■  copy first super class
■  extend with second

super class

 Mixin Inheritance

►  Extension can be used for inheritance (mixins)
►  In contrast to OO languages, ISC offers tailored inheritance

operations, based on the extend operator

Prof. U. Aßmann, CBSE 25

inherit

Mixin Inheritance Works Uniformly for
Languages that don't have it

►  Invasive composition can model
mixin inheritance uniformly for
all languages

►  e.g., for XML
►  inheritance :=

■  copy first super document
■  extend with second super

document

Prof. U. Aßmann, CBSE 26

Invasive Document Composition for XML

►  Invasive composition can be used for document languages, too
[Hartmann2011]

►  Example List Entry/Exit of an XML list
►  Hooks are given by the Xschema

 ...
 ...

List.entry

List.exit

Prof. U. Aßmann, CBSE 27

List Entry List Entry

List Exit List Exit

 ...
 ...

XMLcomponent.findHook(„ListEntry“).extend(„... ”);

XMLcomponent.findHook(„ListExit“).extend(“... ”);

 ...
 ...
 ...
 ...

Hook Manipulation for XML

Prof. U. Aßmann, CBSE 28

Composers can be Used as Weavers in AOP
(Core and Aspect Components)

Distributor

►  Complex composers distribute
aspect fragments over core
fragments

►  Distributors extend the core
►  Distributors are more complex

operators, defined from basic
ones

►  Static aspect weaving can be
descirbed by distributors

Aspect

Core

Prof. U. Aßmann, CBSE 29

Invasive Model Composition with Reuseware

CBSE, © Prof. Uwe Aßmann 30

25.3) Composition and Functional
Interfaces

Prof. U. Aßmann, CBSE 31

Declared
Hooks

Implicit Hooks

Provided
Method

Program Elements
or Code Positions

Output Port

Input Port Required
Method

Composition vs Functional Interfaces

Composition interfaces contain hooks and slots
 static, based on the component model at design time

Functional interfaces are based on the component model at run time and
contain slots and hooks of it

Prof. U. Aßmann, CBSE 32

Composition Interface (Boxes with
Declared Hooks)

Functional Interface (Classes or
Modules with Methods)

Functional Interfaces are Generated from
Composition Interfaces

2-stage process

Prof. U. Aßmann, CBSE 33

C1 C2 C3

C2 C3

C3

Execution of a Composition Program

►  transforms a set of fragment components step by step, binding their
composition interfaces (filling their slots and hooks), resulting in an
integrated program with functional interfaces

CBSE, © Prof. Uwe Aßmann 34

25.4) Different Forms of Greyboxes
(Shades of Grey)

Prof. U. Aßmann, CBSE 35

Invasive Composition and Information Hiding

►  Invasive Composition modifies components at well-defined places
during composition
■  There is less information hiding than in blackbox approaches
■  But there is...
■  ... that leads to greybox components

Prof. U. Aßmann, CBSE 36

Refactorings
Transformations

Refactoring is a
Whitebox Operation

►  Refactoring works directly on the AST/ASG
►  Attaching/removing/replacing fragments
►  Whitebox reuse

Prof. U. Aßmann, CBSE 37

Composition
with implicit
hooks

Refactorings
Transformations

Modifying Implicit Hooks is a Light-Grey
Operation

►  Aspect weaving and view composition works on implicit hooks (join
points)

►  Implicit composition interface

Prof. U. Aßmann, CBSE 38

Refactorings
Transformations

Parameterization as Darker-Grey Operation

►  Templates work on declared hooks
►  Declared composition interface

Composition
with declared
hooks

Prof. U. Aßmann, CBSE 39

Composition
with declared
hooks

Composition
with implicit
hooks

Refactorings
Transformations

Systematization Towards Greybox Component
Models

Prof. U. Aßmann, CBSE 40

Refactoring

Refactoring Builds On Transformation Of
Abstract Syntax

Prof. U. Aßmann, CBSE 41

Composer

Invasively transformed code

Invasive Composition Builds On
Transformation Of Implicit Hooks

Prof. U. Aßmann, CBSE 42

Composer

Invasively transformed code

Invasive Composition Builds On
Transformation on Declared Hooks

CBSE, © Prof. Uwe Aßmann 43

25.5 Invasive Software Composition
as Composition Technique

Prof. U. Aßmann, CBSE 44

Invasive Composition: Component Model

►  Fragment components are graybox components
■  Composition interfaces with declared hooks
■  Implicit composition interfaces with implicit hooks
■  The composition programs produce the functional interfaces

.  Resulting in efficient systems, because superfluous functional interfaces are
removed from the system

■  Content: source code
.  binary components also possible, poorer metamodel

►  Aspects are just a special type of component
►  Fragment-based parameterisation a la BETA

■  Type-safe parameterization on all kinds of fragments

Prof. U. Aßmann, CBSE 45

 Invasive Composition: Composition
Technique

►  Adaptation and glue code: good, composers are program
transformers and generators

►  Aspect weaving
■  Parties may write their own weavers
■  No special languages

►  Extensions:
■  Hooks can be extended
■  Soundness criteria of lambdaN still apply
■  Metamodelling employed

►  Not yet scalable to run time

Prof. U. Aßmann, CBSE 46

Composition Language

►  Various languages can be used
►  Product quality improved by metamodel-based typing of

compositions
►  Metacomposition possible

■  Architectures can be described in a standard object-oriented language and
reused

►  An assembler for composition
■  Other, more adequate composition languages can be compiled

Prof. U. Aßmann, CBSE 47

Conclusions for ISC

►  Fragment-based composition technology
■  Graybox components
■  Producing tightly integrated systems

►  Components have composition interface
■  From the composition interface, the functional interface is derived

■  Composition interface is different from functional interface
■  Overlaying of classes (role model composition)

•  COMPOST framework showed applicability of ISC for Java
•  (ISC book)

•  Reuseware Composition Framework extends these ideas
•  For arbitrary grammar-based languages
•  For metamodel-based languages

•  http://reuseware.org

Prof. U. Aßmann, CBSE 48

Invasive Composition as Composition System

Component model Composition technique

Composition language

Source or binary components

Greybox components

Composition interfaces
with declared an implicit hooks

Algebra of composition operators

Uniform on declared and implicit hooks

Complex composition operators can be
defined by users

Standard Language

Prof. U. Aßmann, CBSE 49

What Have We Learned

►  With the uniform treatment of declared and implicit hooks, several
technologies can be unified:

•  Generic programming
•  Connector-based programming
•  Refactorings
•  Inheritance-based programming
•  View-based programming
•  Aspect-based programming

Prof. U. Aßmann, CBSE 50

The End

