Component-Based Software Engineering (CBSE) Announcements

CBSE, © Prof. Uwe Aßmann

Reading Along the Lectures

- Unfortunately, the course is not covered by any book
 - About 60% is covered by the blue book "Invasive Software Composition"
 - Most of the rest on classical component systems by Szyperski in the book "Component Software. Beyond object-oriented computing. Addison-Wesley."
- > You have to read several research papers, available on the internet
 - Marked by "Obligatory Literature"
- Secondary Literature is non-mandatory, but interesting reading. Can be done during the course
- Other Literature is not to be read, but also interesting.

Elements of the Course

- Lecturing
 - Do not miss one, they should give you a short and concise overview of the material
- Reading
 - Slides on "Obligatory Literature" require you to read papers from the web
 - TU Dresden has subscription to ACM Digital Library and IEEE Explorer
 - Slides on "Secondary Literature" contain useful but optional literature
- Exercise with Florian Heidenreich and Sebastian Richly
 - Exercise sheets
 - . Handed out every week, with some breaks
 - . You have one week to solve them on your own
 - . After that, solutions will be explained in the Exercise

Obligatory Literature

- > During the course, read the following papers, if possible, in sequential order.
- Every week, read about 1 paper (3-4h work)
- Course web site

Prof II Aßmann CBSE

Obligatory Literature

- [ISC] U. Aßmann. Invasive Software Composition. Springer, 2003.
- C. Szyperski. Component software. Beyond object-oriented computing. Addison-Wesley. Bestseller on classical component systems.

Papers

- [McIlroy68] D. McIlroy. Mass-produced Software Components. 1st NATO Conference on Software Engineering.
- [Dami95] Laurent Dami. Functions, Records and Compatibility in the Lambda N Calculus in Chapter 6 of "Object-oriented Software Composition". http://scg.unibe.ch/archive/oosc/PDF/Dami95aLambdaN.pdf
- CORBA. Communications of the ACM, Oct. 1998. All articles. Overview on CORBA 3.0.
- Others will be announced.

Recommended Literature

- Oscar Nierstrasz, Dennis Tsichritzis. Object-oriented Software Composition. Web book. http://scg.unibe.ch/archive/oosc/download.html
- I. Forman, S. Danforth. Meta-objects in SOM-C++. Very good book on meta object protocols and meta object composition.
- Journal Software Tools and Techniques. Special Edition on Componentware, 1998. Springer. Good overviews.
- R. Orfali, D. Harkey: Client/Server programming with Java and Corba. Wiley&Sons. Easy to read.
- ▶ CORBA. Communications of the ACM, Oct. 1998. All Articles.

Recommended Literature

- [GOF, Gamma] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns. Addison-Wesley 1995. Standard book belonging to the shelf of every software engineer.
 - The book is called GOF (Gang of Four), due to the 4 authors
- Alternatively to GOF can be read: [Remark: If you have already studied GOF intensively, do not read these]
 - A. Tesanovic. What is a pattern? Paper in Design Pattern seminar, IDA, 2001. Available at home page.
 - On Composite, Visitor: T. Panas. Design Patterns, A Quick Introduction. Paper in Design Pattern seminar, IDA, 2001. Available at home page.
 - P. Pop. Creational Patterns. Paper in Design Pattern seminar, IDA, 2001. Available at home page.

- ► K. Czarnecki, U. Eisenecker. Generative programming . Addison-Wesley 2000. Good overview on aspects, but not on components
- F. Griffel. Componentware. dpunkt-Verlag. In German. A lot of material.

Prof. II. Aßmann. CBSF

Prof. U. Aßmann, CBSE

Please, Please Be Aware – There Will Be Pain!

- This course is not like a standard course
- It treats rather advanced material, the concept of graybox engineering
- No single book exists on all of that at all
 - ISC covers about 60%
 - Please, collaborate!
 - Read the articles
 - Ask questions!
 - Do the exercise sheets
- The exam can only be done if you have visited all lectures and solved all exercise sheets

Prof. U. Aßmann, CBSE

11

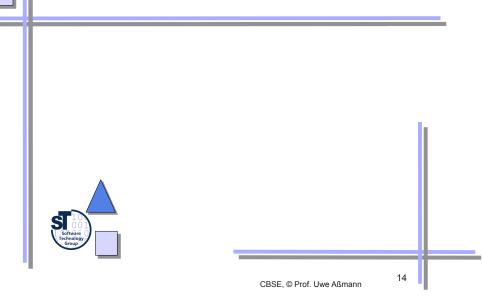
CBSE, © Prof. Uwe Aßmann

- Learn continuously! One week before the exam is too late!
- Be aware: you have not yet seen larger systems
 - Middle-size systems start over 100KLOC

- If you follow carefully, you will discover an exciting world of graybox composition, a new way to extend software
- The gain is worthwhile the pain!

Component-based Software Contents and Goals

- Part I: Basics
 - History and overview: Criteria for composition
 - Basics: Reflection and metaprogramming, Meta-object protocols (MOP), Metadata,
 - Finding components with faceted metadata and protocol conformance
- Part IIa: Classical component systems (Simple black-box composition systems)
 - Business components
 - Classical component systems: Development Process, Problems
 - Enterprise Java Beans (EJB)
 - Quality-controlled compositiion systems (QCS)
- Part IIb: Architecture systems and languages (Advanced black-box composition systems)
 - Corba
 - Web services
 - Architecture Systems
- Part III: Gray-box composition systems (Invasive composition)
 - Calculi for component systems
 - Composition Filters
 - Generic Programming (BETA)
 - View-based programming: Hyperspace programming
 - Aspect-oriented software development: AOSD and AOP
 - Invasive software composition
- Part IV: Applications of composition systems
 - Universal Composition
 - Invasive Model Composition
- Transconsistent document composition Staged composition



- 11		
	Basics	 Introduction Metamodelling Component repositories
	Black-box composition systems	 UML Buiness components Transparency problems and Connectors Corba EJB ArchJava Web services Contract checking in SPEEDS HRC
	Grey-box composition systems	Composition filters Generic programming View-based programming Aspect-oriented programming Invasive Software Composition
	Applications of Composition Programs	Transconsistent compostion Staged composition Software Ecosystems
		Prof. U. Aßmann, CBSE

Main Goals

- Understand the concept of a *component model*
 - Frameworks and product lines work with various different component models
 - Variability, extensibility, and glueing are three central goals
 - There are other central concepts for component models than classes and objects
- Understand composition systems
 - Understand grey-box, fragment-based composition
 - why it introduces new forms of static extensibility
 - why other static component models are special cases of it
- Understand different times of composition
 - dynamic composition
- Understand components as collections of standardized role types
- Understand connectors as role models plus protocol

Component-Based Software Goals

The Hypothesis of Composition

- ► There are only two basic kinds of compositions
 - static composition (can be modeled as fragment-based invasive compositions)
 - dynamic composition (use assignment and extension of runtime values)
- There are only some basic operations, on code or on data
 - Variability with bind operator
 - Extensibility with extend operator
 - Glue with glue code operators
 - Select to select fragments from a fragment universe
- There are additional composition operations:
 - copy, rename, unbind
 - distribute (with crosscut graph)

Prof. U. Aßmann, CBSE

13

Software Software Group

