
CBSE, © Prof. Uwe Aßmann
1

Component-Based Software
Engineering (CBSE)
Announcements

Prof. Dr. Uwe Aßmann
Technische Universität Dresden

Institut für Software- und Multimediatechnik
http://st.inf.tu-dresden.de

12-0.1, 29.03.12

Prof. U. Aßmann, CBSE 2

Elements of the Course

►  Lecturing
■  Do not miss one, they should give you a short and concise overview of the

material

►  Reading
■  Slides on “Obligatory Literature” require you to read papers from the web

■  TU Dresden has subscription to ACM Digital Library and IEEE Explorer
■  Slides on “Secondary Literature” contain useful but optional literature

►  Exercise with Florian Heidenreich and Sebastian Richly
■  Exercise sheets

.  Handed out every week, with some breaks

.  You have one week to solve them on your own

.  After that, solutions will be explained in the Exercise

Prof. U. Aßmann, CBSE 3

Reading Along the Lectures

►  Unfortunately, the course is not covered by any book
■  About 60% is covered by the blue book “Invasive Software Composition”
■  Most of the rest on classical component systems by Szyperski in the book

“Component Software. Beyond object-oriented computing. Addison-Wesley.”
►  You have to read several research papers, available on the internet

■  Marked by “Obligatory Literature”
►  Secondary Literature is non-mandatory, but interesting reading. Can be done

during the course
►  Other Literature is not to be read, but also interesting.

Prof. U. Aßmann, CBSE 4

Obligatory Literature

►  During the course, read the following papers, if possible, in sequential order.
►  Every week, read about 1 paper (3-4h work)
►  Course web site

Prof. U. Aßmann, CBSE 5

Obligatory Literature

►  [ISC] U. Aßmann. Invasive Software Composition. Springer, 2003.
►  C. Szyperski. Component software. Beyond object-oriented computing.

Addison-Wesley. Bestseller on classical component systems.
Papers
►  [McIlroy68] D. McIlroy. Mass-produced Software Components. 1st NATO

Conference on Software Engineering.
►  [Dami95] Laurent Dami. Functions, Records andCompatibility in the

Lambda N Calculus in Chapter 6 of “Object-oriented Software Composition”.
http://scg.unibe.ch/archive/oosc/PDF/Dami95aLambdaN.pdf

►  CORBA. Communications of the ACM, Oct. 1998. All articles. Overview on
CORBA 3.0.

►  Others will be announced.

Prof. U. Aßmann, CBSE 6

Recommended Literature

►  Oscar Nierstrasz, Dennis Tsichritzis. Object-oriented Software Composition.
Web book. http://scg.unibe.ch/archive/oosc/download.html

►  I. Forman, S. Danforth. Meta-objects in SOM-C++. Very good book on meta
object protocols and meta object composition.

►  Journal Software - Tools and Techniques. Special Edition on
Componentware, 1998. Springer. Good overviews.

►  R. Orfali, D. Harkey: Client/Server programming with Java and Corba.
Wiley&Sons. Easy to read.

►  CORBA. Communications of the ACM, Oct. 1998. All Articles.

Prof. U. Aßmann, CBSE 7

Recommended Literature

►  [GOF, Gamma] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design
Patterns. Addison-Wesley 1995. Standard book belonging to the shelf of
every software engineer.
■  The book is called GOF (Gang of Four), due to the 4 authors

►  Alternatively to GOF can be read: [Remark: If you have already studied GOF
intensively, do not read these]
■  A. Tesanovic. What is a pattern? Paper in Design Pattern seminar, IDA, 2001.

Available at home page.
■  On Composite, Visitor: T. Panas. Design Patterns, A Quick Introduction. Paper in

Design Pattern seminar, IDA, 2001. Available at home page.
■  P. Pop. Creational Patterns. Paper in Design Pattern seminar, IDA, 2001.

Available at home page.

Prof. U. Aßmann, CBSE 8

Less Important

►  K. Czarnecki, U. Eisenecker. Generative programming . Addison-Wesley
2000. Good overview on aspects, but not on components

►  F. Griffel. Componentware. dpunkt-Verlag. In German. A lot of material.

Prof. U. Aßmann, CBSE 9

Please, Please Be Aware – There Will Be Pain!

►  This course is not like a standard course
►  It treats rather advanced material, the concept of graybox engineering
►  No single book exists on all of that at all

■  ISC covers about 60%
■  Please, collaborate!
■  Read the articles
■  Ask questions!
■  Do the exercise sheets

►  The exam can only be done if you have visited all lectures and solved all
exercise sheets

►  Learn continuously! One week before the exam is too late!
►  Be aware: you have not yet seen larger systems

■  Middle-size systems start over 100KLOC

Prof. U. Aßmann, CBSE 10

The Positive Side

►  If you follow carefully, you will discover an exciting world of graybox
composition, a new way to extend software

►  The gain is worthwhile the pain!

CBSE, © Prof. Uwe Aßmann
11

Component-based Software
Contents and Goals

Prof. U. Aßmann, CBSE 12

Course Contents

►  Part I: Basics
■  History and overview: Criteria for composition
■  Basics: Reflection and metaprogramming, Meta-object protocols (MOP), Metadata,
■  Finding components with faceted metadata and protocol conformance

►  Part IIa: Classical component systems (Simple black-box composition systems)
■  Business components
■  Classical component systems: Development Process, Problems
■  Enterprise Java Beans (EJB)
■  Quality-controlled compositiion systems (QCS)

►  Part IIb: Architecture systems and languages (Advanced black-box composition systems)
■  Corba
■  Web services
■  Architecture Systems

►  Part III: Gray-box composition systems (Invasive composition)
■  Calculi for component systems
■  Composition Filters
■  Generic Programming (BETA)
■  View-based programming: Hyperspace programming
■  Aspect-oriented software development: AOSD and AOP
■  Invasive software composition

►  Part IV: Applications of composition systems
►  Universal Composition
►  Invasive Model Composition
►  Transconsistent document composition
►  Staged composition

Prof. U. Aßmann, CBSE 13

•  Introduction
• Metamodelling
• Component repositories

Basics

• UML Buiness components
• Transparency problems and Connectors
• Corba
• EJB
• ArchJava
• Web services
• Contract checking in SPEEDS HRC

Black-box
composition

systems

• Composition filters
• Generic programming
• View-based programming
• Aspect-oriented programming
•  Invasive Software Composition

Grey-box
composition

systems

• Transconsistent compostion
• Staged composition
• Software Ecosystems

Applications of
Composition

Programs
CBSE, © Prof. Uwe Aßmann

14

Component-Based Software
Goals

Prof. U. Aßmann, CBSE 15

Main Goals

►  Understand the concept of a component model
►  Frameworks and product lines work with various different component models
■  Variability, extensibility, and glueing are three central goals
■  There are other central concepts for component models than classes and objects

■  Understand composition systems
■  Understand grey-box, fragment-based composition
■  why it introduces new forms of static extensibility
■  why other static component models are special cases of it

►  Understand different times of composition
►  dynamic composition

►  Understand components as collections of standardized role types
►  Understand connectors as role models plus protocol

Prof. U. Aßmann, CBSE 16

The Hypothesis of Composition

►  There are only two basic kinds of compositions
■  static composition (can be modeled as fragment-based invasive compositions)
■  dynamic composition (use assignment and extension of runtime values)

►  There are only some basic operations, on code or on data
■  Variability with bind operator
■  Extensibility with extend operator
■  Glue with glue code operators
■  Select to select fragments from a fragment universe

►  There are additional composition operations:
■  copy, rename, unbind
■  distribute (with crosscut graph)

Prof. U. Aßmann, CBSE 17

The End

