
CBSE, © Prof. Uwe Aßmann 1

2. Metadata, Metamodelling, and
Metaprogramming

1.  Metalevels and the
metapyramid

2.  Metalevel architectures
3.  Metaobject protocols (MOP)
4.  Metaobject facilities (MOF)
5.  Component markup

Prof. Dr. Uwe Aßmann
Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de
12-0.2, 30-Mär-12

Prof. U. Aßmann, CBSE 2

Mandatory Literature

►  ISC, 2.2.5 Metamodelling
►  OMG MOF 2.0 Specification

http://www.omg.org/spec/MOF/2.0/
►  Rony G. Flatscher. Metamodeling in EIA/CDIF — Meta-Metamodel

and Metamodels. ACM Transactions on Modeling and Computer
Simulation, Vol. 12, No. 4, October 2002, Pages 322–342.
http://doi.acm.org/10.1145/643120.643124

Prof. U. Aßmann, CBSE 3

Other Literature

►  Ira R. Forman and Scott H. Danforth. Metaclasses in SOM-C++
(Addision-Wesley)

►  Squeak – a reflective modern Smalltalk dialect
http://www.squeak.org

►  Hauptseminar on Metamodelling held in SS 2005
►  MDA Guide

http://www.omg.org/cgi-bin/doc?omg/03-06-01
►  J. Frankel. Model-driven Architecture. Wiley, 2002. Important book on

MDA.
►  G. Kizcales, Jim des Rivieres, and Daniel G. Bobrow. The Art of the

Metaobject Protocol. MIT Press, Cambridge, MA, 1991
►  Gregor Kiczales and Andreas Paepcke. Open implementations and

metaobject protocols. Technical report, Xerox PARC, 1997

CBSE, © Prof. Uwe Aßmann 4

2.1. An Introduction into Metalevels

“A system is about its domain.
A reflective system is about itself”

Maes, 1988

Prof. U. Aßmann, CBSE 5

Metadata

►  Meta: greek for “describing”
►  Metadata: describing data (sometimes: self describing data). The

type system is called metamodel
►  Metalevel: the elements of the meta-level (the meta-objects) describe

the objects on the base level
►  Metamodeling: description of the model elements/concepts in the

metamodel
►  Metalanguage: a description language for languages

Metadata

Data,
Code,

Information

Meta level
Concepts level
Schema

Base level

Prof. U. Aßmann, CBSE 6

Software Objects
car 1 car1.color car1.drive()

Software Classes
(meta-objects)
(Model)

Car void proc()

Class Method Attribute

Color

Metalanguage concepts
Modelling concepts
(Metametaclasses in the
metametamodel)

Language

A metamodel is a
language specification

Conceptual level

A metametamodel is a
metalanguage

Metalevels in Programming Languages
(The Meta-Pyramid)

car driving car color

Modelling
Concept

Language
concepts
(Metaclasses in the
metamodel)

Application
concepts

World
concepts

M3

M2

M1

M0
M-1 Real World

Prof. U. Aßmann, CBSE 7

Different Types of Semantics and their
Metalanguages (Description Languages)

►  Structure
■  Described by a context-free grammar or a metamodel
■  Does not regard context

►  Static Semantics (context conditions)
■  Described by context-sensitive grammar (attribute grammar, denotational

semantics, logic constraints), or a metamodel
■  Describes context constraints, context conditions
■  Can describe consistency conditions on the specifications

.  “If I use a variable here, it must be defined elsewhere”

.  “If I use a component here, it must be alive”

►  Dynamic Semantics
■  Interpreter in an interpreter language (e.g., lambda calculus), or a metaobject

protocol
■  A dynamic semantics consists of sets of run-time states or run-time terms
■  In an object-oriented language, the dynamic semantics can be specified in the

language itself. Then it is called a meta-object protocol (MOP).

Prof. U. Aßmann, CBSE 8

Notation

►  We write metaclasses with dashed lines, metametaclasses with
dotted lines

<<instance-of>>

<<instance-of>>

<<instance-of>>

car1:Car

Car:Class

Class:ModellingConcept

ModellingConcept

<<instance-of>>

<<instance-of>>

<<instance-of>>

car1

Car

Class

ModellingConcept

Prof. U. Aßmann, CBSE 9

Classes and Metaclasses

►  Metaclasses are schemata for classes, i.e., describe what is in a
class

class WorkPiece { Object belongsTo; }
class RotaryTable { WorkPiece place1, place2; }
class Robot { WorkPiece piece1, piece2; }
class Press { WorkPiece place; }
class ConveyorBelt { WorkPiece pieces[]; }

public class Class {
 Attribute[] fields;
 Method[] methods;
 Class(Attribute[] f, Method[] m) {
 fields = f;
 methods = m; }}

public class Attribute {
 Object type;
 Object value; }

public class Method {
 String name; List parameters, MethodBody body; }

public class MethodBody { ... }

Metaclasses

Classes in a software system

Prof. U. Aßmann, CBSE 10

Creating a Class from a Metaclass

►  Using the constructor of the metaclass (Pseudojava used here)
►  Then, classes are special objects, instances of metaclasses

Class WorkPiece = new Class(
 new Attribute[]{ "Object belongsTo" },
 new Method[]{});

Class RotaryTable = new Class(
 new Attribute[]{ "WorkPiece place1", "WorkPiece place2" },

 new Method[]{});
Class Robot = new Class(

 new Attribute[]{ "WorkPiece piece1", "WorkPiece piece2" },
 new Method[]{});
Class Press = new Class(

 new Attribute[]{ "WorkPiece place" }, new Method[]{});
Class ConveyorBelt = new Class(

 new Attribute[]{ "WorkPiece[] pieces" }, new Method[]{});

<<instance-of>>

WorkPiece

Class

RotaryTable

Robot Press

ConveyorBelt

Prof. U. Aßmann, CBSE 11

Reflection (Self-Modification, Intercession,
Metaprogramming)

►  Computation about the metamodel in the model is reflection
■  Reflection: thinking about oneself with the help of metadata
■  The application can look at their own skeleton and change it

.  Allocating new classes, methods, fields

.  Removing classes, methods, fields

►  This self modification is also called intercession in a meta-object
protocol (MOP)

Data,
Code,
Information

Meta level

Base level

Metadata

Prof. U. Aßmann, CBSE 12

Introspection

►  Read-only reflection is called introspection
■  The component can look at the skeleton of itself or another component and learn

from it (but not change it!)

►  Typical application: find out features of components
■  Classes, methods, attributes, types

►  Introspection is very important in component supermarkets (finding
components)

Metadata

Data,
Code,

Information

Data,
Code,

Information

Prof. U. Aßmann, CBSE 13

Reading Reflection (Introspection)

Used for generating something based on metadata information

for all c in self.classes do
 generate_for_class_start(c);

 for all a in c.attributes do
 generate_for_attribute(a);
 done;

 for all m in c.methods do
 generate_for_method(m);
 done;

 generate_for_class_end(c);
done;

Prof. U. Aßmann, CBSE 14

Full Reflection (Run-Time Code Generation)

Generating code, interpreting, or loading it

for all c in self.classes do
 helperClass = makeClass(c.name+”Helper");

 for all a in c.attributes do
 helperClass.addAttribute(copyAttribute(a));
 done;

 self.addClass(helperClass);
done;

A reflective system is a system in which the application domain
is causally connected with its own domain.
Patti Maes

Prof. U. Aßmann, CBSE 15

Reflective Class Replacement
(Run-Time Updating)

Generating code, interpreting, or loading it

for all c in self.classes do
 helperClass = makeClass(c.name);

 for all a in c.attributes do
 helperClass.addAttribute(copyAttribute(a));
 done;

 self.deleteClass(c.name);
 self.addClass(helperClass);

-- migrate the state of the old objects to the new class
-- (migration protocol)
done;

Ericsson telephone base stations have a guaranteed
down-time of some seconds a year.
Every second more costs at least 1 Mio Dollar.

Prof. U. Aßmann, CBSE 16

Reflective Class Replacement Versioning
(Run-Time Updating)

Generating code, interpreting, or loading it

for all c in self.classes do
 helperClass = makeClass(c.name+”_version_”+c.VersionCounter);

 for all a in c.attributes do
 helperClass.addAttribute(copyAttribute(a));
 done;

 self.addClass(helperClass);
 c.objects (c.name,setDeprecated());
-- slowly let die out objects of old class
-- only allocate objects for new class
done;

Ericsson says: “We are not allowed to stop. We can kill,
after some time, old calls. But during update, we have to run
two versions of a class at the same time.”

Prof. U. Aßmann, CBSE 17

Metaprogramming on the Language Level

enum { Singleton, Parameterizable } BaseFeature;
public class LanguageConcept {
 String name;
 BaseFeature singularity;
 LanguageConcept(String n, BaseFeature s) {
 name = n;
 singularity = s; }
}

LanguageConcept Class = new LanguageConcept("Class", Singleton);
LanguageConcept Attribute = new LanguageConcept("Attribute", Singleton);
LanguageConcept Method = new LanguageConcept("Method", Parameterizable);

Language concepts
(Metamodel)

Metalanguage concepts
Language description concepts
(Metametamodel)

<<instance-of>>

Class

Language
Concept

Attribute Method

Prof. U. Aßmann, CBSE 18

Made It Simple

►  Level M0: objects
►  Level M1: programs, classes, types
►  Level M2: language
►  Level M3: metalanguage, language description language

Prof. U. Aßmann, CBSE 19

Use of Metamodels and Metaprogramming

To model, describe, introspect, and manipulate all sorts of objects,
models, and languages:

►  UML
►  Workflow systems
►  Databases (Common Warehouse Model, CWM)
►  Programming languages
►  Component systems, such as CORBA
►  Composition systems, such as Invasive Software Composition
►  ... probably all systems...

Prof. U. Aßmann, CBSE 20

Workflow Software Objects
fred nail orderForGoods

Workflow Software Classes
(Metaobjects)
(Model)

Client Order Material

Data Function
(Web Service)

Ressource

Workflow Concept

Workflow Concepts
(Metaclasses)
(Metamodel)

Meta-Concepts
(Metametaclasses)
(Metametamodel)

Metapyramid in Workflow Systems
and Web Services (e.g., BPEL)

►  It is possible to specify workflow languages with the metamodelling
hierarchy

►  BPEL and other workflow languages can be metamodeled

M1

M2

M3

M0

Prof. U. Aßmann, CBSE 21

Metapyramid CASE Data Interchange Format
(CDIF)

CDIF uses entities and relationships on M3 to model CASE concepts
on M2

Software Objects
fred lipstick order

Classes
(Metaobjects)
(Model)

Person Order Material

Class Association Attribute

Entity-Relationship Diagrams (ERD)

CASE Concepts
(Metaclasses)
(Metamodel)

Meta-Concepts
(Metametaclasses)
(Metametamodel)

M1

M2

M3

M0

CBSE, © Prof. Uwe Aßmann 22

2.2 Metalevel Architectures

Prof. U. Aßmann, CBSE 23

Repository
with Objects
as Artefacts

Base Level

Metalevel Repository
with Concepts/
Types/Descriptions
as Artefacts

Metaobjects

Reflection

Meta-
program

Reflective Architecture

►  A system with a reflective architecture maintains metadata and a
causal connection between meta- and base level.
■  The metaobjects describe structure, features, semantics of domain objects. This

connection is kept consistent

►  Metaprogramming is programming with metaobjects

Prof. U. Aßmann, CBSE 24

Examples

►  24/7 systems with total availability
■  Dynamic update of new versions of classes
■  Telecommunication systems
■  Power plant control software
■  Internet banking software

►  Self-adaptive systems
■  Systems reflect about the context and themselves and, consequently, change

themselves

►  Reflection is used to think about versions of the systems
■  Keeping two versions at a time

Prof. U. Aßmann, CBSE 25

Metalevel Architecture

►  In a metalevel architecture, the metamodel is used for computations,
■  but the metaprograms execute either on the metalevel or on the base level.
■  supports metaprogramming, but not full reflection

►  Special variants that separate the metaprogram from the base level
programs
■  Introspective architecture (no self modification)
■  Staged metalevel architecture (metaprogram evaluation time is different from

system runtime)

Prof. U. Aßmann, CBSE 26

Base Level

Metalevel Metaobjects

Meta-
program

Metalevel Architecture

Prof. U. Aßmann, CBSE 27

Examples

►  Integrated development environment
■  Refactoring engine
■  Code generators
■  Metric analyzers (introspective)

Prof. U. Aßmann, CBSE 28

Base Level

Metalevel

Metaobjects

Patrik

Introspection Metaobjects

Introspective Architectures

Patrik

Prof. U. Aßmann, CBSE 29

Base Level

Metalevel Metaobjects

Meta-
program

Staged Metalevel Architecture
(Static Metaprogramming Architecture)

Static Time

Dynamic Time

Prof. U. Aßmann, CBSE 30

Parsing,
Analysing

Code
Generation,
Pretty
Printing

Intermediate
Representation

AST

Programs in
Target Form

ASG

Programs in
Source Form

Compilers

Prof. U. Aßmann, CBSE 31

AST

Programs in
Target Form

ASG

Programs in
Source Form

Compilers Are Static Metaprograms

Meta-
program

CBSE, © Prof. Uwe Aßmann 32

2.3 Metaobject Protocols (MOP)

Prof. U. Aßmann, CBSE 33

Metaobject Protocol (MOP)

►  A MOP is an reflective implementation of the methods of the
metaclasses
■  It specifies an interpreter for the language, describing the semantics, i.e., the

behavior of the language objects
■  in terms of the language itself.

►  By changing the MOP (MOP intercession), the language semantics is
changed
■  or adapted to a context.
■  If the MOP language is object-oriented, default implementations of metaclass

methods can be overwritten by subclassing
■  and the semantics of the language is changed by subclassing

Prof. U. Aßmann, CBSE 34

A Very Simple MOP

public class Class {
 Class(Attribute[] f, Method[] m) {
 fields = f; methods = m;
 }
 Attribute[] fields; Method[] methods;
}
public class Attribute {
 public String name; public Object value;
 Attribute (String n) { name = n; }
 public void enterAttribute() { }
 public void leaveAttribute() { }
 public void setAttribute(Object v) {
 enterAttribute();
 this.value = v;
 leaveAttribute();
 }
 public Object getAttribute() {
 Object returnValue;
 enterAttribute();
 returnValue = value;
 leaveAttribute();
 return returnValue;
 }
}

public class Method {
 public String name;
 public Statement[] statements;
 public Method(String n) { name = n; }
 public void enterMethod() { }
 public void leaveMethod() { }
 public Object execute {
 Object returnValue;
 enterMethod();
 for (int i = 0; i <= statements.length; i++) {
 statements[i].execute();
 }
 leaveMethod();
 return returnValue;
 }
}
public class Statement {
 public void execute() { ... }
}

Prof. U. Aßmann, CBSE 35

Adapting a Metaclass in a MOP By
Subclassing

public class TracingAttribute extends Attribute {
 public void enterAttribute() {
 System.out.println("Here I am, accessing attribute " + name);
 }
 public void leaveAttribute() {
 System.out.println("I am leaving attribute " + name +
 ": value is " + value);
 }
}

Class Robot = new Class(new Attribute[]{ "WorkPiece piece1", "WorkPiece piece2" },
 new Method[]{ "takeUp() { WorkPiece a = rotaryTable.place1; } "});
Class RotaryTable = new Class(new TracingAttribute[]{ "WorkPiece place1",
 "WorkPiece place2" }, new Method[]{});

 Here I am, accessing attribute place1
 I am leaving attribute place1: value is WorkPiece #5

Prof. U. Aßmann, CBSE 36

Adaptation of Components by MOP Adaptation

// Adapter is hidden in enterMethod
Method EventAdapterMethod extends Method {
 Object piece;

 public Object execute() {
 // event communication
 notifyRotaryTable();
 piece = listenToRotaryTable();

 super.execute();
 return piece;
 }
}
// Create a class Robot with the new semantics for takeUp()
Class Robot = new Class(new Attribute[]{ },
 new Method[]{ new EventAdapterMethod("takeUp") });

Prof. U. Aßmann, CBSE 37

An Open Language with Static MOP

►  .. has a static metalevel
architecture (static
metaprogramming
architecture), with a static
MOP

►  ... offers its AST as
metamodel for static
metaprogramming
■  Users can write static

metaprograms to adapt
the language

■  Users can override
default methods in the
metamodel, changing
the static language
semantics or the
behavior of the compiler

Language Extensions

Metamodel

Metaobject Protocol

Open
Compiler

Program with Language
Extensions

Program in
Standard Language

Standard
Compiler

Prof. U. Aßmann, CBSE 38

An Open Language

►  ... can be used to adapt components at compile time
■  During system generation
■  Static adaptation of components

►  Metaprograms are removed during system generation, no runtime
overhead
■  Avoids the overhead of dynamic metaprogramming

►  Open Java, Open C++

CBSE, © Prof. Uwe Aßmann 39

2.4 Metaobject Facilities (MOF)

Prof. U. Aßmann, CBSE 40

Metaobject Facility (MOF)

►  Rpt: A metalanguage is used to describe languages
.  Context-free structure (model trees or abstract syntax trees, AST)
.  Context-sensitive structure and constraints (model graphs or abstract syntax

graphs, ASG)
.  Dynamic semantics (behavior)

A metaobject facility (MOF) is a language specification language
(metalanguage) to describe the structure of a language (context-
free, context-sensitive).

►  MOF is a metalanguage to to describe model graphs / ASG
►  MOF provides the modeling concepts

■  Classes, relations, attributes; methods are lacking
■  Logic constraints (OCL) on the classes and their relations
■  Usually, a MOF does not describe an interpreter for the full-fledged

language, but provides only a structural description

Prof. U. Aßmann, CBSE 41

Metaobject Facility (MOF)

►  A MOF is not a MOP
■  The MOF is generative
■  The MOP is interpretative

►  The OMG-MOF (metaobject facility) was first standardized Nov. 97,
available now in version 2.0 since Jan 2006

Prof. U. Aßmann, CBSE 42

MOF Describes, Constrains, and Generates
Structure of Languages on M2

Software Objects
car 1 car1.color car1.drive()

Software Classes
(meta-objects)
(Model)

Car void drive()

Class Method Attribute

Color

Language concepts
 (metaclasses in the
metamodel)

Meta-Concepts in the
metametamodel
(metalanguage
language description)

car driving car color

Programming
Language Concept

M3

M2

M1

M0
M-1 Real World

L1 L2

MOF
Metalanguage

Prof. U. Aßmann, CBSE 43

MOF

►  With MOF, context-sensitive structure of languages are described,
constrained, and generated
■  Type systems

.  to navigate in data with unknown types

.  to generate data with unknown types

.  Describing IDL, the CORBA type system

.  Describing XML schema
■  Modelling languages (such as UML)
■  Relational schema language (common warehouse model, CWM)
■  Component models
■  Workflow languages

►  From a language description in MOF,
■  Generative mappings (transformer, generator) from the metalanguage level (M3)

to the language level (M2) can be generated
■  Also mappings from different languages on M2

Prof. U. Aßmann, CBSE 44

UML
Type System

C#
Type System

Describing Type Systems with the MOF

Software Objects
car1 car1.color car1.drive ()

Software Classes
(Types)

Car void drive()

Class Method Attribute

Color

Software Concepts
(Meta-classes)
(Type Systems such as
IDL, UML, C++, C, Cobol)

Meta-Concepts
(Meta-meta model)
(Meta-object facility MOF)

Concept M3

M2

M1

M0

IDL Type System

MOF
Metalanguage

Java
Type System

Meta-meta-models describe general type systems!

Prof. U. Aßmann, CBSE 45

A Typical Application of MOF:
Mapping Type Systems

►  The type system of CORBA is a kind of “mediating type
system” (least common denominator)
■  Maps to other language type systems (Java, C++, C#, etc)
■  For interoperability to components written in other languages, an interface

description in IDL is required

►  Problem: How to generate Java from IDL?
■  You would like to say (here comes the introspection):

for all c in classes do
 generate_class_start(c);
 for all a in c.attributes do
 generate_attribute(a);
 done;
 generate_class_end(c);

done;

►  Other problems:
■  How to generate code for exchange between C++ and Java?

■  How to exchange data of OMT and UML-based CASE-tools?

■  How to bind other type systems as IDL into Corba (UML, ...)?

Prof. U. Aßmann, CBSE 46

UML

C#

Mapping Type Systems in CORBA

Software Objects

car1 car1.color
car1.drive ()

Software Classes
(Types)

Car void drive()

Class Method Attribute

Color

Software Concepts
(Meta-classes)
(Type Systems such as
IDL, UML, C++, C, Cobol)

Meta-Concepts
(Meta-meta model)
(Meta-object facility MOF)

Concept M3

M2

M1

M0

IDL

MOF
Metalanguage

Java

Meta-meta-models describe general type systems!

Class
Method

Attribute

Class
Method

Attribute

Class
Method

Attribute

Prof. U. Aßmann, CBSE 47

Automatic Data Transformation with the
Metaobject Facility (MOF)

►  Given:
■  2 different language descriptions
■  An isomorphic mapping between them

►  Produced helper functionality:
■  A transformer that transforms data in the languages

►  Data fitting to MOF-described type systems can automatically be
transformed into each other
■  The mapping is only an isomorphic function in the metametamodel
■  Exchange data between tools possible

Prof. U. Aßmann, CBSE 48

►  Comparing the MOF language descriptions s1 and s2, transformers
on classes and objects can be generated

UML

Language Mappings for Program and Object
Mappings

Concept

Class Method
Attribute Class Method

Attribute

Person void f()
Color

Person void f()
Color

Program transformer

s1 s2

:Person
:Color

:Person
:Color

Object transformer

M3

M2

M1

M0

IDL

MOF
Metalanguage

Prof. U. Aßmann, CBSE 49

Reason: Similarities of Type Systems

►  Metalevel hierarchies are similar for programming, specification, and
modeling level
■  Since the MOF can be used to describe type systems there is hope to describe

them all in a similar way

►  These descriptions can be used to generate
■  Conversions

■  Mappings (transformations) of interfaces and data

Prof. U. Aßmann, CBSE 50

The MOF as Smallest Common Denominator
and “Mediator” between Type Systems

►  From the mappings of the language-specific metamodels to the IDL
metamodel, transformation, query, navigation routines can be
generated

►  More in course “Softwarewerkzeuge”

IDL metamodel

IDL-
specification

MOF

UML CD metamodel

Transformation
routines

UML-
specification

Data
Instance

Data
Instance

M3

M2

Query/Navigation

M1

M0

Prof. U. Aßmann, CBSE 51

Bootstrap of MOF

►  The MOF can be bootstrapped with the MOF
■  The structure and constraints of the MOF language can be described with itself

►  IDL for the MOF can be generated
■  With this mechanism the MOF can be accessed as remote objects

■  MOF descriptions be exchanged

■  Code for foreign tools be generated from the MOF specifications

■  The MOF-IDL forms the interface for metadata repositories (MDR)
http://mdr.netbeans.org

■  Engines in any IDL-mapped language can access an MDR, by using the IDL-
generated glue code

■  Example: OCL Toolkit Dresden
(which also supports EMF/Ecore besides of MDR)

Prof. U. Aßmann, CBSE 52

Summary MOF

►  The MOF describes the structure of a language
■  Type systems
■  Languages
■  itself

►  Relations between type systems are supported
■  For interoperability between type systems and -repositories
■  Automatic generation of mappings on M2 and M1

►  Reflection/introspection supported
►  Application to workflows, data bases, groupware, business

processes, data warehouses

CBSE, © Prof. Uwe Aßmann 53

2.5 Asserting Embedded Metadata
with Component Markup

.. A simple aid for introspection and reflection...

Prof. U. Aßmann, CBSE 54

Markup Languages

►  Markup languages convey more semantics for the artifact they
markup
■  For a component, they describe metadata
■  XML, SGML are markup languages

►  A markup can offer contents of the component for the external world,
i.e., for composition
■  Remember: a component is a container
■  It can offer the content for introspection
■  Or even introcession

►  A markup is stored together with the components, not separated

Prof. U. Aßmann, CBSE 55

Example: Generic Types

<< ClassBox >>

class SimpleList {
<genericType>T</genericType> elem;
 SimpleList next;
 <genericType>T</genericType>
 getNext() {
 return next.elem;
 }
}

T

class SimpleList {
 WorkPiece elem;
 SimpleList next;
 WorkPiece getNext()
{
 return next.elem;
 }
}

<< ClassBox >>

Prof. U. Aßmann, CBSE 56

Markup with Hungarian Notation

►  Hungarian notation is a markup method that defines naming
conventions for identifiers in languages
■  to convey more semantics for composition in a component system
■  but still, to be compatible with the syntax of the component language
■  so that standard tools can be used

►  The composition environment can ask about the names in the
interfaces of a component (introspection)
■  and can deduce more semantics

Prof. U. Aßmann, CBSE 57

Generic Types with Hungarian Notation

<< ClassBox >>

class SimpleList {
 genericTType elem;
 SimpleList next;
 genericTType getNext() {
 return next.elem;
 }
}

T

class SimpleList {
 WorkPiece elem;
 SimpleList next;
 WorkPiece getNext()
{
 return next.elem;
 }
}

<< ClassBox >>

Prof. U. Aßmann, CBSE 58

Java Beans Naming Schemes use Hungarian
Notation

►  Property access
■  setField(Object value);
■  Object getField();

►  Event firing
■  fire<Event>
■  register<Event>Listener
■  unregister<Event>Listener

Prof. U. Aßmann, CBSE 59

Markup and Metadata Attributes

Many languages support metadata attributes
►  by Structured Comments

■  Javadoc tags
.  @author @date @deprecated @entity @invoke-around

►  Java 1.5 annotations and C# attributes are metadata
■  Java 1.5 annotations:

.  @Override @Deprecated @SuppressWarnings

■  C# /.NET attributes
.  [author(Uwe Assmann)]

.  [date Feb 24]

.  [selfDefinedData(...)]

■  User can define their own metadata attributes themselves
■  Metadata attributes are compiled to byte code and can be inspected by tools of an

IDE, e.g., linkers, refactorers, loaders

►  UML stereotypes and tagged values
■  <<Account>> { author=”Uwe Assmann” }

Prof. U. Aßmann, CBSE 60

Markup is Essential for Component
Composition

►  because it supports
introspection and intercession
■  Components that are not

marked-up cannot be
composed

►  Every component model has to
introduce a strategy for
component markup

►  Insight: a component system
that supports composition
techniques must have some
form of reflective architecture!

operator

►  Composition operators need to
know where to compose

►  Markup marks the variation
points and extension points of
components

►  The composition operators
introspect the components

►  And compose

Prof. U. Aßmann, CBSE 61

What Have We Learned?

►  Metalanguages are important (M3 level)
■  Reflection is modification of oneself
■  Introspection is thinking about oneself, but not modifying
■  Metaprogramming is programming with metaobjects
■  There are several general types of reflective architectures

►  A MOP can describe an interpreter for a language; the language is
modified if the MOP is changed
■  A MOF specification describes the structure of a language
■  The CORBA MOF is a MOF for type systems mainly

►  Component and composition systems are reflective architectures
■  Markup marks the variation and extension points of components
■  Composition introspects the markup
■  Composition can also use static metaprogramming or open languages

Prof. U. Aßmann, CBSE 62

The End

