
CBSE, © Prof. Uwe Aßmann 1

Part II – Black-Box Composition Systems
10. Business Components in
a Component-Based Development
Process

Prof. Dr. Uwe Aßmann

Technische Universität
Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de

12-0.2, 09.04.12

1.  The UML component
model

2.  Business component
model of the Cheesman/
Daniels process

3.  Identifying business
components

Prof. U. Aßmann, CBSE 2

Literature

►  J. Cheesman, J. Daniels. UML Components. Addison-Wesley.

CBSE, © Prof. Uwe Aßmann 3

10.1 Big Objects and
The UML Component Model

(Cheesman-Daniels)

Prof. U. Aßmann, CBSE 4

Natural and Dependent Types

►  An object with a natural type (entity type) lives on its own and
exists independent of context and collaborators
■  The type does not depend on other types (independent type)

.  Hotel vs. HotelRoom

.  Car vs. Screw or Motor
■  Types that depend on others are called dependent types.

Prof. U. Aßmann, CBSE 5

Big Objects (Bobs)

Ø  A big object (bob) is complex, hierarchical object with a natural
type

Prof. U. Aßmann, CBSE 6

Component Specification with UML Components

•  A UML component is a hierarchical class (classifier, type) with
provided and required interfaces (roles)

•  Provided interfaces (roles) use „lollipop“ notation
•  Required interfaces (roles) use „plug“ notation

•  Some components are required to use specific other interfaces

<<comp spec>>
CompanyMgr ICompanyMgt

<<comp spec>>
CompanyMgr ICompanyMgt

IAddressMgt

<<comp spec>>
AdressMgr

Prof. U. Aßmann, CBSE 7

Ports

Ø  A port is a connection point of a UML component.
A port has a set of roles (interfaces)
It may be represented by a port object (gate)

System

Port Provided
interfaces Required

interfaces

Prof. U. Aßmann, CBSE 8

Lollipops und Plugs (Balls and Sockets)

►  For a UML component, provided and required interfaces can be
distinguished

n  A required interface specifies what the current class needs to execute.

<<provided>>
Addresses

<<required>>
Text AddressManager

listAdresses() listAdresses()
sort()

Adresses

Text

Prof. U. Aßmann, CBSE 9

Ports

►  Ports consist of port classes with interfaces and behavior in form of
interface automata

n  provided: normal, offered interface
n  required: used, necessary interface

Component

<<provided>>
Port class

<<required>>
Port class

Component

Port

Prof. U. Aßmann, CBSE 10

Nesting of UML Components

►  UML components
n  Ports are connected by links (connections)
n  Delegation link: links outer and inner port

DokumentSystem
Link/connection Delegator

Text
Manager

Address
Manager Adresses

email

email
Manager

Text

Forms

Buffer

Lines TextRep

IText

IForm

Prof. U. Aßmann, CBSE 11

Refinement of UML Components

►  UML components are nested, i.e., are bobs.
►  Nesting is indicated by aggregation and part-of relationship.
►  Nesting is introduced by an encapsulation operator encapsulate.

Document
System

Document System

Text
Manager

Address
Manager Adresses

email
email

Manager

Text

Forms

Buffer

Lines TextRep

IText

IForm

encapsulate

decompose

Prof. U. Aßmann, CBSE 12

Encapsulation means Aggregation

►  Nesting means Aggregation
n  A UML component is a package and a façade for all subcomponents

DokumentSystem

Text
Manager

Address
Manager Adresses

email

email
Manager

Text

Forms

Buffer

Lines TextRep

IText

IForm

DokumentSystem

Text
Manager

Address
Manager

Adresses

email

email
Manager

Text

Forms

Buffer

Lines

TextRep

IText

IForm

CBSE, © Prof. Uwe Aßmann 13

10.2 A Business Component Model

(Cheesman-Daniels)

Prof. U. Aßmann, CBSE 14

Goals of the Cheesman-Daniels Process

►  The Cheesman-Daniels Process identifies big components in UML
class diagrams
►  It bridges domain modelling with use case modelling (functional requirements)

►  Steps:
►  Find out business objects (big objects) of application
►  Group business objects to components for change-oriented design and reuse
►  Specify contracts for the components

►  Be aware: the Cheesman-Daniels Process can be employed also for
many other component models of this course, such as
►  Black box component models, such as EJB, Corba, .NET
►  Grey-box component models:

►  Generics (e.g., class diagram templates)
►  Fragment component models (e.g., advice groups in aspects)
►  Class-role models

Prof. U. Aßmann, CBSE 15

Business Objects are Complex Objects

►  A business object (domain object) is a bob with a natural type of
the domain model (business model)

►  Usually, business objects (domain objects) are large hierarchical
objects
■  They can consist of thousands of smaller objects of dependent types (part-of

relation)
■  They can play many roles with context-based types

Prof. U. Aßmann, CBSE 16

Business Component Model

►  In the Cheesman-Daniels component model, a business
component consists of a set of business objects and other
business components (part-of relation)

►  The smallest component is a business object
■  groups several interfaces together.
■  has several provided interfaces
■  has several requried interfaces

.  The business objects are the logical entities of an application

.  Their interfaces are re-grouped on system components for good information
hiding and change-oriented design

■  Has a specification containing all interfaces and contracts
■  Has an implementation
■  UML-CD are used (UML profile with stereotypes)

CBSE, © Prof. Uwe Aßmann 17

10.3. Identifying Business
Components

Prof. U. Aßmann, CBSE 18

Identifying Business Components with the
Cheesman-Daniels Process

Ø  Overall development process

Requirements

Specification 4) Provisioning 5) Assembly

Test

Deployment

Use Case
models

Business
Concept
models

Constraints Components

Existing assets
Component Specs & Architectures

Simplified version of Fig. 2.1 from Cheesman/Daniels

1) Component
Identification

2) Component
Interaction

3) Component
Specification

Prof. U. Aßmann, CBSE 19

Artifacts of the Cheesman/Daniels Process

►  Requirement artifacts:
■  Business concept model (business model, domain model): describes the business

domain (application domain)
■  Use case model (requirements model)

►  System artifacts, derived from the business concept model:
■  Business type model, derived from domain model.

.  Represents the system's perspective on the outer world (more attributes,
refined class structures from the system's perspective)

■  Business object interface model, containing the business objects and all their
interfaces

■  Business object model, derived from the business object interface model by adding
operations

►  System component artifacts
■  Component interface specifications: one contract with the client
■  Component interface information model (state-based model)
■  Component specifications: all interface specifications of a component plus

constraints.
■  Component architecture: wiring (topology) of a component net.

Prof. U. Aßmann, CBSE 20

10.3.1 Component Identification (Step 1)

Select
Business Types

From Domain Model
Component
Identification

Domain Model
(Business Concept Model)

Business Type
Model

Develop system
interfaces model

Use Case
Model

Component
Specification

Database

Find component
specifications

(matchmaking)

Decompose
top-down

Allocation of
business object interfaces

to components

Reusable
component specifications

New
component specifications

Find out
Business Object

Interfaces

Business Object
Interface Model

Domain
analysis

Function
analysis

Reuse
analysis

Component Specifications
and Architecture

Prof. U. Aßmann, CBSE 21

Ex.: Domain Model of a Course-Management
System

►  Collects all concepts of the domain (aka business concept model)

Teacher

Participant

Company

Course

Course
Part

Exercise

Exam

Student Engineer Alumnus

Prof. U. Aßmann, CBSE 22

Business Type Model

►  Defines system types from the domain model
■  Eliminates superfluous concepts
■  Adds more details
■  Distinguish datatypes (passive objects)

Teacher

Participant

Company

<<datatype>>
Course

<<datatype>>
Course

Part

<<datatype>>
Exercise

<<datatype>>
Exam

Student Engineer Alumnus

Person

name:String

Prof. U. Aßmann, CBSE 23

Business Object Interface Model

►  Identifies business objects from the business type model
■  And defines management interfaces for them
■  Here, only Company, Course, Person are business objects, all others are

dependent types

Teacher

Participant

<<business object>>
Company

<<business object>>
Course

Course
Part

Exercise

Exam Student Engineer

<<business object>>
Person

name:String

ICompanyMgmt

ICourseMgmt

IPersonMgmt

Prof. U. Aßmann, CBSE 24

Component Identification (Version 0.1)

►  Group classes and interfaces into reusable components

Teacher

Participant

<<business object>>
Company

<<business object>>
Course

Course
Part

Exercise

Exam Student Engineer

<< business object>>
Person

name:String

ICompanyMgmt

ICourseMgmt

IPersonMgmt <<comp spec>>
Company

<<comp spec>>
Repository

Prof. U. Aßmann, CBSE 25

Alternative Component Identification (0.1)

►  Group classes and interfaces into components
►  Person management might be reuseable

Teacher

Participant

<<business object>>
Company

<<business object>>
Course

Course
Part

Exercise

Exam Student Engineer

<<business object>>
Person

name:String

ICompanyMgmt

ICourseMgmt

IPersonMgmt <<comp spec>>
Company

<<comp spec>>
Courses

<<comp spec>>
Persons

Prof. U. Aßmann, CBSE 26

Component Identification

►  The component identification subprocess attempts to
■  Create a business object interface model from the domain model (still without

methods)
■  Attempts to group these interfaces to initial system component specifications

.  The grouping is done according to
n  information hiding: what should a component hide, so that it can easily be

exchanged and the system can evolve?
n  Reuse considerations: which specifications of components are found in

the component specification repository, so that they can be reused?

►  There is a tension between business concepts, coming from the
business domain (problem domain), and system components
(solution domain). This gap should be bridged.

Prof. U. Aßmann, CBSE 27

10.3.2 Component Interaction Analysis (Step 2)

Add Operations Component
Interaction
Analysis

Business Object
Interface Model

Business Object
Model

Architecture
Analysis

Component Specifications
and Architecture (0.1)

Refine
Interfaces

Component Specifications
and Architecture (0.2)

Prof. U. Aßmann, CBSE 28

Component Interaction Analysis

►  Is basically a refinement of the first stage
■  Removing,
■  Regrouping,
■  Augmenting,
■  Producing component specifications and wirings in a version 0.2

►  Additionally, operations are added to business object interfaces
■  And mapped to internal types.

Prof. U. Aßmann, CBSE 29

10.3.3 Component Specification (Step 3)

Add Contracts
(pre-, postconditions, invariants)

Specification

Business Object
Model

Interfaces

Component Specifications
and Architecture (0.2)

Component Specifications
and Architecture (1.0)

Construct
Interface Information Model

Interface
Information Model

Prof. U. Aßmann, CBSE 30

Component Specification (Step 3)

►  Specification of declarative contracts for UML components in OCL
►  Invariant construction:

■  Evaluate business domain rules and integrity constraints
■  Example:

context r: Course

-- a course can only be booked if it has been allocated in
the company

inv: r.bookable = r.allocation->notEmpty

►  Pre/Postconditions for operations
■  Can only be run on some state-based representation of the component
■  Hence, the component must be modeled in an interface information model
■  Or: be translated to implementation code (e.g. Java using an OCL2Java Compiler)

Prof. U. Aßmann, CBSE 31

10.3.4. Provisioning (Realization,
Implementation) (Step 4)

►  Provisioning selects component implementations for the
specifications
■  Choosing a concrete implementation platform (EJB, CORBA, COM+, ...)
■  Look up component implementations in implementation repositories

.  Write adapters if they don't fit exactly
■  Program missing components
■  Store component implementations and specifications in database for future reuse

Prof. U. Aßmann, CBSE 32

10.3.5 Assembly (Step 5)

►  Puts together architecture, component specifications and
implementations, existing components
■  We will see more in the next lectures

Prof. U. Aßmann, CBSE 33

Weaknesses

►  No top-down decomposition of components
■  part-of relationship is not really supported

►  Reuse of components is attempted, but
■  Finding components is not supported (see companion lecture)

.  Metadata

.  Facet-based classification

Prof. U. Aßmann, CBSE 34

Cheesman-Daniels’ Business Component
Model as Composition System

Component Model Composition Technique

Composition Language

Content:

a)  UML class diagrams, component
diagrams, contracts

b)  business components (bobs)

 Binding points: methods

Standard object-oriented polymorphism

Prof. U. Aßmann, CBSE 35

The End

