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Obligatory Literature 

►  [Dami95] Laurent Dami. Functions, Records andCompatibility in the  
Lambda N Calculus in Chapter 6 of “Object-oriented Software 
Composition”. 
http://scg.unibe.ch/archive/oosc/PDF/Dami95aLambdaN.pdf 

►  Oscar Nierstrasz and Theo Dirk Meijler. Requirements for a 
composition language. In Paolo Ciancarini, Oscar Nierstrasz, and 
Akinori Yonezawa, editors, Object-Based Models and Langages for 
Concurrent Systems, LNCS 924, pages 147-161. Springer, 1995. 

►  Optional: 
►  Dami, Laurent. Software Composition. PhD University Geneva 1997. The 

centennial work on the Lambda-N calculus 
►  F. Achermann. Forms, Agents, and Channels. Defining Composition Abstraction 

with Style. PhD thesis. Unversity Berne 2002. Available from Oscar Nierstrasz' 
Software Composition Group's pages scg.unibe.ch.  
■  This web site is great, one of the best sites for composition. Many papers of 

Nierstrasz and his PhD students show all aspects of composition. Visit it!  
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20.1 Decomposition and  
Composition 
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Problem Solving with 
Divide and Conquer Strategy 

►  Divide et impera (from Alexander the Great) 
■  divide: problems into subproblems 
■  conquer: solve subproblems (hopefully easier) 
■  compose (merge): compose the complete solution from the subsolutions 

►  However, strategy of decomposition is different 
►  Methods of (De)composition. We decompose 

.  To simplify the problem 

.  To find solutions in terms of the abstract machine we can employ 

.  When this mapping is complete, we can compose 
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A Decomposition Tree 

►  Reuse of partial solutions is 
possible (then the tree is a 
dag) 

►  Leafs are operations of a 
given abstract machine (may 
be the software or the chip) 

....... 

....... 

....... 

?? 
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How to Decompose a Cube? 
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Blockwise Decomposition 

►  Blockwise decomposition is stepwise refinement 
■  Problem size is reduced, dimensionality stays the same 
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Refinement leads to Reducible Hierarchies 
and Graphs    

►  Trees or dags result 
■  can be layered 

►  Reducible graphs result 
■  Can be layered too, on each 

layer there are cycles 
■  Every node can be refined 

independently and abstracts the 
lower levels 

►  Component-based systems 
contain the component 
hierarchy, so they need to apply 
blockwise decomposition 
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Hyperspace Decomposition  
(Dimensional Decomposition) 
Decomposition is not point-wise 
Problem size is retained; number of dimensions is reduced 
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Basic Decomposition Strategy II: Separation of 
Concerns (SoC) 
►  Separation of Concerns  

(aka Dimensional Divide and Conquer,  
dimensional (de-)composition) 
■  Splitting of hyperplanes (dimensions) of the problem 
■  Problem dimension count is reduced 
■  Problem size is not reduced 

►  If separation of concerns takes place in a component model, we 
speak of grey-box composition or integrational composition 

►  A viewpoint defines a set of related concerns, producing a partial 
representation of a system (view) 

A view is a representation of a whole system from the perspective of a 
related set of concerns 

[ISO/IEC 42010:2007, Systems and Software Engineering -- 
Recommended practice for architectural description of software-
intensive systems] 
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Separation of Concerns leads to Dimensions 

view 

a b b a

b a a b

view 

view 

Dimensional (de-)composition (separation of concerns)  
needs projection operators for decomposition 

and merge operators for composition  

Viewpoint 1 Viewpoint 2 

Viewpoint 3 
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20.1.2 Role Composition and  
Decomposition 
in the Role Component Model 

Role modeling is a dimensional, view-based 
specificiation technique 
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Event-
Connector 
Composition 
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Role Models are Being Composed 

►  Roles are merged to classes 
►  Role models can be decomposed (projected) 

■  By role splitting 

►  And integrated 
■  By role merge or identification 

Prof. U. Aßmann, CBSE 15 

Role 
Decomposition 
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Insight: Role Component Model 

►  Because their role models are integrated with the role model of the 
component, connectors work with grey-boxes (Integrating) 

►  Roles are a grey-box component model! 

Role-based design relies on a  
greybox component model: 

 composition by role merging  
decomposition by role split 
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20.2 Systems with  
Composition Languages 
for Dimensional De- and Composition 
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Function Merge in the LambdaN Calculus 

►  An extension of the Lambda-calculus [Dami97] 
■  Arguments have names by which they are handed over to the callee (as in Ada) 

■  No positional parameters as in standard lambda calculus 
 

f(p1 => value1, p2 => value2);   ==  f(p2 => value2, p1 => value1); 
 

f = function (p1, p2) { ... implementation ... } 
 

►  Some new reduction rules for the calculus that deal with  
■  Name-based argument passing 
■  Renaming of names 
■  Merging of functions 
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Function Merge in the LambdaN Calculus 

►  Functions can be multiply defined and merged 
■  The LambdaN-calculus is based on one simple code merge rule, the merging of 

lambda expressions (merge operator for functions) 

■  Currying is possible in arbitrary order 

►  LambdaN is the first code calculus for mix of code, i.e., for code 
composition. 
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Example 

►  Merging of slices (black vs blue) 

f = lambda x y z . 
       let r = x+z in 
       let s = y*x in 
          record(r+s) 
. 
 

f = lambda a b . 
       let x = a+b in 
         record(x) 
. 
 

f = lambda a b . 
       let t = a+b in 
         record(t) 
. 
 

rename 

f = lambda x y z a b . 
       let r = x+z in 
       let s = y*x in 
       let t = a+b in 
          record(r+s,t) 
. 
 

LambdaN unions 
data-independent  
Slices 

merge 

f(x=1,y=2,z=3) 
f(a=1,b=2) 

f(x=1,y=2,z=3,a=1,b=2) 
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Class Merge in the LambdaN Calculus 

►  A class is just a set of functions 
■  Classes can be composed by composing the set of functions 

►  The merge operator merges implementations, not only of interfaces 
■  Role types are partial classes: role model merge can be reduced to lambda merge  

►  LambdaN is a higher-order calculus, i.e., is its own composition 
language 

►  Consequence: LambdaN is the perfect calculus to model the 
semantic base for systems with dimensional decomposition and 
composition 
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The Power of LambdaN 

►  LambdaN can model 
■  Role models 
■  Classes in object-oriented languages with polymorphism, inheritance, etc. 
■  Views 
■  Components of any grain size 
■  Connectors can be realized, i.e., the calculus subsumes architecture systems 

►  Hence, LambdaN can describe all grey-box compositions 
■  Composition Filters (wrapping is a merge) 
■  Parameterizations (well the calculus is higher order, and functions can be passed 

as arguments) 
■  View-based and aspect-oriented programming (see later) 

►  The calculus is invasive since functions are merged, i.e., extensions 
are embedded into extended parts 
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Sound Composition in the LambdaN 

►  A method m is conformant to a method n if it can safely replace n in 
all uses. 

►  Merge results of a composition in LambdaN are conformant to their 
operands (origins)! 
■  (the resulting f of the previous example is conformant to both of its “ancestors”) 

 
►  Safe composition operations: 

■  Extension is safe 
■  Adaptation, glueing, aspect weaving is safe 
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The Composition Language of LambdaN 

►  The calculus is higher order 
■  It’s its own composition language 
■  It is turing complete 
■  It is confluent, i.e., deterministic 

 
►  LambdaN is a sound basis for the next 700 composition languages 
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Pi-Calculus 
►  The pi-calculus is a calculus for parallel processes (from Milner) 

■  A process algebra.  

■  Similar to CSP of Hoare 

■  Channels (streams) for communication, instead of functional application 

►  Pi-calculus scripts model parallel component semantics 
■  But also composition semantics  

►  The pi-calculus is an “assembler” of composition 
■  Non-invasive, i.e., components are black boxes 
■  But pi generates glue 
■  Higher order, i.e., has its own composition language 

►  Pi is another base language for composition 
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Piccola  
►  [Nierstrasz, Schneider, Lumpe, Achermann] from Bern University 
►  Derived from Pi-calculus and LambdaN 

■  Introduces extensible records for the pi calculus (forms) 
■  With these records, all features of LambdaN are inherited 
■  Piccola is fully extensible, as LambdaN 
■  Higher level language concepts can be mapped to the pi calculus 

►  More abstract language, much easier to program 
►  Watch out for that group! 
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History 

►  1988 Aksit Composition Filters 
►  Beginning of the 90s: Nierstrasz talks about “Software Composition” 
■  1993: Ossher invents subject-oriented programming, an early form of 

greybox composition 
►  1994: Composition Filters (Bergmans, Aksit) 
►  1996: Invention of AOP (Kiczales) 

Prof. U. Aßmann, CBSE 28 

The End 


