
CBSE, © Prof. Uwe Aßmann 1

20. Integrational Ways to
Decompose and Compose

Prof. Dr. Uwe Aßmann
Florian Heidenreich

Technische Universität Dresden
Institut für Software- und

Multimediatechnik
http://st.inf.tu-dresden.de

Version 12-0.1, Mai 15, 2012

1.  Decomposition and Composition
1.  Example role modeling

2.  Systems with Dimensional
Decomposition and Composition

1.  LambdaN calculus
2.  Piccola

Prof. U. Aßmann, CBSE 2

Obligatory Literature

►  [Dami95] Laurent Dami. Functions, Records andCompatibility in the
Lambda N Calculus in Chapter 6 of “Object-oriented Software
Composition”.
http://scg.unibe.ch/archive/oosc/PDF/Dami95aLambdaN.pdf

►  Oscar Nierstrasz and Theo Dirk Meijler. Requirements for a
composition language. In Paolo Ciancarini, Oscar Nierstrasz, and
Akinori Yonezawa, editors, Object-Based Models and Langages for
Concurrent Systems, LNCS 924, pages 147-161. Springer, 1995.

►  Optional:
►  Dami, Laurent. Software Composition. PhD University Geneva 1997. The

centennial work on the Lambda-N calculus
►  F. Achermann. Forms, Agents, and Channels. Defining Composition Abstraction

with Style. PhD thesis. Unversity Berne 2002. Available from Oscar Nierstrasz'
Software Composition Group's pages scg.unibe.ch.
■  This web site is great, one of the best sites for composition. Many papers of

Nierstrasz and his PhD students show all aspects of composition. Visit it!

CBSE, © Prof. Uwe Aßmann 3

20.1 Decomposition and
Composition

Prof. U. Aßmann, CBSE 4

Problem Solving with
Divide and Conquer Strategy

►  Divide et impera (from Alexander the Great)
■  divide: problems into subproblems
■  conquer: solve subproblems (hopefully easier)
■  compose (merge): compose the complete solution from the subsolutions

►  However, strategy of decomposition is different
►  Methods of (De)composition. We decompose

.  To simplify the problem

.  To find solutions in terms of the abstract machine we can employ

.  When this mapping is complete, we can compose

Prof. U. Aßmann, CBSE 5

A Decomposition Tree

►  Reuse of partial solutions is
possible (then the tree is a
dag)

►  Leafs are operations of a
given abstract machine (may
be the software or the chip)

.......

.......

.......

??

Prof. U. Aßmann, CBSE 6

How to Decompose a Cube?

Prof. U. Aßmann, CBSE 7

Blockwise Decomposition

►  Blockwise decomposition is stepwise refinement
■  Problem size is reduced, dimensionality stays the same

Prof. U. Aßmann, CBSE 8

Refinement leads to Reducible Hierarchies
and Graphs

►  Trees or dags result
■  can be layered

►  Reducible graphs result
■  Can be layered too, on each

layer there are cycles
■  Every node can be refined

independently and abstracts the
lower levels

►  Component-based systems
contain the component
hierarchy, so they need to apply
blockwise decomposition

Prof. U. Aßmann, CBSE 9

Hyperspace Decomposition
(Dimensional Decomposition)
Decomposition is not point-wise
Problem size is retained; number of dimensions is reduced

Prof. U. Aßmann, CBSE 10

Basic Decomposition Strategy II: Separation of
Concerns (SoC)
►  Separation of Concerns

(aka Dimensional Divide and Conquer,
dimensional (de-)composition)
■  Splitting of hyperplanes (dimensions) of the problem
■  Problem dimension count is reduced
■  Problem size is not reduced

►  If separation of concerns takes place in a component model, we
speak of grey-box composition or integrational composition

►  A viewpoint defines a set of related concerns, producing a partial
representation of a system (view)

A view is a representation of a whole system from the perspective of a
related set of concerns

[ISO/IEC 42010:2007, Systems and Software Engineering --
Recommended practice for architectural description of software-
intensive systems]

Prof. U. Aßmann, CBSE 11

Separation of Concerns leads to Dimensions

view

a b b a

b a a b

view

view

Dimensional (de-)composition (separation of concerns)
needs projection operators for decomposition

and merge operators for composition

Viewpoint 1 Viewpoint 2

Viewpoint 3
CBSE, © Prof. Uwe Aßmann 12

20.1.2 Role Composition and
Decomposition
in the Role Component Model

Role modeling is a dimensional, view-based
specificiation technique

Prof. U. Aßmann, CBSE 13

Event-
Connector
Composition

Partial class model for figure editor
Figure
(Figure Hierarchy)

Subject
(Figure Observer)

Predecessor
(Figure Chain)

Client
(Graphics)

Child
(Figure Hierarchy)

Subject
(Int. Fig.
Observer)

Graphics
(Graphics)

Parent
(Figure Hierarchy)

Observer
(Int. Fig.
Observer)

0..*

FigClient
(Figure Hierarchy)

Observer
(Figure Observer)

Successor
(Figure Chain)

Figure

CompositeFigure

Figure
(RectangleFigure)

RectangleFigure

Graphics

FigClient
(RectangleFigure)

Root
(FigureHierarchy)

RootFigure

Figure
(ClassFigure)

ClassFigure

FigClient
(ClassFigure)

Client
(RectangleFigure)

RootClient
(FigureHierarchy)

Prof. U. Aßmann, CBSE 14

Role Models are Being Composed

►  Roles are merged to classes
►  Role models can be decomposed (projected)

■  By role splitting

►  And integrated
■  By role merge or identification

Prof. U. Aßmann, CBSE 15

Role
Decomposition

Figure
(Figure Hierarchy)

Subject
(Figure Observer)

Predecessor
(Figure Chain)

Client
(Graphics)

Child
(Figure Hierarchy)

Subject
(Int. Fig.
Observer)

Graphics
(Graphics)

Parent
(Figure Hierarchy)

Observer
(Int. Fig.
Observer)

0..*

FigClient
(Figure Hierarchy)

Observer
(Figure Observer)

Successor
(Figure Chain)

Figure

CompositeFigure

Figure
(RectangleFigure)

RectangleFigure

Graphics

FigClient
(RectangleFigure)

Root
(FigureHierarchy)

RootFigure

Figure
(ClassFigure)

ClassFigure

FigClient
(ClassFigure)

Client
(RectangleFigure)

RootClient
(FigureHierarchy)

Subject
(Int. Fig.
Observer)

Observer
(Int. Fig.
Observer)

Subject
(Figure Observer)

Prof. U. Aßmann, CBSE 16

Insight: Role Component Model

►  Because their role models are integrated with the role model of the
component, connectors work with grey-boxes (Integrating)

►  Roles are a grey-box component model!

Role-based design relies on a
greybox component model:

 composition by role merging
decomposition by role split

CBSE, © Prof. Uwe Aßmann 17

20.2 Systems with
Composition Languages
for Dimensional De- and Composition

Prof. U. Aßmann, CBSE 18

Function Merge in the LambdaN Calculus

►  An extension of the Lambda-calculus [Dami97]
■  Arguments have names by which they are handed over to the callee (as in Ada)

■  No positional parameters as in standard lambda calculus

f(p1 => value1, p2 => value2); == f(p2 => value2, p1 => value1);

f = function (p1, p2) { ... implementation ... }

►  Some new reduction rules for the calculus that deal with
■  Name-based argument passing
■  Renaming of names
■  Merging of functions

Prof. U. Aßmann, CBSE 19

Function Merge in the LambdaN Calculus

►  Functions can be multiply defined and merged
■  The LambdaN-calculus is based on one simple code merge rule, the merging of

lambda expressions (merge operator for functions)

■  Currying is possible in arbitrary order

►  LambdaN is the first code calculus for mix of code, i.e., for code
composition.

Prof. U. Aßmann, CBSE 20

Example

►  Merging of slices (black vs blue)

f = lambda x y z .
 let r = x+z in
 let s = y*x in
 record(r+s)
.

f = lambda a b .
 let x = a+b in
 record(x)
.

f = lambda a b .
 let t = a+b in
 record(t)
.

rename

f = lambda x y z a b .
 let r = x+z in
 let s = y*x in
 let t = a+b in
 record(r+s,t)
.

LambdaN unions
data-independent
Slices

merge

f(x=1,y=2,z=3)
f(a=1,b=2)

f(x=1,y=2,z=3,a=1,b=2)

Prof. U. Aßmann, CBSE 21

Class Merge in the LambdaN Calculus

►  A class is just a set of functions
■  Classes can be composed by composing the set of functions

►  The merge operator merges implementations, not only of interfaces
■  Role types are partial classes: role model merge can be reduced to lambda merge

►  LambdaN is a higher-order calculus, i.e., is its own composition
language

►  Consequence: LambdaN is the perfect calculus to model the
semantic base for systems with dimensional decomposition and
composition

Prof. U. Aßmann, CBSE 22

The Power of LambdaN

►  LambdaN can model
■  Role models
■  Classes in object-oriented languages with polymorphism, inheritance, etc.
■  Views
■  Components of any grain size
■  Connectors can be realized, i.e., the calculus subsumes architecture systems

►  Hence, LambdaN can describe all grey-box compositions
■  Composition Filters (wrapping is a merge)
■  Parameterizations (well the calculus is higher order, and functions can be passed

as arguments)
■  View-based and aspect-oriented programming (see later)

►  The calculus is invasive since functions are merged, i.e., extensions
are embedded into extended parts

Prof. U. Aßmann, CBSE 23

Sound Composition in the LambdaN

►  A method m is conformant to a method n if it can safely replace n in
all uses.

►  Merge results of a composition in LambdaN are conformant to their
operands (origins)!
■  (the resulting f of the previous example is conformant to both of its “ancestors”)

►  Safe composition operations:

■  Extension is safe
■  Adaptation, glueing, aspect weaving is safe

Prof. U. Aßmann, CBSE 24

The Composition Language of LambdaN

►  The calculus is higher order
■  It’s its own composition language
■  It is turing complete
■  It is confluent, i.e., deterministic

►  LambdaN is a sound basis for the next 700 composition languages

Prof. U. Aßmann, CBSE 25

Pi-Calculus
►  The pi-calculus is a calculus for parallel processes (from Milner)

■  A process algebra.

■  Similar to CSP of Hoare

■  Channels (streams) for communication, instead of functional application

►  Pi-calculus scripts model parallel component semantics
■  But also composition semantics

►  The pi-calculus is an “assembler” of composition
■  Non-invasive, i.e., components are black boxes
■  But pi generates glue
■  Higher order, i.e., has its own composition language

►  Pi is another base language for composition

Prof. U. Aßmann, CBSE 26

Piccola
►  [Nierstrasz, Schneider, Lumpe, Achermann] from Bern University
►  Derived from Pi-calculus and LambdaN

■  Introduces extensible records for the pi calculus (forms)
■  With these records, all features of LambdaN are inherited
■  Piccola is fully extensible, as LambdaN
■  Higher level language concepts can be mapped to the pi calculus

►  More abstract language, much easier to program
►  Watch out for that group!

Prof. U. Aßmann, CBSE 27

History

►  1988 Aksit Composition Filters
►  Beginning of the 90s: Nierstrasz talks about “Software Composition”
■  1993: Ossher invents subject-oriented programming, an early form of

greybox composition
►  1994: Composition Filters (Bergmans, Aksit)
►  1996: Invention of AOP (Kiczales)

Prof. U. Aßmann, CBSE 28

The End

