
CBSE, © Prof. Uwe Aßmann 1

25. Declarative Aspect Weaving with
Cross-Cut Graphs and Graph Rewriting

Prof. Dr. Uwe Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de

Version 12-0.9, 2012-06-19

1) Introduction

1) Aspect Oriented
Development (AOSD)
and -Programming
(AOP)

2) Graph Rewrite Systems
(GRS)

2) Categories of GRS-based Weaving

3) Generation of Aspect Weavers

4) Conclusion

http://st.inf.tu-dresden.de/

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

2

Literature

► Uwe Aßmann and Andreas Ludwig. Introducing Connections into Classes
with Static Metaprogramming. In Paolo Ciancarini and Alexander Wolf,
editors, 3rd Int. Conf. on Coordination, volume 1594 of Lecture Notes in
Computer Science, pages 371-383. Springer, Heidelberg, April 1999.

– google for it.

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

3

25.1 Aspect-Oriented Development

► Motivation: Separation of Concerns
– a new kind of modularization

– separation of cross-cutting code parts

► Technique: Integration by (Static) Weaving
– Based on Crosscut Graphs

Examples for Aspects:
– Synchronization

– Communication

– Instrumentalization

– Memory Management

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

4

Debugging
 aspect

Persistence
aspect

Persistence
aspectAlgorithm

Debugging aspect
Persistence aspect

Persistence
aspectDebugging aspect

Weaver-Tool

Debugging aspect

Aspect-Oriented Development

crosscut
graph

crosscut
graph

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

5

Motivation

AOSD/AOP aims at different problem domains...

.. weaving requires different specification languages.

A new weaver for every weave scenario!

Weavers are compilers... Weaving can become complicated...

We need a uniform and formal technique to

 classify and specify AOP weavers.

Idea: Programs and models can be represented as typed graphs (abstract
syntax graphs)...

Describe aspect weaving as cross-cut graphs

Produce the cross-cut graphs by declarative graph-rewriting

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

6

Classes of AOP Systems

► Script-based AOP (e.g. RG, AspectJ, InjectJ)
– aspects are modification rules

► Language-based AOP (e.g. D, AML)
– aspects are specialized languages

► Declarative AOP
– crosscut graphs are described by a declarative language
– e.g., logic-based AOP

► Graph-rewriting-based AOP
– rewriting rules combine aspect fragments

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

7

Core + Aspect Graphs

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

8

GRS - Basics

Rewrite Rule

Host
Graph

Redex

Derivation

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

9

25.2 AOP as GRS

Join Point: Redex in core graph

Aspect Fragment: Redex in Aspect Graph

Aspect Composer: Graph Rewrite Rule

Weave Operation: Direct Derivation

Weaver: Graph Rewrite System with
– a set of aspect composers,

– a component graph, and

– a set of aspect graphs (context-sensitive rules).

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

10

Example

Task: prepend statements to method entries

class:
ClassDeclaration
(name=Name)

method:
MethodDeclaration

methods

aspectStatement:
Statement

(place=name)

class:
ClassDeclaration
(name=Name)

method:
MethodDeclaration

methods

aspectStatement:
Statement

(place=name)

entry

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

11

Example (2)

methods

methods

methods

methods

methods

entry

entry

Crosscut
graph

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

12

Benefits

► Handling of all kinds of aspects possible
– all we need is abstract syntax of programs or models

► Universally for all languages

► Uniform specification allows a classification of aspect weaving systems

► Certain classes of rewrite systems guarantee

– termination

– confluence (= deterministic results)

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

13

Category I:
Aspect-Relating Rules

► Edge-addition rewrite system (EARS)
– always congruent (= terminating + confluent)
– weaving operation becomes a function

► Ideal for simple property aspects
– e.g. persistency, synchronization, ...

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

14

Category II:
Aspect-Additive Rules

► if it is an eXhaustive Graph Rewrite System (XGRS) and does not modify the
redex

– always congruent (= terminating + confluent)

► Ideal for orthogonal aspect code
– e.g. Adaptive Programming

►

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

15

Category III:
Core-Modifying Rules

► Exchange parts of cores.
► Confluence and termination are not guaranteed.
► Indeterminism is acceptable if all normal forms are semantically equivalent.

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

16

Special Category:
Aspects in Rules

► Aspect fragments are part of the right-hand sides.
► Similar to script-based AOP.
► Ideal for aspects with finite variability (because of finite set of rules).

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

17

Special Category:
Core-Modifying Rules

► Intra-core rules
– rewrite the component graph only
– resemble standard code motion optimizations

► Ideal for optimizing aspect weavers.
– e.g. RG (Reverse Graphics of Xerox)

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

18

Comparison

System terminating deterministic aspect graph

Aspect Fragment Matching

Aspect-relating

Aspect-additive

Core-modifying

Aspects in Rules

Intra-Core

yes

if exhaustive

if exhaustive

depends

depends depends

depends

usually not

yes

yes yes

yes

yes

no

no

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

19

Aspect Weaving is similar to
Program Optimization

► Graph rewriting can express many program optimizations uniformly
[Aßm96].

► Optimizations transform programs.

► Weavers transform programs.

So:

Graph rewriting can express many aspect weavings uniformly.

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

20

Aspect
Code

Generating Tools from
Rewrite Specification

Program data
+ weaving rules Optimix

Program

Core
Code

Weaver

generates

generates
Aspect
Code

Aspect
Code

► [Alexander Christoph, PhD 2004, University of Karlsruhe]

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

21

Conclusion

► GRS provide a uniform and formal way to specify and classify aspect
weavings.

► Tool support for weavers.

► Open question:
■ How much of AOP can be covered by this approach?

► Alternative approaches:
■ Prolog based pointcut specifications
■ Query-based pointcut specifications

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

23

The End

► Several slides are courtesy to Dr. Andreas Ludwig.

	Aspect Weaving with Graph Rewriting
	Slide 2
	Aspect-Oriented Programming
	Kein Folientitel
	Problem
	Classes of AOP Systems
	Component + Aspect Graphs
	GRS - Basics
	AOP as GRS
	Example
	Example (2)
	Benefits
	Category I: Aspect-Relating Rules
	Category II: Aspect-Additive Rules
	Category III: Component-Modifying Rules
	Special Category: Aspects in Rules
	Special Category: Component-Modifying Rules
	Comparison
	Aspect Weaving is similar to Program Optimization
	Generating Tools from Rewrite Specification
	Conclusion for Aspect People
	Slide 23

