
CBSE, © Prof. Uwe Aßmann 1

26) Invasive Software
Composition (ISC)

Prof. Dr. Uwe Aßmann
Florian Heidenreich

Technische Universität Dresden
Institut für Software- und

Multimediatechnik
http://st.inf.tu-dresden.de

Version 12-1.0, Juni 19, 2012

1.  Invasive Software Composition -
A Fragment-Based Composition
Technique

2.  What Can You Do With
Invasive Composition?

3.  Functional and Composition
Interfaces

4.  Different forms of grey-box
components

5.  Evaluation as Composition
Technique

Prof. U. Aßmann, CBSE 2

Obligatory Literature

►  ISC book Chap 4
►  www.the-compost-system.org
►  www.reuseware.org

Prof. U. Aßmann, CBSE 3

Other References

[AG00] Uwe Aßmann, Thomas Genßler, and Holger Bär. Meta-programming Grey-box Connectors. In
R. Mitchell, editor, Proceedings of the International Conference on Object-Oriented Languages
and Systems (TOOLS Europe). IEEE Press, Piscataway, NJ, June 2000.

[HLLA01] Dirk Heuzeroth, Welf Löwe, Andreas Ludwig, and Uwe Aßmann. Aspect-oriented
configuration and adaptation of component communication. In J. Bosch, editor, Generative
Component-based Software Engineering (GCSE), volume 2186 of Lecture Notes in Computer
Science. Springer, Heidelberg, September 2001.

Jakob Henriksson. A Lightweight Framework for Universal Fragment Composition. Technische
Universität Dresden, Dec. 2008 http://nbn-resolving.de/urn:nbn:de:bsz:14-
ds-1231261831567-11763

Jendrik Johannes. Component-Based Model-Driven Software Development. Technische Universität
Dresden, Dec. 2010 http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63986

Jendrik Johannes and Uwe Aßmann, Concern-Based (de)composition of Model-Driven Software
Development Processes. Model Driven Engineering Languages and Systems - 13th International
Conference, MODELS 2010, 2010,Part II, Springer, 2010, LNCS 6395, URL =
http://dx.doi.org/10.1007/978-3-642-16129-2

Falk Hartmann. Safe Template Processing of XML Documents. PhD thesis. Technische Universität
Dresden, July 2011.

CBSE, © Prof. Uwe Aßmann 4

26.1) Invasive Software Composition -
A Fragment-Based Composition Technique

Prof. U. Aßmann, CBSE 5

Software Composition

Component Model Composition Technique

Composition Language

Prof. U. Aßmann, CBSE 6

Invasive Software Composition

►  A fragment component is a fragment
group (fragment container, fragment
box) with a composition interface of
change points

►  Uniform container for
■  a fragment

.  a class, a package, a method
■  a fragment group

.  an advice or an aspect

.  some metadata

.  a composition program
.  A generic fragment (group)

 Invasive software composition parameterizes and extends
fragment components

at change points (hooks and slots)
by transformation

Prof. U. Aßmann, CBSE 7

The Component Model of Invasive
Composition

►  Fragment components have change points
►  A change point can be

■  An extension point (hook)
■  A variation point (slot)

►  Example:
■  Extension point: method entries/exits
■  Variation point: Generic parameters

Change points of a fragment component are

fragments or positions,
which are subject to change

Prof. U. Aßmann, CBSE 8

Hooks

►  A hook (extension point) is given by the component's language
►  Hooks can be implicit or explicit (declared)

■  We draw implicit hooks inside the component, at the border

►  Example: Method Entry/Exit

Method.entry

Method.exit

m (){

 abc..
 cde..

}

Prof. U. Aßmann, CBSE 9

Slots (Declared Hooks)

►  A slot is a variation point of a component, i.e., a code parameter
►  Slots are most often declared, i.e., declared or explicit hooks, which

must be declared by the component writer
■  They are implicit only if they designate one single program element in a fragment
■  We draw slots as crossing the border of the component

■  Between slots and their positions in the code, there is a slot-
fragment mapping

Declarations

Prof. U. Aßmann, CBSE 10

The Composition Technique of Invasive
Composition

 Invasive Software Composition

 parameterizes and extends
fragment components

at implicit and declared hooks and slots
by transformation

An invasive composition operator treats
declared and implicit hooks uniformly

Prof. U. Aßmann, CBSE 11

Composer

Invasively transformed code

The Composition Technique of Invasive
Composition

►  A composer (composition operator) is a static metaprogram (program
transformer)

Prof. U. Aßmann, CBSE 12

Object-Oriented Metamodeling of Composers

In the following, we assume an object-oriented metamodel of fragment
components, composers, and composition languages.

The COMPOST library [ISC] has such a metamodel (in Java)

Box

Hook findHook(String name)

Composer

Box bind()
Box extend()
Box clone()
Box rename(String name)
Box merge(Box other)

ChangePoint

Hook Slot

Prof. U. Aßmann, CBSE 13

Box component = readBoxFromFile(“m.java”);

component.findHook(„mod“).bind(“synchronized”);

component.findHook(„mid“).bind(“f();”);

mod

mid

<<mod:Modifier>>
m (){

 abc..
 <<mid:Statement>>
 cde..

}

synchronized m (){
 abc..
 f();
 cde..
}

Bind Composer Universally Parameterizes
Fragment Components

•  Like in BETA, for uniformly generic components

Prof. U. Aßmann, CBSE 14

component.findHook(„MethodEntry“).extend(“print(\”enter m\”);”);

component.findHook(„MethodExit“).extend(“print(\”exit m\”);”);

MethodEntry MethodEntry

MethodExit MethodExit

m (){

 abc..
 cde..

}

m (){
 print(“enter m”);
 abc..
 cde..
 print(“exit m”);
}

Extend Operator Universally Extends the
Fragment Components

Prof. U. Aßmann, CBSE 15

Merge Operator Provides Universal Symmetric
Merge

•  The Extend operator is asymmetric, i.e., extends hooks of a
fragment component with new fragment values

•  Based on this, a symmetric Merge operator can be defined:
 merge(Component C1, Component C2) :=

 extend(C1.list, C2.list)

•  where list is a list of inner components, inner fragments, etc.

•  Both extend and merge work on fragments
•  Extend works on all collection-like language constructs
•  Merge on components with collection-like language constructs

Prof. U. Aßmann, CBSE 16

Applied to Classes, Invasive Extension
Integrates Feature Groups

►  The Extend operator integrates feature groups and roles into classes
(role merge)
►  because a feature group can play a role

►  The semantics of invasive extension lies between inheritance and
delegation

Extend
invasively

K

K-private KK-subclass K

Inherit Delegate

Prof. U. Aßmann, CBSE 17

On the Difference of Declared and Implicit
Hooks

►  Invasive composition unifies generic programming (BETA) and view-
based programming (merge composition operators)
■  By providing bind (parameterization) and extend for all language constructs

synchronized public print () {
 if (1 == 2)

 System.out.println(“Hello World”);
 return;
 else
 System.out.println(“Bye World”);
 return;
}

/* @genericMYModifier */ public print() {
 // <<MethodEntry>>
 if (1 == 2)
 System.out.println(“Hello World”);
 // <<MethodExit>>
 return;
 else
 System.out.println(“Bye World”);
 // <<MethodExit>>
 return;
}

Hook h = methodComponent.findHook(“MY”);
if (parallel)
 h.bind(“synchronized”);
else
 h.bind(“ ”);
methodComponent.findHook(“MethodEntry”).bind(“”);
methodComponent.findHook(“MethodExit”).bind(“”);

Prof. U. Aßmann, CBSE 18

You Need Invasive Composition

►  When static relations have to be adapted
■  Inheritance relationship: multiple and mixin inheritance
■  Delegation relationship:;When delegation pointers have to be inserted
■  Import relationship
■  Definition/use relationships (adding a definition for a use)
■  When templates have to be expaned in a type-safe way

►  When physical unity of logical objects is desired
■  Invasive extension and merges roles into classes
■  No splitting of roles, but integration into one class

►  When the resulting system should be highly integrated
►  When views should be integrated constructively

Prof. U. Aßmann, CBSE 19

When To Use What?

►  Deploy Inheritance
■  for consistent side-effect free composition

►  Deploy Delegation
■  for dynamic variation
■  Suffers from object schizophrenia

►  Deploy Invasive Extension
■  for non-foreseen extensions that should be integrated
■  to develop aspect-orientedly
■  to adapt without delegation

Prof. U. Aßmann, CBSE 20

Composition Programs

Imperative languages: Java (used in COMPOST), C, ..
Graphical languages: boxes and lines (used in Reuseware)
Functional languages: Haskell
Scripting languages: TCL, Groovy, ...
Logic languages: Prolog, Datalog, F-Datalog
Declarative Languages: Attribute Grammars, Rewrite Systems

Basically, every language may act as a composition language, if
its basic operators are bind and extend.

Prof. U. Aßmann, CBSE 21

Homogeneous Composition Systems

A composition system is called homogeneous, if it employs the same
composition language and component language.

Otherwise, it is called hegerogeneous
In a homogeneous composition system, metacomposition is staged

composition.
A point-cut language (cross-cut language) is a form of composition

language.

CBSE, © Prof. Uwe Aßmann 22

26.2) What Can You Do With
Invasive Composition?

Prof. U. Aßmann, CBSE 23

Invasive Composition

Adds a full-fledged composition language to generic and view-based
programming

Combines architectural systems, generic, view-based and aspect-
oriented programming

Invasive
Composition

Architectural
development

Generic
Programming

View-Based
Programming

Static Aspect-
Based

Programming

Prof. U. Aßmann, CBSE 24

Universally Generic Programming

•  ISC is a fully generic approach
•  In contrast to BETA, ISC offers a full-fledged composition language
•  Generic types, modifiers, superclasses, statements, expressions,...
•  Any component language (Java, UML, ...)

<< ClassBox >>

class SimpleList {
 genericTType elem;
 SimpleList next;
 genericTType getNext() {
 return next.elem;
 }
}

T

class SimpleList {
 WorkPiece elem;
 SimpleList next;
 WorkPiece getNext() {
 return next.elem;
 }
}

<< ClassBox >>

Prof. U. Aßmann, CBSE 25

Universal Constructive View Programming

•  ISC is a uniform and universal view-programming approach
•  The Extend operator realizes open definitions for all language constructs:

methods, classes, packages
•  The Merge operator realizes symmetric composition for all language constucts

•  Additionally, ISC offers a full-fledged composition language

<< PackageBox >>

class SimpleList {
 ..
}
class AdvancedList {
 ..
}

E

<< PackageBox >>

class SimpleList {

 ..
}
class AdvancedList {

 ..
}

E
..extension..

..extension..

..extension..

Prof. U. Aßmann, CBSE 26

Client Library

Client Library

Blackbox connection with glue code

Client Library

Invasive Connection

Blackbox
Composition

Invasive
Composition

Invasive Connections

•  In contrast to ADL, ISC offers invasive connections [AG00]
•  Modification of inheritance relations possible

Prof. U. Aßmann, CBSE 27

Invasive Architectural Programming

[ISC] shows how invasive connectors achieve tightly integrated
systems by embedding the glue code into senders and receiver
components

Prof. U. Aßmann, CBSE 28 Connection A Connection B

Transfer Selection Transfer Selection

Topological
Connection

Separation of Topological from Transfer Aspect

Prof. U. Aßmann, CBSE 29

Unbound
Port

Topologicall
y

Bound
Port

(Fully)
Bound
Port Transfer Selector

Topological
Connector

Full
Connector

Deconnector

Transfer Deselector

Unlinker

Port Binding State Diagram

Prof. U. Aßmann, CBSE 30

<< MethodBox >>

<< ClassBox >>
 Sender Receiver

out in

<< MethodBox >>

<< ClassBox >>
Sender

<< ClassBox >>
 Receiver

out in
<< MethodBox >> Pack

 Arguments

<< ClassBox >>
SenderGate

<< ClassBox >>
 ReceiverGate

Send

Unpack
Arguments

<< MethodBox >>

<< ClassBox >>

Receive

Gate Objects: Glue Separate

Prof. U. Aßmann, CBSE 31

Sender Receiver

<< ClassBox >> << ClassBox >>

<< MethodBox >>
out in

<< MethodBox >> Pack
 Arguments

Send

Unpack
Arguments

Receive

Invasive Connection

Embedding communication gate methods into a class

Prof. U. Aßmann, CBSE 32

Sender Receiver

<< ClassBox >> << ClassBox >>

<< MethodBox >> Pack
 Arguments

Send

Unpack
Arguments

Receive

<< MethodBox >>

Invasive Connection

Embedding glue code into sender methods

Prof. U. Aßmann, CBSE 33

inherit

■  inheritance :=
■  copy first super class
■  extend with second

super class
■  mixin_inheritance :=

■  Bind superclass
reference

Universal Inheritance and Mixins

►  Extension can be used for inheritance and mixins
►  In contrast to OO languages, ISC offers tailored inheritance

operations, based on the extend operator

Prof. U. Aßmann, CBSE 34

inherit

Mixin Inheritance Works Universally for
Languages that don't have it

►  Invasive composition can model
mixin inheritance uniformly for
all languages

►  e.g., for XML
►  inheritance :=

■  copy first super document
■  extend with second super

document

Prof. U. Aßmann, CBSE 35

Invasive Document Composition for XML

►  Invasive composition can be used for document languages, too
[Hartmann2011]

►  Example List Entry/Exit of an XML list
►  Hooks are given by the Xschema

 ...
 ...

List.entry

List.exit

Prof. U. Aßmann, CBSE 36

List Entry List Entry

List Exit List Exit

 ...
 ...

XMLcomponent.findHook(„ListEntry“).extend(„... ”);

XMLcomponent.findHook(„ListExit“).extend(“... ”);

 ...
 ...
 ...
 ...

Hook Manipulation for XML

Prof. U. Aßmann, CBSE 37

Universal Weaving for AOP (Core and Aspect
Components)

Distributor

►  Complex composers distribute
aspect fragments over core
fragments

►  Distributors extend the core
►  Distributors are more complex

operators, defined from basic
ones

►  Static aspect weaving can be
described by distributors,
because hooks are static

►  ISC does not have a
dynamic joinpoints

►  Crosscut specifications
can be interpreted

Aspect

Core

Pointcut
specification

Prof. U. Aßmann, CBSE 38

Debugging Aspect

Persistency Aspect Core
(Algorithm)

Op

Distributor

Op Op

Op

Op

Op Op

Persistenc
y

Persistency Debugging

Debugging

Distributors are Composition Programs

Prof. U. Aßmann, CBSE 39

Distributor

Core

Aspect

System

Distributors Weave Relations
between Core and Aspect

Pointcut
specification

Prof. U. Aßmann, CBSE 40

Invasive Model Composition with Reuseware

Editor
specification

CBSE, © Prof. Uwe Aßmann 41

Universal Reuse Add-On Languagess

for universal genericity and extension

Prof. U. Aßmann, CBSE 42

Core
L

Reuse-L

Core
L Hooks

for L

Universally Composable Languages

Universally composable: A language is called universally composable, if it
provides universal genericity and universal extensibility

Reuse add-on language: Given a metamodel of a core language L, a
metamodel of a universally composable language can be generated
(Reuse-L)

Slot and Hook model: Generated from the core language metamodel
–  realizes universal composability by defining slots and hook constructs, one for

each construct in the core language

Slots
for L

Prof. U. Aßmann, CBSE 43

Names

Reuse-L

Component
 model

Core
L

UH UL

Structure of a Universally Composable Language

•  The reuse language has two levels...

Language-
specific
knowledge ...

Language-
neutral
knowledge ...

Hooks
for L

Slots
for L

Prof. U. Aßmann, CBSE 44

Reuse-UML, a Universally Composable Language

•  .. an extension of UML with slot and hook model

Names

Reuse-UML

Component
 model

Core
UML

UH UL

UML-
specific
knowledge ...

Language-
neutral
knowledge ...

Hooks
for UML

Slots
for UML

Prof. U. Aßmann, CBSE 45

The Reuseware Tool

•  www.reuseware.org (Phd of Jendrik Johannes, 2010)
•  The ST group develops a tool, Reuseware, for reuse languages:

–  Eclipse-based
–  metamodel-controlled (metalanguage M3: Eclipse e-core)
–  Plugins are generated for composition
–  Composition tools come for free

•  Framework instantiation is supported for variantion and extension
•  Jobs open!

CBSE, © Prof. Uwe Aßmann 46

26.3) Composition and Functional
Interfaces

Prof. U. Aßmann, CBSE 47

Declared
Hooks

Implicit Hooks

Provided
Method

Program Elements
or Code Positions

Output Port

Input Port Required
Method

Composition vs Functional Interfaces

Composition interfaces contain hooks and slots
 static, based on the component model at design time

Functional interfaces are based on the component model at run time and
contain slots and hooks of it

Prof. U. Aßmann, CBSE 48

Composition Interface (Boxes with
Declared Hooks)

Functional Interface (Classes or
Modules with Methods)

Functional Interfaces are Generated from
Composition Interfaces

2-stage process

Prof. U. Aßmann, CBSE 49

C1 C2 C3

C2 C3

C3

Execution of a Composition Program

►  A compostion program transforms a set of fragment components step
by step, binding their composition interfaces (filling their slots and
hooks), resulting in an integrated program with functional interfaces

Prof. U. Aßmann, CBSE 50

Code Fragment
Components

Runtime
components

Fragment
component model

Runtime
component model

(objects)

Stage-0
Composition level
language: Java

Stage-1
language: binary
machine language

Stage-0

The Stages of ISC

•  Produces code from fragment components by parameterization and
expansion

•  The run-time component model fits to the chip

Prof. U. Aßmann, CBSE 51

COTS
components

Code Fragment
Components

Run time
components

Generic COTS
component model

Fragment
component model Run time

component model

Component Models on Different Levels
in the Software Process

Standard COTS models are just models for binary code components

Stage-0
Composition level
language: Java

Stage-1
language: binaries
and linker

Stage-2
language: machine
language

Prof. U. Aßmann, CBSE 52

COTS
components

Code Fragment
Components

Run time
components

Generic COTS
component model

Fragment
component model Run time

component model

Component Models on Different Levels
in the Software Process

Another stage can be introduced by UML model composition from
which Java code is generated [Johannes 10]

Stage-1
Composition level
language: Java

Stage-2
language: binaries
and linker

Stage-3
language: machine
language

UML Model
Fragment

Components

UML Model
Fragment

component model

Stage-0
Composition level
language: UML

Prof. U. Aßmann, CBSE 53

Staging

•  With a universal composition system as Reuseware, stages can be
designed (stage design process)

•  For each stage, it has to be designed:
 component models
 composition operators
 composition language
 composition tools (editors, well-formedness checkers, component
library etc.)

CBSE, © Prof. Uwe Aßmann 54

26.4) Different Forms of Greyboxes
(Shades of Grey)

Prof. U. Aßmann, CBSE 55

Invasive Composition and Information Hiding

►  Invasive Composition modifies components at well-defined places
during composition
■  There is less information hiding than in blackbox approaches
■  But there is...
■  ... that leads to greybox components

Prof. U. Aßmann, CBSE 56

Refactorings
Transformations

Refactoring is a
Whitebox Operation

►  Refactoring works directly on the AST/ASG
►  Attaching/removing/replacing fragments
►  Whitebox reuse

Prof. U. Aßmann, CBSE 57

Composition
with implicit
hooks

Refactorings
Transformations

Modifying Implicit Hooks is a Light-Grey
Operation

►  Aspect weaving and view composition works on implicit hooks (join
points)

►  Implicit composition interface

Prof. U. Aßmann, CBSE 58

Refactorings
Transformations

Parameterization as Darker-Grey Operation

►  Templates work on declared hooks
►  Declared composition interface

Composition
with declared
hooks

Prof. U. Aßmann, CBSE 59

Composition
with declared
hooks

Composition
with implicit
hooks

Refactorings
Transformations

Systematization Towards Greybox Component
Models

Prof. U. Aßmann, CBSE 60

Refactoring

Refactoring Builds On Transformation Of
Abstract Syntax

Prof. U. Aßmann, CBSE 61

Composer

Invasively transformed code

Invasive Composition Builds On
Transformation Of Implicit Hooks

Prof. U. Aßmann, CBSE 62

Composer

Invasively transformed code

Invasive Composition Builds On
Transformation on Declared Hooks

CBSE, © Prof. Uwe Aßmann 63

26.5 Invasive Software Composition
as Composition Technique

Prof. U. Aßmann, CBSE 64

Invasive Composition: Component Model

►  Fragment components are graybox components
■  Composition interfaces with declared hooks
■  Implicit composition interfaces with implicit hooks
■  The composition programs produce the functional interfaces

.  Resulting in efficient systems, because superfluous functional interfaces are
removed from the system

■  Content: source code
.  binary components also possible, poorer metamodel

►  Aspects are just a special type of component
►  Fragment-based parameterisation a la BETA

■  Type-safe parameterization on all kinds of fragments

Prof. U. Aßmann, CBSE 65

 Invasive Composition: Composition
Technique

►  Adaptation and glue code: good, composers are program
transformers and generators

►  Aspect weaving
■  Parties may write their own weavers
■  No special languages

►  Extensions:
■  Hooks can be extended
■  Soundness criteria of lambdaN still apply
■  Metamodelling employed

►  Not yet scalable to run time

Prof. U. Aßmann, CBSE 66

Composition Language

►  Various languages can be used
►  Product quality improved by metamodel-based typing of

compositions
►  Metacomposition possible

■  Architectures can be described in a standard object-oriented language and
reused

►  An assembler for composition
■  Other, more adequate composition languages can be compiled

Prof. U. Aßmann, CBSE 67

Conclusions for ISC

►  Fragment-based composition technology
■  Graybox components
■  Producing tightly integrated systems

►  Components have composition interface
■  From the composition interface, the functional interface is derived

■  Composition interface is different from functional interface
■  Overlaying of classes (role model composition)

•  COMPOST framework showed applicability of ISC for Java
•  (ISC book)

•  Reuseware Composition Framework extends these ideas
•  For arbitrary grammar-based languages
•  For metamodel-based languages

•  http://reuseware.org

Prof. U. Aßmann, CBSE 68

Invasive Composition as Composition System

Component model Composition technique

Composition language

Source or binary components

Greybox components

Composition interfaces
with declared an implicit hooks

Algebra of composition operators

Uniform on declared and implicit hooks

Complex composition operators can be
defined by users

Standard Language

Prof. U. Aßmann, CBSE 69

What Have We Learned

►  With the uniform treatment of declared and implicit hooks and slots,
several technologies can be unified:

•  Generic programming
•  Connector-based programming
•  View-based programming

•  Inheritance-based programming
•  Aspect-based programming
•  Refactorings

Prof. U. Aßmann, CBSE 70

The End

