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A component has one thread of control
A component is always in a finite set of states
The behavior of a component can be described by a protocol
automaton (interface automaton)

« Compatibility is decidable
A hybrid automaton is an automaton in which states and
transitions can be annotated in different views
A real-time automaton is a hybrid automaton with real-time annotations
A safety automaton is a hybrid automaton with safety annotations

v

v

.a | Assumptions about Automata-Based Contracts

v

A dynamics automaton is a hybrid automaton with dynamics equations
(physical movement, electricity movement)

An energy automaton is a hybrid automaton with energy consumption
annotations

Pro.U. Amann, CESE 10

EU IP SPEEDS - Speculative and

A P . .
@ | Exploratory Design in Systems Engineering
" From/by higher
Layer n-1 design levels
separate
tools
Promised
Layer n -5
to neighbors
Layer n+1 From/by lower
design levels
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[CSL] The SPEEDS Project. Contract Specification Language (CSL)
« hitp:/iwww.speeds.eu.com/downloads/
D_2_5_4_RE_Contract_Specification_Language.pdf

A
o I Used References

v

[HRC-MM] The SPEEDS project. Deliverable D.2.1.5. SPEEDS L-1
Meta-Model, Revision: 1.0.1, 2009

[HRC-Kit] The SPEEDS project. SPEEDS Training Kit.

v

« Training_Kit_and_Report.pdf: Overview
« Contract-based System Design.pdf: Overview slide set
+ ADT Services Top level Users view.pdf: Slide set about different relatinoships
between contracts
G.GoBler and J.Sifakis. Composition for component-based
modeling. Sci. Comput. Program., 55(1-3):161-183, 2005.

ProtU. Abmann, CBSE 3

v

> Used for based software for systems
A rich component defines contracts in several views with regard to
different viewpoints
+ Acontract for functional behavior (functional view)
« Several quality contracts, .g.,
Real-time behavior (real-time view)
Energy consumption (energy view)
Safety modes (safety view)
Movements (dynamics view)
> The contract (about the observable behavior) of a component is described
by state machines in the specific view (interface automata)
+ The interface automata encode infinite, regular path sefs (traces)
« They can be intersected, unioned, composed; they are decidable
+ Contracts can be proven
Instead of an automaton in a contract, temporal logic can be used and
compiled to automata (temporal logic contract)
Prt U, Admane, CBSE 9
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ﬁl Rich Component Models

Y

v

[Gossler/Sifakis, Heinecke/Damm]

» Composability gives guarantees that a component property is
preserved across composition/integration

Compositionality deduces global semantic properties (of the
composite, the composed system) from the properties of its
components

An A/P-contract is an if-then rule: under the assumption A, the
component will deliver promise P (aka guarantee G)

qg I A/P Quality Contracts for CBSE

v

v

Assertion
Contract = (.assumption, promise )

IF assumption THEN promise
» An AIP-quality contract is an A/P-contract in which hybrid
form the i and promi:

A/P-quality contract based component models are composable
and compositional.

Prot U Atmann, CBSE | 11

Al| Quality Requirements
®5| (Real-time, Safety, Energy, Dynamics)

> Informal Quality Requirements are specified in the software
qui ification (SRS, Pfi

Informal Real-Time Requirement: The gate is closed when a train
traverses the gate region, provided there is a minimal time distance
of 40 seconds between two approaching trains.

* Hard Real-time: definite deadline specified after which system fails

+ Soft Real-time: deadline specified after which quality of system’s delivery

degradates

Informal Safety Requirement: If the robot’s arm fails, the robot will
still reach its power plug to recharge.
Informal Energy Requirement: /f the robot’s energy sinks under
25% of the capacity of the battery, it will still reach its power plug to
recharge.
Informal Dynamic Movement Requirement: If the car's energy
sinks under 5% of the capacity of the battery, it will still be able to

@ break and stop. ;
Prot U, Abmann, CoSE 6
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27.2. SPEEDS HRC
(Heterogeneous Rich Components)

| O
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.S l Basic Elements of HRC A/P-Contracts

Behaviors component
Given behaviors ‘must produce

Contract = ( assumption, promise )
Assumption

-~ Promise

Assumption in natural language for a railway crossing XR:
- Minimal delay of 50 sec. between successive trains
- At startup no train is already in XR
- Trains move in one direction
Promise in natural language: ; o, open
- Gate closed as long as a train M
isin XR
- Gate open XRis __
empty for more than 10 sec T

VYA = # "

Araini

Al| Hybrid Automata —
®5|| Automata Representing Assertions

e acso
g "° Controller 'y I
CloseCmdbly (OpenCmdDly et
inv=(clksk) approac! inv=(cksk
approach | o (et & K'=0) flows(elk'=1 & K'=0)

close_cmd

closecmd | flow=(y'=0)

1. U, Abmann, CBSE 16

.3 | Today’s embedded systems

composed of physical specific
Large Scale

subsystems developed
concurrently
aciualo’

contro ©°

Several quality aspects:
~cost,

-performance,

The kind of
considered
system

Reliabilty is
critical involve several disciplines (e.g.,

rodynamics, mechanical,
conirol)

al| Vision: Modular Verification of Behavior of
®5 | Embedded Systems

v

Usually, Embedded Software is hand-made, verification is hard
But fly-by-wire and drive-by-wire need verification

v

v

Challenge 1: Quality requirements can be formalized and proven
+ How to formalize them?
+ How to prove them?

v

Challenge 2: Proof can be computed in modules, proof is modular
and can be reused as a proof component in another proof

+ Contracts serve this purpose: they prove assertions about components and

subsystems

Whenever an implementation of a component is exchanged for a new variant,
the new variant must be proven to be conformant to the old contract. Then the
old global proof still holds
This is a CBSE challenge!

Prot. U, Abmann, CBSE 7

Al| HRC — SPEEDS’s View of a Component
@5 | An A/P-quality contract based component model

HRC - Heterogeneous Rich Component

Specification

U
Executable Module

Implementation

ProT U e CBSE T 1.

‘3 Assertions Describe Behavior

< An assertion specifies a subset of the possible component
behaviors

< Afinite automaton specifying an infinite set of regular paths
Contract = ( assumption, promise )

* Contract over continuous
* — variable:
temp: [-10°,50°]
0 ‘after 5 sec. 25stemps30’
P
Contract over discrete
variable:
red lights :{red, green}, req:
event
green
i “lights initially green, and
! ! after each ‘req’, within 1sec,
req. req.

become red for 3 sec. then
back green’



.a | Basic Relations on Contracts

» Satisfaction (implementation conformance) couples implementations
ts.

to contrac
» Given contract: C=(A,G), implementation M
» Satisfaction: (M satisfies C)
M=C ¢>40f ANMC G
(promise G is stronger than intersection of A and M)

E\ssumption

Reasoning with Venn diagrams: smaller means weaker;
@ Inclusion means implication

Promis

M J

Prof U, Abmann, GBSE

.a | Compatibility of Contracts

0

» Compatibility is a relation between two or more contracts C7 .. Cn
> Two contracts C7 and C2 are ible whenever the

of one guarantee that the assumptions of the other are satisfied
+ When composing their implementations, the assumptions will not be violated
+ The comresponding components “fit” well together

» C1=(A1,P1)and C2 = (A2,P2) are compatible if

C1<->C2es,4, PICA2 and P2CA1

C1 is compatible to C2 if C1.P is weaker than C2.A, and C2.P weaker than C1.A

Al| 27.3 CSL (Contracts Specification Language)
®5 | based on A/P-contract-patterns

Pro. U, Aimann, CBSE 20

+« CSLisad Pt
friendly formal specification means

+ Translated into Hybrid Automata (assumptions and promises)

(DSL) i to provide a

+ Template sentences from requirement specifications can be translated into

interface automata

CSL introduces events and time intervals in contract patterns

CSL is a ECA language with real-time assertions

SO

A
T | CSL Metamodel

Pro.U. Amann, CESE 2%

» [HRC-MM] is done in MOF and OCL
« executable in MOF-IDE (Netbeans),
+ checked on well-formedness by OCL checkers
» Variables, assumptions
» More information about MOF-based metamodels and how to use
them in tools -> Course Softwarewerkzeuge (WS)

{vi int-id} contract {¢ id}
Assumption: {assertion}*
Promise: {assertion}*

Prot U, Abmann, GBSE 28

A .
o | Contract Analysis

Within one component (same interface)

> is based on Component
algebra of contracts
»For HRC Functionality Time Safety
contracts, the (ERETGENED
following properties
can be proven: along (for a certain iew-specific)
» Consistency, Ce C
> Compatibility, contracts ‘ ‘ contracts| contracts
» Dominance,
» Simulation, Refinement of contracts
» Satisfiability Contract

‘ contract ‘ H contract ‘ H contract ‘

P U R CBSE T 7

\3 | Basic Relations on Contracts

Given contract: C=(A,G) C’=(A’,G’), implementation M
« Dominance: (C dominates C’) :
C<C’< 4 A'CA and GCG’

(Ais stronger than A’ and G' is stronger than G; A" is weaker than A and G is weaker
than G¢)

contravariant in A and G, i.e, when assumption A “grows”, the promise G “shrinks”;

+ C: A=daylight G= video & IR picture

« C:A=anytime G'=only IR picture

« Daylight C anytime, video&IR picture C IR picture
Claim: M|=C and C<C’ = M|=C’

(i W satisfies C, and C dominates C', then M satisfies ) —————— «i—
Prol U, Admane, CasE 19

D

~ A contract pattern (pattern rule) is an English-like template
sentence embedded with parameters’ placeholders, e.g.:
inv [Q] while [P] after [N] steps
represents a fixed property up to parameters' instantiation.
(in the speak of the course, it is an English generic fragment of
English)
The semantics of a pattern is a template automaton (generic
contract), which is instantiated by the parameters
« Abinding composition program translates the English sentence to a template
automaton by binding its slots
In the SafeAir project previous to SPEEDS, a contract patterns
library was developed by OFFIS (Oldenburg), but the library grew
up to ~400 patterns, and was not manageable
- are by state L
- Semantics over discrete time model N
idea acceptable by users (format, less) but patterns can be very
complex, like:
inv [P] triggers [Q] unless [S] within [B] after_reaching [R] ‘*_
-
2

ﬁ; | Assertions by Contract Patterns

v

Y

oﬁ | CSL - Component Specification

» The CSL/HRC grammar defines interfaces with contracts of
assumptions and promises.

HRC {HRC-Id}
Interface
controlled {variables declaration}
uncontrolled {variables declaration}
Contracts
{viewpoint-id} contract {contract-id} *
Assumption {assertion}
Promise {assertion}

ProtU. ASmann, OBSE 27

Parallel Composition of Contracts

A
@ | (of separate components)

> Given contracts C,=(A;,G,), C,=(A;,G,), implementation M
> Parallel composition of contracts C,||C, = (A,G) :=
> where: A = (A1NA2) U (G,NG,), G = G,NG,

l

D —

4| Assertions Expression —
®5 | Formal Language: Temporal Logic

> In practice, Hybrid Automata are ‘too formal’ (too low level) to be used
by normal engineers.
+  Alternative options like (Metric) LTL were examined and do better
The gate is closed when a train traverses GR (gate region).
(EnterGR - ClosedUEXitGR)

» But for normal properties, logic is still too difficult and rejected by the
engineers:

P occurs within (Q,R)

((Q A =R A 0=R) A {R) = (=R)U(O(P A -RY)))
Between the time an elevator is called at a floor and the time it
opens its doors at that floor the elevator can pass that floor at
most twice.

((call A §Open) — (Move U (Open v (Pass U (Open

v (Move U (Open v (Pass U (Open
v (Move U Open))))))

Prot U, Alimann, CBSE 24

.S l CSL - Contract Specification with Generic Text Fragments

» CSL uses generic programming for assertions

{ ion}: (text ‘[* slot:P e

« An assertion is expressed by a contract pattern, a generic text fragment
embedded with parameters (slots):

« Parameter slots are conditions, events, intervals.
* Hedge symbols [ ] to demarcate slots

Example: Whenever the request button is pressed a car should
arrive at the station within 3 minutes

Whenever [car-request] occurs [car-arrives] occurs within [3min]

D —

.S l Instantiation of a Contract Pattern

v

Whenever the request button is pressed a car should arrive at the
station within 3 minutes
Contract Pattern:
Whenever [E: event] occurs [E2: event] occurs within [I: interval]
Instantiated Contract:

P d occurs

v

v

t-station occurs
within 3 min

Compiles to an hybrid automaton (here: real-time automaton)

v

Prot U, Amann, CBSE 2

» within a component (same interface), contracts in
different views can be synchronized

» The real-time assertions can be coupled with functional, safety, and energy view

.3 | Composition of Contracts

Component

Real-Time
performance

Fum:lionality‘

‘ Safety ‘

» along components — contracts of a certain viewpoint can
be composed

|

A
o | Algebra of Contracts

Given contracts C,=(A,,G,), C,=(A,,G,), the following operations can be
defined:

v

Greatest Lower Bound: C,[1C,= g (AjUA,, G,NG,)

v

Least Upper Bound: CyLICo=ger (AsNA,, G,UG,)

v

Complement: ~C=4yr (=A, =G)

v

Fusion: [[C1,C2]], =[C1],[][C2],[T[Cl[C2],
C=(A,G), pEP =y [C], = (VPA,3pG)

IComponent C

Contract C;
Contract C,

CSL Time model & variables

Time model: R,

Variables:
Discrete range/
Continuous range_|

pwe evolution — K a /

= pw derivable

Events

T O Y

O

<

Prof U. Abmann, CaSE 2

Contract Specification Process in HRC-CSL

Steps to Derive Contracts:
» Start with the informal requirement
+ Identify what has to be guaranteed by the component under consideration and
what cannot be controlled and hence should be guaranteed by the environment:
+ Informal promise(s), Informal assumption(s)
Identify the related interface: inputs / outputs
Specify parts of the informal requirements in terms of inputs and
outputs of the component

v

v

v

Select an appropriate contract pattern from the contract pattern
library and substitute its parameter slots

Prot U, Abmann, GBSE 31



Al| Example: Formalization of Informal Requirement
@5, | with a Contract Pattern

> Assertion:

+ Whenever the request button is pressed a car should arrives at the station within
3 minutes

> Instantiated in CSL:

+ Whenever [request-button-press] occurs [ t-station] holds within
[3min]

Contract with
» Assumption:
+ [40 seconds minimal delay between trains]
« whenever [train_in] occurs [~train_in] holds during following (0,40]
» And Promise:
+ The gate is closed when a train traverses gate region.
+ [gate is closed when a train traverses gate region]
« whenever [train_in] occurs [positi

==closed] holds during following [train_in,

train_out]
O T

.a | Timers

=
‘Timer(T) ate

e o e
1 T i
| | L

— T—> — T—

» e+T = tr(c=T) where c=Timer(T) ate

PeriodicTimer(T) at e ‘

%

Pro. U, Aimann, CBSE 36

27.5 HRC as Composition System

| O

HRC is an interesting combination of a black-box
component model in different views

It could be one of the first COTS component models with
viewpoints, but the standarization is unclear at the
moment

CBSE, © Prof. Uwe Almann 42

.3 | HRC - Composition Technique and Language

‘Adaptation
Connection
Product quality
Exiensibilly Software process
‘Aspect Separafion Metacomposition

Scalability

Prot U, Abmann, GBSE

Gﬁ | More Contract Patterns

+| whenever [E] occurs [C] holds during following [I]
c

1E Ee—1

I

« whenever [E1] occurs [E2] occurs within [I]
|E1

—_—

C E

—

+ [C]during [I] raises [E]

Temporal/Continuous expressions for parameters (Events,
Conditions, Intervals)
[y

\3 Contract Pattern Parameters (Slots) and Their Typing
Conditions:

+ Boolean variables C .

A condition must
s x~exp - K=8, x>5, y'=-3y’+7, x<y hold true along an
+ Exp. C,vC, CiaC, =-C C,—C, interval

Events:
+ Primitive: a b ¢ Startup

+ Condition change: tr(C) fs(C)
« Time delay: dly(T)
+ Exp.: e,ne,, eve,, €,-e, e when C ejje; .-
Intervals: N

+ Designated by occurrences of events;-a, b;
all forms:

[a,b], [a,b), (a,b], (a,b)

ProtU. Abmann, CBSE 35

» For future networked embedded systems and cyber-physical
systems, we need verifiable, compositional component models
supporting self-adaptivity.

» Self-adaptivity can be achieved by dynamic product families with
variants that are preconfigured, verified, and dynamically
reconfigured:

+ Contract negotation (dynamic reconfiguration between quality A/P-automata)

+ Polymorphic classes with quality-based polymorphism: the polymorphic
dispatch relies on quality types, quality predicates

+ Autotuning with code rewriting and optimization
More in research projects at the Chair

ﬁ; | 27.4. Self-Adaptive Systems

v

oﬁ | Evaluation of HRC Component Model

Secrets
Development Types
environments
Distribution
Contracts
services
Binding points
Infrastructure
Parameterization

Versioning
Prot U, Asmann, GBSE 3

'S‘ Pattern Occurrence Types

Iterative occurrences of events — non interleaving
occurrence’s i

’ Whenever [car-request] occurs [car-arrives] occurs within [3min]

Occurrence instance Occurrence instance

[

T T
car-request car-arrives  car-request  car-request  car-arrives
— il

occurrence's il

Flowing occurrences of events - interleaving ‘

[F<3] during [3 Sec] raises [AlarmSignal]

Fams A A A

Prot U, Amann, CBSE 38

More HRC Patterns for Contract Specification

4
|

YV VYV Y OV VYV

v

E: Event, SC: State Condition, I: Interval, N: integer

Pattern Group “Validity over Duration”

P1 (hold): whenever [E] occurs [SC] holds during following [I]
P2 (implication): whenever [E1] occurs [E2] implies [E3] during
following [1]

P3 (absence): whenever [E1] occurs [E2] does not occur during
following [I]

P4 (implication): whenever [E] occurs [E/SC] occurs within [[]
P5: [SC] during [I] raises [E]

P6: [E1] occurs [N] times during [I] raises [E2]

P7: [E] occurs at most [N] times during [I]

P8: [SC] during [I] implies [SC1] during [I1] then [SC2] during [I2]

Prot U, Alimann, CBSE a0

Dispatching commands will be refused during first 5 seconds after a car

arrives at station
> Whenever [car-arrives] occurs

.3 | CSL Examples with Timers

[dispatch-cmd] implies [refuse-msg] during following [Ssec]

40 sec. minimal delay between trains:
> Whenever [Tin] occurs [Tin] does not occur during following (40 sec]

Between the time an elevator is called at a floor and the time it stops at
that floor the elevator can pass that floor at most twice.
> [PassFloor[m]] occurs at most [2] times

during (CallAtFloor[m], StopAtFloor[m])

Prof U, Abmann, GBSE 37

Al| Automaton Representation
°s | of Iterative Occurences of Events

whenever [E] occurs [Eg] occurs within [Eg,E¢]

&E)-

En8E &E&E,

Within
Interval
before R

Interval

Prot. U, Abmann, CBSE E)

.a | HRC as Composition System

Component model
Source or binary components

Composition technique

Algebra of composition operators (dominance)
satisfaction, compatibility,
lub, glb, fusion,..)

Greybox components

Automata as interfaces
CSL textual contract patterns with slots

Verification of quality assertions

ctors are possible

Visual composition language

‘Composition language

Prof U. Abmann, CaSE P



