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Overview 

►  Some problems in document processing 
■  And why they require document architecture 

►  Invasive composition of active documents 
►  Export declarations as a basis for architecture of active documents 
►  Features of acyclic, interactive architectures 

■  Transconsistency, a novel evaluation concept for composition programs for 
active documents 

■  Transconsistent architectural styles for active documents 

►  Conclusions for web engineering 
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Architecture and Composition 

►  One of the central insights of the software engineering in the 1990s 
is: 
 
 
 

 
►  Purpose: Get a second level of variability 

■  Architecture and components can be varied independently of each other 
■  Scale better by different binding times of composition programs 
■  Be uniform for many products of a product family 

 
 

►  However, how to be uniform also for documents? 

Separate architecture (composition)  
from  

the base components 
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41.1) Problems in  
Document Construction 
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Some Problems 
1 – \cite in LaTeX 

►  As already McIlroy.68 has shown, we need components for a ripe 
industry 
 

 

@InProceedings{ mcilroy.68b, 
  author     = "M. Douglas McIlroy", 
  title      = "Mass-Produced Software Components", 
  booktitl   = "Software Engineering Concepts and Techniques (1968 {NATO} 
                Conference of {S}oftware Engineering)", 
  editor     = "J. M. Buxton and Peter Naur and Brian Randell", 
  publisher  = {NATO Science Committee}, 
  pages      = "88--98", 
  month      = oct, 
  year       = "1968" 
} 
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Usual Solution 

►  Problem: Document is active, i.e., contains generated components 
 

►  Prodedure: 
■  Latex writes citation to  .aux-file 
■  bibtex greps them and produces a .bbl file 
■  .bbl file is included into document 

 

►  How does the architecture of a latex document look like that 
regenerates all generated components? 
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bibtex 

Maybe Like This... 

\cite 
\cite 

\cite 

\cite 

.bib 
file 

\bibliography{} .bbl 
file 
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Problem 2 – Deliverable Definitions in LaTeX 
Project Plan 
 
\begin{deliverables}  
EASYCOMP workshop I             &\DIS.1.1 &  \UKA & 12 & W & PU & 18 \\ 
EASYCOMP workshop II            &\DIS.1.2 &  \UKA & 12 & W & PU & 30 \\ 
Web-based Composition Centre   &\DIS.2 &  \UKA & 3 & H & PU & 36 \\ 
Composition Handbook            &\DIS.3 & \UKA & 14 & R & PU & 24 \\ 
Final Report                    &\DIS.4 & \UKA & 6.5 & R & CO/PU & 36 \\ 
\end{deliverables}  
 
 

►  Procedure: 
■  extract deliverables by perl script 
■  concat to latex table 
■  include table 

 
 

►  How does the architecture of that document look like? 
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perl 

Like This... 

\begin{deliverable} pattern 
„\begin{deliverable}“ 

\input{deliverables} deliverable  
table 

\begin{deliverable} 
\begin{deliverable} 

\begin{deliverable} 
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Query Should Use the AST/ASM 

►  Regular expressions are too weak 

\begin{deliverable} AST/ASM definition 

\input{deliverables} „definition 
table“ 

\begin{deliverable} 
\begin{deliverable} 

\begin{deliverable} 
AST/ASM 

walker 
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Problem 3 – A Simple Web Page, Generated By 
a Database 

 

►  Procedure: 
■  Run the embedded script of an HTML template 
■  Start SQL query in MySQL 
■  Transform (with XSLT) the plain text to HTML 
■  Include table and replace the embedded script 

 

►  How does the architecture of that document look like? 

<html> 
.. 
<table> 
  <tr> <td> Employee </td> <td> Address </td> </tr> 
  <tr> <td> Uwe Assmann </td> <td> Farhagsvägen 128 </td> </tr> 
  <tr> <td> Robert Kaminski </td> <td> Platensgatan 9 </td> </tr> 
  <tr> <td> Jens Gustavsson </td> <td> Stora Torget 14 </td> </tr> 
</table> 
.. 
</html> 
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MySQL 

Like This... 

Uwe Assmann:Fårhagsvägen 128 
Robert Kaminski:Platensgatan 9 
Jens Gustavsson: Stora Torget 14 

script 

XSLT 

is replaced by 
<table> 

starts 
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Problem 4: Electra Spreadsheet 

►  Used for contract negotiations about project budges with the EC 
►  About 10 summary pages, generated from participant figures 
►  4 pages per participant 

 
 

►  No architecture available.... 
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Conclusion 

►  Why don't we define document architectures? 
■  That allows for extracting the architecture and separating it from „components“ 

►  Software architecture and composition have been successful for 
■  Developing in the large 
■  Software reuse 

►  Why don't we define a document architecture language? 
■  That allows for expressing the coarse grain structure of documents? 
■  And unify it with software architecture / software composition? 
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But An Architectural Language For Documents 
is Difficult.. 

►  Well, connectors as binding elements between components don't 
suffice 
■  It must be composition operations or other mechanisms (such as AG) that glue the 

components together 
■  We need composition languages  for uniform composition 

►  There are some other problems... 
■  Invasiveness 
■  Transconsistency 
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41.2) Invasive Composition of  
Active Documents 
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The Elements of Composition  

Component Model Composition Technique 

Composition Language 
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Systems with  
Composition Operators 

Darwin 

Composition 
Operators 

Classical  
Component Systems 

CORBA DCOM 
Beans/EJB 

Architecture Systems 

Software  
Composition Systems 

Aesop 

λN-calculus 

Standard Components 

Architecture as Aspect 

Composition 
Language 

Object-Oriented Systems Java C++ 
Sather 

Objects as 
Run-Time Components 

Modular Systems Ada-85 Modula 
C.. 

Modules as Compile- 
Time Components 

Uniform Composition Systems Universal ISC 

Aspect Systems Aspect/J Aspect Separation 

Composition Filters 
Hyperslices 

Invasive Composition  
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For Active Documents, We Need Invasiveness 

►  Active documents require invasive patching 
►  If some parts are changed, others need to be updated 
►  Question: are there invasive component models? 
►  Answer: yes 
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41.3) Invasive XML Composition 
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A Greybox Component Model For  
Uniform XML Composition 

►  A document fragment component is 
a fragment group of a document 
language 
■  OpenOffice XML, Word XML, AbiWord, 

many others 
►  Uniform representation for 

■  Text 
■  Pictures 
■  Sheets 

  Invasive document composition adapts and extends 
document fragment components 

at hooks 
by transformation 
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Implicit Hooks For XML 

►  A hook (extension point) is given by the document language 
►  In XML given by the DTD or Xschema 

►  Hooks can be implicit or explicit (declared)  
■  We draw implicit hooks inside the component, at the border 

►  Example List Entry/Exit 

<UL> 
 
    <LI>... </LI> 
    <LI>... </LI> 
 
</UL> 

List.entry 

List.exit 
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The Composition Technique of Invasive 
Composition 

►  A composer is a tag transformer from unbound to bound hooks 
  composer: box with hooks --> box with tags 

 
 Invasive Document Composition 

 parameterizes and extends 
document components 

at hooks 
by transformation 
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List Entry List Entry 

List Exit 
List Exit 

<UL> 
 
    <LI>... </LI> 
    <LI>... </LI> 
 
</UL> 

box.findHook(„ListEntry“).extend(„<LI>... </LI>”); 
 
box.findHook(„ListExit“).extend(“<LI>... </LI>”); 
 

<UL> 
    <LI>... </LI> 
    <LI>... </LI> 
    <LI>... </LI> 
    <LI>... </LI> 
</UL> 
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Composer 

Invasively transformed tags 

►  Invasive Composition works 
uniformly over code and data 

►  Allows to compose XML 
documents uniformly 

►  Extend operation implements 
what we need for document 
architectures 

Invasive XML Composition 
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Basic Operations on XML Hooks 

►  bind (parameterize) 
►  extend 
►  rename 
►  copy 
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41.3 Extraction Operators 
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Documents Must be Decomposed 

►  For architecture of active documents, we need fragment composition 
and decomposition 

►  For fragment-based composition of documents, other documents 
need to be decomposed 

■  Fragment extraction with an extraction operator 
■  Fragment selection or query 
■  Fragment component search 
■  A fragment query language is needed 

►  In the simplest case, components export all fragments (white-box) 
■  Visibility can be controlled by fragment export languages forming export interfaces 
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Fragment Query Languages 

►  A exported fragment (provided fragment) is defined by a component 
of an active document and exposes to the external world 

►  The programmer declares the exported item in  
■  a fragment export language 

.  a markup language (explicit definition, embedded) 

.  Often the explicit specification of exports of fragments is too cumbersome 
■  a fragment query language 

.  a extract language (implicit definition, exbedded), to select fragments from a 
component 

.  a query language (implicit definition, exbedded) 

.  a position addressing language (implicit, exbedded) 

►  In whitebox reuse, fragment export and query language coincide 
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Extract Operator with Query Language 1 

►  Basic Operation to Extract Fragments: 
►  Extract: ExprInQueryLanguage à ExportedDefinitions 

 

\cite 
\cite 

\cite 

\cite 

\bibliography{} 

Example 1: 
Query language 
Regular expressions like 
\cite{.+} 
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Extract Operator with Query Language 2 

\begin{deliverable} 

\input{deliverables} 

\begin{deliverable} 
\begin{deliverable} 

\begin{deliverable} 

Query language based on  
AST/ASG, together with regular  
expressions 
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Extract Operator with Query Language 3 

Uwe Assmann:Fårhagsvägen 128 
Robert Kaminski:Platensgatan 9 
Jens Gustavsson: Stora Torget 14 

Query language: 
Relational algebra,  
started by script 
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Another query Language is XSLT 

<html> 
.. 
 
<table> 
 <tr> 
  <td>Employee</td> 
  <td>Address</td> 
 </tr> 
 <tr> 
  <td>Uwe Assmann</td> 
  <td>Farhagsvägen 128</td> 
 </tr> 
 <tr> 
  <td>Robert Kaminski</td> 
  <td>Platensgatan 9</td> 
 </tr> 
</table> 
</html> 

XSLT 

Prof. U. Aßmann, CBSE 35 

Basic Operations on Hooks of Active 
Documents 

►  bind (parameterize) 
►  extend 
►  rename 
►  copy 
►  extract 
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41.3 Explicit Invasive Architectures  
for Active Documents 
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The Architecture of Case 1 
\cite in LaTeX 

extract(„\cite{.
+}“) 

\cite 
\cite 

\cite 

\cite 

.bib 
file 

\bibliography{} 
.bbl 
file 

bibtex 

extend 

extract(„@InBook
{.*}“) 
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The Architecture of Case 1  
With Multiple Components 

extract(„\cite{.*}“) 

\cite 

\cite 

\cite 

\cite 

\bibliography{} 
.bbl 
file 

bibtex 

extend 

.bib 
file 

extract(„@InBook
{.*}“) 
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Advantages of Export Declarations For 
Example 1 

►  We have extracted the document's architecture 
►  LaTeX becomes simpler 

■  query is separated into the composition level 

►  Standard language to write the compositions 
■  no architectural language required 

►  Documents are real components, with a composition interface 
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AST/ASG 
walker 

The Architecture of Case 2 
Deliverables 

\begin{deliverable} AST/ASG 

\input{deliverables} deliverable  
table 

\begin{deliverable} 
\begin{deliverable} 

\begin{deliverable} 

extend 
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Advantages for Example 2 

►  LaTeX cannot interprete the AST 
■  and cannot treat relational algebra either 

►  We can employ many different definition (query, markup) languages 
►  We can employ many different connection and composition 

languages 
■  and write connectors with them  

►  Flexible composition approach 
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MySQL 

The Architecture of Case 3 
Database-driven Web Document 

Uwe Assmann:Fårhagsvägen 128 
Robert Kaminski:Platensgatan 9 
Jens Gustavsson: Stora Torget 14 

XSLT 

bind 
<table> 
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Advantages of Architectures for Active 
Documents 

►  Better reuse 
■  Scripts are removed from HTML pages 
■  The template can be reused in other contexts where the table expansion is not 

required 

►  A lot of embedded scripts in HTML is composition code 
■  let's move it out! 

►  Simplifying web engineering 
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Afterthought: What Flows Through an Active 
Document 

►  In contrast to a software architecture, in active documents document 
fragments flow 
■  Like in a spreadsheet, the dataflow graph is acyclic (spreadsheet-documents) 
■  Generation and modification of values are modeled with export declaration 

languages (script languages) 

►  In contrast to a software architecture, the values only change when 
the user changes a component 
■  Pushed once through that graph, the document is updated 
■  Transclusion works for dataflow graphs! 

►  Requirements for Active Document Architectures 
■  Fragment queries or export definitions 
■  Invasive embedding of results 
■  Hot update of all computations (aka transconsistency) 
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41.4) Transconsistency –  
A New Architectural 
Principle for Hot Update in  
Composed Active Documents 
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Transclusion 

►  Transclution is embedded sharing of document components in 
distributed edits 
■  Invented by Ted Nelson, the inventor of hypertext 

►  „hot update“ (incremental update) 
■  Every change in a definition is immediately shared by all uses 
■  Realized by reference and special edit protocols 
■  Semantics is between call by name and call by value 

►  Nelson says: “That's what the computer is all about” 

http://xanadu.com.au/
ted/ 
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AST/ASM 
walker 

Hot Update is Necessary in Active Documents 

\begin{deliverable} AST/ASG 

\input{deliverables} deliverable  
table 

\begin{deliverable} 
\begin{deliverable} 

\begin{deliverable} 

extend 

Transclusion Semantics 
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Transconsistency of Active Documents 
(Immediate Update) 

►  The architecture of an active document should obey immediate (hot) 
update (transconsistency) 
■  Transclusion only deals with equality of hooks, but does not treat operations or 

modifications 
■  Dependent components must be updated immediately 

►  For transconsistency, transclusion is a basis 
■  Transconsistency requires a data-flow graph over operations in the document, i.e., 

a data-flow-based architecture 
■  Whenever the input of a slice of the data-flow graph changes, recompute the result 

by reevaluating the slice 

►  Transconsistency requires invasive embedding 
■  The component model of an active document must be graybox, otherwise 

embeddings are not possible 
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41.4.1. A Graph-Theoretic  
Definition of Transconsistency 
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Transclusion in Flow Graphs of Embedding 
Operations 

►  Let D be a dataflow graph of 
embedding operations, a 
bipartite graph of 
EmbeddingOperations and 
Values.  

►  D is called transclusive, if: 
■  If an input value changes, all 

dependent values are declared 
inconsistent immediately, until they 
are reembedded   

embedding 

embedding 
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Transconsistency in Data Flow Graphs 

►  Let D be a dataflow graph,  
a bipartite graph of Operations  
and Values.  

►  D is called transconsistent, if the  
hot update condition is true: 
■  If an input value changes, all  

dependent values are declared  
inconsistent immediately, until  
they are recomputed   

immediately 
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embedding 

Transconsistency in Active Documents 

►  Let A be an active document 
with an underlying dataflow 
graph D for document parts. 

►  Then, D is called the 
architecture of A. 

►  A is called transconsistent, if D 
is transconsistent 

embedding 
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Transclusion and Transconsistency 

Transconsistency  
=  

Transclusion + 
Data flow graph  

Transconsistent Architecture  
=  

Transconsistency + Architecture 

Transclusion  
=  

Invasive Embedding +  
Incrementality (hot update) 
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Transconsistency Goes  
Beyond Transclusion 

►  Transclusion only treats embedding and hot update 
►  It does not treat 

■  Operations beyond embedding 
■  Data flow graphs of these operations 
■  Components  
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Examples for Transconsistency  

Spreadsheets: A spreadsheet relies on a dataflow graph (pipe-and-
filter) 
■  It is a set of slices, i.e., a set of expressions, or scriptlets 
■  A scriptlet describes a dataflow graph of operations 
■  Every slice is independent, i.e., can be recomputed independently 

►  Spreadsheets are simple active document with  transconsistency, i.e., 
immediate update 

►  Spreadsheets do not have architecture 
■  No component model nor composition interface 

Web Documents: Servlet-based documents rely on re-expansion if 
users change forms or templates 

►  The servlets span up a data flow graph  
■  Templates and form inputs are the inputs 
■  Result pages the output 

►  The regeneration is an implementation of transconsistency 
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41.4.2 Transconsistent Architectures 

Uniform Composition of Active Documents with Staging 
and Transconsistency 
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Transconsistent Documents 

►  Transconsistent documents are active documents with explicit 
transconsistent architecture 
■  Like spreadsheets, but with explicit architecture 
■  Based on a  

.  Dataflow graph  

.  Graybox component model (invasive embedding) 

.  Incrementaility (Hot update) 

►  Purpose of Transconsistent Architectures 
■  Transconsistency copes interactive editing 
■  This is fundamentally different to the so-far batch-oriented style of  software 

construction, software build, and software execution 
■  Transconsistency is needed in software editing, too 
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41.5 Transconsistent Architectural  
Styles 

Composition of Active Documents with Staging and 
Transconsistency 
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Web Form Processing with JSP 

►  Should be transconsistent... 

Form field 

Form result Html  
snippet 
 

Servlet 
expansion 

Java servlet Class 

JSP 
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Spreadsheet-documents and Pipe-And-Filter 
Architectures 

►  Spreadsheet-Documents: A spreadsheet-document is a an active 
document with a pipe-and-filter architecture 
■  Resembles spreadsheets 
■  The question is how often the filter architecture is evaluated for transconsistency 
■  A web form (e.g., JSP) is a distributed spreadsheet-document 
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2-Pass Transconsistent Documents 

►  Transconsistent documents underly a dependency graph  for their 
update  
■  This dependency graph must be acyclic 

►  Evaluation classes for transconsistent documents 
■  1-pass problems  along the document (all definitions before uses) 
■  2-pass (backpatch problems) along the document 
■  Statically orderable along the dependencies (similar to wavefront or OAG)  
■  Form processing 
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Citations and Bibtex 
(2-Pass-Document) 

\cite{\(.*\)} 

references 

all in set 

.bbl 
file 

bibtex 

.bib 
file 

extract(„@InBook
{.*}“) 

bibref 
file 
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References 
(2-Pass-Document) 

\ref{\(.*\)} 

references 

all in set 

chapter 
numbers 

unification 

ref 
file 

\label{\(.*\)} 

all in set 

label 
file 
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Central Tables (2-Pass-Document) 

deliverable  
table 

\begin{deliverable} 
.* 
\end{deliverable} 

deliverables 

all in set 
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Person Cost Calculation Central Tables (2-
Pass-Document) 

sum up 
person months 

\begin{tasks} 
.* & \(.*\) \\ 
\end{tasks} 

PersonMonths 

all in set 
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Stream-Documents (Spreadsheet Documents 
with Pipe Ports)  

►  Instead of being a closed document, spreadsheet-documents can be 
open in the sense that they take in data streams over stream ports 
■  START submission phase 
■  START reviewing phase 

►  Such a change corresponds to a document extension, but works via 
communication channels/connectors 

►  User changes and sends via ports are the similar effects 
■  User change: change component values 
■  Send via ports: change from external world 
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Transconsistent Documents: 
Roundtrip Engineering Documents 

Requirements  aspect 

Testing aspect 

Core 
(Algorithm) 

Op 

Consistent  
roundtrip 

editing of views  

Op 
Op 

Op 

Op 

Op Op 

Testing 

Architecture aspect 

Architecture 
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Transconsistent Architectural Styles for Active 
Documents 

Spreadsheet-Documents 
(interactive) 

Stream-Documents 

Round-trip 
Documents 

2-Pass Documents 

Web-Form-Documents 
(distributed, interactive) 
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Benefit of Transconsistent  
Architectures For Active Documents 
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Advantages of Transconsistent Active 
Documents  

►  Beyond standard document models (such as OLE): 
■  Explicit distinction between architecture and content 
■  Better reuse 
■  Can be combined with staged composition for Web engineering 

►  Beyond spreadsheets: 
■  Full table and sheet extension, not only value transconsistency (table extension 

hot update) 

►  Beyond template-based documents: 
■  Decentralized definition of databases/relations 

►  Benefits for Web Engineering 
■  Transconsistent active documents provide a first unified model for web- and 

document engineering 
■  Beyond simple approaches such as JSP, ASP 
■  Improvement of quality:  

.  Documentative due to architecture 

.  Gets rid of the spagetti code in web engineering 
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Summary 

►  For engineering of active documents, explicit distinction of 
architectures is important 
■  Invasive embedding is required 
■  Data flow graphs are required 

►  Transconsistent architectures are an important architectural styles for 
active documents 
■  Rely on an extended concept of transclusion 
■  Cope with streams of interactive input 
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The End  


