
CBSE, © Prof. Uwe Aßmann 1

41) Transconsistent Composition
for Active Documents and Component-Based Document
Engineering (CBDE)

Prof. Dr. Uwe Aßmann
Florian Heidenreich

Technische Universität Dresden
Institut für Software- und

Multimediatechnik
http://st.inf.tu-dresden.de

Version 11-0.1, Juli 5, 2012

1.  Problems of Document Composition
2.  Invasive Document Composition
3.  Invasive Architectures for Active

Documents
4.  Transconsistency

1.  A Graph-Theoretic Definition
of Transconsistency

2.  Transconsistent
Architectures

5.  Architectural Styles for
Transconsistent Architectures

Prof. U. Aßmann, CBSE 2

Literature

►  U. Aßmann. Architectural Styles for Active Documents.
http://dx.doi.org/10.1016/j.scico.2004.11.006

Prof. U. Aßmann, CBSE 3

Overview

►  Some problems in document processing
■  And why they require document architecture

►  Invasive composition of active documents
►  Export declarations as a basis for architecture of active documents
►  Features of acyclic, interactive architectures

■  Transconsistency, a novel evaluation concept for composition programs for
active documents

■  Transconsistent architectural styles for active documents

►  Conclusions for web engineering

Prof. U. Aßmann, CBSE 4

Architecture and Composition

►  One of the central insights of the software engineering in the 1990s
is:

►  Purpose: Get a second level of variability

■  Architecture and components can be varied independently of each other
■  Scale better by different binding times of composition programs
■  Be uniform for many products of a product family

►  However, how to be uniform also for documents?

Separate architecture (composition)
from

the base components

CBSE, © Prof. Uwe Aßmann 5

41.1) Problems in
Document Construction

Prof. U. Aßmann, CBSE 6

Some Problems
1 – \cite in LaTeX

►  As already McIlroy.68 has shown, we need components for a ripe
industry

@InProceedings{ mcilroy.68b,
 author = "M. Douglas McIlroy",
 title = "Mass-Produced Software Components",
 booktitl = "Software Engineering Concepts and Techniques (1968 {NATO}
 Conference of {S}oftware Engineering)",
 editor = "J. M. Buxton and Peter Naur and Brian Randell",
 publisher = {NATO Science Committee},
 pages = "88--98",
 month = oct,
 year = "1968"
}

Prof. U. Aßmann, CBSE 7

Usual Solution

►  Problem: Document is active, i.e., contains generated components

►  Prodedure:
■  Latex writes citation to .aux-file
■  bibtex greps them and produces a .bbl file
■  .bbl file is included into document

►  How does the architecture of a latex document look like that
regenerates all generated components?

Prof. U. Aßmann, CBSE 8

bibtex

Maybe Like This...

\cite
\cite

\cite

\cite

.bib
file

\bibliography{} .bbl
file

Prof. U. Aßmann, CBSE 9

Problem 2 – Deliverable Definitions in LaTeX
Project Plan

\begin{deliverables}
EASYCOMP workshop I &\DIS.1.1 & \UKA & 12 & W & PU & 18 \\
EASYCOMP workshop II &\DIS.1.2 & \UKA & 12 & W & PU & 30 \\
Web-based Composition Centre &\DIS.2 & \UKA & 3 & H & PU & 36 \\
Composition Handbook &\DIS.3 & \UKA & 14 & R & PU & 24 \\
Final Report &\DIS.4 & \UKA & 6.5 & R & CO/PU & 36 \\
\end{deliverables}

►  Procedure:
■  extract deliverables by perl script
■  concat to latex table
■  include table

►  How does the architecture of that document look like?

Prof. U. Aßmann, CBSE 10

perl

Like This...

\begin{deliverable} pattern
„\begin{deliverable}“

\input{deliverables} deliverable
table

\begin{deliverable}
\begin{deliverable}

\begin{deliverable}

Prof. U. Aßmann, CBSE 11

Query Should Use the AST/ASM

►  Regular expressions are too weak

\begin{deliverable} AST/ASM definition

\input{deliverables} „definition
table“

\begin{deliverable}
\begin{deliverable}

\begin{deliverable}
AST/ASM

walker

Prof. U. Aßmann, CBSE 12

Problem 3 – A Simple Web Page, Generated By
a Database

►  Procedure:
■  Run the embedded script of an HTML template
■  Start SQL query in MySQL
■  Transform (with XSLT) the plain text to HTML
■  Include table and replace the embedded script

►  How does the architecture of that document look like?

<html>
..
<table>
 <tr> <td> Employee </td> <td> Address </td> </tr>
 <tr> <td> Uwe Assmann </td> <td> Farhagsvägen 128 </td> </tr>
 <tr> <td> Robert Kaminski </td> <td> Platensgatan 9 </td> </tr>
 <tr> <td> Jens Gustavsson </td> <td> Stora Torget 14 </td> </tr>
</table>
..
</html>

Prof. U. Aßmann, CBSE 13

MySQL

Like This...

Uwe Assmann:Fårhagsvägen 128
Robert Kaminski:Platensgatan 9
Jens Gustavsson: Stora Torget 14

script

XSLT

is replaced by
<table>

starts

Prof. U. Aßmann, CBSE 14

Problem 4: Electra Spreadsheet

►  Used for contract negotiations about project budges with the EC
►  About 10 summary pages, generated from participant figures
►  4 pages per participant

►  No architecture available....

Prof. U. Aßmann, CBSE 15

Conclusion

►  Why don't we define document architectures?
■  That allows for extracting the architecture and separating it from „components“

►  Software architecture and composition have been successful for
■  Developing in the large
■  Software reuse

►  Why don't we define a document architecture language?
■  That allows for expressing the coarse grain structure of documents?
■  And unify it with software architecture / software composition?

Prof. U. Aßmann, CBSE 16

But An Architectural Language For Documents
is Difficult..

►  Well, connectors as binding elements between components don't
suffice
■  It must be composition operations or other mechanisms (such as AG) that glue the

components together
■  We need composition languages for uniform composition

►  There are some other problems...
■  Invasiveness
■  Transconsistency

CBSE, © Prof. Uwe Aßmann 17

41.2) Invasive Composition of
Active Documents

Prof. U. Aßmann, CBSE 18

The Elements of Composition

Component Model Composition Technique

Composition Language

Prof. U. Aßmann, CBSE 19

Systems with
Composition Operators

Darwin

Composition
Operators

Classical
Component Systems

CORBA DCOM
Beans/EJB

Architecture Systems

Software
Composition Systems

Aesop

λN-calculus

Standard Components

Architecture as Aspect

Composition
Language

Object-Oriented Systems Java C++
Sather

Objects as
Run-Time Components

Modular Systems Ada-85 Modula
C..

Modules as Compile-
Time Components

Uniform Composition Systems Universal ISC

Aspect Systems Aspect/J Aspect Separation

Composition Filters
Hyperslices

Invasive Composition

Prof. U. Aßmann, CBSE 20

For Active Documents, We Need Invasiveness

►  Active documents require invasive patching
►  If some parts are changed, others need to be updated
►  Question: are there invasive component models?
►  Answer: yes

CBSE, © Prof. Uwe Aßmann 21

41.3) Invasive XML Composition

Prof. U. Aßmann, CBSE 22

A Greybox Component Model For
Uniform XML Composition

►  A document fragment component is
a fragment group of a document
language
■  OpenOffice XML, Word XML, AbiWord,

many others
►  Uniform representation for

■  Text
■  Pictures
■  Sheets

 Invasive document composition adapts and extends
document fragment components

at hooks
by transformation

Prof. U. Aßmann, CBSE 23

Implicit Hooks For XML

►  A hook (extension point) is given by the document language
►  In XML given by the DTD or Xschema

►  Hooks can be implicit or explicit (declared)
■  We draw implicit hooks inside the component, at the border

►  Example List Entry/Exit

 ...
 ...

List.entry

List.exit

Prof. U. Aßmann, CBSE 24

The Composition Technique of Invasive
Composition

►  A composer is a tag transformer from unbound to bound hooks
 composer: box with hooks --> box with tags

 Invasive Document Composition

 parameterizes and extends
document components

at hooks
by transformation

Prof. U. Aßmann, CBSE 25

List Entry List Entry

List Exit
List Exit

 ...
 ...

box.findHook(„ListEntry“).extend(„... ”);

box.findHook(„ListExit“).extend(“... ”);

 ...
 ...
 ...
 ...

Prof. U. Aßmann, CBSE 26

Composer

Invasively transformed tags

►  Invasive Composition works
uniformly over code and data

►  Allows to compose XML
documents uniformly

►  Extend operation implements
what we need for document
architectures

Invasive XML Composition

Prof. U. Aßmann, CBSE 27

Basic Operations on XML Hooks

►  bind (parameterize)
►  extend
►  rename
►  copy

CBSE, © Prof. Uwe Aßmann 28

41.3 Extraction Operators

Prof. U. Aßmann, CBSE 29

Documents Must be Decomposed

►  For architecture of active documents, we need fragment composition
and decomposition

►  For fragment-based composition of documents, other documents
need to be decomposed

■  Fragment extraction with an extraction operator
■  Fragment selection or query
■  Fragment component search
■  A fragment query language is needed

►  In the simplest case, components export all fragments (white-box)
■  Visibility can be controlled by fragment export languages forming export interfaces

Prof. U. Aßmann, CBSE 30

Fragment Query Languages

►  A exported fragment (provided fragment) is defined by a component
of an active document and exposes to the external world

►  The programmer declares the exported item in
■  a fragment export language

.  a markup language (explicit definition, embedded)

.  Often the explicit specification of exports of fragments is too cumbersome
■  a fragment query language

.  a extract language (implicit definition, exbedded), to select fragments from a
component

.  a query language (implicit definition, exbedded)

.  a position addressing language (implicit, exbedded)

►  In whitebox reuse, fragment export and query language coincide

Prof. U. Aßmann, CBSE 31

Extract Operator with Query Language 1

►  Basic Operation to Extract Fragments:
►  Extract: ExprInQueryLanguage à ExportedDefinitions

\cite
\cite

\cite

\cite

\bibliography{}

Example 1:
Query language
Regular expressions like
\cite{.+}

Prof. U. Aßmann, CBSE 32

Extract Operator with Query Language 2

\begin{deliverable}

\input{deliverables}

\begin{deliverable}
\begin{deliverable}

\begin{deliverable}

Query language based on
AST/ASG, together with regular
expressions

Prof. U. Aßmann, CBSE 33

Extract Operator with Query Language 3

Uwe Assmann:Fårhagsvägen 128
Robert Kaminski:Platensgatan 9
Jens Gustavsson: Stora Torget 14

Query language:
Relational algebra,
started by script

Prof. U. Aßmann, CBSE 34

Another query Language is XSLT

<html>
..

<table>
 <tr>
 <td>Employee</td>
 <td>Address</td>
 </tr>
 <tr>
 <td>Uwe Assmann</td>
 <td>Farhagsvägen 128</td>
 </tr>
 <tr>
 <td>Robert Kaminski</td>
 <td>Platensgatan 9</td>
 </tr>
</table>
</html>

XSLT

Prof. U. Aßmann, CBSE 35

Basic Operations on Hooks of Active
Documents

►  bind (parameterize)
►  extend
►  rename
►  copy
►  extract

CBSE, © Prof. Uwe Aßmann 36

41.3 Explicit Invasive Architectures
for Active Documents

Prof. U. Aßmann, CBSE 37

The Architecture of Case 1
\cite in LaTeX

extract(„\cite{.
+}“)

\cite
\cite

\cite

\cite

.bib
file

\bibliography{}
.bbl
file

bibtex

extend

extract(„@InBook
{.*}“)

Prof. U. Aßmann, CBSE 38

The Architecture of Case 1
With Multiple Components

extract(„\cite{.*}“)

\cite

\cite

\cite

\cite

\bibliography{}
.bbl
file

bibtex

extend

.bib
file

extract(„@InBook
{.*}“)

Prof. U. Aßmann, CBSE 39

Advantages of Export Declarations For
Example 1

►  We have extracted the document's architecture
►  LaTeX becomes simpler

■  query is separated into the composition level

►  Standard language to write the compositions
■  no architectural language required

►  Documents are real components, with a composition interface

Prof. U. Aßmann, CBSE 40

AST/ASG
walker

The Architecture of Case 2
Deliverables

\begin{deliverable} AST/ASG

\input{deliverables} deliverable
table

\begin{deliverable}
\begin{deliverable}

\begin{deliverable}

extend

Prof. U. Aßmann, CBSE 41

Advantages for Example 2

►  LaTeX cannot interprete the AST
■  and cannot treat relational algebra either

►  We can employ many different definition (query, markup) languages
►  We can employ many different connection and composition

languages
■  and write connectors with them

►  Flexible composition approach

Prof. U. Aßmann, CBSE 42

MySQL

The Architecture of Case 3
Database-driven Web Document

Uwe Assmann:Fårhagsvägen 128
Robert Kaminski:Platensgatan 9
Jens Gustavsson: Stora Torget 14

XSLT

bind
<table>

Prof. U. Aßmann, CBSE 43

Advantages of Architectures for Active
Documents

►  Better reuse
■  Scripts are removed from HTML pages
■  The template can be reused in other contexts where the table expansion is not

required

►  A lot of embedded scripts in HTML is composition code
■  let's move it out!

►  Simplifying web engineering

Prof. U. Aßmann, CBSE 44

Afterthought: What Flows Through an Active
Document

►  In contrast to a software architecture, in active documents document
fragments flow
■  Like in a spreadsheet, the dataflow graph is acyclic (spreadsheet-documents)
■  Generation and modification of values are modeled with export declaration

languages (script languages)

►  In contrast to a software architecture, the values only change when
the user changes a component
■  Pushed once through that graph, the document is updated
■  Transclusion works for dataflow graphs!

►  Requirements for Active Document Architectures
■  Fragment queries or export definitions
■  Invasive embedding of results
■  Hot update of all computations (aka transconsistency)

CBSE, © Prof. Uwe Aßmann 45

41.4) Transconsistency –
A New Architectural
Principle for Hot Update in
Composed Active Documents

Prof. U. Aßmann, CBSE 46

Transclusion

►  Transclution is embedded sharing of document components in
distributed edits
■  Invented by Ted Nelson, the inventor of hypertext

►  „hot update“ (incremental update)
■  Every change in a definition is immediately shared by all uses
■  Realized by reference and special edit protocols
■  Semantics is between call by name and call by value

►  Nelson says: “That's what the computer is all about”

http://xanadu.com.au/
ted/

Prof. U. Aßmann, CBSE 47

AST/ASM
walker

Hot Update is Necessary in Active Documents

\begin{deliverable} AST/ASG

\input{deliverables} deliverable
table

\begin{deliverable}
\begin{deliverable}

\begin{deliverable}

extend

Transclusion Semantics

Prof. U. Aßmann, CBSE 48

Transconsistency of Active Documents
(Immediate Update)

►  The architecture of an active document should obey immediate (hot)
update (transconsistency)
■  Transclusion only deals with equality of hooks, but does not treat operations or

modifications
■  Dependent components must be updated immediately

►  For transconsistency, transclusion is a basis
■  Transconsistency requires a data-flow graph over operations in the document, i.e.,

a data-flow-based architecture
■  Whenever the input of a slice of the data-flow graph changes, recompute the result

by reevaluating the slice

►  Transconsistency requires invasive embedding
■  The component model of an active document must be graybox, otherwise

embeddings are not possible

CBSE, © Prof. Uwe Aßmann 49

41.4.1. A Graph-Theoretic
Definition of Transconsistency

Prof. U. Aßmann, CBSE 50

Transclusion in Flow Graphs of Embedding
Operations

►  Let D be a dataflow graph of
embedding operations, a
bipartite graph of
EmbeddingOperations and
Values.

►  D is called transclusive, if:
■  If an input value changes, all

dependent values are declared
inconsistent immediately, until they
are reembedded

embedding

embedding

Prof. U. Aßmann, CBSE 51

Transconsistency in Data Flow Graphs

►  Let D be a dataflow graph,
a bipartite graph of Operations
and Values.

►  D is called transconsistent, if the
hot update condition is true:
■  If an input value changes, all

dependent values are declared
inconsistent immediately, until
they are recomputed

immediately

Prof. U. Aßmann, CBSE 52

embedding

Transconsistency in Active Documents

►  Let A be an active document
with an underlying dataflow
graph D for document parts.

►  Then, D is called the
architecture of A.

►  A is called transconsistent, if D
is transconsistent

embedding

Prof. U. Aßmann, CBSE 53

Transclusion and Transconsistency

Transconsistency
=

Transclusion +
Data flow graph

Transconsistent Architecture
=

Transconsistency + Architecture

Transclusion
=

Invasive Embedding +
Incrementality (hot update)

Prof. U. Aßmann, CBSE 54

Transconsistency Goes
Beyond Transclusion

►  Transclusion only treats embedding and hot update
►  It does not treat

■  Operations beyond embedding
■  Data flow graphs of these operations
■  Components

Prof. U. Aßmann, CBSE 55

Examples for Transconsistency

Spreadsheets: A spreadsheet relies on a dataflow graph (pipe-and-
filter)
■  It is a set of slices, i.e., a set of expressions, or scriptlets
■  A scriptlet describes a dataflow graph of operations
■  Every slice is independent, i.e., can be recomputed independently

►  Spreadsheets are simple active document with transconsistency, i.e.,
immediate update

►  Spreadsheets do not have architecture
■  No component model nor composition interface

Web Documents: Servlet-based documents rely on re-expansion if
users change forms or templates

►  The servlets span up a data flow graph
■  Templates and form inputs are the inputs
■  Result pages the output

►  The regeneration is an implementation of transconsistency

CBSE, © Prof. Uwe Aßmann 56

41.4.2 Transconsistent Architectures

Uniform Composition of Active Documents with Staging
and Transconsistency

Prof. U. Aßmann, CBSE 57

Transconsistent Documents

►  Transconsistent documents are active documents with explicit
transconsistent architecture
■  Like spreadsheets, but with explicit architecture
■  Based on a

.  Dataflow graph

.  Graybox component model (invasive embedding)

.  Incrementaility (Hot update)

►  Purpose of Transconsistent Architectures
■  Transconsistency copes interactive editing
■  This is fundamentally different to the so-far batch-oriented style of software

construction, software build, and software execution
■  Transconsistency is needed in software editing, too

CBSE, © Prof. Uwe Aßmann 58

41.5 Transconsistent Architectural
Styles

Composition of Active Documents with Staging and
Transconsistency

Prof. U. Aßmann, CBSE 59

Web Form Processing with JSP

►  Should be transconsistent...

Form field

Form result Html
snippet

Servlet
expansion

Java servlet Class

JSP

Prof. U. Aßmann, CBSE 60

Spreadsheet-documents and Pipe-And-Filter
Architectures

►  Spreadsheet-Documents: A spreadsheet-document is a an active
document with a pipe-and-filter architecture
■  Resembles spreadsheets
■  The question is how often the filter architecture is evaluated for transconsistency
■  A web form (e.g., JSP) is a distributed spreadsheet-document

Prof. U. Aßmann, CBSE 61

2-Pass Transconsistent Documents

►  Transconsistent documents underly a dependency graph for their
update
■  This dependency graph must be acyclic

►  Evaluation classes for transconsistent documents
■  1-pass problems along the document (all definitions before uses)
■  2-pass (backpatch problems) along the document
■  Statically orderable along the dependencies (similar to wavefront or OAG)
■  Form processing

Prof. U. Aßmann, CBSE 62

Citations and Bibtex
(2-Pass-Document)

\cite{\(.*\)}

references

all in set

.bbl
file

bibtex

.bib
file

extract(„@InBook
{.*}“)

bibref
file

Prof. U. Aßmann, CBSE 63

References
(2-Pass-Document)

\ref{\(.*\)}

references

all in set

chapter
numbers

unification

ref
file

\label{\(.*\)}

all in set

label
file

Prof. U. Aßmann, CBSE 64

Central Tables (2-Pass-Document)

deliverable
table

\begin{deliverable}
.*
\end{deliverable}

deliverables

all in set

Prof. U. Aßmann, CBSE 65

Person Cost Calculation Central Tables (2-
Pass-Document)

sum up
person months

\begin{tasks}
.* & \(.*\) \\
\end{tasks}

PersonMonths

all in set

Prof. U. Aßmann, CBSE 66

Stream-Documents (Spreadsheet Documents
with Pipe Ports)

►  Instead of being a closed document, spreadsheet-documents can be
open in the sense that they take in data streams over stream ports
■  START submission phase
■  START reviewing phase

►  Such a change corresponds to a document extension, but works via
communication channels/connectors

►  User changes and sends via ports are the similar effects
■  User change: change component values
■  Send via ports: change from external world

Prof. U. Aßmann, CBSE 67

Transconsistent Documents:
Roundtrip Engineering Documents

Requirements aspect

Testing aspect

Core
(Algorithm)

Op

Consistent
roundtrip

editing of views

Op
Op

Op

Op

Op Op

Testing

Architecture aspect

Architecture
Prof. U. Aßmann, CBSE 68

Transconsistent Architectural Styles for Active
Documents

Spreadsheet-Documents
(interactive)

Stream-Documents

Round-trip
Documents

2-Pass Documents

Web-Form-Documents
(distributed, interactive)

CBSE, © Prof. Uwe Aßmann 69

Benefit of Transconsistent
Architectures For Active Documents

Prof. U. Aßmann, CBSE 70

Advantages of Transconsistent Active
Documents

►  Beyond standard document models (such as OLE):
■  Explicit distinction between architecture and content
■  Better reuse
■  Can be combined with staged composition for Web engineering

►  Beyond spreadsheets:
■  Full table and sheet extension, not only value transconsistency (table extension

hot update)

►  Beyond template-based documents:
■  Decentralized definition of databases/relations

►  Benefits for Web Engineering
■  Transconsistent active documents provide a first unified model for web- and

document engineering
■  Beyond simple approaches such as JSP, ASP
■  Improvement of quality:

.  Documentative due to architecture

.  Gets rid of the spagetti code in web engineering

Prof. U. Aßmann, CBSE 71

Summary

►  For engineering of active documents, explicit distinction of
architectures is important
■  Invasive embedding is required
■  Data flow graphs are required

►  Transconsistent architectures are an important architectural styles for
active documents
■  Rely on an extended concept of transclusion
■  Cope with streams of interactive input

Prof. U. Aßmann, CBSE 72

The End

