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Al| System Builds as Composition Expressions and Al A System Builder Executes a Composition
®,l| Programs Oyl

» A composition expression or composition program in a composition
language describes a system build
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Turing-Completeness of Composition Languages

50.1 Configuration Management With s

Acyclic Composition Programs
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Configuration as Control-Flow of Composition A
Programs Oy

» If a composition language is not turing-complete
= The architecture of the system is simple
= Can be analyzed much better:
- Termination can be proved
» If a composition language is turing-complete
= The system is more complex
= Complex architectures, also recursive ones, can be described
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A Configuration Variable
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» Composition programs may contain control-flow statements

» They are executed before the components run

= They configure the components, because they depend on static control-flow
conditions

- Global configuration variables
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A configuration of a system relies on an acyclic composition program.

» This composition program is a configuration because it is acyclic
» Its variables are configuration switches

/I Variant selection for instantiation of generic parameter
public class CompositionPro {
public static void main ing[] argv) {
if (argv[1].equals("-tin")) variant1= true; else variant1 = false;
ClassBox SimpleList = compositionSystem.createClassBox("SimpleList");
if (variant1){
ClassBox bagOfPieces =
SimpleList.bindGenericType("ElementType","Tin");
}else {
ClassBox bagOfPieces =
SimpleList.bindGenericType("ElementType","MetalPlate");
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50.2 Lazy Evaluation of Composition
Programs

Traditional Configuration with Cpp
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» The C preprocessor is a simple acyclic composition/configuration language
= with configuration switches for fragment configuration
» Evaluated statically, before compilation

#ifdef ConfigurationVariable
<fragment variant 1>
#else
<fragment variant 2>
#endif

Eager and Lazy Builds of Composition Programs
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As all programs, composition programs can be evaluated with different
evaluation strategies

Eager: direct execution of all composition operations
» Lazy: as needed
Lazy evaluation is important when
= Something changes and the system architecture should be recomputed
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Configuration of Packages with Embedded
Composition Programs
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Al|l Make as an Example
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» Make is a lazy system builder
» Composition language is rule-based

= Rule dependencies are lazily recomputed

= Composition expressions are applications of UNIX tools (compiler, linker,
generator, preprocessor)

Package with Composition Class Hooks
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» Composition classes itself can be hooks of packages

» Then, in system configuration, they can be re-bound (stage 1)
= This is metacomposition, production of composition programs

» When the configured composition classes are executed (stage 2)
= They configure the system differently
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Stage 1: Metacomposition: Binding Composition
Programs in Different Variants

Stage 2: Execution of Composition Programs
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The End
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