
CBSE, © Prof. Uwe Aßmann 1

Part V - Features of Composition
Languages
50. Configuration with Acyclic Composition
Programs

1) Configuration
management with
acyclic comp. programs

2) Lazy evaluation of
composition programs

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

2

Obligatory Reading

► ISC book Chapter 3, 4

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

3

Literature

► Dami, Laurent. Software Composition. PhD University Geneva 1997. The
centennial work of the Lambda-N calculus

► Mulet, P., Malenfant, J., Cointe, P. Towards a Methodology for Explicit
Composition of MetaObjects. OOPSLA 98.

► Forman, Danforth: MetaClasses in C++. Addison Wesley. 1999. Excellent
book on metaclasses and metaclass composition.

► Oscar Nierstrasz and Theo Dirk Meijler. Requirements for a composition
language. In Paolo Ciancarini, Oscar Nierstrasz, and Akinori Yonezawa,
editors, Object-Based Models and Langages for Concurrent Systems,
LNCS 924, pages 147-161. Springer, 1995.

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

4

Composition Level

Component
Model

Composition
Technique

Composition
Language

Composition System

Component
Model of
Composition
Language

Composition
Technique
for Composition
Language

Composition
Language for
Composition
Language

Composition Language

Component and
Composition Language Level

► Holds for black-box and grey-box composition systems

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

5

System Builds as Composition Expressions and
Programs

► A composition expression or composition program in a composition
language describes a system build

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

6

A System Builder Executes a Composition

Op

Op
Op

Op

Op

Op

AA

BB

CC

AA

BB

CC

A.h1 B.h2

C1

C1

AA

BB

CC
C1

C2

C3

C.h1

C2

A.h2

A

C1

AAA.h1 B.h1

C.h2

C3

B.h2

Composition
Level

C.h1

C2

A.h2

A

C1

AAA.h1 B.h1

C.h2

C3

B.h2

D=C4

AA

BB

CC
C1

C2

C3

D

Component
Level

Composition
Level

C.h1

C2

A.h2A

C1

AAA.h1 B.h1 C.h2

C3

B.h2

F

AA

BB

CC
C1

C2

C3

F

Component
Level

DD

EEC4

C5

C6

G

C4

D.h1

C5

E.h1 D.h2 E.h2

C6

G

CBSE, © Prof. Uwe Aßmann 9

50.1 Configuration Management With
Acyclic Composition Programs

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

10

Turing-Completeness of Composition Languages

► If a composition language is not turing-complete
■ The architecture of the system is simple
■ Can be analyzed much better:

. Termination can be proved

► If a composition language is turing-complete
■ The system is more complex
■ Complex architectures, also recursive ones, can be described

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

11

Configuration as Control-Flow of Composition
Programs

► Composition programs may contain control-flow statements
► They are executed before the components run

■ They configure the components, because they depend on static control-flow
conditions

. Global configuration variables

A configuration of a system relies on an acyclic composition program.

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

12

A Configuration Variable

► This composition program is a configuration because it is acyclic
► Its variables are configuration switches

// Variant selection for instantiation of generic parameter
public class CompositionProgram {
 public static void main (String[] argv) {
 if (argv[1].equals("-tin")) variant1= true; else variant1 = false;
 ClassBox SimpleList = compositionSystem.createClassBox("SimpleList");
 if (variant1) {
 ClassBox bagOfPieces =
 SimpleList.bindGenericType("ElementType","Tin");
 } else {
 ClassBox bagOfPieces =
 SimpleList.bindGenericType("ElementType","MetalPlate");
 }
 }
}

Configuration switch (configuration variable)

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

14

Traditional Configuration with Cpp

► The C preprocessor is a simple acyclic composition/configuration language
■ with configuration switches for fragment configuration

► Evaluated statically, before compilation

#ifdef ConfigurationVariable

<fragment variant 1>

#else

<fragment variant 2>

#endif

CBSE, © Prof. Uwe Aßmann 16

50.2 Lazy Evaluation of Composition
Programs

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

17

Eager and Lazy Builds of Composition Programs

► As all programs, composition programs can be evaluated with different
evaluation strategies

► Eager: direct execution of all composition operations
► Lazy: as needed
► Lazy evaluation is important when

■ Something changes and the system architecture should be recomputed

C.h1

C2

A.h2

A

C1

AAA.h1 B.h1

C.h2

C3

B.h2

D=C4

AA

BB

CCC1

C2

C3

D

C.h1

C2

A.h2

C1

A.h1 B.h1

C.h2

C3

B.h2

D=C4

2

1

3

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

19

Make as an Example

► Make is a lazy system builder
► Composition language is rule-based

■ Rule dependencies are lazily recomputed
■ Composition expressions are applications of UNIX tools (compiler, linker,

generator, preprocessor)

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

20

Configuration of Packages with Embedded
Composition Programs

► Composition classes itself can be hooks of packages
► Then, in system configuration, they can be re-bound (stage 1)

■ This is metacomposition, production of composition programs

► When the configured composition classes are executed (stage 2)
■ They configure the system differently

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

21

MyClass1

MyClass2

MyClass1

MyClass2

ListMaker

ServiceMaker

recoder

list abstraction

abstraction

Package with Composition Class Hooks

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

22

Stage 1: Metacomposition: Binding Composition
Programs in Different Variants

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

23

Stage 2: Execution of Composition Programs
P

ro
f .

U
. A

ß
m

a
n n

,
C

B
S

E

24

The End

