Part V - Features of Composition
Languages

Programs

>

1) Configuration
management with
acyclic comp. programs

2) Lazy evaluation of
composition programs

A

50. Configuration with Acyclic Composition

A

®q|

Obligatory Reading

Prof. U. ABmann, CBSE

CBSE, © Prof. Uwe ABmann

Literature

& G

» ISC book Chapter 3, 4

Component and
Composition Language Level

Prof. U. ABmann, CBSE

v

v

v

Dami, Laurent. Software Composition. PhD University Geneva 1997. The
centennial work of the Lambda-N calculus

Mulet, P., Malenfant, J., Cointe, P. Towards a Methodology for Explicit
Composition of MetaObjects. OOPSLA 98.

Forman, Danforth: MetaClasses in C++. Addison Wesley. 1999. Excellent
book on metaclasses and metaclass composition.

Oscar Nierstrasz and Theo Dirk Meijler. Requirements for a composition
language. In Paolo Ciancarini, Oscar Nierstrasz, and Akinori Yonezawa,
editors, Object-Based Models and Langages for Concurrent Systems,
LNCS 924, pages 147-161. Springer, 1995.

Prof. U. ABmann, CBSE

» Holds for black-box and grey-box composition systems

Composition Language

Composition

Language for
Composition

Language

Component Composition
Model of Technique
Composition for Composition

Lanauage Language

Composition Level /

Composition System

Composition Composition
Component C Lanauade

Al| System Builds as Composition Expressions and Al A System Builder Executes a Composition
®,l| Programs Oyl

» A composition expression or composition program in a composition
language describes a system build

Prof. U. ABmann, CBSE
Prof. U. ABmann, CBSE

D » O

c ’ C1 D=C4 c ’
omposition omposition
Level /\ / Level
A.h1 B.h1 C1 F G
Cc3 ya
1 /N AnBh / \\ / ‘ \
/N - B.h2 C.h2 o o3 C1 c2 c3 c4 C5 cé
A.h1 B.h2 %
/N NN SV N L AN
Ah2 Chi Ah2 Ch Bh2 C.h2 Ah1Bh1 Ah2 Ch1Bh2 Ch2 Dh1 Eh1 Dh2 Eh2
Component Component
Level Level
B
]

A

Turing-Completeness of Composition Languages

50.1 Configuration Management With s

Acyclic Composition Programs

B

Prof. U. ABmann, CBSE

.A

CBSE, © Prof. Uwe ABmann

> ®
Configuration as Control-Flow of Composition A
Programs Oy

» If a composition language is not turing-complete
= The architecture of the system is simple
= Can be analyzed much better:
- Termination can be proved
» If a composition language is turing-complete
= The system is more complex
= Complex architectures, also recursive ones, can be described

10

A Configuration Variable

Prof. U. ABmann, CBSE

» Composition programs may contain control-flow statements

» They are executed before the components run

= They configure the components, because they depend on static control-flow
conditions

- Global configuration variables

Prof. U. ABmann, CBSE

A configuration of a system relies on an acyclic composition program.

» This composition program is a configuration because it is acyclic
» Its variables are configuration switches

/I Variant selection for instantiation of generic parameter
public class CompositionPro {
public static void main ing[] argv) {
if (argv[1].equals("-tin")) variant1= true; else variant1 = false;
ClassBox SimpleList = compositionSystem.createClassBox("SimpleList");
if (variant1){
ClassBox bagOfPieces =
SimpleList.bindGenericType("ElementType","Tin");
}else {
ClassBox bagOfPieces =
SimpleList.bindGenericType("ElementType","MetalPlate");

12

50.2 Lazy Evaluation of Composition
Programs

Traditional Configuration with Cpp

Prof. U. ABmann, CBSE

» The C preprocessor is a simple acyclic composition/configuration language
= with configuration switches for fragment configuration
» Evaluated statically, before compilation

#ifdef ConfigurationVariable
<fragment variant 1>
#else
<fragment variant 2>
#endif

Eager and Lazy Builds of Composition Programs

14

Prof. U. ABmann, CBSE

CBSE, © Prof. Uwe ABmann

v

As all programs, composition programs can be evaluated with different
evaluation strategies

Eager: direct execution of all composition operations
» Lazy: as needed
Lazy evaluation is important when
= Something changes and the system architecture should be recomputed

v

v

17

3
D=C4 D=C4
C1 C1
A.h1B.h1 A.h1B.h1
2
C2 C3 C2 C3
a /

\ AN
/
A.h2 B.h2

Configuration of Packages with Embedded
Composition Programs

1 Z .
/
\/ﬁ_\\\

A.h2 B.h2

Al|l Make as an Example
.D P

Prof. U. ABmann, CBSE

>
=

» Make is a lazy system builder
» Composition language is rule-based

= Rule dependencies are lazily recomputed

= Composition expressions are applications of UNIX tools (compiler, linker,
generator, preprocessor)

Package with Composition Class Hooks

19

Prof. U. ABmann, CBSE

» Composition classes itself can be hooks of packages

» Then, in system configuration, they can be re-bound (stage 1)
= This is metacomposition, production of composition programs

» When the configured composition classes are executed (stage 2)
= They configure the system differently

recoder

abstraction

ListM

aker

Prof. U. ABmann, CBSE

abstraction

(MyClassl)

MyClass1
(ROt)

ServiceMaker

N
=

Stage 1: Metacomposition: Binding Composition
Programs in Different Variants

Stage 2: Execution of Composition Programs

Prof. U. ABmann, CBSE

23 2%

The End

Prof. U. ABmann, CBSE

Prof. U. ABmann, CBSE

24

P

ol

—
¥ N\

23

