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Part V - Features of Composition 
Languages
50. Configuration with Acyclic Composition 
Programs

1) Configuration 
management with 
acyclic comp. programs

2) Lazy evaluation of 
composition programs
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Obligatory Reading

► ISC book Chapter 3, 4
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► Holds for black-box and grey-box composition systems
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System Builds as Composition Expressions and 
Programs

► A composition expression or composition program  in a composition 
language describes a system build
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A System Builder Executes a Composition
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50.1 Configuration Management With 
Acyclic Composition Programs
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Turing-Completeness of Composition Languages

► If a composition language is not turing-complete
■ The architecture of the system is simple
■ Can be analyzed much better:

. Termination can be proved

► If a composition language is turing-complete
■ The system is more complex
■ Complex architectures, also recursive ones, can be described
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Configuration as Control-Flow of Composition 
Programs

► Composition programs may contain control-flow statements
► They are executed before the components run

■ They configure the components, because they depend on static control-flow 
conditions

. Global configuration variables

A configuration of a system relies on an acyclic composition program.
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A Configuration Variable

► This composition program is a configuration because it is acyclic
► Its variables are configuration switches 

// Variant selection for instantiation of generic parameter
public class CompositionProgram {
  public static void main (String[] argv) {
    if (argv[1].equals("-tin")) variant1= true;  else variant1 = false;
    ClassBox SimpleList = compositionSystem.createClassBox("SimpleList"); 
    if (variant1) {
      ClassBox bagOfPieces = 
        SimpleList.bindGenericType("ElementType","Tin"); 
    } else {
      ClassBox bagOfPieces = 
        SimpleList.bindGenericType("ElementType","MetalPlate"); 
    }
  }
}

Configuration switch (configuration variable)
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Traditional Configuration with Cpp

► The C preprocessor is a simple acyclic composition/configuration language
■ with configuration switches for fragment configuration

► Evaluated statically, before compilation

#ifdef ConfigurationVariable

<fragment variant 1>

#else

<fragment variant 2>

#endif
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50.2 Lazy Evaluation of Composition 
Programs
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Eager and Lazy Builds of Composition Programs

► As all programs, composition programs can be evaluated with different 
evaluation strategies

► Eager: direct execution of all composition operations
► Lazy: as needed
► Lazy evaluation is important when 

■ Something changes and the system architecture should be recomputed
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Make as an Example

► Make is a lazy system builder
► Composition language is rule-based

■ Rule dependencies are lazily recomputed
■ Composition expressions are applications of UNIX tools (compiler, linker, 

generator, preprocessor)
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Configuration of Packages with Embedded 
Composition Programs

► Composition classes itself can be hooks of packages
► Then, in system configuration, they can be re-bound (stage 1)

■ This is metacomposition, production of composition programs

► When the configured composition classes are executed (stage 2)
■ They configure the system differently
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MyClass1

MyClass2
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recoder
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Package with Composition Class Hooks
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Stage 1: Metacomposition: Binding Composition 
Programs  in Different Variants
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Stage 2: Execution of Composition Programs 
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The End


