
CBSE, © Prof. Uwe Aßmann 1

52. Staged Software Architectures

Prof. Dr. Uwe Aßmann

Technische Universität
Dresden

Institut für Software- und
Multimediatechnologie

Version 12-0.9, 06.07.12

1) Web programming considered
harmful

1) Problem 1: Untyped
template expansion

2) Problem 2: Staging

3) Problem 3: Spaghetti
Code

2) Staged Architectures P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

2

A Staged Architecture from Nature

CBSE, © Prof. Uwe Aßmann 3

52.1 Web Programming Considered
Harmful

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

4

Web Programming: Staged, Untyped Template
Expansion

html

html java

java sql

xmlxslt

xslt

Sql expansion

html html html html

html java htmlhtml

Xslt transformation

java expansion

Stage 1

Stage 2

Stage 3

Stage 4 Runtime execution or interpretation of data

Embedding
after
Expansion

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

5

Problems of Web Programming

► Untyped extensions of templates
■ Error-prone

► Comprehension very difficult, due to the different stages
► Spaghetti-code-like programs

■ Scripts mixed with templates
■ Only valuable for programming-in-the-small

CBSE, © Prof. Uwe Aßmann 6

52.1.1 Problem 1: Untyped Template
Expansion

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

7

Type-Safe Template Expansion

► How can you be sure that table rows are filled in?

► Answer: in an invasive document composition system, the type checker of
the invasive composition program will tell you, when checking the
composition step C

html java
<tr>

C
P

ro
f .

U
. A

ß
m

a
n n

,
C

B
S

E

8

Universality of Invasive Composition

► Invasive composition only depends on a metamodel of the language
■ New hook and slot models can be derived from any language
■ Typing controls the composition of artifacts

► Hence, the method is universal
► and can be applied for typed document composition
► See www.reuseware.org, the universal invasive composition environment,

■ Can be tailored for text-based and diagrammatic languages
■ OpenOffice
■ XML dialects
■ EMF-based

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

9

Elements of Web Composition Systems

Component Model
XML templates

Component Model
XML templates

Composition Technique
Parameterization

Extension
In-place-expansion of scripts

Composition Language
none

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

10

The Component Model of Invasive XML
Composition

► The component is a fragment
component (template)

■ A subword of the language, with
holes

► Slots are variation points of a
component

■ Parameters
■ Positions, which are subject to

change

► Hooks are extension points
► Example:

■ A generic XML tree
■ A XML list with extension points

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

11

Extension of XML Fragment Components Should
can be Typed

► What can be placed into an XML list entry/exit?

 ...
 ...

List.entry

List.exit

Slot and hook types are given by an XSchema, a metamodel of the XML
document

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

12

List Entry List Entry

List ExitList Exit

 ...
 ...

XMLcomponent.findHook(„ListEntry“).extend(„... ”);

XMLcomponent.findHook(„ListExit“).extend(“... ”);

 ...
 ...
 ...
 ...

Typed Hook Expansion for XML Components

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

13

Insight: Web Systems Need Typed Template
Processing

Problem: Web programming is based on untyped template
expansion (frame processing)

Problem: Web programming is based on untyped template
expansion (frame processing)

It should be based on typed template expansion (invasive composition)It should be based on typed template expansion (invasive composition)

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

14

The Hierarchy of Staged Architectures

Untyped template expansion

Typed template expansion

CPP, macros, web templates,
frame processing

Universal
invasive composition
(also for XML)

CBSE, © Prof. Uwe Aßmann 15

Problem 2: Staging

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

16

The JSP Mechanism

PagePage

Tag LibrariesTag Libraries

JSP
Engine
(Generator)

JSP
Engine
(Generator)

Web ServerWeb Server

JSP servlet
ServerExtension

JSP servlet
ServerExtension

Html fragmentsHtml fragments

Page templatePage template

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

17

Spagetti Code from JSP Tutorial - Belongs to
Different Execution Stages

<html>

<%@page language=”java” imports=”java.util.*” %>

<h1> Welcome! </h1>

<jsp:useBean id=”clock” class=”jspCalendar” />

<p> Today is

<%=clock.getYear() %>-<%=clock.dayOfTheMonth() %>

</p>

<p>

<% if (Calender.getInstance().get(Calendar.AM_PM) == Clalender.AM) %>

 Good Morning!

<% }else { %>

 Good afternoon...

<% } %>

</p>

<html>

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

18

A Web Scripting Language with 5 Stages

<xfa1:profession>

 <xfa2:ref pop-up>

 <sql>select arbitrary lastName from bakers</sql> baker

 <xfa2:ref pop-up>

</xfa1:profession>

<xfa:function hello>

 <body>

 <h1>This is My Personal Page with XFA</h1>

 <xfa:if Odd(environment^DATE)>

 <xfa:ref message>

 <xfa:else>

 Even day. No money for <xfa1:profession> :-(

 </xfa:if>

 </body>

</xfa:function>

<xfa:function message>

 Odd day today, dear student. You may visit the <xfa1:profession> shop.

</xfa:function>

[until 2003: www.xml4all.com]

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

19

A Possible Solution: Staged Programming

► In the Beginning, there was the Data

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

20

Then Came the Programs

► Producing lots of data out of little code

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

21

Then Came the Metaprograms

► Producing lots of programs from few metaprograms

Reinterpretation
as Code

Metaprogram

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

22

Then Came the Staged Metaprograms

► Invented by Chiba, Sheard, Taha

Reinterpretation
as Code

Metaprogram

Reinterpretation
as Code

Runtime 2

Runtime 1

Runtime 0

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

23

Staged Programming

► Staged programming (e.g., MetaML, MetaOCaML) has pioneered the mix of
static metaprograms and programs

■ The metaprograms are expanded statically (stage 1) to produce the final
program (stage 2)

■ Metaprograms are typed in the metamodel of the programs (type-safe expansion
of metaprograms)

► Example [Taha]:
let a = 1+2;;

val a: int = 3

let a = .<1+2>.;;

val a: int code = .<1+2>.

let b = .! a;;

val b = 3

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

24

JSP Uses Staged Programming

html

html java

java JSP

JSP expansion

html html html html

java expansion

Stage 1

Stage 2

Stage 3 Iinterpretation of data

java

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

25

Spagetti Code Revisited

<html>

<%@page language=”java” imports=”java.util.*” %>

<h1> Welcome! </h1>

<jsp:useBean id=”clock” class=”jspCalendar” />

<p> Today is

<%=clock.getYear() %>-<%=clock.dayOfTheMonth() %>

</p>

<p>

<% if (Calender.getInstance().get(Calendar.AM_PM) == Clalender.AM) %>

 Good Morning!

<% }else { %>

 Good afternoon...

<% } %>

</p>

<html>

Servlet generator expands
blue lines to Java code

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

26

Example 2:
Staged Servlet/Applet Processing

html

html

Java
applet

Java
servlet

JSP expansion

java expansion

Stage 1

Stage 2
Iinterpretation of data

Java
applet

Java
applet html

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

27

Insight 2: Web Systems Need Staged Programming

► Because for dynamic web pages, code is generated
■ E.g., servlet or applet generation

► Because of the client-server stage separation
► Because legacy tools must be encapsulated into a stage (e.g., databases)

Web programming is often based on
staged programming

Web programming is often based on
staged programming

Staged programming should additionally be typed, otherwise
it is chaotic

Staged programming should additionally be typed, otherwise
it is chaotic

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

28

N.B.: Configuration and Variant Selection works
with Staged Programming

fun f variant =
if variant = 1 then .<.fun q x = x*x.>.

 else .<.fun q x = x/x.>.

;;

let variant = 1;;
fun g = (f variant) 2;;
val g: int code = .<let q x =
x*x>.

let res = g 3;;
val res = 9

let variant = 2;;
let g = (f variant) 2;;
val g: int code = .<let q x =
x/x>.

let res = g 3;;
val res = 1

Different behavior
of second stage

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

29

Staging Is Used for Variant Management

On stage n-1, control-flow denotes variant selection for
stage n

On stage n-1, control-flow denotes variant selection for
stage n

Platforms are often selected by evaluating control-flow in
previous stages

Platforms are often selected by evaluating control-flow in
previous stages

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

30

Spagetti Code Revisited

#ifdef HTML

<html>

#else

<wap>

#endif

<%@page language=”java” imports=”java.util.*” %>

#ifdef HTML

<h1> Welcome! </h1>

#else

<bold>Welcome!</bold>

#endif

<jsp:useBean id=”clock” class=”jspCalendar” />

#ifdef HTML

<p>

#endif

.......

CPP stage selects
HTML or WAP

Evaluating the CPP script
chooses the platform

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

31

The C Preprocessor as Staged Programming System

► C with #ifdef language is a real staged programming system
► That's why it's being used...
► That's why it's so hard to deal with

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

32

Platform
Independent
Models
(PIM)

A Staged Programming System: MDA

+

+

+ MDA weavers
integrate
platform variants
into staged
models

Platform
Specific
Models

Platform Specific
Model (PSM)

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

33

Staged Programming Architectures vs MDA

► MDA is a staged programming approach, but not a staged programming
architecture, since no architecture, no component models are given

► ... but a staged programming technology for variant selection

... but we can build more powerful forms of MDA by taking in the
ideas of staged programming and staged architectures

... but we can build more powerful forms of MDA by taking in the
ideas of staged programming and staged architectures

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

34

Staged Architectures Written as Layers

+

+

+

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

35

Advantages of Staged Programming

► Typed
■ Type-safe development, less error-prone

► Concise representation of system
■ Representation is expanded through every stage

► Easy to code variants
■ Control flow on a build stage does variant selection

► Problems:
■ Still, lots of spaghetti code.

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

36

Example: The START Conference Management System

► START is a review management system
■ It has a 5-phase staged template expansion architecture
■ START servlets are composition scriptlets that compose (parameterize, extend)

html-templates

► Using invasive composition, we developed a staged typed template
expansion system

► It is no problem to generate servlets, too. Then we have real staged
programming

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

37

The Staged Template Expansion Architecture of
START

Paper Data

Extension

Summary Page

Evaluation Page

Selection

Summary fragment

Bid form
calculation

Bidding page

Score evaluation

Review

Ranking

*

*

Review status page

Allocation

Submission

Acceptance

Configuration Portal pages

*

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

38

The Hierarchy of Staged Architectures

Untyped template expansion

Typed template expansion

Staged programming
(typed, spaghetti)

Staged untyped template expansion

Staged typed template expansion

CPP, macros, web templates,
frame processing

Invasive composition

Staged web processing

CBSE, © Prof. Uwe Aßmann 39

54.1.3 Problem 3: Spaghetti
Code

and a possible remedy:

staged architectures

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

40

Architecture and Composition

► Two of the central insights of the software engineering in the 1990s are:

Separate architecture from the componentsSeparate architecture from the components

Compose components by a composition languageCompose components by a composition language

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

41

Benefit of Architectures

► Comprehensibility
► Commonalities into the architectural level, variabilities into the application-

specific components
► Does this also hold for web programming?

Office Backbone

Word processor SpreadsheetSlide Program

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

42

Less Spaghetti Code: A Fragment-Based Template
and its Architecture

<html>

 <hook id=”imports”>

<h1> Welcome! </h1>

 <hook id=use”>

<p> Today is

<hook id=”year”/>

 -<hook id=”day”/>

</p>

<p>

 <hook id=”greeting”/>

</p>

<html>

public class composeTemplate {
 String use = „jspCalendar“
 String imports=”java.util.*”;

 compose() {
 Template template = read();
 Bean clock = new jspCalendar();
 String year = clock.getYear();
 String day = clock.dayOfTheMonth();
 if (Calender.getInstance().get(Calendar.AM_PM) ==

Calender.AM)
 greeting = “Good Morning!”;
 else
 greeting = “Good afternoon...”;
 this.merge(template);
 }
}

Component Composition Program (Architecture)

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

43

Separation of Components and Architecture Allows
for Variants

<html>

 <hook id=”imports”>

<h1> Welcome! </h1>

 <hook id=use”>

<p> Today is <hook id=”year”/>

 -<hook id=”day”/>

</p><p> <hook id=”greeting”/>

</p>

</html>

public class composeTemplate {
 String use =
 String imports=
 compose() {
 String year =
 String day =
 greeting =
 }
}

<wap>

 <hook id=”imports”>

<bold> Welcome! </bold>

 <hook id=use”>

<p> Today is <hook id=”year”/>

 -<hook id=”day”/>

</p><p> <hook id=”greeting”/>

</p>

</wap>

Component 1 Component 2

Composition Program (Architecture)

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

44

Architecture and Variants in a Product Line

► Advantages for Separating Architecture From Application Components
■ Isolation of commonalities into frameworks
■ Comprehensibility

. Programming-in-the-large is separated from programming-in-the-small, components
can be abstracted away

. Less spaghetti

■ Easy variability (variant configuration)

Component 1 Component 2

Variant 1 Variant 2

HTML application

Architecture

Wap application

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

45

Variant Management by Control Flow in
Architectural Composition Programs

<html>

 <hook id=”imports”>

<h1> Welcome! </h1>

 <hook id=use”>

<p> Today is <hook id=”year”/>

 -<hook id=”day”/>

</p><p> <hook id=”greeting”/>

</p>

</html>

public class composeTemplate {
 if (HTML) then use component 1
 else use component 2
 String use =
 String imports=
 compose() {
 String year =
 String day =
 greeting =
 }
}

<wap>

 <hook id=”imports”>

<s1> Welcome! </h1>

 <hook id=use”>

<p> Today is <hook id=”year”/>

 -<hook id=”day”/>

</p><p> <hook id=”greeting”/>

</p>

</wap>

Variant 1 Variant 2

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

46

Definition: Staged Data-Flow Architectures

► Every stage is executed to produce data for the next stage (data-flow)
► Every stage is executed at a specific time
► On every stage, there is

■ an architecture,
■ a component model
■ a composition technique,
■ and a composition language

► Every composition language has its own interpreter
■ and is reduced (expanded) at different interpretation times

Staged data-flow architectures add an explicit architectural level
to staged template processing

Staged data-flow architectures add an explicit architectural level
to staged template processing

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

47

Web Programming needs Staged Data-Flow
Architectures

► It would be nice to extend staged typed template expansion in web
engineering to

► staged data-flow architectures.

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

48

Definition: Staged Architectures

► Every stage is executed to produce code for the next stage
■ The final runtime code (architecture and components) is computed over several

stages
■ The initial architecture is very small, the final architecture can be very large
■ Composition expressions, specifications, or programs may be hidden in

components of a previous stage

Staged programming architectures combine staged
programming with an explicit architectural level

Staged programming architectures combine staged
programming with an explicit architectural level

Staged architectures

Staged data-flow
architectures

Staged programming
architectures

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

49

Staged Programming Architectures Separate Large
from Small

A0 A0 A0

Stage-A0 architecture in
composition language A0
Component language C0

A0
A0

Generated
Stage-An architecture in
composition language An
Component language Cn

Stage-0 An An

An
An

C0 C0

C0
C0

Cn Cn

Cn
Cn

Stage-n

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

50

Staged Programming Architectures may have
Different Component Models on Each Stage

A0
A0

An An A1

Stage-0 architecture in
composition language A0
Component language C0

A0
A0

An
An

An
An

An An A1

A1
A1

An
An

An
An

A1
A1

Stage 0

Stage 0 produces
Stage-1 architecture in
composition language A1
Component language C1

An
An

An An

An
An

An
An

An
An

An
An

An
An

An
An

Stage 1

Stage n-1 produces
Stage-n architecture in
composition language An
Component language Cn

Stage n-1

Cn
Cn C1

C1
C0

C0

Cn Cn

Cn
Cn

Cn
Cn

Cn
Cn

C0
C0

CBSE, © Prof. Uwe Aßmann 51

52.4 Staged Programming
Architectures in Software Engineering

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

52

Build Management is Staged Composition

Binary object
fi lesModules Runtime

components

Linker
component model

Compiler
component model Runtime

component model

► Software build management is code composition in several stages
► Composition language: Make, ant, maven, etc.

■ Make is a composition tool with a lazy rule-based language
■ Expressions are applications of UNIX tools (compiler, linker, generator,

preprocessor)

► Different component models on all stages

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

53

Invasive Software Composition

Code Fragment
Components

Runtime
components

Fragment
component model

Runtime
component model

(objects)

► Produces code from typed templates by parameterization and expansion

Stage-0
Composition level
language: Java

Stage-1

language: Java

Stage-0

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

54

Invasive Composition Produces Functional from
Composition Interfaces

Composition interface
with declared hooks

Functional interface

Invasive
composition

► Two different component models

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

55

Component Models on Different Levels in the
Software Process

COTS
components

Code Fragment
Components

Run time
components

Generic COTS
component model

Fragment
component model Run time

component model

► Standard COTS models are just models for binary code

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

56

The Dresden Staged Architecture Development
Process

► Fix the stages
■ Decide on a staged processing or programming architecture

► Fix the component models for every stage
■ Interface concepts, composition operations, composition language

► Fix the architectures
► Fix the variant management
► Fix the components

► And you'll have a pretty comprehensible product line!

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

57

The Vision of Staged Systems

► The staged programming principle is powerful, so future systems will employ
it

► We need tools to support staged architectures
■ Visualize them
■ Debug them
■ Support the component models on all stages

■ that's a lot of work...

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

58

The Hierarchy of Staged Architectures

Untyped template expansion

Typed template expansion

Staged programming
(typed, spaghetti)

Staged data-flow architectures
(typed, no spaghetti)

Staged untyped template expansion

Staged typed template expansion

CPP, macros, web templates,
frame processing

Invasive composition

Staged web processing

Staged programming architectures
(typed, no spaghetti)

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

59

What Have We Learned?

► Large systems have staged architectures based on
■ staged programming,
■ architectures,
■ and typed composition

► On every stage, there is a component model and composition system
► All component models, composition systems and architectures have to work

in synchronization
► Special cases:

■ The refinement-based software process (e.g., MDA)
■ Web systems, active documents
■ Invasive software composition
■ Standard build management

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

60

The Beauty of a Staged Programming Architecture

P
ro

f .
U

. A
ß

m
a

n n
,

C
B

S
E

61

The End

► www.easycomp.org
► http://www.the-compost-system.org
► U. Aßmann. Invasive Software Composition, 2003, Springer.
► U. Aßmann. Architectural Styles for Active Documents. Special Issue

“Software Composition” Science of Computer Programming, Elsevier,
2005.

► Walid Taha. A Gentle Introduction to Multi-Stage Programming. Domain-
Specific Program Generation, 2003, LNCS, pp. 30-50
http://www.springerlink.com/index/JEMT0D8VYN5JB2L8.pdf

► Tim Sheard: Accomplishments and Research Challenges in Meta-
programming. SAIG 2001: Proceedings of the Second International
Workshop on Semantics, Applications, and Implementation of Program
Generation, pp. 2-44, LNCS 2196, Springer-Verlag, 2001.

