
CBSE, © Prof. Uwe Aßmann 1

Component-Based Software
Engineering (CBSE)
1) Introduction
1.  Basics of Composition

Systems
2.  Historic Approaches to Black-

Box Composition
3.  Gray-Box Composition
4.  Ubiquitous Component

Models
Prof. Dr. Uwe Aßmann

Technische Universität Dresden
Institut für Software- und

Multimediatechnik
http://st.inf.tu-dresden.de

13-1.1, 18.04.13

Prof. U. Aßmann, CBSE 2

The Power of Components

http://upload.wikimedia.org/wikipedia/commons/thumb/1/13/
Container_ship_Hanjin_Taipei.jpg/800px-Container_ship_Hanjin_Taipei.jpg

https://en.wikipedia.org/wiki/Container_ship

Prof. U. Aßmann, CBSE 3

Goals

►  Understand what a composition system is
►  The difference of component-based and composition-based systems
►  The difference of component and composition systems
►  What is a composition operator? composition expression? composition

program? composition language?

►  Understand the difference between graybox and blackbox systems
(variability vs. extensibility)

►  Understand the ladder of composition systems
►  Understand the criteria for comparison of composition systems

Prof. U. Aßmann, CBSE 4

Obligatory Reading

►  [ISC], Chapter 1, Chapter 2
►  Douglas McIlroy's home page

http://cm.bell-labs.com/who/doug/
►  [McIlroy] Douglas McIlroy. Mass Produced Software Components. In

P. Naur and B. Randell, "Software Engineering, Report on a
conference sponsored by the NATO Science Committee, Garmisch,
Germany, 7th to 11th October 1968", Scientific Affairs Division,
NATO, Brussels, 1969, 138-155.
http://cm.bell-labs.com/cm/cs/who/doug/components.txt

CBSE, © Prof. Uwe Aßmann 5

1.1. Basics of Composition
Systems

Component-based software engineering is
built on composition systems.

A composition system has a component
model, a composition technique, and a

composition language.

Prof. U. Aßmann, CBSE 6

Motivation for Component-Based Development

►  Divide-and-conquer (Alexander the Great)
■  Well known in other disciplines

.  Mechanical engineering (e.g., German VDI 2221)

.  Electrical engineering

.  Architecture

►  Outsourcing to component producers
■  Components off the shelf (COTS)
■  Goal:

.  Reuse of partial solutions

.  Easy configurability of the systems: variants, versions, product families

►  Mass Produced Software Components [McIlroy]
■  Garmisch 68, NATO conference on software engineering
■  Every ripe industry is based on components, since these allow to manage large

systems
■  Components should be produced in masses and composed to systems

afterwards

Prof. U. Aßmann, CBSE 7

Mass-produced Software Components

Yet this fragile analogy is belied when we seek for analogues of other
tangible symbols of mass production.
• There do not exist manufacturers of standard parts, much less catalogues
of standard parts.
• One may not order parts to individual specifications of size, ruggedness,
speed, capacity, precision or character set.

 In the phrase `mass production techniques,' my emphasis is on
`techniques' and not on mass production plain. Of course mass production,
in the sense of limitless replication of a prototype, is trivial for software.

But certain ideas from industrial technique I claim are relevant.
• The idea of subassemblies carries over directly and is well exploited.
• The idea of interchangeable parts corresponds roughly to our term
`modularity,' and is fitfully respected.
• The idea of machine tools has an analogue in assembly programs and
compilers.

Prof. U. Aßmann, CBSE 8

Mass-produced Software Components

►  Later McIlroy was with Bell Labs,
■  ..and invented pipes, diff, join, echo (UNIX).
■  Pipes are still today the most employed component system!

►  Where are we today?

Prof. U. Aßmann, CBSE 9

Real Component Systems

►  Lego
►  Square stones
►  Building plans
►  IC‘s
►  Hardware bus
►  How do they differ from software?

Prof. U. Aßmann, CBSE 10

Definitions of Software Components

 A software component is a unit of composition
•  with contractually specified interfaces
•  and explicit context dependencies only.

 A software component

•  can be deployed independently and
•  is subject to composition by third parties.

 (ECOOP Workshop WCOP 1997 Szyperski)

 A reusable software component is a
•  logically cohesive,
•  loosely coupled module
•  that denotes a single abstraction. (Grady Booch)

 A software component is a static abstraction with plugs.
 (Nierstrasz/Dami)

Prof. U. Aßmann, CBSE 11

What is a Software Component?

►  A component is a container with
■  content (most often code snippets/fragments)
■  variation points
■  extension points
■  that are adapted during composition

►  A component is a reusable unit for composition

►  A component underlies a component model

■  that fixes the abstraction level
■  that fixes the grain size (widget or OS?)
■  that fixes the time (static or runtime?)

Prof. U. Aßmann, CBSE 12

What Is A Component-Based System?

►  A component-based system has the following divide-and-conquer
feature:
■  A component-based system is a system in which a major relationship between the

components is tree-shaped or reducible.
■  See course Softwaretechnologie-II

►  Consequence: the entire system can be reduced to one abstract node
■  at least along the structuring relationship

►  Systems with layered relations (dag-like relations) are not necessarily
component-based.
■  Because they cannot be reduced

►  Because of the divide-and-conquer property, component-based
development is attractive.
►  However, we have to choose the structuring relation and the composition model

►  Mainly, 2 types of component models are known
■  Modular decomposition (blackbox)

■  Separation of concerns (graybox)

Prof. U. Aßmann, CBSE 13

Component Systems (Component Platforms)

for description of
components

for compositions of
components

Component Model Composition Technique

►  We call a technology in which component-based systems can be
produced a component system or component platform.

►  A component system has

Prof. U. Aßmann, CBSE 14

Composition Systems

Composition

Language
for programming-in-the-

large
and architecture

Component Model Composition Technique

►  A composition system has

Prof. U. Aßmann, CBSE 15

Classical
Component Systems

Architecture Systems

Aspect Systems

View Systems

Darwin
BPMN HRC

Aspect/J
AOM

Invasive Composition
Piccola Gloo

Standard Components
Reflection

Architecture as Aspect
Connectors

Aspect Separation
Crosscutting

Composition
Operators

Composition
Language

Object-Oriented Systems
C++ Java
UML components

Objects as
Run-Time Components

Modular Systems Modules as Compile-
Time Components

Composition Filters
Hyperspaces

Software
Composition
Systems

.NET CORBA
Beans EJB
ArchJava

The Ladder of Composition Systems

Shell scripts
Modula Ada-85

Prof. U. Aßmann, CBSE 16

Desiderata for Flexible Software Composition

►  Component Model:
■  How do components look like?
■  Secrets, interfaces, substitutability

►  Composition Technique
■  How are components plugged together, composed, merged, applied?
■  Composition time (Deployment, Connection, ...)

►  Composition Language
■  How are compositions of large systems described?
■  How are system builds managed?

►  Be aware: this list is NOT complete!

Prof. U. Aßmann, CBSE 17

Desiderata Component Model

►  CM-M: Modularity
■  M1 Component interfaces and secrets

(information hiding):
.  Explicit specification of interfaces

(contact points, exchange points,
binding points, variation points,
extension points)

.  Explicit specification of
dependencies: Provided and
required interfaces

.  Location, way of deployment

.  Component lifetime
■  M2 Semantic substitutability

(conformance, contracts)
.  CM-M2.1 Syntactic substitutability

(typing)
.  CM-M2.2 Functional contracts
.  CM-M2.3 Quality contracts

■  M3 Content
.  Component language metamodel

►  CM-P: Parameterization of
components to their reuse
context
■  P1 Generic type parameters
■  P2 Generic program elements
■  P3 Property parameterization

►  CM-S: Standardization
■  S1 Open standards – or proprietary

ones
■  S2 Standard components
■  S3 Standard services

Prof. U. Aßmann, CBSE 18

Desiderata Composition Technique

►  CT-C: Connection and Adaptation
■  C1: Automatic Component Adaptation:

adapt the component interface to
another interface

■  C2: Automatic Glueing: Generation of
glue code for communication,
synchronization, distribution. Consists
of a sequence of adaptations

►  CT-E: Extensibility
■  E1: Base Class Extension: can base

classes be extended?
.  E1.1 Generated factories: can

factories be generated
.  E1.2 Generated access layers

■  E2: Views. Use-based extensions:
Can a use of a component extend the
component?

■  E3: Integrated Extensions. Can
extensions be integrated?

►  CT-A: Aspect separation
■  AS1: Aspect weaving: Extension by

crosscutting views
■  AS2: Multiple interfaces of a

component
►  CT-S: Scalability (Composition time)

■  SC1: Binding time hiding
■  SC2: Binding technique hiding

►  CT-M: Metamodelling
■  MM1: Introspection and reflection

(metamodel). Can other
components be introspected? The
component itself?

■  MM2: Metaobject protocol: is the
semantics of the component
specified reflectively?

■  CT-I: Tool support for composition
■  Editors, checkers, validators

Prof. U. Aßmann, CBSE 19

Desiderata Composition Language

►  CL-C: Product Consistency
■  Variant cleanness: consistent configurations

■  Robustness: absence of run-time exceptions

►  CL-P: Software Process Support
■  Build management automation

►  CL-M: Meta-composition
■  Is the composition language component-based, i.e., can it be composed itself?

■  Reuse of architectures

►  CL-A: Architectural styles (composition styles)
■  Constraints for the composition

Prof. U. Aßmann, CBSE 20

Service Components

►  A service component is a software component whose location, style
of deployment, and name is not known.
■  It is described by metadata (attributes)
■  [from Greenfield/Short, Software Factories, AWL]

CBSE, © Prof. Uwe Aßmann 21

1.2 Historical Approaches to
Components

Prof. U. Aßmann, CBSE 22

The Essence of the 60s-90s:
LEGO Software with Black-Box Composition

►  Procedural systems, stream-based systems
►  Modular systems
►  Object-oriented technology
►  Component-based programming

■  CORBA, EJB, DCOM, COM+, .NET, OSGI

►  Architecture languages

Composition recipe

Connectors

 Components

Component-based
applications

Prof. U. Aßmann, CBSE 23

Procedure Systems

►  Fortran, Algol, C
►  The procedure is the static component
►  The activation record the dynamic one
►  Component model is supported by almost all chips directly

■  jumpSubroutine -- return

Seite 23
Uwe Aßmann,

17.07.2003,

Caller

Callee

Linker

Prof. U. Aßmann, CBSE 24

Procedures as Composition System

Component Model Composition Technique

Composition Language

Content: binary code with symbols

Binding points: linker symbols
procedures (with parameters) and
global variables

Connection by linking object files

Program transformation on object files

Composition time: link-time, static

Prof. U. Aßmann, CBSE 25

Modules (Information-Hiding-Based Design a
la Parnas)

►  Every module hides the an important design decision behind a well-
defined interface which does not change when the decision
changes.

We can attempt to define our modules “around” assumptions which are likely
to change. One then designs a module which “hides” or contains each one.

Such modules have rather abstract
interfaces which are relatively unlikely to
change.

Module

Module

Linker ■  Static binding of functional interfaces to each other

■  Concept has penetrated almost all programming
languages (Modula, Ada, Java, C++, Standard ML,
C#)

 Prof. U. Aßmann, CBSE 26

Linker

Bound procedure
symbols, no
glue code

A Linker is a Static Composition Operator

Provided

Required

►  Static linkers compose modules at link time
►  Dynamic linkers at run time

Prof. U. Aßmann, CBSE 27

Modules as Composition System

Component Model Composition Technique

Composition Language

Content: groups of procedures

Binding points: linker symbols
procedures (with parameters) and
global variables

Connection by linking object files

Program transformation on object files

Composition time: link-time, static

Prof. U. Aßmann, CBSE 28

►  Communication can take place once or many times
►  By Calls (singular) or Streams (continuous)

►  UNIX shells offer a component model for streams
■  Extremely flexible, simple
■  Communication with byte streams, parsing and linearizing the objects

►  Component model
■  Content: unknown (depens on parsing), externally bytes
■  Binding points: stdin/stdout/stderr ports

■  More secrets: distribution, parallelism etc

►  Composition technique: manipulation of byte streams
■  Adaptation: filter around other components. Filter languages such as sed, awk, perl
■  Binding time: static, streams are connected

(via filters) during composition

►  Composition languages
■  C, shell, tcl/tk, python, perl…
■  Build management language makefile

UNIX Pipes and Filters (McIlroy)

stdin Filter

Filter

stdout

stderr

stdin

pipe

Prof. U. Aßmann, CBSE 29 Seite 29
Uwe Aßmann,

17.07.2003, sd&m-Konferenz 2003: Web Services

Shells and Pipes as Composition System

Component Model Composition Technique

Composition Language

Content: unknown (due to parsing),
externally bytes

Binding points: stdin/out ports

Secrets: distribution, parallelism

Adaptation: filter around other components

Filter languages such as sed, awk, perl

Binding time: static

C, shell, tcl/tk, python…

Build management language makefile

Version management with sccs rcs cvs

Prof. U. Aßmann, CBSE 30

Communication

•  Black-box components communicate either
•  Via calls (singular): à algebraic data types, induction
•  Via streams (continuous) à coalgebraic data types, coinduction

Prof. U. Aßmann, CBSE 31 Seite 31
Uwe Aßmann,

17.07.2003, sd&m-Konferenz 2003: Web Services

Object-Oriented Systems

►  Components: objects (runtime) and classes (compile time)
■  Objects are instances of classes (modules) with unique identity

■  Objects have runtime state

■  Late binding of calls by search at runtime

Caller
Object

dispatch

Callee

Callee

Callee

Prof. U. Aßmann, CBSE 32

Object-Oriented Systems

►  Component Model
■  Content: code (static) and values (dynamic)

■  Binding points:
.  monomorphic calls (static calls)
.  polymorpic calls (dynamically dispatched calls)

►  Composition Technique
■  Adaptation by inheritance or delegation

■  Extensibility by subclassing

►  Composition Language: none

Prof. U. Aßmann, CBSE 33 Seite 33
Uwe Aßmann,

17.07.2003, sd&m-Konferenz 2003: Web Services

Object-Orientation as Composition System

Component Model Composition Technique

Composition Language

Content: binary files, objects

Binding points: static and
polymorphic calls (dynamically
dispatched calls)

Adaptation by inheritance or delegation

Extensibility by subclassing

Prof. U. Aßmann, CBSE 34

►  [Pree] An object-oriented framework consists of a set of template
classes which can be parameterized by hook classes (parameter
classes)

►  This principle can be transferred to many other composition
systems

Object-Oriented Systems: Frameworks

Hook
class

Template
class

Formal parameter Actual
parameter

Prof. U. Aßmann, CBSE 35

O-O Frameworks

►  Component Model
■  Binding points: Hot spots to exchange the parameter classes (sets of

polymorphic methods)
.  Variation points: 1 out-of n choice
.  Extension points: arbitrarily many extensions

►  Composition Technique
■  Same as OO

►  Compostion language
■  Same as OO

Prof. U. Aßmann, CBSE 36

Commercial Component Systems
(COTS, Components off the Shelf)

►  CORBA/DCOM/.NET/JavaBeans/EJB
►  Although different on the first sight, turn out to be rather similar

Software bus (mediator, broker, connector)

Caller
Object

Callee
(Server)

Prof. U. Aßmann, CBSE 37

CORBA
http://www.omg.org/corba

►  Language independent, distribution transparent
►  interface definition language IDL
►  source code or binary

Client
Java

Server
C++

Client
C

IDL Stub
IDL

skeleton IDL Stub

 Object Request Broker (ORB), Trader, Services

Object adapter

Prof. U. Aßmann, CBSE 38

(D)COM(+), ActiveX
http://www.activex.org

►  Microsoft’s model is similar to CORBA. Proprietary
►  DCOM is a binary standard

Client
VBasic

Server
C++

Client
C++

COM stub
COM

skeleton COM stub

 Monikers, Registry

Server
C++

IDL
skeleton

Object adapter

Prof. U. Aßmann, CBSE 39

Java Enterprise Beans

►  Java only, event-based, transparent distribution by remote method
invocation (RMI)

►  source code/bytecode-based

Bean
Java

Bean
Java

Bean
Java

 Event InfoBus, RMI

Server
C++

IDL
skeleton

Object adapter

Prof. U. Aßmann, CBSE 40

.NET
http://www.microsoft.com

►  Language independent, distribution transparent
►  NO interface definition language IDL (at least for C#)
►  source code or bytecode MSIL
►  Common Language Runtime CLR

Client
Java

Server
C++

Client
C#

.net-CLR .net-CLR .net-CLR

CLR

Prof. U. Aßmann, CBSE 41

COTS

►  Component Model
■  Content: binary components

■  Secrets: Distribution, implementation language

■  Binding points are standardized
.  Described by IDL languages

.  set/get properties

.  standard interfaces such as IUnknown (QueryInterface)

►  Composition Technique
■  External adaptation for distributed systems (marshalling) and mixed-language

systems (IDL)

■  Dynamic call in CORBA

►  Composition Language
■  e.g., Visual Basic for COM

Prof. U. Aßmann, CBSE 42 Seite 42
Uwe Aßmann,

17.07.2003, sd&m-Konferenz 2003: Web Services

COTS as Composition System

Component Model Composition Technique

Composition Language

Content: binary components

Binding points are standardized
Described by IDL, Standard interfaces

Secrets: distribution, language

Adaptation for distributed systems
(marshalling) and mixed-language systems

Dynamic call in CORBA

VisualBasic for COM

Prof. U. Aßmann, CBSE 43

Architecture Systems

►  Unicon, ACME, Darwin, Reo
■  feature an Architecture Description Language (ADL)

►  Split an application into:
■  Application-specific part (encapsulated in components)
■  Architecture and communication (in architectural description in ADL)
■  Better reuse since both dimensions can be varied independently

Prof. U. Aßmann, CBSE 44

Connector

Port
Interface

Role

Component Model in
Architecture Systems

►  Ports abstract interface communication points
■  in(data), out(data)
■  Components may be nested

►  Connectors as special communication components
►  Coordinators as higher-level architectural styles

Prof. U. Aßmann, CBSE 45

Architecture can be exchanged independently
of components

Port 2

Port 1

Port Port Component

Component

Component

►  Reuse of components and architectures is fundamentally improved

Prof. U. Aßmann, CBSE 46

The Composition Language: ADL

►  Architecture language (architectural description language, ADL)
■  ADL-compiler

■  XML-Readers/Writers for ADL. XADL is a new standard exchange language for
ADL based on XML

►  Graphic editing of systems
►  Checking, analysing, simulating systems

■  Dummy tests

■  Deadlock checkers

■  Liveness checking

Prof. U. Aßmann, CBSE 47

ACME Studio

Prof. U. Aßmann, CBSE 48

Architecture Systems as Composition Systems

Component Model Composition Technique

Composition Language

Source or binary components

Binding points: ports

Adaptation and glue code by connectors

Scaling by exchange of connectors

Architectural language

Prof. U. Aßmann, CBSE 49

Web Services and their Languages as Specific
ADL

■  Languages: BPEL, BPNM

►  Binding procedure is interpreted, not compiled

►  More flexible than binary connectors:

■  When interface changes, no recompilation and rebinding

■  Protocol-independent

Caller
Object

Mediator

Callee
(Server)

SOAP
interpretation

Prof. U. Aßmann, CBSE 50

Web Services as Composition System

Component Model Composition Technique

Composition Language

Content: not important

Interface Definition Language WSDL

Binding points are described by XML

Binding procedure is interpretation of SOAP

Secrets: distribution, implementation language

Adaptation for distributed systems
(marshalling) and mixed-language systems

Glue: SOAP, HTTP

UDDI, BPEL, BPMN

Prof. U. Aßmann, CBSE 51

What the Composition Language Offers for the
Software Process

►  Communication
■  Client can understand the architecture graphics well
■  Architecture styles classify the nature of a system in simple terms

(similar to design patterns)
►  Design support

■  Refinement of architectures (stepwise design, design to several levels)
■  Visual and textual views to the software resp. the design

►  Validation: Tools for consistency of architectures
■  Are all ports bound? Do all protocols fit?
■  Does the architecture corresponds to a certain style? Or to a model

architecture?
■  Parallelism features as deadlocks, fairness, liveness,
■  Dead parts of the systems

►  Implementation: Generation of large parts of the communications
and architecture

Prof. U. Aßmann, CBSE 52

Composition
recipe

Connectors

 Components

Component-based
applications

Black-Box Composition

Prof. U. Aßmann, CBSE 53

The Essence of Black-Box Composition

►  3 Problems in System construction
■  Variability
■  Extensibility
■  Adaptation

►  In “Design Patterns and Frameworks”, we learned about design
patterns to tackle these problems

►  Black-box composition supports variability and adaptation
■  not extensibility

Prof. U. Aßmann, CBSE 54

Classical
Component Systems

Architecture Systems

Aspect Systems

View Systems

Darwin
BPMN HRC

Aspect/J
AOM

Invasive Composition
Piccola Gloo

Standard Components
Reflection

Architecture as Aspect
Connectors

Aspect Separation
Crosscutting

Composition
Operators

Composition
Language

Object-Oriented Systems
C++ Java
UML components

Objects as
Run-Time Components

Modular Systems Modules as Compile-
Time Components

Composition Filters
Hyperspaces

Software
Composition
Systems

.NET CORBA
Beans EJB
ArchJava

The Ladder of Composition Systems

Shell scripts
Modula Ada-85

CBSE, © Prof. Uwe Aßmann 55

1.3 Gray-box Component Models

Prof. U. Aßmann, CBSE 56

Grey-Box Component Models:
The Development of the Last Years

►  View-based Programming
►  Component merge (integration)
►  Component extension

►  Aspect-oriented Programming
►  Views can cross-cut components

Gray-box composition merges design-time
components to run-time components

Black-box composition leaves design-time components

untouched (1:1 relationship)

Prof. U. Aßmann, CBSE 57

Structure Media plan

Light plan Water piple plan

Integrated
house

Aspects in Architecture

Prof. U. Aßmann, CBSE 58

Debugging
 aspect

Persistence
aspect Algorithm

Debugging aspect
Persistence aspect

Persistence
aspect Debugging aspect

Weaver-Tool

Debugging aspect

Aspects in Software

Prof. U. Aßmann, CBSE 59

Aspect Weavers Distribute Advice
Components over Core Components

Distributor

►  Aspects are crosscutting
►  Hence, aspect functionality must

be distributed over the core
►  The distribution is controlled by

a crosscut graph
Aspect

Core

Crosscut
graph

Prof. U. Aßmann, CBSE 60

Aspect Systems As Composition Systems

Component Model Composition Technique

Composition Language

Core- and aspect components

Aspects are relative and crosscutting

Binding points: join points

Adaptation and glue code by weaving

Weaving is distribution

Weaving Language

CBSE, © Prof. Uwe Aßmann 61

1.3.1 Full-Fledged Composition
Systems

Prof. U. Aßmann, CBSE 62

Composition Systems

Component Model

Composition Language

Composition Expressions
Composition Programs

Composition Technique
Composition Operators

Black-boy: connect, adapt
Gray-Box: extend, mixin, merge, weave

Prof. U. Aßmann, CBSE 63

Composition Systems

►  All the following composition systems support full black-box and grey-
box composition, as well as full-fledged composition languages:
►  Composition filters [Aksit,Bergmans]
►  Hyperspace Programming [Ossher et al., IBM]
►  Piccola [Nierstrasz et al., Berne]
►  Invasive software composition (ISC) [Aßmann]
►  Formal calculi

■  Lambda-N calculus [Dami]
■  Lambda-F calculus [Lumpe]

Prof. U. Aßmann, CBSE 64

Client Library

Client Library

Blackbox connection with glue code

Blackbox
Composition

Connectors are Composition Operators

Usually, connectors connect (glue) black-box components for
communication

Prof. U. Aßmann, CBSE 65

Client Library

Client Library

Blackbox connection with glue code

Client Library

Blackbox
Composition

Invasive
Composition

Connectors can be Grey-Box Composition
Operators

Connectors can work invasively, i.e., adapt components inside

Grey-box (Invasive) Connection
Prof. U. Aßmann, CBSE 66

Composers Generalize Connectors
(ADL Component Model)

Components Composers Variation points
Black-Box
Components

Connectors,
Invasive connectors
Encapsulation
operators

Ports

Prof. U. Aßmann, CBSE 67

inherit

Composers Can Be Used For Inheritance

►  Extension can be used for
inheritance (mixins)

►  inheritance :=
■  copy first super document;
■  extend with second super

document;

■  Be aware: The composition
system of object-oriented
frameworks (course DPF) is
only one of the possible ones

Prof. U. Aßmann, CBSE 68

Composers Generalize Inheritance Operators
(Classes as Components)

Components Composers Extension points
Classes Mixin operators,

inheritance
operators

Class member
lists

Prof. U. Aßmann, CBSE 69

Composers Generalize View-based Extensions

►  Symmetric view: Two components are merged
►  Asymmetric view: A core component is extended by a view

component

merge extend

Prof. U. Aßmann, CBSE 70

Composers Generalize View Extensions

Components Composers Extension points
Views Merge operators,

extend operators
Open definitions

Prof. U. Aßmann, CBSE 71

Composers Generalize Aspect Weavers

Distributor

►  Complex composers distribute
aspect fragments over core
fragments

►  Distributors extend the core
■  Distributors are more complex

operators, defined from basic ones
■  Distribution is steered by a crosscut

graph

Aspect

Core

Crosscut
graph

Prof. U. Aßmann, CBSE 72

Weavers Are Complex Distributors

Requirements aspect

Testing aspect

Core
(Algorithm)

Op Op
Op

Op

Op

Op Op

Testing

Architecture aspect

Architecture

Prof. U. Aßmann, CBSE 73

Composers Generalize Aspect Weavers

Components Composers Extension points
Core, advice
groups

Weaver Join points

Prof. U. Aßmann, CBSE 74

Comparison Table

Approach Components Composers Variation/
Extension points

Modular systems Modules Static linking
Dynamic linking

Linker symbols

Object-oriented
systems

Classes Mixin inheritance operator,
mixin layer operator,
other inheritance operators

Class member lists

Objects Polymorphic dispatch
Dynamic invocation
Trading

Architecture systems Black-Box
Components

Connectors,
Invasive connectors
Encapsulation operators

Ports

Generic systems Generic Fragments Binding Slots

View systems Views (fragments) Merge operators, extend operators Open definitions

Aspect systems Core, advice groups Weaver Join points

Full composition
systems

All of the above Explicit crosscut specifications Slots and join
points

Prof. U. Aßmann, CBSE 75

Composition Languages in Composition
Systems

►  Composition languages describe the structure of the system in-the-
large (“programming in the large”)
►  Composition programs combine the basic composition operations of the

composition language

►  Composition languages can look quite different
►  Imperative or rule-based
■  Textual languages

■  Standard languages, such as Java
■  Domain-specific languages (DSL) such as Makefiles or ant-files

■  Graphic languages
■  Architectural description languages (ADL)

►  Composition languages enable us to describe large systems

Composition program size 1
System size 10

Prof. U. Aßmann, CBSE 76

Composition Recipe

Composition Operators

Grey-box Components

System Constructed with an
Invasive Architecture

Invasive
Software

Composition

Prof. U. Aßmann, CBSE 77

Conclusions for Composition Systems

►  Components have composition interface with variation and
extension points
■  Composition interface is different from functional interface
■  The composition is running usually before the execution of the system
■  From the composition interface, the functional interface is derived

►  System composition becomes a new step in system build

Composition

•  With
composition
interfaces

Deployment

•  With functional
interfaces

Execution

•  With functional
interfaces

Prof. U. Aßmann, CBSE 78

1.4 UBIQUITUOUS
COMPONENT MODELS

Prof. U. Aßmann, CBSE 79

Steps in System Construction

►  We need different component models and composition systems on all
levels of system construction

System composition
(System generation, design-time composition)

System compilation
(compilation-time composition)

Link-time composition

System execution
Recomposition at checkpoints

Static time

Run time

System deployment
(deployment-time composition)

CBSE, © Prof. Uwe Aßmann 80

1.5 What Have We Learned?

Prof. U. Aßmann, CBSE 81

Component-based Systems

►  ... are produced by component systems or composition systems
►  ... have a central relationship that is tree-like or reducible
►  ... support a component model
►  ... allow for component composition with composition operators

■  ... and – in the large – with composition languages

►  Historically, component models and composition techniques have
been pretty different
■  from compile time to run time

►  Blackbox composition supports variability and glueing
►  Graybox composition supports extensibility, views, aspects
►  Object-orientation is just one of the many composition systems which

have been defined

Prof. U. Aßmann, CBSE 82

Classical
Component Systems

Architecture Systems

Aspect Systems View Systems

Darwin
BPMN

Aspect/J Invasive Composition
Metaclass Composition

Piccola Gloo

Standard Components

Architecture as Aspect

Aspect Separation Composition
Operators

Composition
Language

Object-Oriented Systems C++ Java
UML components

Objects as
Run-Time Components

Modular Systems Modula Ada-85 Modules as Compile-
Time Components

Composition Filters
Hyperslices

Software
Composition
Systems

.NET CORBA
Beans EJB

The Ladder of Composition Systems

Prof. U. Aßmann, CBSE 83

Classical
Component Systems

Architecture Systems

Aspect Systems

View Systems

Darwin
BPMN

Aspect/J
AOM

Invasive Composition
Piccola Gloo

Standard Components
Reflection

Architecture as Aspect
Connectors

Aspect Separation
Crosscutting

Composition
Operators

Composition
Language

Object-Oriented Systems
C++ Java
UML components

Objects as
Run-Time Components

Modular Systems Modules as Compile-
Time Components

Composition Filters
Hyperspaces

Software
Composition
Systems

.NET CORBA
Beans EJB

The Ladder of Composition Systems

Shell scripts
Modula Ada-85

Prof. U. Aßmann, CBSE 84

What Can Be Done with Composition Systems?

Composition systems

Frameworks, layered frameworks

Product families (documents, software, models)

Staged architectures (web systems, complex product families)

Software ecosystems (app stores, third-party plugins)

Software ecosystems for CPS (certification)

Prof. U. Aßmann, CBSE 85

The End

