Part Il — Black-Box Composition Systems .a Literature
10. Finding Business Components in
a Component-Based Development J. Cheesman, J. Daniels. UML Components. Addison-Wesley.
Process

1. The UML component

model
2. Business component
model of the Cheesman/ Prof. Dr. Uwe ABmann
Daniels process Technische Universitat
3. Identifying business Dresden
components Institut fiir Software- und

Multimediatechnik
http://st.inf.tu-dresden.de
A 13-1.2, 24.04.13

| ——
CBSE, © Prof. Uwe ARmann e/ Prof. U. ABmann, CBSE 2

.] . . .a Natural and Dependent Types
10.1 Big Objects, Business Objects,
and UML Components An object with a natural type (entity type) lives on its own and

exists independent of context and collaborators
The type does not depend on other types (independent type)

. Hotel vs. HotelRoom
. Car vs. Screw or Motor
« Types that depend on others are called dependent types.

The Cheesman-Daniels approach identifies UML = Role types, facet types, part types are dependent types.
components in UML class diagrams, adding required > A big object (bob) is complex, hierarchical object with a natural
and provided interfaces. type
It describes how to transform a UML class diagram to a » Usually, it has subobjects with dependent types, role types and others.
UML component diagram. A business object (domain object) is a bob with a natural type of
the domain model (business model)
A Usually, business objects (domain objects) are large hierarchical objects
@ = They can consist of thousands of smaller objects of dependent types (part-of

Tedmolosy relation)

o |:I = They can play many roles with context-based types

CBSE, © Prof. Uwe ARmann 3) Prof. U.m -|_4

Component Specification with UML Components

A UML component is a hierarchical class for big objects with

provided and required interfaces (roles)

» Provided interfaces (provided roles) use ,lollipop* notation

* Required interfaces (required roles) use ,plug“ notation

UML components can specify bobs
with one natural core object and many dependent subobjects

<<comp spec>>
CompanyMgr

4@ ICompanyMgt

Some components are required to use specific other interfaces

<<comp spec>>
CompanyMgr

(> ICompanyMgt

<<comp spec>>
C () AdressMgr

IAddressMgt

Prof. U. ABmann, CBSE

Lollipops und Plugs (Balls and Sockets)

distinguished

» For a UML component, provided and required interfaces can be

= A required interface specifies what the current class needs to execute.

<<provided>>
Addresses

listAdresses()

Adresses

AddressManager

T listAdresses() [

<<required>>
Text

sort()

Text I
Prof. U. ABmann, CBSE 7

.S Ports of UML Components

» A port is a connection point of a UML component.
A port has a set of roles (interfaces)
It may be represented by a port object (gate)

Provided i
interfaces Required
interfaces

O
o

3
7

Jelesy Prof. U. ABmann, CBSE I 6

A | ports
¢

» Ports consist of port classes with interfaces and behavior in form of
interface automata

= provided: normal, offered interface

= required: used, necessary interface

Component o

O—

Component

<<provided>> <<required>>
Q Port class Port class /(
E T Prof. U. ABmann, CBSE | 8

.a Nesting of UML Components

» UML components
= Ports are connected by links (connections)
= Delegation link: links outer and inner port

Link/connectio Delegator
DocumentSystem

o
S
(@]
Address Text Buffer
Adresses hanagen IText Text °
Qf/[Manager y
email TextRep I: Lines
email
Manager }\C
i.‘:g"::.,) RIS JARmann, CBSE

.a Encapsulation means Aggregation

D

» Nesting means Aggregation

DocumentSystem

Address
Adresses Manager
(] L]

‘email
Manager]

Buffer
Adresses

Text
O Manager
(]
[email
[] Lines

TextRep

Forms

Sottwar
roup.

= A UML component is a package and a fagade for all subcomponents

DocumentSystem

Buffer

Lines

Text
Manager _|
(]
[]
[]

Forms ———

Prof. U. ARmann, CBSE

11

.a Refinement of UML Components

» UML components are nested, i.e., are bobs.
» Nesting is indicated by aggregation and part-of relationship.
» Nesting is introduced by an encapsulation operator encapsulate.

encapsulate

Document

System

Document System

Buffer
Adresses]/C
email Lines

+—C

decompose -I_
EV:&:,) Prof. U. ABmann, CBSE 10

10.2 A Business Component Model

The Cheesman-Daniels process to find business
components

A

Software
Technology

CBSE, © Prof. Uwe ARmann 12

Business Objects are Complex Objects

In the Cheesman-Daniels component model, a business component
consists of a set of business objects and other business components
(part-of relation)

The smallest component is a business object with several provided and required
interfaces

The business objects are the logical entities of an application

Their interfaces are re-grouped on system components for good information hiding
and change-oriented design

« A business component has a specification containing all interfaces
and contracts and an implementation
« UML-CD are used (UML profile with stereotypes)

Prof. U. ABmann, CBSE I 13

Business Component Model

In the Cheesman-Daniels component model, a business
component consists of a set of business objects and other
business components (part-of relation)
The smallest component is a business object with several provided
and required interfaces
The business objects are the logical entities of an application
Their interfaces are re-grouped on system components for good information
hiding and change-oriented design
« A business component has a specification containing all interfaces
and contracts and an implementation
« UML-CD are used (UML profile with stereotypes)

— .l—
Prof. U. ABmann, CBSE 15

.S Goals of the Cheesman-Daniels Process

The Cheesman-Daniels Process identifies UML components in UML
class diagrams
It bridges domain modelling with use case modelling (functional requirements)

Steps:
Find out business objects (big objects with core and subobjects) of the application

Group business objects to components with required and provided interfaces, for
change-oriented design and reuse

Specify contracts for the components
Be aware: the Cheesman-Daniels Process can be employed also for
many other component models of this course, such as
Black box component models, such as EJB, Corba, .NET
Grey-box component models:
Generics (e.g., class diagram templates)
Fragment component models (e.g., advice groups in aspects)
Class-role models

Softue — -I—
@ Prof. U. ABmann, CBSE 14

10.3. Identifying Business
] Components

Software
Technology
Group.

CBSE, © Prof. Uwe ARmann 16

A | ldentifying Business Components with the
®, | Cheesman-Daniels Process

» Overall development process

Business
Concept
models

/ Specification \
1) Component 2) Component
Identification Interaction

3) Component
Specification

Deployment
Prof. U. ABmann, CBSE I 17

Use Case
models

Constraints Components

.SI 10.3.1 Component Identification (Step 1)
i

. . Component
Domain Model Domain Use Case Function Specification Reuse
(Business Concept Model)| gnalysis Model analysis Database analysis
Select R
Business Types Component
From Domain Model |dentification

Develop system
interfaces model

Decompose
top-down

Allocation of
business object interfaces
to components
v
New
component specifications|

‘ Business Type

Model

Find out
Business Object

Interfaces

Find component
specifications
(matchmaking)

Business Object
Interface Model

Reusable
component specifications|

v

/
1 Component Specifications F
and Architecture

l y

Artifacts of the Cheesman/Daniels Process

Requirement artifacts:

= Domain model (business concept model): describes the business domain
(application domain)

« Use case model (requirements model)
System artifacts, derived from the business concept model:
« Business type model, class diagram derived from domain model:

Represents the system's perspective on the outer world (more attributes,
refined class structures from the system's perspective)

= Business object interface model, identifies the business objects and all their
interfaces

= Business object model, derived from the business object interface model by adding
additional operations

System component artifacts
.« Component interface specifications: one contract with the client
= Component interface information model (state-based model)

.« Component specifications: all interface specifications of a component plus
constraints.

« Component architecture: wiring (topology) of a component net.

Prof. U. ABmann, CBSE I 18

Ex.: Domain Model of a Course-Management
System

Collects all concepts of the domain (aka business concept model)

Teacher Company

Participant Course

VAN

Exercise
| | Course
Student | |Engineer| | Alumnus Part
Exam
Prof.U. ABmamn, CBSE | 20

.S 10.3.1.a) Business Type Model

Defines system types from the domain model

Person

name;String

Eliminates superfluous concepts

Adds more details
Distinguish datatypes (passive objects)

Teacher

L Participant

Company

AN

aroup

<<datatype>>
Course

!

<<datatype>>
Course ¥
Part

A1 10.3.1.c) Component Identification
®., | (Version 0.1)

<<datatype>>
Exercise

<<datatype>>
Exam

Group classes and interfaces into reusable components

IPersonMgmt

ICompanyMgmt

<<comp spec>>
Company

Company

’ <<business object>>

|

&

ICo@gmt

21

<< business object>> |_— Teacher
Person
name:String
N Participant

ﬁl

Student

<<comp spec>>
Repository

Course

<<business object>>

Course
Part

Exercise

Exam

.g 10.3.1.b) Business Object Interface Model

Identifies business objects from the business type model
= And defines management interfaces for them
= Here, only Company, Course, Person are business objects, all others are

dependent types

IPersonMgmt

<<business object>>
Person

name:String

ICompanyMgmt

s

Teacher

N

Participant —mm—— |

ﬁl

Student

<<business object>>
Company

ICourseMgmt

|

<<business object>>
Course

e

Course
Part
Exam

Prof. U. ABman|

Exercise

o2 | Alternative Component Identification (0.1)
0

Often, classes and interfaces can be grouped in several ways into
components. Goal: think about what is reusable

Here: Person management might be reuseable, so make it a separate

Q ICompanyMgmt

component

M

<<comp spec>>
Company

RSN

’ <<business object>>
Company

‘ ICo@gmt

Person

IPers
<<business object>> |_—

Teacher

name:String

<<comp spec>>
Persons

T~

Participant

Student

<<comp spec>>
Courses

<<business object>>
Course

Course
Part

Exercise

Exam

10.3.2 Component Interaction Analysis (Step 2)

A - - A
o, Component Identification ®-, | for Refinement of Interfacts

The component identification subprocess attempts to

= Create a business object interface model from the domain model (still without
methods)

Business Object Component Specifications
Interface Model and Architecture (0.1)
« Attempts to group these interfaces to initial system component specifications l ‘

The grouping is done according to / ™
information hiding: what should a component hide, so that it can easily be Add Operations Architecture Component
exchanged and the system can evolve? Analysis "Ke"aldlfm

nalysis

Reuse considerations: which specifications of components are found in

the component specification repository, so that they can be reused? Business Object
There is a tension between business concepts, coming from the Model
business domain (problem domain), and system components
(solution domain). This gap should be bridged.

Refine
Interfaces

Component Specifications
and Architecture (0.2)

= T /

l € ' ! |
Prof. U. ABmann, CBSE 25 e Prof. U. ABmann, CBSE 26

.3 Component Interaction Analysis .S 10.3.3 Component Specification (Step 3)

Is basically a refinement of the first stage » Enrich the interfaces with contracts
« Removing,

« Regrouping,

Business Object Component Specifications

= Augmenting, Model and Architecture (0.2)
= Producing component specifications and wirings in a version 0.2
. 4 N
Additionally, operations are added to business object interfaces e Specification
X Construct
« And mapped to internal types. Enterface Information ModeD

]

Interface
Information Model

Add Contracts
(pre-, postconditions, invariants)

/\

Component Specifications
Interf
nterfaces and Architecture (1.0)

T) |
—
Prof. U. AR CBSE
l V ro mann, 28

— 4—
Prof. U. ABmann, CBSE 27

g S

Component Specification (Step 3)

Specification of declarative contracts for UML bobs in OCL
Invariant construction:

« Evaluate business domain rules and integrity constraints

« Example:

context r: Course

-- a course can only be booked if it has been allocated in

the company
inv: r.bookable = r.allocation->notEmpty
Pre/Postconditions for operations
= Can only be run on some state-based representation of the component
= Hence, the component must be modeled in an interface information model

= Or: be translated to implementation code (e.g. Java using an OCL2Java Compiler)

Prof. U. ABmann, CBSE

10.3.5 Assembly (Step 5)

Puts together architecture, component specifications and
implementations, existing components

« We will see more in the next lectures

Prof. U. ABmann, CBSE

g S

10.3.4. Provisioning (Realization,
Implementation) (Step 4)

Provisioning selects component implementations for the
specifications
= Choosing a concrete implementation platform (EJB, CORBA, COM+, ...)
« Look up component implementations in implementation repositories
Write adapters if they don't fit exactly
« Program missing components
= Store component implementations and specifications in database for future reuse

Prof. U. ABmann, CBSE I 30

Weaknesses of Cheesman-Daniels Business
Components

Sottware
Technolosy
roup.

No top-down decomposition of components, only bottom-up grouping
from class diagrams

« part-of relationship is not really supported
Reuse of components is attempted, but
= Finding components is not supported (see companion lecture)
Metadata
Facet-based classification

— l—
Prof. U. ABmann, CBSE 32

4| Cheesman-Daniels’ Business Component
®-, | Model as Composition System

Component Model Composition Technique

Content:

a) UML class diagrams, component
diagrams, contracts

b) business components (bobs)
Binding points: methods

Standard object-oriented polymorphism

Prof. U. ABmann, CBSE

33

The End

Prof. U. ABmann, CBSE

34

