11. Transparency Problems and
] the Decorator-Connector Pattern

A Design Pattern appearing in all classical component systems

Prof. Dr. Uwe ARmann 1. Transparency Problems
: : o 2. Decorator-Connector Pattern
Technische Universitat Dresden o

e 3. Interface Definition Languages
Institut fur Software- und _

Multimediatechnik 4. Location Transparency
http://st.inf.tu-dresden.de S. .II\.I ame Transparency and

_ rading

Version 13-1.0, May 2, 2013 6. Optional:

1. Example YP Service
2. Generic Skeletons

CBSE, © Prof. Uwe ARmann 1

CS Service-Oriented Architecture

When the Object Management Group (OMG) was formed in 1989,
interoperability was its founders primary, and almost their sole,
objective:

A vision of software components working smoothly together, without
regard to details of any component's location, platform, operating
system, programming language, or network hardware and software.

Jon Siegel

Prof. U. ABmann, CBSE

A | Risks of using other people’s legacy libraries
®5 | http://catless.ncl.ac.uk/Risks/27.23.htmli#subj17

Phil Nasadowski Mon, 25 Mar 2013 22:37:34 -0400

We recently ran into a situation where | work, where a vendor's (a large, well-known,
multinational company with a two letter abbreviation for it's name) piece of software
was not fully compatible with Windows 7, 64bit. In particular, a portion of the Ul
that's very, very useful for looking at variables, is broken.

Being that the software in question was a development package for their programmable
logic controllers, and the widespread use of Windows 7 / 64 bit in our office, a call
to the vendor was in order. The vendor replied that they were *not* going to update
the package for 64 bit operating systems and there was *no* workaround.

A bit of pressing and a few nasty emails later, we got the full story:

Apparently the software uses a library developed by an outside firm. That firm went
bankrupt and is no longer in business. There is no copy of the source code to the
library. The library is not 64 bit compatible. Thus, the vendor is forced to rewrite a
portion of his software in house. Or seek another library. Or something.

We are stuck with a piece of broken software for the mean time. They say maybe 6
months to a year to fix it. | doubt we're alone.

I'm sure this isn't the first time this has happened. I'm sure it won't be the last. It's a
risk of relying on someone else's library to do something. If they go away, you may
be stuck with incompatible software. And your customers won't be happy about it.

Philip Nasadowski, Project Engineer, PCS Integrators

11.1. Transparency Problems
] for COTS

CBSE, © Prof. Uwe ARmann 4

A'| Transparency Problems (Middleware
®5 | Concerns)

A transparency problem describes software concerns that should be
transparent (invisible, hidden) when you write, deploy a component.

To solve a transparency problem, the component model requires different secrets
Content secrets

Language transparency: interoperability of components using different programming
languages

Persistency transparency

- Hide whether server has persistent memory
Lifetime transparency

- Hide whether server has to be started

Connection secrets
Location transparency: distribution of programs
- Hiding, where a program runs
Naming transparency: naming of services
= Hiding, how a service is called
Transactional transparency
= Hide whether server is embedded in parallel writes
Security scaling
= Plug-in authentication

Prof. U. ABmann, CBSE

CS Idea: Encapsulate Transparency Problems

Components encapsulate content
secrets

Ports abstract required and
provided interface points of
components (event channels,
methods)

Ports specify the data-flow into and
out of a component

Connectors are special
communication components
encapsulating connection secrets

Connectors are attached to ports

Connectors abstract from the
concrete communication carrier

Can be binary or n-ary

Connector end is called a role

A role fits only to certain types of ports
(typing)

Inte(face

/

/.

G,__

Port Role

Connector

Prof. U. ABmann, CBSE

OO O

11.2 The Decorator-Connector

Connectors can hide implementation issues for
connection transparency problems

CBSE, © Prof. Uwe ABmann 7

Language Transparency With the Connector
Pattern

The Connector Pattern (Double-Decorator Pattern, n-Decorator
Pattern) can be used in a standard object-oriented language to
implement connectors for classes and objects

= Stub: Proxy of the client (decorator of the skeleton)
Takes calls of clients in language A4 and sends them to the skeleton
= Skeleton: Proxy (decorator) of the server
Takes those calls and sends the component implementation in language %

Language adaptation in Stub or Skeleton (or both)

= Adaptation deals with calling concepts, etc. (see above)

= Based on a mapping of language constructs from both languages, defined by an
Interface Definition Language (IDL)

Client Client Server Component
Java C C++
Stub Stub Skeleton

L T

Call

Prof. U. ABmann, CBSE

A | Basic Idea: Stubs and (Static) Skeletons as
®5 | Decorators

A typical instance of the Decorator pattern: two proxies on client and
server

Stub decorates skeleton, skeleton decorates server
1

ServerComponent |«

next
service(Data d)

/N

ConcreteServer ServerDecorator > |

service(Data d) service(Datad) .

solveTransparencyProblem();

ll next.service(Data d);

| |
Stub Skeleton

..... super.service(Data d);
............... additional Stuff():

Prof. U. ABmann, CBSE

service(Data d) service(Data d)

CG The Decorator-Connector Pattern

Client and server are connected via a layer of stubs and skeletons
(the connector)

The connector consists of two decorators of the server
Decorator chain is inherited

<<client>> <<server>>
Client ServerDecorator —| > Server
service(d : Data) service(d : Data) Om service(d : Data)
: A A next
1 0 \ :
1 server.service(d); ;
y server
ServiceStub ServiceSkeleton
SerVice(d : Data) .. next> SerVice(d : Data)
| 1
| |
E next.service(d); N next.service(d); \l-*'
Prof. U. ABmann, CBSE

CG Object Diagram of Decorator-Connector Pattern

Connector consists of a Decorator chain, in a layer

<<client>> <<server>>
c : Customer bank : Bank
startWork() createAccount()
]
- server.createAccount();\ next
yserver
server : skeleton :
ServiceStub ServiceSkeleton
createAccount() next 2| createAccount()
1 1
1 |
e next.createAccount()\ next.createAccount(); N

Prof. U. ABmann, CBSE

o Layered Decorators (Object Diagram)

» More decorators can be stuffed into the connector in additional

. layers:
<<client>> <<server>>
c : Customer bank : Bank
startWork() createAccount()
7 A
- server.createAccount();\ next
server
server: skeleton1 :
ServiceStub ServiceSkeleton
createAccount() -l createAccount()
! ! next
- next.createAccount()\I next.createAccount(); \I

stub2 : skeleton2 :
ServiceStub ServiceSkeleton

createAccount() createAccount()

next.createAccount() N next.createAccount(); N

o2 | Decorator vs Proxy vs Adapters vs Chain
[]

Why should it be a Decorator?
= Decorators allow for stacking of connectors (layering)
= Proxy pattern: just one representative, no stacking possible

However, from the client and server's perspective, stub and skeletons are
Proxies

= Adapter: Adapted interface must be different from Adaptee
= Chain: In a Chain, the processing may stop (not here..)

However, Connectors can use all other basic “representant” patterns

= Adapter-Connector: adapts required interface to server additionally
= Chain-Connector: may stop processing
= Proxy-Connector: just one layer possible

Prof. U. ABmann, CBSE 13

CS Tasks of the Layers

In a component model, every layer of decorator-pairs is devoted to a
specific task for transparency (middleware concern)

= Language mappings (language interoperability)

= Distribution handling (serialization, deserialization)

= Names (name mapping, name search)

= Persistence

= Transactions

= etc.

Layers can be composed (stacked) freely

Prof. U. ABmann, CBSE

OS Containers — Infrastructure for all Connectors

A container of a server component is an infrastructure for all
connectors at run-time (all decorators/proxies).

= Creation (server component factories for service families)

= Transactions (begin, rollback, commit)
= Persistence (activate, passivate)

= The container is instance of the Facade design pattern (DPF)

<<client>> <<client>>
customer: account:
Customer Transfer
startWork() <<server>> server <<server>> work()
bank: bank:
Bank Account
createAccount() . transfer()
container:
Container +
beginTA()
v rollbackTA() Y
stub: skeleton: / commitTA() skeleton: stub:
ServiceStub ServiceSkeleton ServiceSkeleton ServiceStub
createAccount() » createAccount() transfer() transfer()

FTOT. O r\mlnann, CBSE

Who Realizes Stubs and Skeletons?

Programmer
= Much handcrafting, using Decorator pattern. Boring and error prone

Generator:
« Stub
Export interface is component dependent, independent of source language
Implementation is source language dependent
= Skeleton
Import interface is component dependent, independent of source language
Implementation is target language dependent

|dea: Generate export and import interfaces of Stub and Skeleton out
of a component interface definition
= Take generic language adapter for the implementation

Prof. U. ABmann, CBSE 16

11.3 Interface Definition Languages
] for Mapping Different Languages

Language mediation with the ,star approach”

A

CBSE, © Prof. Uwe ARmann 17

Transparency Problem 1:
Language Transparency

Calling concept
= Procedure, Co-routine, Messages, ...

Calling conventions

= Call by name, call by value, call by reference, ...
Calling implementation

= Parameters on the stack, in registers, allocation and de-allocation
Data types

= Value and reference objects

= Arrays, union, enumerations, classes, (variant) records, ...

= Kind of inheritance (co-variance, contra-variance, ...)
Data representation

= Coding, size, little or big endian, ...

= Layout of composite data

Runtime environment
= Memory management, garbage collection, lifetime ...

Prof. U. ABmann, CBSE

18

Language Mediation - Options In General

Direct language mapping (full graph of language
relationships):

1:1 adaptation of pairs of languages: O(nz)

Mapping to common language (“star approach™):

Adaptation to a general exchange format: O(n)
CORBA IDL

COBOL
specification

Compiling to common basic type system
NET, WSDL

Ada95
Specification

CORBA
IDL

Specification

C++
Specification

Java
Specification

Prof. U. ABmann, CBSE

A | Language Mediation — Common Basic Type
®5 | System

Compiling to common basic type system:

Standardize to a single format (like in .NET): O(1) but very
restrictive, because the languages become very similar

NET
Common
language
runtime

Visual Basic

Prof. U. ABmann, CBSE 20

.3 Language Mediation — WSDL

Web Service Definition Language (WSDL) uses a
similar concept as .NET, but encodes everything
as XML

Prof. U. ABmann, CBSE

Solutions in Classical Component Systems

Calling concept:
= standardized by the communication library (RPC)
Calling conventions:
= Standardized by the communication library (EJB - Java , DCOM - C)
= Implementation for every single language (Corba)
Calling implementation:
= Standardized by the communication library (EJB - Java , DCOM - C)
= Implementation for every single language (Corba)
Data types:
= Standard (EJB — Java types)
= Adaptation to a general exchange format (interface definition language, IDL)
= CORBA IDL
= Web Service Definition Language (WSDL)
Data representation:
= Standard (EJB — Java representation, DCOM — binary standard)
= Adaptation to a general format (IDL 2 Language mapping)

Runtime environment
= Standard by services of the component systems

Prof. U. ABmann, CBSE 22

Type Mapping with the
CORBA IDL

Ada95
Specification

An IDL language defines the

= Interfaces of components

COBOL

= Data types of parameters and results
specification

Language independent type system
= General enough to capture all data types in a
programming language
= IDL mediates between type systems of these
languages

Procedure of construction

= Define component interface with IDL

= Generate stubs and skeletons with required languages
using an IDL compiler

= Implement the frame (component) in respective
language (if possible reusing some other, predefingo
components)

IDL
Specification

C++
Specification

Java
Specification

Prof. U. ABmann, CBSE 23

A | Ex.: Types in the CORBA
e, I Interface Definition Language
--i

// IDL specification scheme

modules <identifier> {
<type declarations>
<constant declarations> types
<exception declarations>

:{x/mt::].::zcszzs<identifier> . <inheriting- objects
: g-from> {
<type declarations>
<constant declarations>
<exception declarations>

// methods IOR value objects
optype <identifier>(<parameters>) ({

2l

non-objects

constructors i

Struct

Reals (float..) Sequence h

Char, string, Union i

Enum octet Array i
Prof. U. ABmann, CBSE 24

[

}
U basic types

Ints (short,..)

module HelloWorld {
interface SimpleHelloWorld {
string sayHello() ;

Bool

|
1!

Generation of Stubs and Skeletons from
CORBA IDL

o
» Generation is done for every involved host programming language (HPL)
» Interface Repository is queried for component interfaces (introspection)

IDL-
Compiler

Interface
Repository

) 4

IDL Interface

A

Server
Skeleton

Server HPL
compiler

Client
Implementation

Server
Implementation

Client HPL

compiler

Server

Prof. U. ABmann, CBSE

Implementation
Repository

o

A | Required Formal Properties of the IDL-To-

®5

Language Mapping

* Lett,: IDL — TS, be the mapping from an
iInterface definition language /DL to the type
system TS of a programming language PL

1. Well-definedness
VY PL :%p;: IDL — TS,, is well defined

2. Completeness
V PL :tp, 1. TSp; — IDL is well defined

3. Soundness
V PL :tp; otp: IDL — IDL IS vy,

Prof. U. ABmann, CBSE 26

A'| IDL Can Also Be Generated from Host
®5 | Language

Specification of IDL and Specification of host

host language
Determined language
binding,

standardized IDL-to-
Language mapping

Generation of stubs and
skeleton is IDL compiler
iIndependent

Language specific IDL
compilers

OMG Corba

language
Retrieve the IDL out of

the interface definitions
(e.g., Java classes)

Have only one source of
IDL compilers
guaranteeing round-trip
property of retrieval and
generation for all
languages

Quasi standard
Java, DCOM, .Net

Prof. U. ABmann, CBSE 27

Stubs and Skeletons for Language Mediation

Stub

> Skeleton

Language 1

Map data to an
exchange format
(IDL)

Call Skeleton

Language 2
Receive call from stub

Retrieve data from the
exchange format (IDL),
transform it into
language 2

Prof. U. ABmann, CBSE 28

11.4 Location Transparency

D |

CBSE, © Prof. Uwe ARmann 29

Transparency Problem 2: Distribution

Location transparency: interoperability of programs independently of
their execution location

Problems to solve
= lransparent basic communication
Transparently initiate a local/remote call
Transparently transport data locally or remotely via a network
Transparent references
= Distributed systems are heterogeneous
Platform transparent, concurrent execution?
So far we handled platform transparent design of components
= Usual aspects in distributed systems
Transactions
Synchronization

Prof. U. ABmann, CBSE 30

Transparent Local/Remote Calls

Communication over proxies/
decorators
Proxies redirect call locally or

remotely on demand

Proxies always local to the caller

Site 1

Remote
Client

Stub

Site 2

RPC for remote calls to a
handler
Handler always local to the callee

Déja vu! We reuse Stubs and
Skeletons

Local Server Component
Client C++
Stub Skeleton

l

Local Call

T

Remote Cali

Prof. U. ABmann, CBSE

OS Stubs and Skeletons for Distribution

A variant of the Connector pattern, using remote procedure call
(RPC) between the decorators

<<client>>
Client

ServerDecorator

<<server>>
Server

v

service(d : Data)

service(d : Data)

service(d : Data)

= A

stub.service(d);

next A
- next

VSGI"VGF

ServiceStub

service(d : Data)

1| // communicate via RPC N
rocModule.send(skeleton,
“service’, ...);

............ > service(d : Data)

ServiceSkeleton

serverObject.service(d);\l *

Prof. U. ABmann, CBSE

32

Stubs and Skeletons for Distribution

to a byte stream
(marshalling,serializing)

Retrieving data / call
from the byte stream

Site 1 | Site 2
Client - === Stub —§—> Skeleton F === Server
<- - - - <——§— <- - - -
RPC
Language 1 | Language 2
Map data / call | Receive RPC

Exchange format
Send RPC

(unmarshalling,deserializing)
Exchange format

Prof. U. ABmann, CBSE 33

.SI Stubs, Skeletons, and Serializers

» or with separate serializers/deserializers

Site 1 i Site 2
Client o ¢ Stub I Skeleton [2 Server
. <-4 . <G
Language 1 i Language 2
Map data / call RPC Receive RPC

to a byte stream Retrieving data / call
(marshalling,serializing) from the byte stream

Exchange format (unmarshalling,deserializing)

Send RPC Exchange format I
Prof. U. ABmann, CBSE 34

11.5 Name Transparency and

Mapping names to locations by name servers

CBSE, © Prof. Uwe ARmann 35

Transparency Problem 3: The Reference
Problem (Name Transparency)

How to reference something?
Target of calls (services)
Call by reference parameters and results
Reference data in composite parameters and results

Scope of references
Thread/process
Computer
Agreed between communication partners
Net wide

How to handle references transparently?

Prof. U. ABmann, CBSE

CS Approach: Global Adresses

World wide unique logical addresses

e.g., computer address + local address

URL (Uniform Resource Locators), URI (Uniform Resource ldentifiers)
CORBA IORs (Interoperable Object References)

Global file names, e.g., with AFS (Andrew File system)

Names in a global cloud file system (DropBox, Skydrive, etc.)

Names in a private cloud file system http://sparkleshare.org/

Mapping tables for local references

Logical to physical
Consistent change of local references possible

One server decorator per computer manages references

1:n relation decorator to skeletons

1:m relation skeletons to component objects
Lifecycle and garbage collection management
|dentification (Who is this guy ...)
Authorization (Is he allowed to do this ...)

Prof. U. ABmann, CBSE 37

Change of Local References

Why are you interested in a reference?
= Need a reference to computation service (function)
Sufficient to have a reference to the component
Decorator creates or hands out an arbitrary object instance on demand
= Need a reference to store/retrieve data service
Use a data base

Decorator creates or hands out an arbitrary object instance wrapping the
accesses to the data base

= Need a reference for transaction to leave and resume
Decorator must keep correct mapping logical 2 physical address
Problems with use of self reference inside and outside service

Prof. U. ABmann, CBSE 38

More Flexible Service Management

How to spare server skeletons?

= IDL compiler must generate code for server decorator deserizalizer (example code
contained the service dispatcher)

= Solution: only one server side Decorator per site — independent of client
components provided

flexible service method with name lookup

the current solution prevents dynamic loading of services, because code has
fixed names; requires regeneration of Decorator

Solution: name service
= Decoupling of decorator and skeletons

= Provide a basic name service for identifying the components (skeletons) of a site,
so that the number of services is dynamically extensible

= Server components register in a service directory (name service) with name and
reference

= Generic adapter looks up, creates, and provides the appropriate service

Prof. U. ABmann, CBSE 39

CS Name Service

Name to Location

Located in the container as an associative array (map)

<<client>>
Client

service(d : Data)

ServerDecorator

>

<<server>>
Server

service(d : Data)

next

service(d : Data)

AN

NameService

resolve(name : String) : Skeleton
register(name : String, s : Skeleton)

7

—> ServiceStub

service(d : Data)

/

Decorator

Skeleton

service(d : Data)

service(d : Data) l

40

OS Name Service Generalized (1)

Distributed name service (name to location):
= If name of server is known, search for the right site providing a desired

component

<<client>>
Client

ServerDecorator ——I>

<<server>>
Server

service(d : Data)

: N~
service(d : Data) next

service(d : Data)

AN

RemoteNameService

resolve(lOR) : Skeleton
register(IOR, Skeleton)

7

—> ServiceStub

/

Decorator

service(d : Data)

Skeleton

service(d : Data)

service(d : Data) l'

41

OS Name Service Generalized (2)

Extended name service, dynamic call:
= If name of server is not known, search for the right service with faceted feature

description
<<client>> <<server>>
Client ServerDecorator ——| > Server
service(d : Data) service(d : Data) next| service(d : Data)
ServiceSearchService
search(Features) : Skeleton
register(Features, Skeleton)
//7
—> ServiceStub Decorator Skeleton
service(d : Data) service(d : Data) service(d : Data) IE

Traders as Generalized Name Servers

Trader service, traded call map properties to name or properties to
location
= Search for a server component with known properties, but unknown name

= Server components register at a trader with name, reference, and lookup
properties (metadata)

The trader has a component repository (registry)
Instead of names, lookup of service matches properties (metadata)
Return reference (site and service)

= Matching relies on standardized properties
Terminology, Ontology in facets (see “Finding components”)
Functional properties (domain specific functions ...)
Non-functional properties (quality of service ...)

Trader
Decorator

A 4

+register(f : Features, s: Skeleton)
+search(f : Features) : Skeleton

+service(d : Data)

Prof. U. ABmann, CBSE 43

A | Remark: Skeletons, NameServers, and
®5 | Containers

Can be started and consulted by skeletons

May offer many other aid functionality
= [ransactions: consistent management of multiple clients and service requests
= Security
= Persistence
= Interception (hooks into which new functionality can be entered)
= Support for aspects

Prof. U. ABmann, CBSE -l 44

What Classical Component Systems Provide

Technical support: remote, language and platform transparency
= Stub, Skeleton
One per component (technique: IDL compiler)
Generic (technique: reflection and dynamic invocation)
= Decorators on client and server site
Individual
Generic (technique: Name services)

Economically support: reusable services
= Basic: name, trader, persistency, transaction, synchronization
= General: print, e-mail, ...
= Domain specific: business objects, ...

Prof. U. ABmann, CBSE 45

Summary

Component systems provide many component secrets
= Location, language and platform transparency
= Iransactional, persistence, security, name service

Component secrets are realized with the Connector Pattern (Stub,
Skeleton-Pattern)

= One pair or tuple of Decorators per component in a layer, but several layers,
stacking Decorators on top of each others

= On the server side, adapters help to make services generic
= Decorators, Proxies, Adapters, Chains on client and server site

Generated by IDL compiler

= Is the IDL compiler essential?

= No! Generic stubs and skeletons are possible, too. Technique: Reflective
invocation

Prof. U. ABmann, CBSE 46

A'| A More Simple Connector with Server Interface
®5 | (Alt. 2, with Abstract Interface)

Client and server are connected via a layer of stubs and skeletons
(the connector)

Server, Stubs and Skeletons inherit from same interface (not a
Decorator!) - this cannot be layered

<<client>> <<interface>> <<server>>
Customer IBank <l_ Bank
startWork() createAccount() createAccount()
: { 5 AserverObject
- stub.createAccount();\
v stub
ServiceStub ServiceSkeleton
createAccount() skeleton | createAccount()
| 1
| |
e skeleton.createAccoun% serverObject.createAccount();\l'-!
Prof. U. ABmann, CBSE 47

Appendix
Example: A Remote
_l1| Yellow Page Service

with remote access, serialization

Software
Technology
Group

For your own study

CBSE, © Prof. Uwe ARmann 48

CG Remote Yellow Page Service

Basic design without Serialization/Deserialization

<<client>>
Client

<<interface>>
IYellowPage

<]_

<<server>>
YellowPageServer

startWork()
|

lookup(name : String)
store(k:String, v:String)

stub.lookup(,MyName*);

stub.store(,MyName*, ,name");

stub.lookup(,MyName*);

/\

N

lookup(name:String)
store(k:String, v:String)

AserverObject

v stub

YellowPageStub

lookup(name:String)
store(k:String, v:IString)

YellowPageSkeleton

skeleton.store

kv)

skeleton >

lookup(name:String)
store(k:String, v:§tring)

serverObject.store(k,v); \l"'

Prof. U. ABmann, CBSE

49

CG Remote Yellow Page Service

With Serialization/Deserialization

<<client>>
Client

<<interface>>
IYellowPage

startWork()
|

lookup(name : String)
store(k:String, v:String)

stub.lookup(,MyName*);
stub.store(,MyName*, ,name");
stub.lookup(,MyName*);

< /N

<<server>>
YellowPageServer

lookup(name:String) <
store(k:String, v:String)

serverObject

Site 2

stub v

YellowPageStub

ClientSerializer

lookup(name:String)

ServerDeserializer

YellowPageSkeleton

—>

store(k:String, v:String)

invoke(...)

N

ClientSerializer.invoke(..)

accept()

—>

lookup(name:String)
store(k:String, v:§tring)

serverObject.store(k,v); \l"'

Prof. U. ABmann, CBSE

(gl
o©

Service Interface

| interface IYellowPageService ({

String SERVICE NAME = “Yellow Pages”;
String lookup (String name) ;
void store(String name, String value) ;

}

Prof. U. ABmann, CBSE I 51

Service Implementation

| class YellowPageService implements IYellowPageService {

private Hashtable<String,String> cache =
new Hashtable<String,String>() ;
private DataBasis db = ..;
public String lookup (String name) {
String res = cache.get (name) ;
if (res == null)
res = db.lookup (name) ;
if (res !'= null) {
cache.put (name, res) ;
}
}

return res;

public void store(String name, String value) {
cache.put (name, value);

db.store (name, value) ;

} L
Prof. U. ABmann, CBSE 52

Client

o
1 » Wants to transparently use the Yellow Page service

Site 1 Site 2

= Stub > Serializer Deserializer # Skeleton [? Server

IR
. < < <t <t

Prof. U. ABmann, CBSE | 53

Example Client

class Client {

o
‘l Client calls stub with service interface:

// returns client stub
IYellowPageService yps =

YellowPageFactory.create() ;

String res = yps.lookup (“MyName”) ;

class YellowPageFactory ({
public IYellowPageService create() {
return new YellowPageStub () ;

}

Prof. U. ABmann, CBSE I 54

.3 I Stub (client side)

» Realizes 1:1 mapping of client to service component
» Uses 1:1 mapping of clients to stubs

Site 1

Site 2

Client Serializer Deserializer F #| Skeleton [$ Server

|
|
|
|
|
|
|
|
i
— >
i
< <4 <4
|
|
|
|
|
|
|
|
|

Prof. U. ABmann, CBSE | 55

o2 | Example Client Stub - Implementation
-

class YellowPageStub implements IYellowPageService {
private Integer logicalAddress = new Integer(-1);

public YellowPageStub() {

logicalAddress = (Object) ClientSerializer.invoke (
IYellowPageService.SERVICE NAME, logicalAddress, “new”, null);

public String lookup(String name) {

Object res = ClientSerializer.invoke (IYellowPageService.SERVICE NAME,
logicalAddress, “lookup”, new Object[] {name}) ;

return (String)res;

public void store(String name, String value) {

ClientSerializer.invoke (IYellowPageService.SERVICE NAME,
logicalAddress, “store”, new Object[] { name, value });

Prof. U. ABmann, CBSE 56

CS Scenario with Second Stub (client site)

By using the Decorator pattern, stubs can be stacked onto each

other

Every stub solves another transparency problem (middleware

concern)

Site 1 i Site 2
|
|
|
1 i 1 1
s| s i
Client F->| ¢ F-¥ ¢ [->| Serializer [—>{ Deserializer 3 Skeleton [3 Server
|
I ¥ ¥ | I I
| <- b <-H b |« -- 6—?— <h <

|
|
|
|
|
|
|
|

Prof. U. ABmann, CBSE 57

A'| Client Stub 1 - This Time with Decorator
®- | Chain Implementation

// new stub: encryption decorator
class YellowPageStubEncryption implements IYellowPageService ({
private IYellowPageService clientDec;

// Security: encryption, decryption
private String encrypt(String name) ;
private String decrypt(String name) ;

// client-side constructor
public YellowPageStubEncryption () {
clientDec = new YellowPageStub() ;
}
// lookup function, with encryption, decryption
public String lookup (String name) {
String res = clientDec.lookup (encrypt (name)) ;
return decrypt(res);

// store
// ..

Prof. U. ABmann, CBSE 58

o

I Client-side Serializer

>
>
>

Manages the basic communication on client side

Is called from the client stubs

Can be hidden in a Decorator (1:1), but can be also shared by all

stubs

Site 1

Client

- - Stub

Site 2

Deserializer |

Skeleton [? Server

d1

d1

Prof. U. ABmann, CBSE I 59

o2 | Example Client Serializer
-

class ClientSerializer {

public static Object invoke (String service, Integer address,
String method, Object|[] args) {

Socket s = new Socket(“yp-st.inf.tu-dresden.de", 1234);
ObjectOutputStream os = new ObjectOutputStream(s.getOutputStream()) ;
ObjectInputStream is = new ObjectInputStream(s.getInputStream()) ;
os.writeObject (service) ;
os.writeObject (address) ;
os.writeObject (method) ;
if (args != null) {
os.writeObject (args) ;
}
os.flush() ;
Object result = is.readObject() ;
s.close() ;

return result;

Prof. U. ABmann, CBSE

| Server-side Deserializer

o

» Manages the basic communication on server side
» Calls the service skeletons (1:n mapping)

Site 1 Site 2

Client - - P Stub > Serializer Skeleton [| Server

Prof. U. ABmann, CBSE | 61

.S Example Server Deserializer (1)

Deserializer listens on the network is shared between different services
= interprets incoming service names

= can create/invoke several service skeletons (yellow page, phone book, ..)
- lives always, but hides lifetime of the server

class ServiceDeserializer {

public void run() {
ServerSocket server = new ServerSocket (1234);
while (true) {
Socket client = server.accept():;
ObjectInputStream is = new ObjectInputStream(client.getInputStream()) ;
ObjectOutputStream os = new ObjectOutputStream(client.getOutputStream()) ;
String service = (String) is.readObject();
if (service.equals(IYellowPageService.SERVICE NAME)) ({
handleYellowPage (os, 1is);
} else if (service.equals(IPhoneBook.SERVICE NAME)) {
handlePhoneBook (os, is);

} else {

System.err.println("Unknown service.");

b}

Prof. U. ABmann, CBSE 62

o

Example Server Deserializer (2)

private void handleYellowPage (ObjectOutputStream os, ObjectInputStream is) {
Integer address = (Integer) is.readObject()
if (address == -1) { // creation of the service
YellowPageSkeleton skeleton = new YellowPageSkeleton() ;
os.writeObject (skeleton.getLogicalAddress()) ;
} else { // service query: interpretation of the symbolic service name
IYellowPageService yp = new YellowPageSkeleton (address) ;
String method = (String) is.readObject() ;
Object[] args = (Object[]) is.readObject()
if (method.equals("lookup")) ({
String res = yp.lookup((String)args[0]); // finally: call the service
os.writeObject (res) ;
} else if (method.equals("store")) ({
yp.store((String)args[0], (String)args[l])
os.writeObject (null) ;
} else
System.err.println ("Unknown service method.");

}}
os.flush();

Prof. U. ABmann, CBSE

63

.3 I Skeleton (Server side)

» Manages service components of server on server side
» 1:1 mapping to service component

Site 1

Site 2

Client - - P Stub > Serializer Deserializer | P Server

A1

I
|
|
|
|
|
|
;
|
—->
;
) T
|
|
|
|
I
|
|
|

Prof. U. ABmann, CBSE | 64

A'| Example Yellow Pages Server Skeleton
®5 | (Service Lookup and Call, Adapter)

public class YellowPageSkeleton implements IYellowPageService ({

private static Hashtable<Integer, IYellowPageService> yellowPageServices =
new Hashtable<Integer, IYellowPageService>()

private Integer logicalAddress;

public YellowPageSkeleton() {
this (new Integer (yellowPageServices.size()));
yellowPageServices.put(logicalAddress, new YellowPageService()) ;

}

public YellowPageSkeleton (Integer address) ({
logicalAddress = address;

}

public Integer getLogicalAddress() { return logicalAddress; }

public String lookup (String name) {
IYellowPageService service = yellowPageServices.get(logicalAddress);
return service.lookup (name) ;

}

public void store(String name, String wvalue) {
IYellowPageService service = yellowPageServices.get(logicalAddress) ;

service.store (name, value) ;

Prof. U. ABmann, CBSE 65

CS Creation of YP Service

Client Stub Decorator Decorator Skeleton Server
Client Server Impl
Site Site
create invoke Socket
(“create”) | Communication
. Call object
] new
g new
return
) Service
Socket
< L Complimpl
Communication PImp
“ res handle
return handle

Prof. U. ABmann, CBSE

CS Call (Lookup) YP Service

Client

lookup

return
String

Stub Decorator Decorator Skeleton Server
Client Server Impl
Site Site
invoke
> “(Igiﬂglpe”’) Socket
. Communication
Call object
] lookup
lookup
) return
) Socket String
communication
res
Object

Prof. U. ABmann, CBSE

67

Appendix B
D Generic Skeletons

Mapping names to locations by name servers

CBSE, © Prof. Uwe ARmann 68

A'| Rept.:
®- | Reflection & Reflective Invocation

Reflection
= toinspect the interface of an unknown component
= for automatic/dynamic configuration of server sites
= to call the inspected components

Access to interfaces with IDL
= Standardize an IDL run time representation and access
= Define a IDL specification for IDL representation and access
= Store IDL specifications in interface repositories which can be introspected

Prof. U. ABmann, CBSE

69

A'| Example Generic Skeleton (Reflective
®5 | Skeleton)

A generic skeleton is a special case of a name service: using
reflection to look up the name for a method

class ReflectiveSkeleton {

// serverObjects is the server implementation repository

static ExtendendHashtable serverObjects = new ExtendedHashtable() ;
ObjectOutputStream os;

ObjectInputStream is;

ﬁublic Object handleGeneric() { ..
Integer addr= (Integer) is.readObject();//handler
String mn = (String) is.readObject () ; //method name
Class[] pt = (Class[]) 4is.readObject();//parameter types
Object[] args= (Object[]) is.readObject();//parameters

// get server object reference by reflective call to implementation repository

Object o = serverObjects.getComponent (addr) ;

Method m = o.getClass () .getMethod (mn,pt); //method object by
reflection

Object res = m.invoke (0, args) ; //method call by
reflection

os.writeObject (res) ;
os.flush() ;

Prof. U. ABmann, CBSE 70

Appendix C
] The Decorator Design Pattern

(Repetition from DPF in winter)

CBSE, © Prof. Uwe ARmann 71

o2 | Decorator Pattern
-

A Decorator is a skin of another object

It is a 1-ObjectRecursion (i.e., a restricted Composite):

A subclass of a class that contains an object of the class as child

However, only one composite (i.e., a delegatee)

Combines inheritance with aggregation
Inheritance from an abstract Handler class

That defines a contract for the mimiced class and the mimicing class

:Client

A:Decorator

ref—

B:Decorator

hidden <

C:RealObject

hiddden +

72

o2 | Decorator — Structure Diagram
=

1
MimicedClass <
mimiced
mimicedOperation()
|
ConcreteMimicedClass Decorator -~ ,
mimicedOperation() mimicedOperation() --..|
LX mimiced.mimicedOperation()
| |
ConcreteDecoratorA ConcreteDecoratorB

mimicedOperation()

mimicedOperation() -

super.mimicedOperation();
additional Stuff():

Prof. U. ABmann, CBSE 73

.3 Example: Decorator for Widgets

mimiced.draw()

eeeee

1
Widget <
mimiced
draw()
TextWidget WidgetDecorator ® |
draw() draw() -
| |
Frame Scrollbar
super.draw(); draw() draw() =
dhvwFrame():

super.draw();
drawScrollbar():

Prof. U. ABmann, CBSE

i

.S Decorator for Persistent Objects

mimiced.access()

1
Record <
mimiced
access()
/\
I |
TransientRecord PersistentDecorator ® |
access() access() - |
| |
PersistentRead PersistentRecord
OnlyRecord
. aCCGSS()
if (loaded()) load(; access() boolean loaded()
super.access(); boolean loaded() boolean modified()
load() l0ad()
dump()

if (lloaded()) Ioad()\,\

super.access();
if (modified()) dump():

Prof. U. ABmann, CBSE

75

.‘ Purpose Decorator
u

For extensible objects (i.e., decorating objects)
Extension of new features at runtime

Removal possible

Instead of putting the extension into the inheritance hierarchy

If that would become too complex

If that is not possible since it is hidden in a library

Library

>
¢

New Features

Library

A

Prof. U. AR

Decorator with
New Features

ann, CBSE 76

OS Variants of Decorators

If only one extension is planned, the abstract super class Decorator

can be omitted; a concrete decorator is sufficient

Decorator family: If several decorators decorate a hierarchy, they can
follow a common style and can be exchanged together

Decorators can be chained to each other

Dynamically, arbitrarily many new features can be added

New Features

............................ N BaaLee

New Features

New Features

New Features

New Features

Prof. U. ABmann, CBSE

77

The End

o
1 » Many slides courtesy to Prof. Welf Lowe, Vaxjo University, Sweden.

Prof. U. ABmann, CBSE I 78

