
CBSE, © Prof. Uwe Aßmann 1

13. Architecture Systems

Prof. Dr. Uwe Aßmann
Technische Universität

Dresden
Institut für Software- und

Multimediatechnik
http://st.inf.tu-dresden.de

Version 13-0.2, May 7, 2013

1.  Separation of Concerns
2.  Concepts of an ADL
3.  Examples of ADL
4.  Architecture Specification in

UML
5.  Refinement of Connectors

in MDSD

Prof. U. Aßmann, CBSE 2

Obligatory Literature

►  E. W. Dijkstra. EWD 447: On the role of scientific thought. Selected
Writings on Computing: A Personal Perspective, pages 60–66, 1982.
►  http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD447.html

►  D. Garlan and M. Shaw, An Introduction to Software Architecture. In
Advances in Software Engineering and Knowledge Engineering,
World Scientific Publishing Company, 1993, Ed. V. Ambriola and G.
Tortora, S. 1-40. Nice introductory article.
http://www-2.cs.cmu.edu/afs/cs/project/able/www/paper_abstracts/intro_softarch.html

►  Shaw, M. and Clements, P.C. A Field Guide to Boxology. Preliminary
Classification of Architectural Styles for Software Systems. CMU April
1996.
http://www.cs.cmu.edu/~Vit/paper_abstracts/Boxology.html

►  C. Hofmeister, R. L. Nord, D. Soni. Describing Software Architecture
with UML. In P. Donohoe, editor, Proceedings of Working IFIP
Conference on Software Architecture, pages 145--160. Kluwer
Academic Publishers, February 1999.
http://citeseer.ist.psu.edu/hofmeister99describing.html

Prof. U. Aßmann, CBSE 3

Literature

►  Shaw, M., Garlan, D. Software Architecture – Perspectives for an
Emerging Discipline. Prentice-Hall,1996. Nice Introduction.

►  http://www.cs.cmu.edu (Shaw, Garlan)
►  Clements, Paul C. A Survey of Architecture Description Languages.

Int. Workshop on Software Specification and Design, 1996.
►  C. Hofmeister, R. Nord, D. Soni. Applied Software Architecture.

Addision-Wesley, 2000. Very nice book on architectural elements in
UML.

►  Martin Alt. On Parallel Compilation. PhD Dissertation, Universität
Saarbrücken, Feb. 1997. (CoSy prototype)

►  ACE b.V. Amsterdam. CoSy Manuals. http://www.ace.nl/cosy

Prof. U. Aßmann, CBSE 4

Examples of Architecture Systems

►  Shaw, M, DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik,
G, Abstractions for Software Architecture and Tools to Support Them.
IEEE Transactions on Software Engineering, April 1995, S. 314-335.
(UNICON) http://citeseer.ist.psu.edu/shaw95abstractions.html

►  D. C. Luckham and J. Vera. An Event-Based Architecture Definition
Language. IEEE Transactions on Software Engineering, S. 717--734,
Sept. 1995. (RAPIDE)

►  http://www.doc.ac.ic.uk (Darwin)
►  Gregory Zelesnik. The UniCon Language User Manual.School of

Computer Science, Carnegie Mellon University Pittsburgh,
Pennsylvania

►  M. Alt, U. Aßmann, and H. van Someren. Cosy Compiler Phase
Embedding with the CoSy Compiler Model. In P. A. Fritzson, editor,
Proceedings of the International Conference on Compiler
Construction (CC), volume 786 of Lecture Notes in Computer
Science, pages 278-293. Springer, Heidelberg, April 1994.

Prof. U. Aßmann, CBSE 5

Ø  Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. OSDI 2004.

Prof. U. Aßmann, CBSE 6

Classical
Component Systems

Architecture Systems

Aspect Systems

View Systems

Darwin
BPMN

Aspect/J
AOM

Invasive Composition
Piccola Gloo

Standard Components
Reflection

Architecture as Aspect
Connectors

Aspect Separation
Crosscut graphs

Composition
Operators

Composition
Language

Object-Oriented Systems C++ Java
Objects as
Run-Time Components

Modular Systems Modules as Compile-
Time Components

Composition Filters
Hyperspaces

Software
Composition
Systems

.NET CORBA
Beans EJB

The Ladder of Composition Systems

Shell scripts
Modula Ada-85

COSY
ACME

CBSE, © Prof. Uwe Aßmann 7

13.1. Separation of Concerns

Let me try to explain to you, what to my taste is characteristic for all intelligent thinking.
It is, that one is willing to study in depth an aspect of one’s subject matter in isolation
for the sake of its own consistency, all the time knowing that one is occupying oneself
only with one of the aspects. ... It is what I sometimes have called "the separation of

concerns", which, even if not perfectly possible, is yet the only available technique for
effective ordering of one’s thoughts, that I know of.

Edsgar W. Dijkstra, "On the role of scientific thought", [Dij82]

Prof. U. Aßmann, CBSE 8

A Basic Rule for Design

►  ... is to focus at one problem at a time and to forget about others
►  Abstraction is neglection of unnecessary detail

■  Display and consider only essential information

►  Heuristic Separation of Concerns (SoC)
■  Different concepts should be separated so that they can be specified

independently
■  Every separated concept neglects unnecessary details
■  Dimensional specification: Specify a system from different viewpoints and

abstract for every viewpoint from unnecessary details

►  An Example of SoC: Separate Policy and Mechanism
■  Mechanism:

.  The way how to technically realize a solution
■  Policy:

.  The way how to parameterize the realization of a solution
►  Objective: vary policy independently from mechanism

Prof. U. Aßmann, CBSE 9

Structure Media plan

Light plan Water pipe plan

Integrated
house

Aspects in Architecture as an Example of SoC

Prof. U. Aßmann, CBSE 10

Application
Components

Other aspects Architecture

Code generator

Another Example of SoC:
Architectural Aspect in Software

Prof. U. Aßmann, CBSE 11

The 4-View to Software Architecture

►  [Hofmeister/Sony/Nord. Applied Software Architecture]
►  Software architecture consists of 4 views

■  logical view (conceptual view, component-connector architectures)

.  specifies the functional requirements and structure, in a component-based UML model

.  This is the focus in this chapter

■  process view

.  specifies non-functional features as performance, reliability, fault tolerance, parallelism, division in
processes.

■  development view

.  specifies the file organisation the modules, libraries, subsystems, the static structure the software
in the development environment

■  physical view (run-time view)

.  specifies the mapping of the software to the hardware, distribution, processes, etc., and the run-
time execution structure

►  For all these views, architecture diagrams can be made in different
modelling languages
►  Here, we treat only the logical view

Prof. U. Aßmann, CBSE 12

Architecture Systems as Automated
Architectural Views
Ø  Architecture Systems advance in all three criteria groups for

composition systems
►  Component model

■  Binding points: Ports

■  Transfer (carrier) of the communication is transparent

■  Hierarchical components by encapsulation

►  Composition technique
■  Adaptation and glue code by connectors

■  Aspect separation: application and communication are separated

.  Topology (with whom?)

.  Carrier (how?)

■  Scalability (distribution, binding time with dynamic architectures)

■  Architectural skeletons as composition operators

►  Composition language: Architecture Description Language (ADL)

CBSE, © Prof. Uwe Aßmann 13

13.2 Elements of Architecture
Description Languages

Prof. U. Aßmann, CBSE 14

Connector

Port
Interface

Role

Component Model in
Architecture Systems
►  Ports abstract interface points

(event channels, methods)
■  Ports specify the data-flow into and

out of a component
■  In the simplest case, ports are

methods
. in(data)
. out(data)

►  Connectors are special
communication components
■  Connectors are attached to ports
■  Connectors abstract from the

concrete carrier
■  Can be binary or n-ary
■  Connector end is called a role
■  A role fits only to certain types of

ports (typing)

CBSE, © Prof. Uwe Aßmann 15

13.2.1 Ports

Prof. U. Aßmann, CBSE 16

Abstract Binding Points: Data Ports

►  Ports are
►  Provided or required
►  Synchronous or asynchronous (partner has to wait or not)
►  Singular or continuous (communication can take place once or many times)
►  Atomic or composite

►  A port is provided, if the component offers its implementation for
external use

►  A port is required, if the component needs an implementation for it
from another component in the external world

more
classes

here

Prof. U. Aßmann, CBSE 17

Different Data Ports

Synchronicity
►  Input data ports are synchronous or asynchronous: in(data)

■  get(data) aka receive(data): Synchronous in-port, taking in one data
■  testAndGet(data): Asynchronous in-port, taking in one data, if it is available

►  Output data ports are synchronous or asynchronous: out(data)
■  set(data): Synchronous out-port, putting out one data, waiting until acknowledge
■  put(data) aka send(data): Asynchronous out port, putting out one data, not waiting

until acknowledge

Continuity
►  Stream ports (channels, pipes): continuous data port

►  Can be realized by Design Pattern Iterator

►  Event port: asynchronous continuous data port

Prof. U. Aßmann, CBSE 18

Composite Ports (Services)

Ports can be atomic or composite (structured)
►  A service is a structured port (groups of ports)
►  A data service is a tuple of atomic ports:

[in(data), ..., in(data), out(data), ..., out(data)]

►  A call port is a synchronous input/output composite, singular port with

one out-port, the return

[in(data), ..., in(data), out(data)]

►  A property service is a synchronous singular data service to access

component attributes, i.e., a simple tuple of in and out ports

[in(data), out(data)]

more
services

here

Prof. U. Aßmann, CBSE 19

Gates (Port Objects)

Ø  So far, provided ports were
§  Data ports (simple in, out, set, get procedures)
§  Service ports (structured ports and procedures)

Ø  Ports can also be gates, port objects, with interfaces (roles)

Component

<<provided>>
Port class

<<required>>
Port class

Component

Prof. U. Aßmann, CBSE 20

Hierarchic Architectures with Encapsulation

►  Components can be connected by connectors
►  Then, the tuple space is split into communication channels, avoiding bottleneck
►  Protocols are hidden in the connector

►  Components can be nested by an encapsulation operator so that
architectures become hierarchical, reducible structures (with fractal-like
zoom-in/out)
►  The operation “encapsulate” hides encapsulated components in an outer component
►  Ports of outer components are called players
►  Connectors from players to ports of inner components are called delegation connectors
►  A topology is the network of connectors and ports within a component

Player Component
Component

Component

Player

Prof. U. Aßmann, CBSE 21

Nesting of Components

►  In most component models, components are nested, i.e., are bobs.
►  Nesting is indicated by aggregation and part-of relationship.
►  Nesting is introduced by an encapsulation operator encapsulate.

Document
System

Document System

Text
Manager

Address
Manager Adresses

email
email

Manager

Text

Forms

Buffer

Lines TextRep

IText

IForm

encapsulate

decompose

CBSE, © Prof. Uwe Aßmann 22

13.2.2 Connectors

Prof. U. Aßmann, CBSE 23

Connectors Provide Adaptation, Glueing and
Connection
►  Connectors can stack adapters onto each other

Adaptation

Adaptation
and Connection

Adaptation, Glueing
and Connection

Prof. U. Aßmann, CBSE 24

Connectors Generate Architectural Code

►  Glue- and adapter code from connectors, skeletons, and ADL-
specifications
■  Mapping of the protocols of the components to each other

►  Simulations of architectures:
■  Test dummies and mocks (dummies with protocol machines)
■  The architecture can be created first and tested standalone
■  Analysis of run-time possible (if those of components are known)

►  Test cases for architectures

Architecture
(Connectors)

ADL-
compiler

Architectural Glue Code
Application
component Application

component

Application
component

Application
component

Prof. U. Aßmann, CBSE 25

Client
component

Role

Server
component

Port

Connectors are Abstract Communication
Buses

Port
Port

Connector

Role

Prof. U. Aßmann, CBSE 26

But we know that already from Corba

Client
Java

Server
C++

Client
C

IDL Stub IDL skeleton IDL Stub

 Corba-ORB-connector

Object adapter

Marshaling
Marshaling

Prof. U. Aßmann, CBSE 27

The Connector Pattern (Rept.)

►  Client and server are connected via a layer of stubs and skeletons
(the connector)

►  The connector consists of two decorators of the server
►  Decorator chain is inherited

<<client>>
Customer

startWork()

ServiceStub

createAccount()

stub

<<server>>
Bank

createAccount()

ServiceSkeleton

createAccount() skeleton.createAccount()

serverObject.
createAccount()

stub.createAccount()

ServerDecorator

service(Data d) server

Connector

Prof. U. Aßmann, CBSE 28

Connector

More Layers are Possible in a Decorator-
Connector
►  More decorators can be stuffed into the connector in additional layers:

<<client>>
customer:
Customer

startWork()

stub:
ServiceStub

createAccount()

stub.createAccount()

stub

<<server>>
bank:
Bank

createAccount()

skeleton:
ServiceSkeleton

createAccount()

serverObject

stub2.createAccount()

serverObject.
createAccount()

stub:
ServiceStub2

createAccount()

stub2

skeleton2:
ServiceSkeleton2

createAccount()

skeleton

skeleton2.createAccount()

skeleton2

skeleton.
createAccount()

Prof. U. Aßmann, CBSE 29

Most Commercial Component Systems
Provide Restricted Forms of Connectors
►  It turns out that most commercial component systems do not offer

connectors as explicit modelling concepts, but
■  offer communication mechanisms that can be encapsulated into a connector

component
■  For instance, CORBA remote connections can be packed into connectors

Client Stub
Skeleton CompImpl Stub Adapter Adapter Client

Connector

Prof. U. Aßmann, CBSE 30

CORBA is a Simple Architecture System with
Restricted Connectors
Ø  Corba:
►  Client and service components
►  ORB client side, server side
►  Marshalling, proxy, Stub, Skeleton,

Object Adapter
►  Interfaces in IDL (not abstracted to

ports)
►  static call

►  dynamic call

►  connectors always binary
►  Events, callbacks, persistence as

services (cannot be exchanged to
other communications)

Ø  Architecture System:
►  Components
►  Connectors
►  Roles

►  Ports

►  procedure call connector (also

distributed)
►  dynamic reconfigurable connectors

(e.g., in Darwin)
►  connectors n-ary
►  All these as connectors (can be

exchanged to other
communications)

Prof. U. Aßmann, CBSE 31

A Complex Connector: Repository Connector
(Tuple Space Connector)
Ø  A specific, large connector is the repository (tuple space)
Ø  Based on data ports, components can communicate via tuples of data, emitting and

receiving from a tuple space
§  Repository offers data objects (material) with data ports
§  Active components work (tools) on the material

Ø  Data in tuple spaces can be untyped, or typed by a data definition language (DDL)
(see course „Softwarewerkzeuge“)

Producer

Consumer 1

Consumer 2

Tuple space
(repository,
Blackboard) Prof. U. Aßmann, CBSE 32

A Complex Composition Operator: Skeleton

Ø  An architectural skeleton is a coordination scheme for a set of
components superimposing a topology of connectors (connector
nets)
§  their encapsulation to a new component

Ø  Example: the Map-Reduce Skeleton (Google) for searching
§  Divide-and-conquer, partition, zip, serialize, ...

C2-query C1-query C3-query

C5-reduce C4-reduce

C6-reduce

map

Query result

Prof. U. Aßmann, CBSE 33

Composers Can Be Used For Skeletons
(Coordinators)

coordinator

►  Instead of functions or modules,
skeletons can be defined over
fragment components

►  CoSy coordination schemes
(ACE compiler component
framework www.ace.nl)
■  Compose basic components with

coordinating operators

Prof. U. Aßmann, CBSE 34

Composers Generalize Skeletons
(Coordinators)

Components Composers Variation
points

components skeletons ports

CBSE, © Prof. Uwe Aßmann 35

13.2.3 Architecture Description
Languages (ADL)

Prof. U. Aßmann, CBSE 36

Architecture can be Exchanged Independently
of Components
►  Reuse of components and architectures is fundamentally improved
►  Two dimensions of reuse

■  Architecture and components can be reused independently of each other

Port 2

Port 1

Port Port Component

Component

Component

Architecture Application
Component

Application
Component

Prof. U. Aßmann, CBSE 37

Architecture Systems

►  Unicon [Shaw 95]
►  Darwin [Kramer 92]
►  Rapide [Luckham95]
►  C2 [Medvedovic]
►  Wright [Garlan/Allen]
►  CoSy [Aßmann/Alt/

vanSomeren 94]
►  Modelica

http://www.modelica.org,
equation-based connectors

►  Aesop [Garlan95]
►  ACME [Garlan97]:

Prof. U. Aßmann, CBSE 38

The Composition Language: ADL

►  Architecture language (architectural description language, ADL)
■  ADL-compiler generating code for connectors and skeletons

■  ADL graphic and textual editors: simple specification
■  The architecture is a reducible graph with all its advantages

■  The reducibility of the architecture allows for simple overview, evolution,
and documentation

■  XML-Readers/Writers for ADL

►  An architecture style employs for a system or a layer only particular
architectural concepts [Garlan/Shaw: Software Architecture] :
■  particular composition operators (connectors, skeletons, …)
■  particular communication carriers or topologies
■  Obeys specific architectural rules, often specified in logic
■  Ex.: Pipe-and-filter style, repository style, call-based style, event-driven

architecture, 3-tier architecture, and many more

Prof. U. Aßmann, CBSE 39

Reference Architectures

Ø  A reference architecture is a template or framework of an
architecture, most often for a particular application domain.
§  It uses a predominant architectural style
§  Strong emphasis on architectural design rules
§  Can be instantiated or derived to a concrete architecture
§  Often used in product families

Ø  Later, we will see how generic programming and view-based
programming can be used to specify reference architectures

Prof. U. Aßmann, CBSE 40

What ADL Offer for the Software Process

►  Requirements specification
■  Client can understand the architecture graphics well
■  Architectural styles classify the nature of a system (similar to design patterns)

►  Design support
■  Visual and textual views to the software resp. the design
■  Refinement of architectures (stepwise design, design to several levels)
■  Design of product families

.  A reference architecture fixes the commonalities of the product line

.  The components express the variability

►  Validation
■  Consistency checking tools for consistency of architectures
■  Type checking: are all ports bound? Do all protocols fit?
■  Does the architecture corresponds to a certain style ?
■  Does the architecture fit to a reference architecture?
■  Checking, analysing deadlock, liveness, fairness checking

CBSE, © Prof. Uwe Aßmann 41

13.3 Examples

13.3.1 CoSy - A commercial architecture system
for compilers

Prof. U. Aßmann, CBSE 42
42

A CoSy Compiler with Repository-Style
Architecture (Typed Tuple Space)

Lexer

Parser

Semantics

Optimizer

Transformation

Codegen

Blackboard

Prof. U. Aßmann, CBSE 43
43

Optimizer
II

Parser

Optimizer
I

Generated
access layer

Logical view

Generated Factory

A CoSy Compiler

Prof. U. Aßmann, CBSE 44

Subarchitecture
Back end

Hierarchical Components in the Repository
Style (CoSy)

Subarchitecture
Front end

Lexer

Parser

Subarchitecture
Middle end

Semantics Optimizer Trafo

Scheduler

Code
generator

Compiler

Prof. U. Aßmann, CBSE 45

Example from EDL
(Engine Description Language)
►  Component classes (engine class)
►  Component instances (engines)
►  Basic components are implemented

in C
►  Interaction schemes form complex

connectors
■  SEQUENTIAL

■  PIPELINE

■  DATAPARALLEL

■  SPECULATIVE

►  EDL can embed automatically
■  Single-call-components into pipes

■  p<> means a pipe p

■  EDL can map their protocols to each
other (p vs p<>)

ENGINE CLASS optimzer (procedure p) {
 controlflowAnalyser cfa;
 commonSubExprEliminator cse;
 loopVariableSimplifier lvs;

 PIPELINE cfa(p); cse(p); lvs(p);
}

ENGINE CLASS compiler (file f) {
 Token token;
 Modules m;
PIPELINE
 // lexer takes file, delivers token pipe
 lexer(IN f, OUT token<>);
 // Parser delivers a module
 parser(IN token<>, OUT m);
 sema(m);
 decompose(m,p<>);
 // here comes a Pipe of procedures
 // from the module
 optimizer(p<>);
 backend(p<>);
}

Prof. U. Aßmann, CBSE 46

Hierarchical Repository Style

►  CoSy generates for every component an adapter (envelope,
container),
■  that maps the protocol of the component to that of the environment
■  Coordination, communication, encapsulation and access to the repository are

generated

Repository

Adapter
(envelope)

Communication
code

Coordination code
and encapsulation

Access to
repository

Prof. U. Aßmann, CBSE 47

Evaluation of CoSy

►  CoSy is one of the few commercial architecture systems with
professional support
■  CoSy realizes hierarchical repositories
■  The outer call layers of the compiler are generated from the ADL
■  Sequential and parallel implementation can be exchanged
■  There is also a non-commercial prototype [Martin Alt: On Parallel Compilation.

PhD Dissertation Universität Saarbrücken])
■  Access layer to the repository is efficient (solved by generation of macros)

►  Because of views a CoSy-compiler is very simply extensible
■  That's why it is expensive
■  Reconfiguration of a compiler within an hour

Prof. U. Aßmann, CBSE 48

13.3.2 UNICON

►  UNICON supports
■  Components in C
■  Simple and user-defined connectors

►  Design Goals
■  Uniform access to a large set of connections
■  Check of architectures (connections) with analysis tools should be possible
■  Both Graphics and Text
■  Reuse of existing legacy components

Prof. U. Aßmann, CBSE 49

Description of Components and Connectors in
UNICON
►  Name
►  Interface (component) resp. protocol (connector)
►  Type

■  component: modules, computation, SeqFile, Filter, process, general

■  connectors: Pipe, FileIO, procedureCall, DataAccess, PLBandler, RPC,
RTScheduler

►  Global assertions in form of a feature list (property list)
►  Collection of

■  Players for components (for ports and port mappings for components of different
nesting layers)

■  Roles for connectors

►  The UNICON-compiler generates
■  Odin-Files from components and connectors. Odin is an extended Makefile

■  Connection code

Prof. U. Aßmann, CBSE 50

Supported Player Types per Component Type

►  Modules:
■  RoutineDef, RoutineCall,

GlobalDataDef, GlobalDataUse,
PLBandle, ReadFile, WriteFile

►  Computation:
■  RoutineDef, RoutineCall,

GlobalDataUse, PLBandle

►  SharedData:
■  GlobalDataDef, GlobalDataUse,

PLBandle

►  SeqFile:
■  ReadNext, WriteNext

►  Filter:
■  StreamIn, StreamOut

►  Process:
■  RPCDef, RPCCall

►  Schedprocess:
■  RPCDef, RPCCall, RTLoad

►  General:
■  All

Prof. U. Aßmann, CBSE 51

Supported Role Types For Connector Types

►  Pipe:
■  Source fits to Filter.StreamOut,

SeqFile.ReadNext
■  Sink fits to Filter.StreamIn,

SeqFile.WriteNext

►  FileIO:
■  Reader fits to modules.ReadFile
■  Readee fits to SeqFile.ReadNext
■  Writer fits to Modules.WriteFile
■  Writee fits to SeqFile.WriteNext

►  ProcedureCall:
■  Definer fits to (Computation|

Modules).RoutineDef
■  User fits to (SharedData|

Computation|
Modules).GlobalDataUse

►  PLBandler:
■  Participant fits to PLBandle,

RoutineDef, RoutineCall,
GlobalDataUse, GlobalDataDef

►  RPC
■  Definer fits to (Process|

Schedprocess).RPCDef
■  User fits to (Process|

Schedprocess).RPCCall

►  RTScheduler
■  Load fits to Schedprocess.RTLoad

Prof. U. Aßmann, CBSE 52

A “Modules” Component

INTERFACE IS

TYPE modules

LIBRARY
PLAYER timeget IS RoutineDef
 SIGNATURE ("new_type"; "void")
END timeget
PLAYER timeshow IS RoutineDef
 SIGNATURE (; "void")
END timeshow

END INTERFACE

Prof. U. Aßmann, CBSE 53

A Filter

COMPONENT Reverser INTERFACE IS
TYPE Filter
PLAYER input IS StreamIn SIGNATURE ("line") PORTBINDING (stdin) END input
PLAYER output IS StreamOut SIGNATURE ("line") PORTBINDING (stdout) END output PLAYER
error IS StreamOut SIGNATURE ("line") PORTBINDING (stderr) END error
END INTERFACE

IMPLEMENTATION IS
/* Component instantiations are declared below. */
USES reverse INTERFACE Reverse
USES stack INTERFACE Stack
USES libc INTERFACE Libc
USES datause protocol C-shared-data

/* We will use <establish> statements for the procedure call connections (next page) */

/* Now for the configuration of connectors to players */
/* CONNECTs bind ports to roles */
CONNECT reverse._iob TO datause.user
CONNECT libc._iob TO datause.definer
END IMPLEMENTATION END Reverser

Prof. U. Aßmann, CBSE 54

/* Establish connections ESTABLISHs bind connectors to ports */
ESTABLISH C-proc-call WITH reverse.stack_init AS caller stack.stack_init AS definer END C-proc-call
ESTABLISH C-proc-call WITH reverse.stack_is_empty AS caller stack.stack_is_empty AS definer
 END C-proc-call
ESTABLISH C-proc-call WITH reverse.push AS callr stack.push AS definer END C-proc-call
ESTABLISH C-proc-call WITH reverse.pop AS callr stack.pop AS definer END C-proc-call
ESTABLISH C-proc-call WITH reverse.exit AS callr libc.exit AS definer END C-proc-call
ESTABLISH C-proc-call WITH reverse.fgets AS callr libc.fgets AS definer END C-proc-call
ESTABLISH C-proc-call WITH reverse.fprintf AS callr libc.fprintf AS definer END C-proc-call
ESTABLISH C-proc-call WITH reverse.malloc AS callr libc.malloc AS definer END C-proc-cal
ESTABLISH C-proc-call WITH reverse.strcpy AS callr libc.strcpy AS definer END C-proc-call
ESTABLISH C-proc-call WITH reverse.strlen AS callr libc.strlen AS definer END C-proc-call

/* Lastly, we bind the players in the interface
to players in the implementation. Remember, it is okay to omit the bind of player "error." */
BIND input TO ABSTRACTION MAPSTO (reverse.fgets) END input
BIND output TO ABSTRACTION MAPSTO (reverse.fprintf) END output
END IMPLEMENTATION
END Reverser

Prof. U. Aßmann, CBSE 55

Definition of Connectors

►  In Version 4.0, connectors can be
defined by users

►  However, the extension of the
compilers is complex:
■  a delegation class has to be

developed,
■  the semantic analysis,
■  and the architecture analysis must

be supported.

CONNECTOR C-proc-call
 protocol IS
 TYPE procedureCall
 ROLE definer IS Definer
 ROLE callr IS Callr
 END protocol
 IMPLEMENTATION IS BUILTIN
 END IMPLEMENTATION
END C-proc-call

CONNECTOR C-shared-data
 protocol IS
 TYPE DataAccess
 ROLE definer IS Definer
 ROLE user IS User
 END protocol
 IMPLEMENTATION IS BUILTIN
 END IMPLEMENTATION
END C-shared-data

Prof. U. Aßmann, CBSE 56

Attachment of External Libraries

COMPONENT Libc
INTERFACE IS
TYPE modules
LIBRARY PLAYER exit IS RoutineDef
SIGNATURE ("int"; "void") END exit PLAYER fgets IS RoutineDef
SIGNATURE ("char *", "int", "struct _iobuf *"; "char *") END fgets PLAYER fprintf IS RoutineDef
SIGNATURE ("struct _iobuf *", "char *", "char *"; "int") END fprintf PLAYER malloc IS RoutineDef
SIGNATURE ("unsigned"; "char *") END malloc PLAYER strcpy IS RoutineDef
SIGNATURE ("char *", "char *"; "char *") END strcpy PLAYER strlen IS RoutineDef
SIGNATURE ("char *"; "int") END strlen PLAYER _iwhether IS GlobalDataDef
SIGNATURE ("struct _iobuf *") END _iwhether END INTERFACE

IMPLEMENTATION IS
 VARIANT libc IN "-lc"
 IMPLTYPE (ObjectLibrary)
 END libc
END IMPLEMENTATION
END Libc

Prof. U. Aßmann, CBSE 57

A Component with GUI-Annotations

COMPONENT KWIC
INTERFACE IS
TYPE Filter PLAYER input IS StreamIn
SIGNATURE ("line") PORTBINDING (stdin) END input PLAYER output IS StreamOut
SIGNATURE ("line") PORTBINDING (stdout) END output PLAYER error IS StreamOut
SIGNATURE ("line") PORTBINDING (stderr) END error
END INTERFACE

IMPLEMENTATION IS
GUI-SCREEN-SIZE ("(lis :real-width 800 :width-unit "" :real-height 350 :height-unit "")")
DIRECTORY ("(lis "/usr/examples/ upcase.uni" "/usr/examples/cshift.uni"
 "/usr/examples/ data.uni" "/usr/examples/converge.uni"
 "/usr/examples/ sort.uni" "/usr/examples/unix-pipe.uni"
 "/usr/examples/ reverse-f.uni")")
USES caps INTERFACE upcase
GUI-SCREEN-POSITION ("(lis :position (@pos 68 123) :player-positions (lis
 (cons "input" (cons `left 0.5)) (cons "error" (cons `right 0.6625))
 (cons "output" (cons `right 0.3375))))")
END caps (remaining definition owithted)
END IMPLEMENTATION
END KWIC

 Prof. U. Aßmann, CBSE 58

The KWIC Problem in UNICON

►  Example from UniCon distribution:
►  "Keyword in Context" problem (KWIC)

■  The KWIC problem is one of the 10 model problems of architecture systems

■  Proposed by Parnas to illustrate advantages of different designs [Parnas72]

■  For a text, a KWIC algorithm produces a permuted index

.  every sentence is replicated and permuted in its words, i.e., the words are
shifted from left to right

.  every first word of a permutation is entered into an alphabetical index, the
permuted index

 every sentence is replicated and permuted

 every sentence is replicated and permuted

 every sentence is replicated and permuted

every sentence is replicated and permuted

 every sentence is replicated and permuted

 every sentence is replicated and permuted

Prof. U. Aßmann, CBSE 59

The KWIC Problem in Unicon

►  KWIC is a compound component KWIC
■  Works in a pipe-and-filter style
■  PLAYER definitions define ports of the outer component

.  stream input port input

.  and two output ports output and error
■  BIND statements connect ports from outer components

to ports of inner components (delegation connectors)
■  USES definitions create instances of components and

connectors
■  CONNECT statements connect connectors to ports at

their roles

merge

caps

output input

shifter

req-data

Q

P

sorter

R

KWIC

error

■  Components
.  caps: replicates the sentences

as necessary
.  shifter: permutes the

generated sentences
.  req-data: provides some data

to the merge component
.  merge: join, piping the

generated data to the
component

.  sorter: sorts the shifted
sentences

Prof. U. Aßmann, CBSE 60

COMPONENT KWIC
 /* This is the interface of KWIC with in- and output ports */
 INTERFACE IS TYPE Filter
 PLAYER input IS StreamIn SIGNATURE ("line")
 PORTBINDING (stdin) END input
 PLAYER output IS StreamOut SIGNATURE ("line")
 PORTBINDING (stdout) END output
 END INTERFACE
 IMPLEMENTATION IS
 /* Here come the component definitions */
 USES caps INTERFACE upcase END caps
 USES shifter INTERFACE cshift END shifter
 USES req-data INTERFACE const-data END req-data
 USES merge INTERFACE converge END merge
 USES sorter INTERFACE sort END sorter
 /* Here come the connector definitions */
 USES P PROTOCOL Unix-pipe END P
 USES Q PROTOCOL Unix-pipe END Q
 USES R PROTOCOL Unix-pipe END R

/* Here come the connections */
 BIND input TO caps.input
 CONNECT caps.output TO P.source
 CONNECT shifter.input TO P.sink
 CONNECT shifter.output TO Q.source
 CONNECT req-data.read TO R.source
 CONNECT merge.in1 TO R.sink
 CONNECT merge.in2 TO Q.sink
 /* Syntactic sugar is provided for complete connections */
 ESTABLISH Unix-pipe WITH
 merge.output AS source
 sorter.input AS sink
 END Unix-pipe
 BIND output TO sorter.output
 END IMPLEMENTATION
END KWIC

KWIC in Text

Prof. U. Aßmann, CBSE 61

Architectural Style Rules with Aesop and
ACME
►  Connectors are first class language elements, i.e., can be defined by

users
■  Connectors are classes which can be refined by inheritance from system

connectors

►  Aesop supports the definition of architectural styles with fables
■  Architectural styles obey rules (logic constraints)
■  Editor for architectural styles edits design rules

.  A design rule is a code fragment by which a class extends a method of a
super class. Has:

n  A pre-check that helps control whether the method should be run or not.
n  A post-action

►  Design Environments
■  A design environment tailored to a particular architectural style.

.  It includes a set of policies about the style

.  A set of tools that work in harmony with the style, visualization information
for tools

.  If something is part of the formal meaning, it should be part of a style
Prof. U. Aßmann, CBSE 62

ACME (CMU)

►  ACME is an exchange language (exchange format), to which different
ADL can be mapped (UNICON, Aesop,..).

►  It consists of abstract syntax specification
■  Similar to feature terms (terms with attributes).

■  With inheritance

Template SystemIO () : Connector {
Connector {
 Roles: { source = SystemIORole();
 sink = SystemIORole()
 }
 properties: { blockingtype = non-blocking;
 Aesop-style = subroutine-call
 }
 }
}

Features

Prof. U. Aßmann, CBSE 63

ACME Studio as Graphic Environment

Prof. U. Aßmann, CBSE 64

Example ACME Pipe/Filter-Family

// Describe a simple pipe-filter family. This family
// definition demonstrates Acme's ability to specify
// a family of architectures as well as individual
// architectural instances.

// An Acme family includes the a set of component,
// connector, port and
// role types that define the design vocabulary
// provided by the family.

Family PipeFilterFam = {
 // Declare component types
 // A component type definition in Acme allows you to
 // to define the structure required by the type.
 // This structure
 // is defined using the same syntax as an instance
 // of a component.
 Component Type FilterT = {
 // All filters define at least two ports
 Ports { stdin; stdout; };
 property throughput : int;
 };

// Extend the basic filter type with a subclass (inheritance)
// Instances of UnixFilterT will have all of the properties and
// ports of instances of FilterT, plus a port and an
// implementationFile property
 Component Type UnixFilterT extends FilterT with {
 Port stther;
 property implementationFile : String;
 };

 // Declare the pipe connector type. Like component types,
 // a connector type aso describes required structure.
 Connector Type PipeT = {
 Roles { source; sink; };
 property bufferSize : int;
 };
 // Declare some property types that can be used by systems
 // designed for the PipeFilterFam family
 property Type StringMsgFormatT = Record [size:int; msg:String;];
 property Type TasksT = enin order to {sort, transform, split, merge};
};

Prof. U. Aßmann, CBSE 65

Instance of an ACME System

// Declare non-family property types thas will be used by this system
// instance.
property Type ShapeT = enum order to { rect, oval, roand-rect, line, arrow };
property Type ColorT = enum order to { black, blue, green, yellow, red, white };
property Type VisualizationT = Record [x, y, width, height : int;
 shape : ShapeT; color : ColorT;];

// Describe an instance of a system using the PipeFilterFam family.
System simplePF : PipeFilterFam = {
 // Declare the components to be used in this design.
 // the component smooth has a visualization added
 Component smooth : FilterT = new FilterT extended with {
 property viz : VisualizationT = [x = 20; y = 30; width = 100;
 height = 75; shape = rect; color = black];
 };
 // detectErrors has a visualization added, as well as a
 // representation thas refers by name to a system that is
 // defined elsewhere.
 Component detectErrors : FilterT = new FilterT extended with {
 property viz : VisualizationT = [x = 200; y = 30; width = 100;
 height = 75; shape = rect; color = black];
 Representation r = {
 System showTracksSubsystem = {
 port stdout; port stdin;
 // ... the rest of the system description is ellided...
 };
 Bindings {
 stdout to showTracksSubsystem.stdout;
 stdin to showTracksSubsystem.stdin;
 }
 }
 };

// Associate a value with the implementationFile property
// that comes with the UnixFilterT type.
 Component showTracks : UnixFilterT =
 new UnixFilterT extended with {
 property viz : VisualizationT = [x = 400; y = 30; width = 100;
 height = 75; shape = rect; color = black];
 property implementationFile : String
 = "IMPL_HOME/showTracks.c";
 };

 // Declare the system's connectors.
 Connector firstPipe : PipeT;
 Connector secondPipe : PipeT;

 // Declare the system's attachments/topology.
 Attachment smooth.stdout to firstPipe.source;
 Attachment detectErrors.stdin to firstPipe.sink;
 Attachment detectErrors.stdout to secondPipe.source;
 Attachment showTracks.stdin to secondPipe.sink;
}

Prof. U. Aßmann, CBSE 66

London Ambulance System in ACME

Prof. U. Aßmann, CBSE 67

London Ambulance System in ACME

 property Type FlowDirectionT = enin order to { from2to,
to2from };
 Connector Type MessagePassChannelT = {
 Roles { fromRole; toRole; };
 property msgFlow : FlowDirectionT;
 };
 Connector Type RPC_T = { Roles { clientEnd; serverEnd; } };

 // Instance based example - simple LAS architecture:
// declare system components (none of which are typed)

System LAS = {
 Component callntry = { Port sendCallMsg; };
 Component incidentMgr = {
 Ports { mapRequest; incidentInfoRequests;
 sendIncidentInfo; receiveCallMsg; }
 };
 Component resourceMgr = {
 Ports { mapRequest; incidentInfoRequest;
 receiveIncidentInfo; sendDispatchRequest; }
 };
 // RPC connnectors
 Connector incidentInfoRequest : RPC_T = {
 Roles { clientEnd; serverEnd; }
 };
 Connector mapRequest1 : RPC_T = {
 Roles { clientEnd; serverEnd; }
 };
 Connector mapRequest2 : RPC_T = {
 Roles { clientEnd; serverEnd; }
 };

 Component dispatcher = { Port
receiveDispatchRequest; };
 Component mapServer = {
 Ports { requestPort1; requestPort2; }
 };
 // declare system connectors
 // message passing connectors
 Connector callInfoChannel : MessagePassChannelT = {
 Roles { fromRole; toRole; }
 property msgFlow : FlowDirectionT = from2to;
 };
 Connector incidentUpdateChannel :
MessagePassChannelT = {
 Roles { fromRole; toRole; }
 property msgFlow : FlowDirectionT = from2to;
 };
 Connector dispatchRequestChannel :
MessagePassChannelT = {
 Roles { fromRole; toRole; }
 property msgFlow : FlowDirectionT = from2to;
 };

Prof. U. Aßmann, CBSE 68

// incidentInfoPath attachments
 Attachments {
 // calls to incident_manager
 callntry.sendCallMsg to callInfoChannel.fromRole;
 incidentMgr.receiveCallMsg to callInfoChannel.toRole;
 // incident updates to resource manager
 incidentMgr.sendIncidentInfo
 to incidentUpdateChannel.fromRole;
 resourceMgr.receiveIncidentInfo
 to incidentUpdateChannel.toRole;
 // dispatch requests to dispatcher
 resourceMgr.sendDispatchRequest
 to dispatchRequestChannel.fromRole;
 dispatcher.receiveDispatchRequest
 to dispatchRequestChannel.toRole;
 };

// rpcRequests attachments
 Attachments {
 // calls to map server
 incidentMgr.mapRequest to mapRequest1.clientEnd;
 mapServer.requestPort1 to mapRequest1.serverEnd;
 resourceMgr.mapRequest to mapRequest2.clientEnd;
 mapServer.requestPort2 to mapRequest2.serverEnd;
 // incident info from incident_mgr
 resourceMgr.incidentInfoRequest to
 incidentInfoRequest.clientEnd;
 incidentMgr.incidentInfoRequests to
 incidentInfoRequest.serverEnd;
 };
 }

Prof. U. Aßmann, CBSE 69

13.3.4 Darwin (Imperial College)

►  Components
■  Primitive and composed
■  Components can be recursively specified or iterated by index range
■  Components can be parameterized

►  Ports
■  In, out (required, provided)
■  Ports can be bound implicitly and in sets

►  Several versions available (C++, Java)
►  Graphic or textual edits

Prof. U. Aßmann, CBSE 70

Simple Producer/Consumer

producer consumer

out in

send

user

ticks
commout

control

timer

ticks

net

din

cout

dout

cin

rec

commin

control

user

Component Flowcontrol {
 consumer:Consumer;
 producer:Producer;
 send:Sender
 rec:Receiver;
 net:Net;
 timer:Timer;

Bind
 producer.out -- send.user;
 timer.ticks -- send.ticks;
 net.cout -- send.control;
 send.commout -- net.din;
 net.dout -- rec.commin;
 rec.control -- net.cin;
 rec.user -- consumer.in;

}

CBSE, © Prof. Uwe Aßmann 71

13.4 Architectural Languages
in UML

Prof. U. Aßmann, CBSE 72

Architecture Languages in UML

►  “I have to learn UML, how should I also learn an ADL??”
■  Learning curve for the standard developer
■  Standard tools? Development environments?

►  The Hofmeister Model of Architecture Description
■  [Soni/Nord/Hofmeister] is the first article that has propagated the idea of

specifying and architecture language with UML
■  Conceptual level: Conceptual architecture (components, connectors)

■  Modules interconnection architecture (modules and their connections)

■  Execution architecture: runtime architecture

■  Code architecture level: division of systems onto files

►  Describe every views in UML with profiles
■  UML allows the definition of stereotypes

.  Model connectors and ports, modules, runtime components with
stereotypes

.  Map them to icons, so that the UML specification looks similar to a
specification in a architecture system

Prof. U. Aßmann, CBSE 73

Components in UML 2.0

►  Idea has been taken over by UML 2.0:
■  ”a component is a self-contained unit that encapsulates the state and behavior of

a number of classifiers.
■  .. A component specifies a formal contract of services
■  .. Has provided and required interfaces...”
■  Components can be nested
■  A delegation connector maps external interfaces to components

►  Difference to UML classes:
■  The features of a component are provided and required interfaces
■  UML components can be nested

Robot

Arm Engine
Prof. U. Aßmann, CBSE 74

Ports in UML 2.0

►  Ports in UML 2.0 are port objects
(gates, interaction points) that
govern the communication of a
component

►  Ports may be simple (only data-
flow, data service)
■  in or out

►  Ports may be complex services
■  Then, they implement a provided or

required interface

RobotArm PickUp

pickup

DeliverPosition

Prof. U. Aßmann, CBSE 75

Ports in UML 2.0

►  We use the following conventions

RobotArm In[Position]

SetterGetter[Piece] SetterGetter

in() // set()
out() // get()

In

in()
// set()

Out

out()
// get()

Out[Piece]

Attr Attr

Attr

Prof. U. Aßmann, CBSE 76

Services

►  Ports can be grouped to Services

RobotArm In[Position]

Out[Piece]

In[Veloc]

In[Angle]

Prof. U. Aßmann, CBSE 77

Connectors in UML 2.0

►  Connectors become special associations, marked up by
stereotypes, that link ports

Robot

Arm Engine <<call>>

Prof. U. Aßmann, CBSE 78

Simple Producer/Consumer in UML 2.0

Producer Consumer

out in

Sender

user

ticks

commout

control

Timer

ticks

Network

din

cout

dout

cin

Receiver
commin

control

Prof. U. Aßmann, CBSE 79

Exchange of Connectors

►  The more complex the interface of
the port, the more difficult it is to
exchange the connectors

►  Data-flow ports and data services
abstract from many details

►  Complex ports fix more details
►  Only with data services and

property services, connectors have
best exchangeability

RobotArm In[Position]

SetterGetter[Piece]

Out[Piece]

MovePiece

Prof. U. Aßmann, CBSE 80

Rule of Thumbs for Architectural Design with
UML 2.0
►  Start the design with data ports and

services
►  Develop connectors
►  In a second step, fix control flow

■  push-pull
■  Refine connectors

►  In a third step, introduce
synchronization
■  Parallel/sequential
■  Refine connectors

►  In MDA levels:

components with data ports/services

components push/pull ports

components with ports typed by
interfaces

Prof. U. Aßmann, CBSE 81

Components and Frameworks

►  In UML 2.0 frameworks can be defined by components and
connectors
■  The classes in a specification can be held abstract, by abstract classes or

genericity

►  Whitebox framework:
■  Construct an application by subclassing

►  Blackbox framework:
■  Construct an application by delegation

►  Generic framework:
■  Construct an application by parameterization

Prof. U. Aßmann, CBSE 82

Produ
cer/
Consu
mer
Frame
work

Whitebox Framework in UML 2.0 with
Components and Connectors

<<abstract>>
Producer

<<abstract>>
Consumer

<<abstract>>
Sender

Timer

Network <<abstract>>
Receiver

Press

Robot

RobotArm

RotaryTable

Produ
ctionC
ell

CBSE, © Prof. Uwe Aßmann 83

13.5 Refinement of UML Connectors
in Model-Driven Development

Prof. U. Aßmann, CBSE 84

Idea: Use UML to Create Connectors for all
Classical Component Systems
►  Since classical component systems do not provide connectors,

introduce them via stereotypes in UML
►  The connection mechanisms are available

■  however, the encapsulation to connectors is missing

►  Use the connectors in design
►  Implementation

■  Generate the implementation
■  Refine to languages, such as ArchJava or ISC (see later)
■  or implement by hand, as usual.

Prof. U. Aßmann, CBSE 85

Example Complex Connectors
CORBA/SOAP/HTTP

Company A
Company B

(Service
Provider)

Legacy App1 S

CMS

Legacy Appm

Web Service
Portal

Fat Client for
terminal

DBMSn DBMS1

ORB
SOAP
HTTP

Prof. U. Aßmann, CBSE 86

Connectors as Association Classes

<<connector>>
 CORBA-

Connector

<<connector>>
BusinessConnector

<<connector>>
 SOAP-Connector

<<connector>>
 HTTP-Connector

<<component>>
 CORBA-

Component

<<component>>
Client

<<component>>
 .NETComponent

<<component>>
 ServerPage

<<component>>
Server

Prof. U. Aßmann, CBSE 87

Example: Web Design with Connectors

►  We can use a connector to express the relationship between web
server and web client

<<ClientEntity >>
Browser

<<ServerEntity>>
HTMLObject

<<http>>

SetterGetter[URL]

Prof. U. Aßmann, CBSE 88

<<ServerEntity>>
PHP Object

What are WebSites in UML?

►  Nets of connections; every link, every cgi-call a connector

<<ClientEntity >>
Browser

<<ServerEntity>>
HTMLObject

<<http>>

SetterGetter[URL]

<<http>>

SetterGetter[URL]

SetterGetter[URL]

SetterGetter[URL]

Prof. U. Aßmann, CBSE 89

Consequences for Web Development

►  With UML 2.0 and the connector concept, it is possible to describe
the architecture of web sites
■  Frameworks for web sites become possible
■  A Content Management System (CMS) is a net of connections
■  Every transformation script a pipe connector

<<ServerEntity>>
HTMLObject

Browser

<<ServerEntity>>
HTMLObject

<<http>>

<<ServerEntity>>
XMLObject

<<ServerEntity>>
XMLObject

<<xslt>>

<<xslt>> <<http>>

Prof. U. Aßmann, CBSE 90

Architecture of Web Sites

►  Using connectors, web sites get an architecture
►  Connectors abstract from the transfer mechanism

■  http, CORBA, IIOP, DCOM, SOAP, ebXML, XSLT-scripts via pipes and Sockets,
….

►  With connectors, everything can be represented as connection nets
■  Uniform representation of links, scripts, protocols
■  Servers can no longer be distinguished from client browsers
■  Transfer mechanisms can be exchanged

►  Clients and servers become scalable

<<Page>>
BookCatalogue

<<ServerPage>>
ShoppingBasket

<<ServerObject>>
Wallet

<<OLTPServer>>
Bank

<<ebXML>>

<<http>>

<<soap>>

<<iiop>>

<<ebXML>>

Prof. U. Aßmann, CBSE 91

13.5.2 Example for Connector Refinement:
The Thin/Thick Client – Problem in MDA

►  Clients and servers become scalable
►  Where should the computation go on?

■  Server?
.  Costly with large data sets

■  Client?
.  Costly with weak client

►  Should be scalable
■  Thin Client / thick Server
■  Thick Client / thin Server
■  Dynamically exchangeable

►  Solution: connectors on different abstraction levels in the MDA

Prof. U. Aßmann, CBSE 92

Solution: Connectors in the MDA
Example Shopping Basket

BookCatalogue ShoppingBasket
<<BusinessConnector>>

<<Client>>
BookCatalogue

<<Server>>
ShoppingBasket

<<ThickClient>>

 <<ThickClient>>
Buch
katalog

<<ThinServer>>
ShoppingBasket

<<ShipApplet>>

Applet <<CallApplet>>

Design transformation

Transformation towards the
implementation model

Prof. U. Aßmann, CBSE 93

Solution 2: Thick-Server Connector

<<ThinClient>>
BookCatalogue

<<ThickServer>>
ShoppingBasket

Servlet

BookCatalogue ShoppingBasket
<<BusinessConnector>>

<<Client>>
BookCatalogue

<<Server>>
ShoppingBasket

<<ThickServer>>

<<ShipDatat>>

Design transformation

Transformation towards the
implementation model

Prof. U. Aßmann, CBSE 94

Solution Implementation

►  Transform to a language with ports and connectors
■  ArchJava

►  Transform to a connector library
■  Use Invasive software composition (ISC) e.g., with Reuseware or the

COMPOST library
■  Write new connectors as metaprograms

►  Tools for UML 2.0 will offer template-based code generation for
connectors
■  Connectors are just special stereotypes

►  UML-Profile editors will enable the construction of UML connector
libraries

Prof. U. Aßmann, CBSE 95

13.6 Architecture Systems: Evaluation

►  How to evaluate architecture systems as composition systems?
■  Component model
■  Composition technique
■  Composition language

Prof. U. Aßmann, CBSE 96

ADL: Mechanisms for Modularization

►  Component concepts
■  Clean language-, interfaces and component concepts

■  New type of component: connectors

■  Clean documentation

■  Secrets: Connectors hide
.  Communication transfer

.  Partner of the communication

.  Distribution

►  Parameterisation: depends on language
►  Standardization: still pending

Prof. U. Aßmann, CBSE 97

Architecture Systems - Component Model

Parameterization

Binding points

Contracts Business
services

Infrastructure

Secrets

Development
environments

Types

Versioning

Distribution

Ports

UML genericity

Location transparence

Prof. U. Aßmann, CBSE 98

 ADL: Mechanisms for Adaptation

►  Connectors generate glue code: very good!
■  Many types of glue code possible
■  User definable connectors allow for specific glue
■  Tools analyze the interfaces and find about the necessary adaptation code

automatically

►  Mechanisms for aspect separation. At least 3 aspects are
distinguished:
■  Architecture (topology and hierarchy)

■  Communication carrier

■  Application

►  No weaving
■  The aspects are not weaved, but encapsulated in glue

►  An ADL-compiler is only a rudimentary weaver

Prof. U. Aßmann, CBSE 99

Architecture Systems – Composition
Technique and Language

Connectors

Architecture
language

Architecture is separated

Fully scalable distribution Scalability

Adaptation

Metacomposition Aspect Separation

Extensibility Software process

Connection
Product quality

Prof. U. Aßmann, CBSE
10
0

Architecture Systems as Composition
Systems

Component Model Composition Technique

Composition Language

Source or binary components

Binding points: ports

Adaptation and glue code by connectors

Scaling by exchange of connectors

Architectural language

Prof. U. Aßmann, CBSE
10
1

What Have We Learned?

►  Architecture systems provide an important step forward in software
engineering
■  For the first time, architecture becomes visible

►  Concepts can be applied in UML already today
►  Architectural languages are the most advanced form of blackbox

composition technology so far

Prof. U. Aßmann, CBSE
10
2

Composition recipe

Connectors

 Components

Component-based
applications

Blackbox Composition in an Architecture
System

Prof. U. Aßmann, CBSE
10
3

How the Future Will Look Like

►  Metamodels of architecture concepts (with MOF in UML) will replace
architecture languages
■  The attempts are promising which describe architecture concepts with UML

■  Example: EAST-ADL, an ADL for the automotive domain:

■  http://en.wikipedia.org/wiki/EAST-ADL

►  Web service languages have taken over the role of ADL in practice
►  More aspects can be distinguished (see later)

■  Leading to more MOF-based extensions of UML
►  We should think more about general software composition mechanisms
■  Adaptation by glue is only a simple way of composing components (... see

invasive composition)

Prof. U. Aßmann, CBSE
10
4

The End

