26) Invasive Software Composition (ISC)

Prof. Dr. Uwe Aßmann Florian Heidenreich

Technische Universität Dresden

Institut für Software- und Multimediatechnik

http://st.inf.tu-dresden.de Version 13-1.1, July 5, 2013

- Invasive Software Composition -A Fragment-Based Composition Technique
- 2. What Can You Do With Invasive Composition?
- 3. Universally Composable Languages
- 4. Functional and Composition Interfaces
- 5. Different forms of grey-box components
- Evaluation as Composition Technique

CBSE, © Prof. Uwe Aßmann

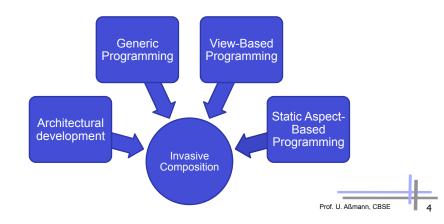
1

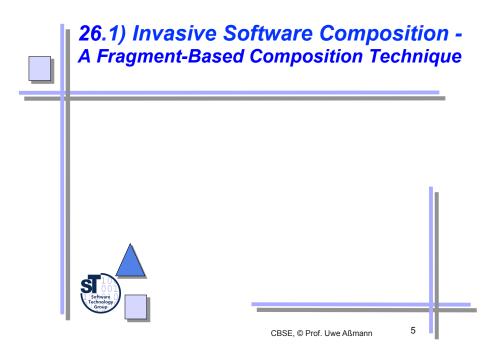
Other References

- [AG00] Uwe Aßmann, Thomas Genßler, and Holger Bär. Meta-programming Grey-box Connectors. In R. Mitchell, editor, Proceedings of the International Conference on Object-Oriented Languages and Systems (TOOLS Europe). IEEE Press, Piscataway, NJ, June 2000.
- [HLLA01] Dirk Heuzeroth, Welf Löwe, Andreas Ludwig, and Uwe Aßmann. Aspect-oriented configuration and adaptation of component communication. In J. Bosch, editor, Generative Component-based Software Engineering (GCSE), volume 2186 of Lecture Notes in Computer Science. Springer, Heidelberg, September 2001.
- Jakob Henriksson. A Lightweight Framework for Universal Fragment Composition. Technische Universität Dresden, Dec. 2008 http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1231261831567-11763
- Jendrik Johannes. Component-Based Model-Driven Software Development. Technische Universität Dresden, Dec. 2010 http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63986
- Jendrik Johannes and <u>Uwe Aßmann</u>, Concern-Based (de)composition of Model-Driven Software Development Processes. Model Driven Engineering Languages and Systems 13th International Conference, MODELS 2010, 2010, Part II, Springer, 2010, LNCS 6395, URL = http://dx.doi.org/10.1007/978-3-642-16129-2
- Falk Hartmann. Safe Template Processing of XML Documents. PhD thesis. Technische Universität Dresden, July 2011.

Obligatory Literature

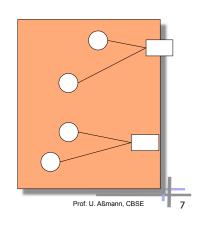
- ISC book Chap 4
- www.the-compost-system.org
- www.reuseware.org

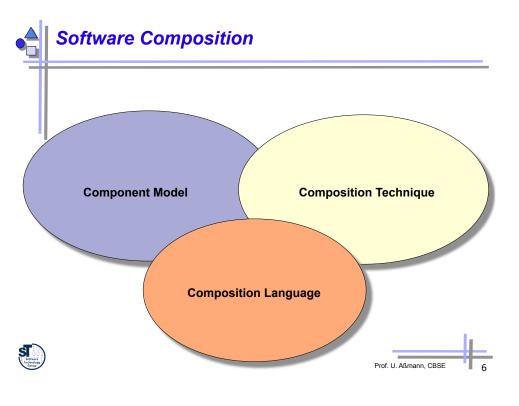




Invasive Software Composition

- Adds a full-fledged composition language to generic and viewbased programming
- Combines architectural systems, generic, view-based and aspectoriented programming





Invasive Software Composition

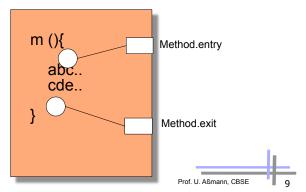
Invasive software composition parameterizes and extends fragment components at change points (hooks and slots) by transformation

- A fragment component is a fragment group (fragment container, fragment box) with a composition interface of change points
- Uniform container for
 - a fragment
 - a class, a package, a method
 - a fragment group
 - . an advice or an aspect
 - . some metadata
 - a composition program
 - A generic fragment (group)

The Component Model of Invasive Composition

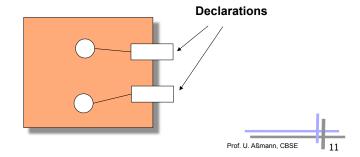
Change points of a fragment component are fragments or positions, which are subject to change

- Fragment components have change points
- A change point can be
 - An extension point (hook)
 - A variation point (slot)
- Example:
 - Extension point: method entries/exits
 - Variation point: Generic parameters

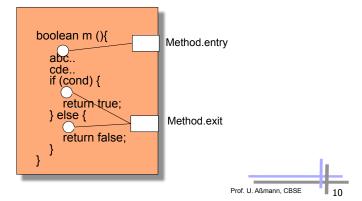


Hooks

- A hook (extension point) is given by the component's language
- ▶ Hooks can be *implicit* or *explicit* (declared)
 - We draw implicit hooks inside the component, at the border
- Example: Method Entry/Exit
- Between hooks and their positions in the code, there is a hook-fragment mapping



Slots (Declared Hooks)


- A slot is a variation point of a component, i.e., a code parameter
- Slots are most often declared, i.e., declared or explicit hooks, which must be declared by the component writer
 - They are implicit only if they designate one single program element in a fragment
 - . We draw slots as crossing the border of the component
- Between slots and their positions in the code, there is a slotfragment mapping

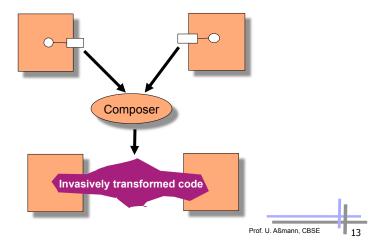
A Hook can Relate to Many Code Points

- A hook can relate to many code points (1:n-hook-fragment mapping)
- Example: Method Exit refers to n code points *before* return statments

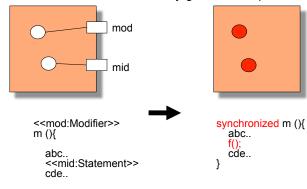
The Composition Technique of Invasive Composition

Invasive Software Composition
parameterizes and extends
fragment components
at implicit and declared change points (hooks and slots)
by transformation

An invasive composition operator treats declared and implicit hooks uniformly

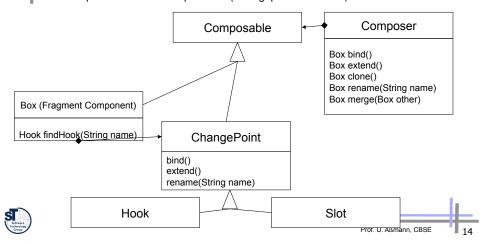


The Composition Technique of Invasive Composition

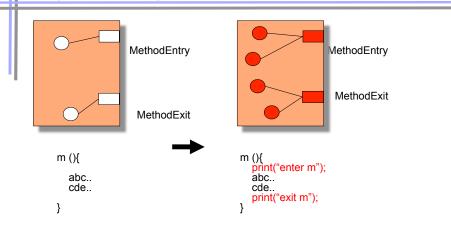

A composer (composition operator) is a static metaprogram (program transformer)

Bind Composer Universally Parameterizes Fragment Components

· Like in BETA, for uniformly generic components



Box component = readBoxFromFile("m.java");
component.findHook("mod").bind("synchronized");
component.findHook("mid").bind("f();");


Object-Oriented Metamodeling of Composers

- In the following, we assume an object-oriented metamodel of fragment components, composers, and composition languages.
- The COMPOST library [ISC] has such a metamodel (in Java)
- · Composers work on Composables (Changepoints or Boxes)

Extend Operator Universally Extends the Fragment Components

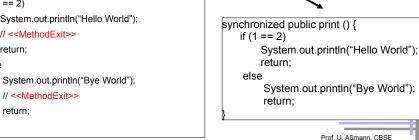
component.findHook("MethodEntry").extend("print(\"enter m\");");
component.findHook("MethodExit").extend("print(\"exit m\");");

Merge Operator Provides Universal Symmetric Merge

- The **Extend** operator is asymmetric, i.e., extends hooks of a fragment component with new fragment values
- Based on this, a symmetric Merge operator can be defined: merge(Component C1, Component C2) := extend(C1.list, C2.list)
- where list is a list of inner components, inner fragments, etc.
- Both extend and merge work on fragments
 - · Extend works on all collection-like language constructs
 - Merge on components with collection-like language constructs

return;

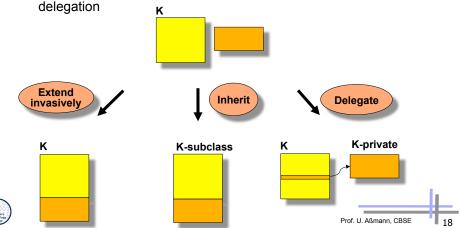
return;


// <<MethodExit>>

else

On the Difference of Declared and Implicit Hooks

- Invasive composition unifies generic programming (BETA) and viewbased programming (merge composition operators)
 - By providing bind (parameterization) and extend for all language constructs


```
Hook h = methodComponent.findHook("MY");
                                            (parallel)
                                              h.bind("synchronized");
                                              h.bind(" "):
                                           methodComponent.findHook("MethodEntry").bind("");
                                           methodComponent.findHook("MethodExit").bind("");
@genericMYModifier */ public print() {
// <<MethodEntry>>
 if (1 == 2)
     System.out.println("Hello World");
                                                         synchronized public print () {
    // <<MethodExit>>
```


Applied to Classes, Invasive Extension **Integrates Feature Groups**

- ▶ The Extend operator integrates feature groups and roles into classes (role merge)
 - because a feature group can play a role
- The semantics of invasive extension lies between inheritance and

You Need Invasive Composition

- When static relations have to be adapted
 - Inheritance relationship: multiple and mixin inheritance
 - Delegation relationship:;When delegation pointers have to be inserted
 - Import relationship
 - Definition/use relationships (adding a definition for a use)
 - When templates have to be expande in a type-safe way
- When physical unity of logical objects is desired
 - Invasive extension and merges roles into classes
 - No splitting of roles, but integration into one class
- When the resulting system should be highly integrated
 - When views should be integrated constructively

When To Use What?

- Deploy Inheritance
 - for consistent side-effect free composition
- **Deploy Delegation**
 - for dynamic variation
 - Suffers from object schizophrenia
- **Deploy Invasive Extension**
 - for non-foreseen extensions that should be integrated
 - to develop aspect-orientedly
 - to adapt without delegation

Homogeneous Composition Systems

A composition system is called **homogeneous**, if it employs the same composition language and component language.

Otherwise, it is called hegerogeneous

In a homogeneous composition system, metacomposition is staged composition.

A point-cut language (cross-cut language) is a form of composition language.

Composition Programs

Basically, every language may act as a composition language, if its basic operators are bind and extend.

Imperative languages: Java (used in COMPOST), C, ...

Graphical languages: boxes and lines (used in Reuseware)

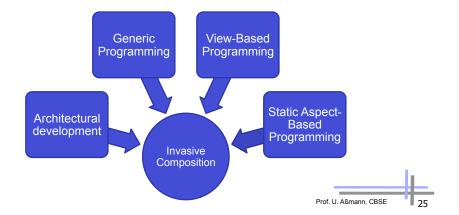
Functional languages: Haskell

Scripting languages: TCL, Groovy, ...

Logic languages: Prolog, Datalog, F-Datalog

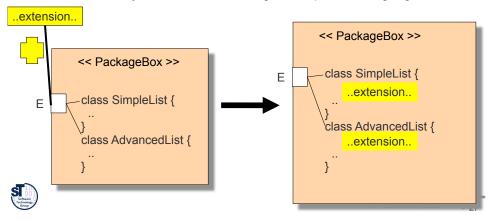
Declarative Languages: Attribute Grammars, Rewrite Systems

CBSE, © Prof. Uwe Aßmann

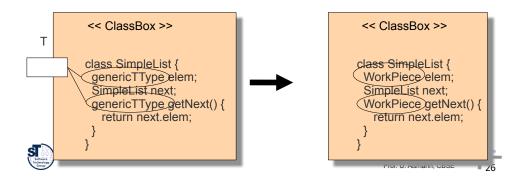


Invasive Composition

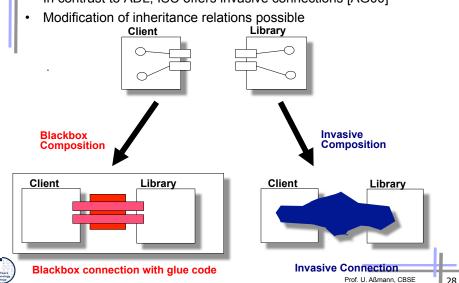
Adds a full-fledged composition language to generic and view-based programming


Combines architectural systems, generic, view-based and aspectoriented programming

Universal Constructive View Programming

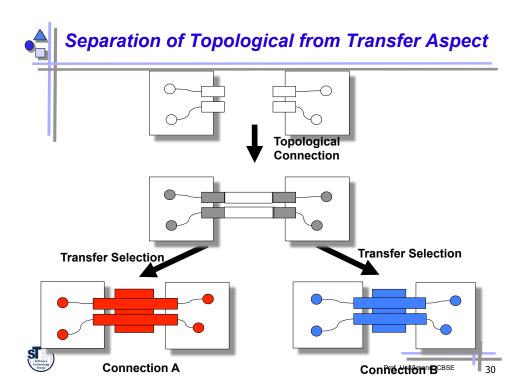

- ISC is a uniform and universal view-programming approach
 - The Extend operator realizes open definitions for all language constructs: methods, classes, packages
 - The Merge operator realizes symmetric composition for all language constucts
- Additionally, ISC offers a full-fledged composition language

Universally Generic Programming

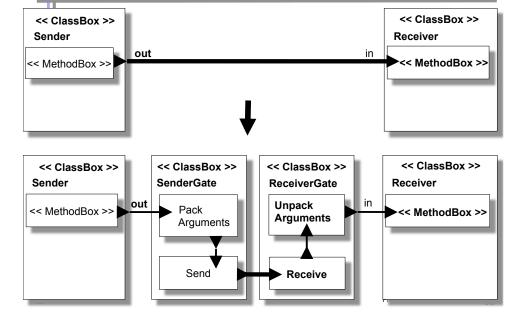

- · ISC is a fully generic approach
- In contrast to BETA, ISC offers a full-fledged composition language
- · Generic types, modifiers, superclasses, statements, expressions,...
- Any component language (Java, UML, ...)

Invasive Connections

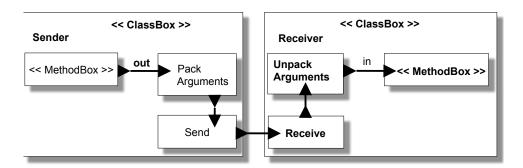
• In contrast to ADL, ISC offers invasive connections [AG00]


Invasive Architectural Programming

[ISC] shows how invasive connectors achieve tightly integrated systems by embedding the glue code into senders and receiver components

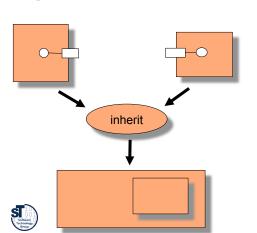


Port Binding State Diagram Unbound Port Full Connector **Topological** Connector Unlinker Deconnector **Transfer Deselector** Topologicall (Fully) Bound Bound **Transfer Selector** Port Port Prof. U. Aßmann, CBSE


Gate Objects: Glue Separate

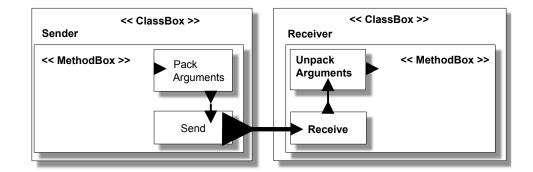
Invasive Connection

Embedding communication gate methods into a class

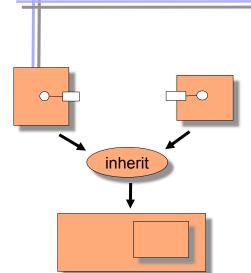


Universal Inheritance and Mixins

- Extension can be used for inheritance and mixins
- In contrast to OO languages, ISC offers tailored inheritance operations, based on the extend operator

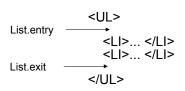

inheritance :=

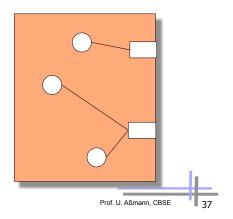
- copy first super class
- extend with second super class
- mixin_inheritance :=
 - Bind superclass reference


Embedding glue code into sender methods

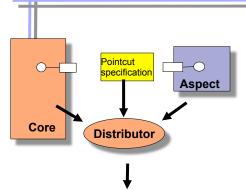
Mixin Inheritance Works Universally for Languages that don't have it

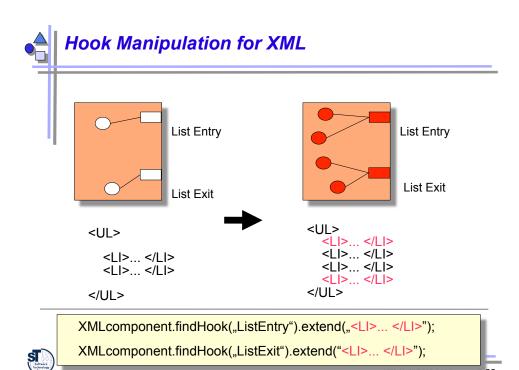
- Invasive composition can model mixin inheritance uniformly for all languages
- e.g., for XML
- inheritance :=
 - copy first super document
 - extend with second super document

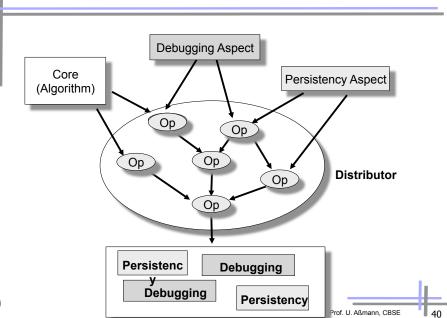


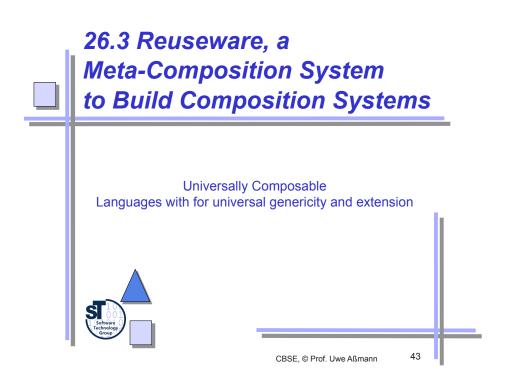


Invasive Document Composition for XML


- Invasive composition can be used for document languages, too [Hartmann2011]
- Example List Entry/Exit of an XML list
- ▶ Hooks are given by the Xschema




- Complex composers distribute aspect fragments over core fragments
- Distributors extend the core
- Distributors are more complex operators, defined from basic ones
- Static aspect weaving can be described by distributors, because hooks are static
 - ISC does not have a dynamic joinpoints
 - Crosscut specifications can be interpreted


Distributors are Composition Programs

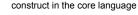
Distributors Weave Relations between Core and Aspect Core **System** Distributor) -Aspect

Invasive Model Composition with Reuseware

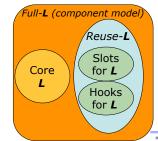
Editor specification

Universally Composable Languages

Universally composable: A language is called universally composable, if it provides universal genericity and universal extensibility

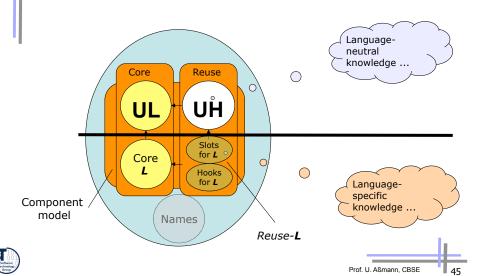

• The language has to be enriched with an invasive component model

Reuse language: Given a metamodel of a core language L, a metamodel of a universally composable language can be generated (the Reuse-L)

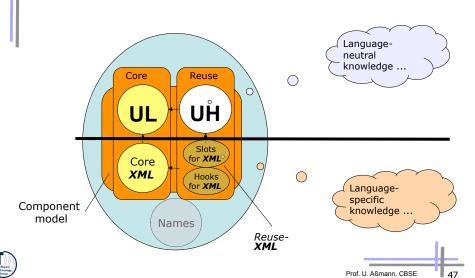

- · The Reuse language describes the composition interfaces of the components, an important part of the component model
- · The component model can be composed by metamodel composition

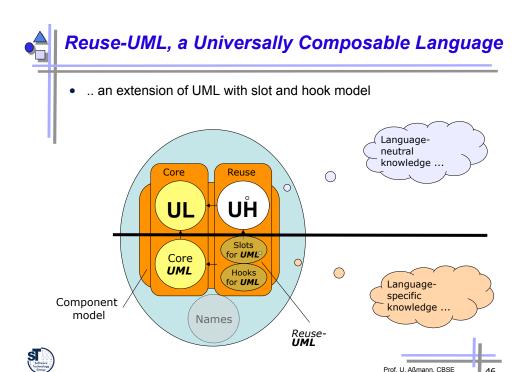
Slot and Hook model: added (or even generated) from the core language metamodel

- realizes universal composability by defining slots and hook constructs, one for each



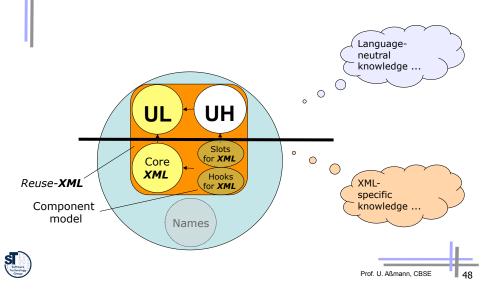
Structure of a Universally Composable Language


• The core and the reuse language have two levels



Reuse-XML, a Universally Composable Language

.. an extension of XML with slot and hook model



Reuse-XML, a Universally Composable Language

.. an extension of XML with slot and hook model

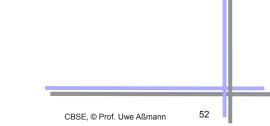
The Reusewair Technology

- www.reuseware.org (Phd of Jakob Henriksson, 2008)
- Reusewair was the world-wide first technology and tool to build reuse languages (component models) and composition systems for text-based languages
 - Grammar-based (EBNF)
 - Generic strategy for applying composition operators on components (based on Design Pattern Visitor)
 - Composition tools, type checker, come for free

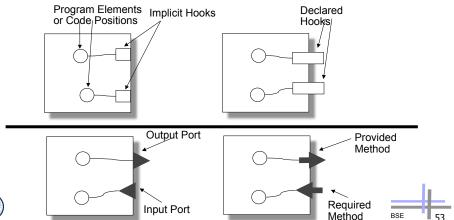
The SkAT Tool

- Phd of Sven Karol, 2014?
- SkAT is a tool to build reuse languages (component models) and composition systems for text-based and diagram-based languages
 - Based on Reference-Attribute-Grammar (RAG)
 - And metamodels (metalanguage M3: Eclipse e-core)
 - Declarative composition constraints control the composition
 - Composition tools come for free
 - Textual, graphic, XML languages
- Framework instantiation is supported for variation and extension
- Jobs open!

The Reuseware Tool

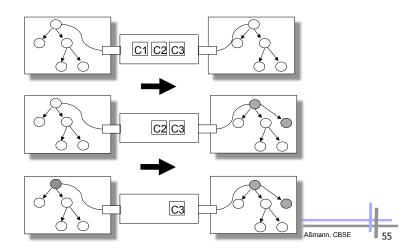

- www.reuseware.org (Phd of Jendrik Johannes, 2010)
- Reuseware is a tool to build reuse languages (component models) and composition systems for text-based and diagramm-based languages
 - Eclipse-based
 - metamodel-controlled (metalanguage M3: Eclipse e-core)
 - Plugins are generated for composition
 - Composition tools come for free
 - Textual, graphic, XML languages
- Framework instantiation is supported for variation and extension
- Jobs open!

26.4) Staging: Composition and Functional Interfaces

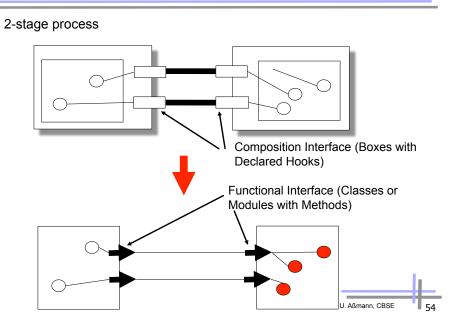


Composition vs Functional Interfaces

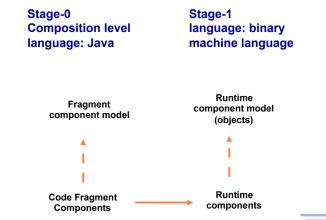
Composition interfaces contain hooks and slots static, based on the component model at design time


Functional interfaces are based on the component model at run time and contain slots and hooks of it

Execution of a Composition Program

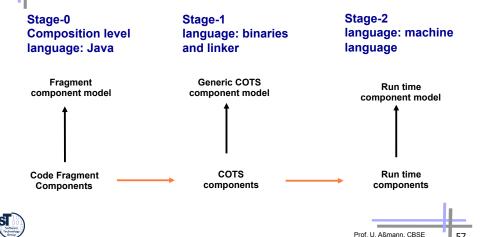

A compostion program transforms a set of fragment components step by step, binding their composition interfaces (filling their slots and hooks), resulting in an integrated program with functional interfaces

Functional Interfaces are Generated from Composition Interfaces



The Stages of ISC

- Produces code from fragment components by parameterization and expansion
- The run-time component model fits to the chip



Prof. U. Aßmann, CBSE

Standard COTS models are just models for binary code components

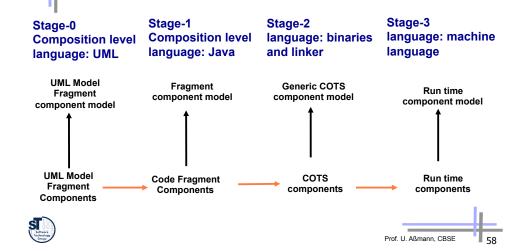
Staging

- With a universal composition system as Reuseware, stages can be designed (stage design process)
- For each stage, it has to be designed a universally composable language:

component models

composition operators

composition language

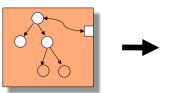

composition tools (editors, well-formedness checkers, component library etc.)

Component Models on Different Levels in the Software Process

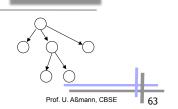
Another stage can be introduced by XML model composition from which Java code is generated [Johannes 10]

Invasive Composition and Information Hiding

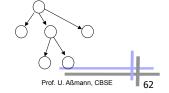
- Invasive Composition modifies components at well-defined places during composition
 - There is less information hiding than in blackbox approaches
 - But there is...
 - ... that leads to greybox components


Modifying Implicit Hooks is a Light-Grey **Operation**

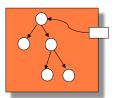
- Aspect weaving and view composition works on implicit hooks (join points)
- Implicit composition interface

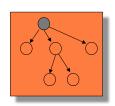

Refactorings

Transformations


Refactoring is a Whitebox Operation

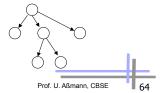
- Refactoring works directly on the AST/ASG
- Attaching/removing/replacing fragments
- Whitebox reuse

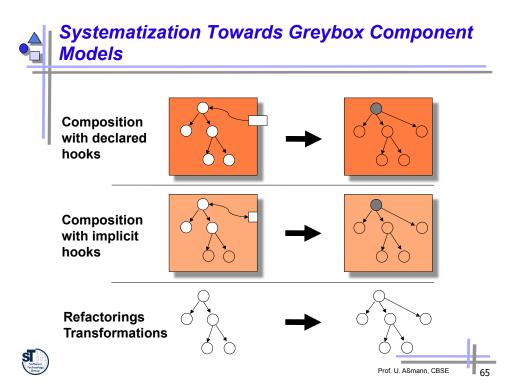


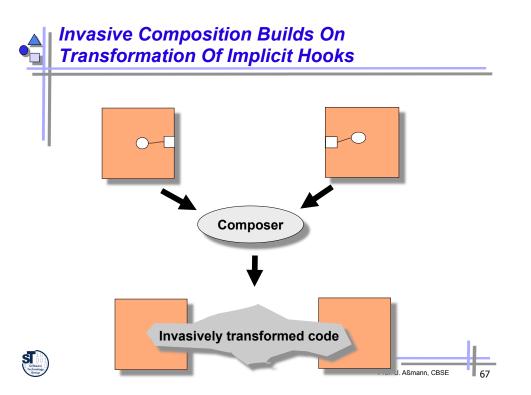

Parameterization as Darker-Grey Operation

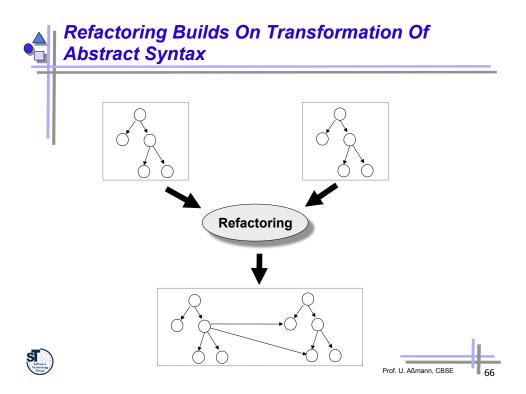
- Templates work on declared hooks
- Declared composition interface

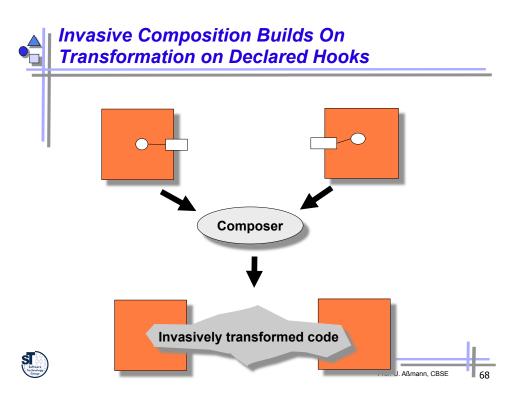
Composition with declared hooks

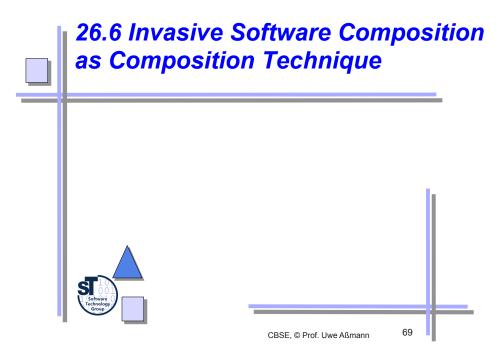



Refactorings **Transformations**









Invasive Composition: Composition Technique

- Adaptation and glue code: good, composers are program transformers and generators
- Aspect weaving
 - Parties may write their own weavers
 - No special languages
- Extensions:
 - Hooks can be extended
 - Soundness criteria of lambdaN still apply
 - Metamodelling employed
- Not yet scalable to run time

Invasive Composition: Component Model

- Fragment components are graybox components
- Composition interfaces with declared hooks
- Implicit composition interfaces with implicit hooks
- The composition programs produce the functional interfaces
 - . Resulting in efficient systems, because superfluous functional interfaces are removed from the system
- Content: source code
 - binary components also possible, poorer metamodel
- Aspects are just a special type of component
- Fragment-based parameterisation a la BETA
 - Type-safe parameterization on all kinds of fragments

Composition Language

- Various languages can be used
- Product quality improved by metamodel-based typing of compositions
- Metacomposition possible
 - Architectures can be described in a standard object-oriented language and reused
- An assembler for composition
 - Other, more adequate composition languages can be compiled

Conclusions for ISC

- Fragment-based composition technology
 - Graybox components
 - Producing tightly integrated systems
- Components have composition interface
 - From the composition interface, the functional interface is derived
 - Composition interface is different from functional interface
 - Overlaying of classes (role model composition)
- COMPOST framework showed applicability of ISC for Java
 - · (ISC book)
- · Reuseware Composition Framework extends these ideas
 - · For arbitrary grammar-based languages
 - · For metamodel-based languages
- http://reuseware.org

What Have We Learned

- With the uniform treatment of declared and implicit hooks and slots, several technologies can be unified:
 - Generic programming
 - Connector-based programming
 - View-based programming
 - Inheritance-based programming
 - · Aspect-based programming
 - Refactorings

Invasive Composition as Composition System

Component model

Source or binary components

Greybox components

Composition interfaces with declared an implicit hooks

Composition technique

Algebra of composition operators

Uniform on declared and implicit hooks

Complex composition operators can be defined by users

Standard Language

Composition language



The End

