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27.1. CBSE for Embedded Systems 
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Today’s Embedded Systems 

6 

Several quality aspects: 
- cost, 

- performance,… 

composed of physical specific 
subsystems developed 

concurrently 

involve several disciplines (e.g., 
aerodynamics, mechanical, 

control) 

Large Scale 

Reliability is 
critical 

Embedded 
System  
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Götting Autonomous Transport Systems 

http://www.goetting.de/dateien/galerienbilder/fox-containerterminal.jpg 
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Risk Graph from Götting Autonomous Transport 

http://www.goetting.de/dateien/galerienbilder/risikograph.jpg 
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Quality Requirements  
(Real-time, Safety, Energy, Dynamics) 

Ø  Informal Quality Requirements are specified in the software 
requirements specification (SRS, Pflichtenheft) 

Ø  Informal Real-Time Requirement: The gate is closed when a train 
traverses the gate region, provided there is a minimal time distance 
of 40 seconds between two approaching trains. 

•  Hard Real-time: definite deadline specified after which system fails 
•  Soft Real-time: deadline specified after which quality of system’s delivery 

degradates 

Ø  Informal Safety Requirement: If the robot’s arm fails, the robot will 
still reach its power plug to recharge. 

Ø  Informal Energy Requirement: If the robot’s energy sinks under 
25% of the capacity of the battery, it will still reach its power plug to 
recharge. 

Ø  Informal Dynamic Movement Requirement: If the car’s energy 
sinks under 5% of the capacity of the battery, it will still be able to 
break and stop. 
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Vision: Modular Verification of Behavior of  
Embedded Systems 

Ø  Usually, Embedded Software is hand-made, verification is hard 
Ø  But fly-by-wire and drive-by-wire need verification 

Ø  Challenge 1: Quality requirements can be formalized and proven 
•  How to formalize them? 
•  How to prove them? 

Ø  Challenge 2: Proof can be computed in modules, proof is modular 
and can be reused as a proof component in another proof 

•  Contracts serve this purpose: they prove assertions about components and 
subsystems 

•  Whenever an implementation of a component is exchanged for a new variant, 
the new variant must be proven to be conformant to the old contract. Then the 
old global proof still holds 

•  This is a CBSE challenge! 
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27.2. SPEEDS HRC  
(Heterogeneous Rich Components) 

.. Further developed in the EU project CESAR 
.. Now called CESAR Component Model (CCM) 
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Rich Component Models 

Ø  A rich component defines contracts in several views with regard to 
different viewpoints 

•  A contract for functional behavior (functional view) 
•  Several quality contracts, e.g.,  

Real-time behavior (real-time view) 
Energy consumption (energy view) 
Safety modes (safety view) 
Movements (dynamics view) 

•  Used for component-based software for embedded systems 

Ø  The contract (about the observable behavior) of a component is described 
by state machines in the specific view (interface automata) 

•  The interface automata encode infinite, regular path sets (traces) 
•  They can be intersected, unioned, composed; they are decidable 
•  Contracts can be proven 

Ø  Instead of an automaton in a contract, temporal logic can be used and 
compiled to automata (temporal logic contract) 
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Assumptions about Automata-Based Contracts 

Ø  A component has one thread of control 
Ø  A component is always in a finite set of states 
Ø  The behavior of a component can be described by a protocol 

automaton (interface automaton) 
•  Compatibility is decidable 

Ø  A hybrid automaton is an automaton in which states and 
transitions can be annotated in different views 

•  A real-time automaton is a hybrid automaton with real-time annotations 
•  A safety automaton is a hybrid automaton with safety annotations 
•  A dynamics automaton is a hybrid automaton with dynamics equations 

(physical movement, electricity movement) 
•  An energy automaton is a hybrid automaton with energy consumption 

annotations 
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A/P Quality Contracts for CBSE 

Ø  [Gössler/Sifakis, Heinecke/Damm] 
Ø  Composability gives guarantees that a component property is 

preserved across composition/integration 
Ø  Compositionality deduces global semantic properties (of the 

composite, the composed system) from the properties of its 
components 

Ø  An A/P-contract is an if-then rule: under the assumption A, the 
component will deliver promise P (aka guarantee G) 

 
Ø  An A/P-quality contract is an A/P-contract in which hybrid 

automata form the assumptions and promises 

Contract =  ( assumption, promise ) 

                          =  IF assumption THEN  promise 

 

A/P-quality contract based component models are composable 
and compositional. 

Assertion 

Assertion 
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Semantics of Assertions and Contracts 

Ø  The semantics of an assertion A is the regular set of traces (paths), 
to which the interface automaton expands (unrolled automaton)  

•  Every state of the trace assigns a value to the ports of a component 

Ø  [[ A ]] := { p | p is path of A } 
Ø  An assumption A is stronger (bigger) than an assumption B, if  its 

semantics contains the semantics of B: 
Ø  [[ A ]] > [[ B ]] := { p | p is path of B } ⊆  { q | q is path of A } 
Ø  The semantics of contract C is formed of promise G unioned with 

the complement of A (either A, then G; or not A) 
Ø  [[ C ]] = [[ (A,G) ]]  := compl([[A]]) ∪ [[G]] 
Ø  The semantics is computable with regular trace set composition 
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EU IP SPEEDS – Speculative and  
Exploratory Design in Systems Engineering 
 

 Horizontal and vertical interfaces of a component  

 

Assumed 

From/by lower 
design levels 

from neighbors 

Promised 

From/by higher 
design levels 

to neighbors 

Layer n+1 

Layer n 

Layer n-1 

separate 
tools 
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HRC – SPEEDS’s View of a Component 
An A/P-quality contract based component model 

HRC  - Heterogeneous Rich Component

Implementation

HRC Inteface

Executable Module

Specification

A/P 
Contract

A/P 
Contract

A/P 
Contract A/P 

Contract
viewpoint

viewpoint

HRC interface HRC interface 
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Semantics of View Composition 

Ø  HRC is a view-based component model with 4 views: 
•  Functional  
•  Real-time 
•  Safety 
•  Dynamics (movement) 

Ø  If a component has several contracts in several views, their trace 
sets are intersected, meaning that the component fulfils all of them 

•  Semantics is set intersection on trace sets  
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Basic Elements of HRC A/P-Contracts 

Assumption in natural language for a railway crossing XR: 
    - Minimal delay of 50 sec. between successive trains 
    - At startup no train is already in XR 
    - Trains move in one direction 
Promise in natural language: 
    - Gate closed as long as a train  
       is in XR 
    - Gate open whenever XR  is  
      empty for more than 10 sec 

Controllertrain-in
train-out

close, open
position

Component 

Contract =  ( assumption, promise ) 

Given behaviors 
Behaviors component 

must produce 
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Assertions Describe Behavior 

20 

1 sec.

green

red

req. req.

3 sec. 3 sec.

1 sec.

5sec

30

25

-10

50

v An assertion specifies a subset of the possible component 
behaviors 

v A finite automaton specifying an infinite set of regular paths 

Contract over continuous 
variable: 

temp: [-10°,50°] 
‘after 5 sec. 25≤temp≤30’ 

Contract over discrete 
variable: 

lights :{red, green},   req: 
event 

‘lights initially green, and 
after each ‘req’, within 1sec, 
become red for 3 sec. then 

back green’ 

Contract =  ( assumption, promise ) 
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Hybrid Automata –  
Automata Representing Assertions 

CloseCmdDly OpenCmdDly

approachinv=(clk<K)

Idle

flow=(clks=1 & Ks=0)

init=(True)

flow=(clks=1 & Ks=0) flow=(clks=1 & Ks=0)

inv=(clk<K)

  exit
exit

approach
clk’=0

exit
clk’=0

open_cmdclose_cmd

approach

MoveUp MoveDown
open_cmd

Up

flow=(ys=0)

open_cmd
y=0

init=(True)y=90 close_cmd
inv=(y=90)

flow=(ys=9)
inv=(y<90)

flow=(ys=-9)
inv=(y>0)

close_cmd

Down

flow=(ys=0)
inv=(y=0)

close_cmdopen_cmd

close_cmd

 Far

Near

flow=(-50<Xs<-40)
inv=(X>1000)
init=(X<5000)

flow=(-50<Xs<-30)
inv=(X>0)

Passing

flow=(-50<Xs<-30)

inv=(X>-100)

approach
x=1000

exit
x=-100 &1900<x’<4900

x=0

Train 

Controller 

Gate 

Assertions in colors belong to different views 
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Contract Analysis 

Within one component (same interface): contracts are intersected 

Ø  is based on 
algebra of contracts  

Ø For HRC 
contracts, the 
following properties 
can be proven: 

Ø Refinement  

Ø Consistency, 

Ø Compatibility, 

Ø Dominance, 

Ø Simulation, 

Ø Satisfiability 

Functionality Time 
performance 

Safety 

Component 

Component Component Component 

contracts contracts contracts 

 along components (for a certain viewpoint, view-specific) 

Contract 

contract contract contract 

 contracts can be refined (refinement of contracts) 
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Basic Relations on Contracts: Satisfaction 

Ø  Satisfaction (implementation conformance) couples implementations 
to contracts. 

Ø  Given contract: C=(A,G), implementation M 

Ø  Satisfaction: (M satisfies C) 
       M|=C ⇔def A∩M⊆ G  
(promise G is stronger than intersection of A and M) 
        

Assumption 

Promise 

M 

Reasoning with Venn diagrams: smaller means weaker; 
Inclusion means implication 
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Basic Relations on Contracts: Refinement 

Refinement: Given contract: C=(A,G) C’=(A’,G’), implementation 
M, C refines C’: 

      C⊆C’⇔def (¬A ∪ G) ⊆  (¬A’ ∪ G’)   
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Basic Relations on Contracts: Dominance 

A G’

GA’

Dominance (contract conformance): Given contract: C=(A,G) C’=
(A’,G’), implementation M, C dominates C’: 

      C<C’⇔def A’⊆A and G⊆G‘    
 C=>C‘ iff A‘<=A and G<=G‘ 

(A is stronger (bigger) than A’ and G‘ is stronger (bigger) than G;  
A‘ is weaker (smaller) than A and G is weaker (smaller) than G‘) 
Dominance implies refinement. The dominance operator is contravariant in A and G, 
i.e, when assumption A “grows”, the promise G “shrinks”  

        
Example: 
•  C:  A= daylight    G= video & IR-picture  
•  C’: A’= anytime    G’= only IR-picture 
•  Daylight ⊆ anytime, video&IR-picture ⊆ IR-picture 

Claim:   M|=C  and C<C’  ⇒  M|=C’ 
(if M satisfies C, and C dominates C’, then M satisfies C’) 
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Compatibility of Contracts 

Ø  Compatibility is a relation between two or more contracts C1 .. Cn 
Ø  Two contracts C1 and C2 are compatible whenever the promises 

of one guarantee that the assumptions of the other are satisfied 
•  When composing their implementations, the assumptions will not be violated 
•  The corresponding components “fit” well together  

Ø  C1 = (A1,P1) and C2 = (A2,P2) are compatible if 
 C1<->C2⇔def P1⊆A2 and P2⊆A1 

Ø  C1 is compatible to C2 if C1.P is weaker than C2.A, and C2.P weaker than C1.A 

A2 

P1 

A1 

P2 
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Composition of Contracts 

Ø within a component (same interface), contracts in 
different views can be synchronized 
Ø  The real-time assertions can be coupled with functional, real-time, safety, and 

energy view  

Ø  along components – contracts of a certain viewpoint can 
be composed (with parallel composition) 

Component Component 

Functionality Real-Time 
Performance Safety 

Component 

Component 

contracts contracts contracts 

Energy 
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Parallel Composition of Contracts  
(of Separate Components) 

Ø  Given contracts C1=(A1,G1), C2=(A2,G2), implementation M  

Ø  Parallel composition operator for contracts  

Ø  C1||C2 := (A,G)  

Ø  where: A = (A1∩A2) ∪ ¬(G1∩G2), G = G1∩G2 

Component 
C2 Component 

C1 

Claims: 
C1, C2 are in canonical form (〈A,G∪¬A〉)  

•  If M|=C1 and M|=C2 then M|=C1||C2  

•  Interleaving: If M1|=C1 and M2|=C2 then M1×M2|=C1||C2  
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Composite Components 

Given contracts C1=(A1,G1), C2=(A2,G2), the following operators can 
be defined. They are all reduced to operations on hybrid automata: 

Ø  Greatest Lower Bound:   C1⎡⎤C2=def (A1∪A2, G1∩G2)   
The weaker consequence, stronger assumption 

Ø  Least Upper Bound:         C1⎣⎦C2=def (A1∩A2, G1∪G2)   
The stronger consequence, weaker assumption 

Ø  Complement:                   ¬C=def (¬A, ¬G) 

Ø  Fusion:  [[C1,C2 ]]p  = [C1]p ⎡⎤ [C2 ]p ⎡⎤ [C1||C2 ]p 

    C=(A,G), p∈P  ⇒def  [C]p = ( ∀pA, ∃pG ) 

Contract C2 

Component C 
Contract C1 
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Assertions Expression –  
Formal Language: Temporal Logic 
Ø  In practice, Hybrid Automata are too low level to be used by normal 

engineers 
•  Alternatively, temporal logics like (Metric) LTL do better 

    “The gate is closed when a train traverses GR (gate region).“ 
                �(EnterGR → ClosedUExitGR) 
Ø  But for normal properties, logic is still too difficult and rejected by the 

engineers: 
     P occurs within (Q,R) 
               �((Q ∧ ¬R ∧ O¬R ) ∧ ◊R) → (¬R)U(O(P ∧ ¬R))) 

     “Between the time an elevator is called at a floor and the time it  
     opens its doors at that floor the elevator can pass that floor at  
     most twice.“  
              �((call ∧ ◊Open)  → (Move U (Open ∨ (Pass U (Open  
                                                   ∨ (Move U (Open ∨ (Pass U (Open  
                                                                               ∨ (Move U Open)))))))))) 
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Assertions by Contract Patterns 

Ø  A contract pattern (pattern rule) is an English-like template 
sentence embedded with parameters’ placeholders, e.g.:  

inv [Q] while [P] after [N] steps 
    represents a fixed property up to parameters' instantiation. 

 (in the speak of the course, it is an English generic fragment of 
English) 

Ø  The semantics of a pattern is a template automaton (generic 
contract), which is instantiated by the parameters 

•  A binding composition program translates the English sentence to a template 
automaton by binding its slots 

Ø  In the SafeAir project previous to SPEEDS, a contract patterns 
library was developed by OFFIS (Oldenburg), but the library grew 
up to ~400 patterns, and was not manageable 

idea acceptable by users (format, less) but patterns can be very 
complex, like: 

          inv [P] triggers [Q] unless [S] within [B] after_reaching [R]  
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27.3 CSL (Contracts Specification Language) 
based on A/P-contract-patterns  
 
•  CSL is a domain-specific language (DSL) intended to provide a 

friendly formal specification means 
•  Translated into Hybrid Automata (assumptions and promises) 

•  Template sentences from requirement specifications can be translated into 
interface automata 

•  CSL introduces events and time intervals in contract patterns 

•  CSL is a ECA language with real-time assertions  

Requirements 
Document HACSL
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 CSL – Component Specification 

Ø  The CSL/HRC grammar defines interfaces with contracts of 
assumptions and promises. 

CSL ::= ‘HRC’ HRC-Id   
      ‘Interface’ 
         ’controlled’: VariableDeclaration 
         ’uncontrolled’: VariableDeclaration 
      ‘Contracts’ 
           Viewpoint-id ’contract’ Contract-id * 
               ’Assumption’: Assertion 
               ’Promise’: Assertion 
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CSL Metamodel 

Ø  [HRC-MM] is done in MOF and OCL 
•  executable in MOF-IDE (Netbeans), 
•  checked on well-formedness by OCL checkers 

Ø  Variables, assumptions 
Ø  More information about MOF-based metamodels and how to use 

them in tools -> Course Softwarewerkzeuge (WS) 

 

Viewpoint-id ‘contract’ Contract-id  
       ‘Assumption:’ Assertion* 

       ‘Promise:’ Assertion* 
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CSL Time Model & Variables 

•   Time model: R≥0. 

•   Variables: 
         Discrete range 
         Continuous range 
         pwc evolution 
         ⇒ pw derivable 

•    Events 
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CSL – Contract Specification  
with Generic Text Fragments 

Ø  CSL uses generic programming for assertions 

•   An assertion is expressed by a contract pattern, a generic text fragment 
embedded with parameters (slots): 

•  Parameter slots are conditions, events, intervals. 

•  Hedge symbols [  ] to demarcate slots 

   Example: “Whenever the request button is pressed a car should 
arrive at the station within 3 minutes”  

  Whenever [car-request] occurs [car-arrives] occurs within [3min] 

 

Assertion ::= (Text ‘[‘ slot:Parameter ‘]’ )* 
Text ::= char *  
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Contract Specification Process in HRC-CSL 

Steps to Derive HRC-CSL-Contracts: 
Ø  Start with the informal requirement 

•  Identify what has to be guaranteed by the component under consideration and 
what cannot be controlled and hence should be guaranteed by the environment: 

•  Informal promise(s), Informal assumption(s) 

Ø  Identify the related interface: inputs / outputs 
Ø  Specify parts of the informal requirements in terms of inputs and 

outputs of the component 
Ø  Select an appropriate contract pattern from the contract pattern 

library and substitute its parameter slots 
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Ex.: Instantiation of a Contract Pattern 

Ø  Informal Requirement: 
“Whenever the request button is pressed a car should arrive at the 
station within 3 minutes.” 

Ø  Contract Pattern:  
Whenever [E: event] occurs [E2: event] occurs within [I: interval] 

Ø  Instantiated Contract:  
Whenever req-button-pressed occurs car-arrives-at-station occurs 
within 3 min 

Ø  Compiles to an hybrid automaton (here: real-time automaton) 
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More Contract Patterns 

•     whenever [E] occurs [C] holds during following [I]  

I 
E 

C

•     whenever [E1] occurs [E2] occurs within [I]  

I 
E1 E2 

•     [C] during [I] raises [E]  
I 

E C 

Temporal/Continuous expressions for parameters (Events, 
Conditions, Intervals) 
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Example: Formalization of Informal Requirement 
with a Contract Pattern 

Ø  Assertion: 
•  Whenever the request button is pressed a car should arrives at the station within 

3 minutes 

Ø  Instantiated in CSL: 
•  Whenever [request-button-press] occurs [car-arrives-at-station] holds within 

[3min] 

Contract with  
Ø  Assumption:  

•  [40 seconds minimal delay between trains] 
•  whenever [train_in] occurs [~train_in] holds during following (0,40] 

Ø  Promise: 
•  The gate is closed when a train traverses gate region. 
•  [gate is closed when a train traverses gate region] 
•  whenever [train_in] occurs [position==closed] holds during following [train_in, 

train_out] 
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Contract Pattern Parameters (Slots) and  
Their Typing 

Conditions: 
•  Boolean variables: C,… 
•  x ~ exp    -- K=8,  x>5,  y’= -3y2 +7, x<y 
•  Exp.:  C1∨C2, C1∧C2, ¬C, C1→C2  
Events: 
•  Primitive:  a, b, c,…  Startup   
•  Condition change: tr(C), fs(C) 
•  Time delay:  dly(T) 
•  Exp.: e1∧e2, e1∨e2, e1-e2, e when C, e1;e2 
Intervals: 
•  Designated by two occurrences of events a, b; 
    all forms: 
                     [a,b], [a,b), (a,b], (a,b)     

  delay of T time units  

first e2 after e1 

e1 occurs, but  not e2 

A condition must 
hold true along an 

interval 

|C| = |tr(C),fs(C)| 
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Timers 

e

T

e e

T

e

T

PeriodicTimer(T) at e  

Timer(T) at e  

Ø  e+T ≡ tr(c=T) where c=Timer(T) at e 
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CSL Examples with Timers 

“Dispatching commands will be refused during first 5 seconds after a car 
arrives at station” 

Ø  Whenever [car-arrives] occurs  
      [dispatch-cmd] implies [refuse-msg] during following [5sec]  

 

„40 sec.  minimal delay between trains” 
Ø  Whenever [Tin] occurs [Tin] does not occur during following (40 sec] 

 

„Between the time an elevator is called at a floor and the time it stops at 
that floor the elevator can pass that floor at most twice.“ 
Ø  [PassFloor[m]] occurs at most [2] times  
                                    during (CallAtFloor[m], StopAtFloor[m]) 
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Pattern Occurrence Types 

car-request

Occurrence instance

car-arrives car-request

Occurrence instance

car-arrivescar-request
X

Whenever [car-request] occurs [car-arrives] occurs within [3min] 

 Flowing occurrences of events - interleaving 
occurrence's instances 

 Iterative occurrences of events – non interleaving 
occurrence's instances 

A F<3m3/s A A 

[F<3] during [3 Sec] raises [AlarmSignal] 
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Automaton Representation  
of Iterative Occurences of Events 

Wait
Trigger
Event

Wait
Start

Interval ES – ER 

Within
Interval

before R

(E & ES) – ER

E – ES

Within
Interval
after R

ES & ER 

EF - E

(ER & EF ) - E

(ER & EF & E) – ES

(EF & E) - ES

EF & E & ES – ER

E & ES & ER ER – EF

ER & EF & E & ES 

    whenever [E] occurs [ER] occurs within [ES,EF]  
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More HRC Patterns for Contract Specification 

Ø  E: Event, SC: State Condition, I: Interval, N: integer 
Ø  Pattern Group “Validity over Duration” 
Ø  P1 (hold): whenever [E] occurs [SC] holds during following [I] 
Ø  P2 (implication): whenever [E1] occurs [E2] implies [E3] during 

following [I] 
Ø  P3 (absence): whenever [E1] occurs [E2] does not occur during 

following [I] 
Ø  P4 (implication): whenever [E] occurs [E/SC] occurs within [I] 
Ø  P5: [SC] during [I] raises [E]  
Ø  P6: [E1] occurs [N] times during [I] raises [E2]  
Ø  P7: [E] occurs at most [N] times during [I] 
Ø  P8: [SC] during [I] implies [SC1] during [I1] then [SC2] during [I2] 
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27.4. Self-Adaptive Systems 

Ø  For future networked embedded systems and cyber-physical 
systems, we need verifiable, compositional component models 
supporting self-adaptivity. 

Ø  Self-adaptivity can be achieved by dynamic product families with 
variants that are preconfigured, verified, and dynamically 
reconfigured: 

•  Contract negotation (dynamic reconfiguration between quality A/P-automata) 
•  Polymorphic classes with quality-based polymorphism: the polymorphic 

dispatch relies on quality types, quality predicates 
•  Autotuning with code rewriting and optimization 

Ø  More in research projects at the Chair 
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27.5 HRC as Composition System 

•  HRC is an interesting combination of a black-box 
component model in different views 

•  It could be one of the first COTS component models with 
viewpoints, but the standarization is unclear at the 
moment 
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Evaluation of HRC Component Model 

Parameterization 

Binding points 

Contracts Business 
services 

Infrastructure 

Secrets 

Development 
environments 

Types 

Versioning 

Distribution 
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HRC – Composition Technique and Language 

Scalability 

Adaptation 

Metacomposition Aspect Separation 

Extensibility Software process 

Connection 
Product quality 
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HRC as Composition System 

Component model Composition technique 

Composition language 

Source or binary components 

Greybox components 

Automata as interfaces  
CSL textual contract patterns with slots 

Algebra of composition operators (dominance, 
satisfaction, compatibility, 
lub, glb, fusion,..) 

Verification of quality assertions 

Connectors are possible 

Visual composition language  


