
CBSE, © Prof. Uwe Aßmann 1

27. Rich Components with
A/P-Quality Contracts

Prof. Dr. Uwe Aßmann
Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de
Version 13-1.0, 13.07.13

1.  CBSE for Embedded
Systems

2.  SPEEDS Heterogeneous
Rich Components

3.  Contract specification
language CSL

4.  Self-Adaptive Systems
5.  HRC as Composition

System

Many Slides are courtesy to Vered Gafni,
Israel Aircraft Industries (IAI).

Used by permission for this lecture.
Other material stems from the

SPEEDS project www.speeds.eu.com

Prof. U. Aßmann, CBSE 2

Obligatory Literature

Ø  www.speeds.eu.com
Ø  G. Döhmen, SPEEDS Consortium. SPEEDS Methodology – a white paper. Airbus

Germany.
•  http://www.speeds.eu.com/downloads/SPEEDS_WhitePaper.pdf

Ø  [MM-Europe] R. Passerone, I. Ben Hafaiedh, S. Graf, A. Benveniste, D. Cancila, A.
Cuccuru, S. Gerard, F. Terrier, W. Damm, A. Ferrari, A. Mangeruca, B. Josko, T.
Peikenkamp, and A. L. Sangiovanni-Vincentelli. Metamodels in Europe: Languages,
tools, and applications. IEEE Design & Test of Computers, 26(3):38-53, 2009.

Ø  [Heinecke/Damm] H. Heinecke, W. Damm, B. Josko, A. Metzner, H. Kopetz, A. L.
Sangiovanni-Vincentelli, and M. Di Natale. Software components for reliable
automotive systems. In DATE, pages 549-554. IEEE, 2008.

Ø  [Damm-HRC] Werner Damm. Controlling speculative design processes using rich
component models. In Fifth International Conference on Application of Concurrency
to System Design (ACSD’05), pages 118-119. IEEE Computer Society, 2005.

Prof. U. Aßmann, CBSE 3

Used References

Ø  [CSL] The SPEEDS Project. Contract Specification Language (CSL)
•  http://www.speeds.eu.com/downloads/

D_2_5_4_RE_Contract_Specification_Language.pdf

Ø  [HRC-MM] The SPEEDS project. Deliverable D.2.1.5. SPEEDS L-1
Meta-Model, Revision: 1.0.1, 2009

•  http://speeds.eu.com/downloads/SPEEDS_Meta-Model.pdf

Ø  [HRC-Kit] The SPEEDS project. SPEEDS Training Kit.
•  http://www.speeds.eu.com/downloads/Training_Kit_and_Report.zip
•  Training_Kit_and_Report.pdf: Overview
•  Contract-based System Design.pdf: Overview slide set
•  ADT Services Top level Users view.pdf: Slide set about different relationships

between contracts

Ø  G.Gößler and J.Sifakis. Composition for component-based
modeling. Science of Computer Programming, 55(1-3):161–183,
2005.

Prof. U. Aßmann, CBSE 4

Ø  http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5763167
http://disi.unitn.it/~roby/pdfs/

Ø  BenvenisteCaillaudFerrariMangerucaPasseroneSofronis08FMCO.p
df

Ø  http://arxiv.org/pdf/0706.1456.pdf

CBSE, © Prof. Uwe Aßmann 5

27.1. CBSE for Embedded Systems

Prof. U. Aßmann, CBSE 6

Today’s Embedded Systems

6

Several quality aspects:
- cost,

- performance,…

composed of physical specific
subsystems developed

concurrently

involve several disciplines (e.g.,
aerodynamics, mechanical,

control)

Large Scale

Reliability is
critical

Embedded
System

Prof. U. Aßmann, CBSE 7

Götting Autonomous Transport Systems

http://www.goetting.de/dateien/galerienbilder/fox-containerterminal.jpg

Prof. U. Aßmann, CBSE 8

Risk Graph from Götting Autonomous Transport

http://www.goetting.de/dateien/galerienbilder/risikograph.jpg

Prof. U. Aßmann, CBSE 9

Quality Requirements
(Real-time, Safety, Energy, Dynamics)

Ø  Informal Quality Requirements are specified in the software
requirements specification (SRS, Pflichtenheft)

Ø  Informal Real-Time Requirement: The gate is closed when a train
traverses the gate region, provided there is a minimal time distance
of 40 seconds between two approaching trains.

•  Hard Real-time: definite deadline specified after which system fails
•  Soft Real-time: deadline specified after which quality of system’s delivery

degradates

Ø  Informal Safety Requirement: If the robot’s arm fails, the robot will
still reach its power plug to recharge.

Ø  Informal Energy Requirement: If the robot’s energy sinks under
25% of the capacity of the battery, it will still reach its power plug to
recharge.

Ø  Informal Dynamic Movement Requirement: If the car’s energy
sinks under 5% of the capacity of the battery, it will still be able to
break and stop.

Prof. U. Aßmann, CBSE 10

Vision: Modular Verification of Behavior of
Embedded Systems

Ø  Usually, Embedded Software is hand-made, verification is hard
Ø  But fly-by-wire and drive-by-wire need verification

Ø  Challenge 1: Quality requirements can be formalized and proven
•  How to formalize them?
•  How to prove them?

Ø  Challenge 2: Proof can be computed in modules, proof is modular
and can be reused as a proof component in another proof

•  Contracts serve this purpose: they prove assertions about components and
subsystems

•  Whenever an implementation of a component is exchanged for a new variant,
the new variant must be proven to be conformant to the old contract. Then the
old global proof still holds

•  This is a CBSE challenge!

CBSE, © Prof. Uwe Aßmann 11

27.2. SPEEDS HRC
(Heterogeneous Rich Components)

.. Further developed in the EU project CESAR
.. Now called CESAR Component Model (CCM)

Prof. U. Aßmann, CBSE 12

Rich Component Models

Ø  A rich component defines contracts in several views with regard to
different viewpoints

•  A contract for functional behavior (functional view)
•  Several quality contracts, e.g.,

Real-time behavior (real-time view)
Energy consumption (energy view)
Safety modes (safety view)
Movements (dynamics view)

•  Used for component-based software for embedded systems

Ø  The contract (about the observable behavior) of a component is described
by state machines in the specific view (interface automata)

•  The interface automata encode infinite, regular path sets (traces)
•  They can be intersected, unioned, composed; they are decidable
•  Contracts can be proven

Ø  Instead of an automaton in a contract, temporal logic can be used and
compiled to automata (temporal logic contract)

Prof. U. Aßmann, CBSE 13

Assumptions about Automata-Based Contracts

Ø  A component has one thread of control
Ø  A component is always in a finite set of states
Ø  The behavior of a component can be described by a protocol

automaton (interface automaton)
•  Compatibility is decidable

Ø  A hybrid automaton is an automaton in which states and
transitions can be annotated in different views

•  A real-time automaton is a hybrid automaton with real-time annotations
•  A safety automaton is a hybrid automaton with safety annotations
•  A dynamics automaton is a hybrid automaton with dynamics equations

(physical movement, electricity movement)
•  An energy automaton is a hybrid automaton with energy consumption

annotations

Prof. U. Aßmann, CBSE 14

A/P Quality Contracts for CBSE

Ø  [Gössler/Sifakis, Heinecke/Damm]
Ø  Composability gives guarantees that a component property is

preserved across composition/integration
Ø  Compositionality deduces global semantic properties (of the

composite, the composed system) from the properties of its
components

Ø  An A/P-contract is an if-then rule: under the assumption A, the
component will deliver promise P (aka guarantee G)

Ø  An A/P-quality contract is an A/P-contract in which hybrid

automata form the assumptions and promises

Contract = (assumption, promise)

 = IF assumption THEN promise

A/P-quality contract based component models are composable
and compositional.

Assertion

Assertion

Prof. U. Aßmann, CBSE 15

Semantics of Assertions and Contracts

Ø  The semantics of an assertion A is the regular set of traces (paths),
to which the interface automaton expands (unrolled automaton)

•  Every state of the trace assigns a value to the ports of a component

Ø  [[A]] := { p | p is path of A }
Ø  An assumption A is stronger (bigger) than an assumption B, if its

semantics contains the semantics of B:
Ø  [[A]] > [[B]] := { p | p is path of B } ⊆ { q | q is path of A }
Ø  The semantics of contract C is formed of promise G unioned with

the complement of A (either A, then G; or not A)
Ø  [[C]] = [[(A,G)]] := compl([[A]]) ∪ [[G]]
Ø  The semantics is computable with regular trace set composition

Prof. U. Aßmann, CBSE 16

EU IP SPEEDS – Speculative and
Exploratory Design in Systems Engineering

 Horizontal and vertical interfaces of a component

Assumed

From/by lower
design levels

from neighbors

Promised

From/by higher
design levels

to neighbors

Layer n+1

Layer n

Layer n-1

separate
tools

Prof. U. Aßmann, CBSE 17

HRC – SPEEDS’s View of a Component
An A/P-quality contract based component model

HRC - Heterogeneous Rich Component

Implementation

HRC Inteface

Executable Module

Specification

A/P
Contract

A/P
Contract

A/P
Contract A/P

Contract
viewpoint

viewpoint

HRC interface HRC interface

Prof. U. Aßmann, CBSE 18

Semantics of View Composition

Ø  HRC is a view-based component model with 4 views:
•  Functional
•  Real-time
•  Safety
•  Dynamics (movement)

Ø  If a component has several contracts in several views, their trace
sets are intersected, meaning that the component fulfils all of them

•  Semantics is set intersection on trace sets

Prof. U. Aßmann, CBSE 19

Basic Elements of HRC A/P-Contracts

Assumption in natural language for a railway crossing XR:
 - Minimal delay of 50 sec. between successive trains
 - At startup no train is already in XR
 - Trains move in one direction
Promise in natural language:
 - Gate closed as long as a train
 is in XR
 - Gate open whenever XR is
 empty for more than 10 sec

Controllertrain-in
train-out

close, open
position

Component

Contract = (assumption, promise)

Given behaviors
Behaviors component

must produce

Prof. U. Aßmann, CBSE 20

Assertions Describe Behavior

20

1 sec.

green

red

req. req.

3 sec. 3 sec.

1 sec.

5sec

30

25

-10

50

v An assertion specifies a subset of the possible component
behaviors

v A finite automaton specifying an infinite set of regular paths

Contract over continuous
variable:

temp: [-10°,50°]
‘after 5 sec. 25≤temp≤30’

Contract over discrete
variable:

lights :{red, green}, req:
event

‘lights initially green, and
after each ‘req’, within 1sec,
become red for 3 sec. then

back green’

Contract = (assumption, promise)

Prof. U. Aßmann, CBSE 21

Hybrid Automata –
Automata Representing Assertions

CloseCmdDly OpenCmdDly

approachinv=(clk<K)

Idle

flow=(clks=1 & Ks=0)

init=(True)

flow=(clks=1 & Ks=0) flow=(clks=1 & Ks=0)

inv=(clk<K)

 exit
exit

approach
clk’=0

exit
clk’=0

open_cmdclose_cmd

approach

MoveUp MoveDown
open_cmd

Up

flow=(ys=0)

open_cmd
y=0

init=(True)y=90 close_cmd
inv=(y=90)

flow=(ys=9)
inv=(y<90)

flow=(ys=-9)
inv=(y>0)

close_cmd

Down

flow=(ys=0)
inv=(y=0)

close_cmdopen_cmd

close_cmd

 Far

Near

flow=(-50<Xs<-40)
inv=(X>1000)
init=(X<5000)

flow=(-50<Xs<-30)
inv=(X>0)

Passing

flow=(-50<Xs<-30)

inv=(X>-100)

approach
x=1000

exit
x=-100 &1900<x’<4900

x=0

Train

Controller

Gate

Assertions in colors belong to different views

Prof. U. Aßmann, CBSE 22

Contract Analysis

Within one component (same interface): contracts are intersected

Ø  is based on
algebra of contracts

Ø For HRC
contracts, the
following properties
can be proven:

Ø Refinement

Ø Consistency,

Ø Compatibility,

Ø Dominance,

Ø Simulation,

Ø Satisfiability

Functionality Time
performance

Safety

Component

Component Component Component

contracts contracts contracts

 along components (for a certain viewpoint, view-specific)

Contract

contract contract contract

 contracts can be refined (refinement of contracts)

Prof. U. Aßmann, CBSE 23

Basic Relations on Contracts: Satisfaction

Ø  Satisfaction (implementation conformance) couples implementations
to contracts.

Ø  Given contract: C=(A,G), implementation M

Ø  Satisfaction: (M satisfies C)
 M|=C ⇔def A∩M⊆ G
(promise G is stronger than intersection of A and M)

Assumption

Promise

M

Reasoning with Venn diagrams: smaller means weaker;
Inclusion means implication

Prof. U. Aßmann, CBSE 24

Basic Relations on Contracts: Refinement

Refinement: Given contract: C=(A,G) C’=(A’,G’), implementation
M, C refines C’:

 C⊆C’⇔def (¬A ∪ G) ⊆ (¬A’ ∪ G’)

Prof. U. Aßmann, CBSE 25

Basic Relations on Contracts: Dominance

A G’

GA’

Dominance (contract conformance): Given contract: C=(A,G) C’=
(A’,G’), implementation M, C dominates C’:

 C<C’⇔def A’⊆A and G⊆G‘
 C=>C‘ iff A‘<=A and G<=G‘

(A is stronger (bigger) than A’ and G‘ is stronger (bigger) than G;
A‘ is weaker (smaller) than A and G is weaker (smaller) than G‘)
Dominance implies refinement. The dominance operator is contravariant in A and G,
i.e, when assumption A “grows”, the promise G “shrinks”

Example:
•  C: A= daylight G= video & IR-picture
•  C’: A’= anytime G’= only IR-picture
•  Daylight ⊆ anytime, video&IR-picture ⊆ IR-picture

Claim: M|=C and C<C’ ⇒ M|=C’
(if M satisfies C, and C dominates C’, then M satisfies C’)

Prof. U. Aßmann, CBSE 26

Compatibility of Contracts

Ø  Compatibility is a relation between two or more contracts C1 .. Cn
Ø  Two contracts C1 and C2 are compatible whenever the promises

of one guarantee that the assumptions of the other are satisfied
•  When composing their implementations, the assumptions will not be violated
•  The corresponding components “fit” well together

Ø  C1 = (A1,P1) and C2 = (A2,P2) are compatible if
 C1<->C2⇔def P1⊆A2 and P2⊆A1

Ø  C1 is compatible to C2 if C1.P is weaker than C2.A, and C2.P weaker than C1.A

A2

P1

A1

P2

Prof. U. Aßmann, CBSE 27

Composition of Contracts

Ø within a component (same interface), contracts in
different views can be synchronized
Ø  The real-time assertions can be coupled with functional, real-time, safety, and

energy view

Ø  along components – contracts of a certain viewpoint can
be composed (with parallel composition)

Component Component

Functionality Real-Time
Performance Safety

Component

Component

contracts contracts contracts

Energy

Prof. U. Aßmann, CBSE 28

Parallel Composition of Contracts
(of Separate Components)

Ø  Given contracts C1=(A1,G1), C2=(A2,G2), implementation M

Ø  Parallel composition operator for contracts

Ø  C1||C2 := (A,G)

Ø  where: A = (A1∩A2) ∪ ¬(G1∩G2), G = G1∩G2

Component
C2 Component

C1

Claims:
C1, C2 are in canonical form (〈A,G∪¬A〉)

•  If M|=C1 and M|=C2 then M|=C1||C2

•  Interleaving: If M1|=C1 and M2|=C2 then M1×M2|=C1||C2

Prof. U. Aßmann, CBSE 29

Composite Components

Given contracts C1=(A1,G1), C2=(A2,G2), the following operators can
be defined. They are all reduced to operations on hybrid automata:

Ø  Greatest Lower Bound: C1⎡⎤C2=def (A1∪A2, G1∩G2)
The weaker consequence, stronger assumption

Ø  Least Upper Bound: C1⎣⎦C2=def (A1∩A2, G1∪G2)
The stronger consequence, weaker assumption

Ø  Complement: ¬C=def (¬A, ¬G)

Ø  Fusion: [[C1,C2]]p = [C1]p ⎡⎤ [C2]p ⎡⎤ [C1||C2]p

 C=(A,G), p∈P ⇒def [C]p = (∀pA, ∃pG)

Contract C2

Component C
Contract C1

Prof. U. Aßmann, CBSE 30

Assertions Expression –
Formal Language: Temporal Logic
Ø  In practice, Hybrid Automata are too low level to be used by normal

engineers
•  Alternatively, temporal logics like (Metric) LTL do better

 “The gate is closed when a train traverses GR (gate region).“
 �(EnterGR → ClosedUExitGR)
Ø  But for normal properties, logic is still too difficult and rejected by the

engineers:
 P occurs within (Q,R)
 �((Q ∧ ¬R ∧ O¬R) ∧ ◊R) → (¬R)U(O(P ∧ ¬R)))

 “Between the time an elevator is called at a floor and the time it
 opens its doors at that floor the elevator can pass that floor at
 most twice.“
 �((call ∧ ◊Open) → (Move U (Open ∨ (Pass U (Open
 ∨ (Move U (Open ∨ (Pass U (Open
 ∨ (Move U Open))))))))))

Prof. U. Aßmann, CBSE 31

Assertions by Contract Patterns

Ø  A contract pattern (pattern rule) is an English-like template
sentence embedded with parameters’ placeholders, e.g.:

inv [Q] while [P] after [N] steps
 represents a fixed property up to parameters' instantiation.

 (in the speak of the course, it is an English generic fragment of
English)

Ø  The semantics of a pattern is a template automaton (generic
contract), which is instantiated by the parameters

•  A binding composition program translates the English sentence to a template
automaton by binding its slots

Ø  In the SafeAir project previous to SPEEDS, a contract patterns
library was developed by OFFIS (Oldenburg), but the library grew
up to ~400 patterns, and was not manageable

idea acceptable by users (format, less) but patterns can be very
complex, like:

 inv [P] triggers [Q] unless [S] within [B] after_reaching [R]

Prof. U. Aßmann, CBSE 32

27.3 CSL (Contracts Specification Language)
based on A/P-contract-patterns

•  CSL is a domain-specific language (DSL) intended to provide a

friendly formal specification means
•  Translated into Hybrid Automata (assumptions and promises)

•  Template sentences from requirement specifications can be translated into
interface automata

•  CSL introduces events and time intervals in contract patterns

•  CSL is a ECA language with real-time assertions

Requirements
Document HACSL

Prof. U. Aßmann, CBSE 33

 CSL – Component Specification

Ø  The CSL/HRC grammar defines interfaces with contracts of
assumptions and promises.

CSL ::= ‘HRC’ HRC-Id
 ‘Interface’
 ’controlled’: VariableDeclaration
 ’uncontrolled’: VariableDeclaration
 ‘Contracts’
 Viewpoint-id ’contract’ Contract-id *
 ’Assumption’: Assertion
 ’Promise’: Assertion

Prof. U. Aßmann, CBSE 34

CSL Metamodel

Ø  [HRC-MM] is done in MOF and OCL
•  executable in MOF-IDE (Netbeans),
•  checked on well-formedness by OCL checkers

Ø  Variables, assumptions
Ø  More information about MOF-based metamodels and how to use

them in tools -> Course Softwarewerkzeuge (WS)

Viewpoint-id ‘contract’ Contract-id
 ‘Assumption:’ Assertion*

 ‘Promise:’ Assertion*

Prof. U. Aßmann, CBSE 35

CSL Time Model & Variables

•  Time model: R≥0.

•  Variables:
 Discrete range
 Continuous range
 pwc evolution
 ⇒ pw derivable

•  Events

Prof. U. Aßmann, CBSE 36

CSL – Contract Specification
with Generic Text Fragments

Ø  CSL uses generic programming for assertions

•  An assertion is expressed by a contract pattern, a generic text fragment
embedded with parameters (slots):

•  Parameter slots are conditions, events, intervals.

•  Hedge symbols [] to demarcate slots

 Example: “Whenever the request button is pressed a car should
arrive at the station within 3 minutes”

 Whenever [car-request] occurs [car-arrives] occurs within [3min]

Assertion ::= (Text ‘[‘ slot:Parameter ‘]’)*
Text ::= char *

Prof. U. Aßmann, CBSE 37

Contract Specification Process in HRC-CSL

Steps to Derive HRC-CSL-Contracts:
Ø  Start with the informal requirement

•  Identify what has to be guaranteed by the component under consideration and
what cannot be controlled and hence should be guaranteed by the environment:

•  Informal promise(s), Informal assumption(s)

Ø  Identify the related interface: inputs / outputs
Ø  Specify parts of the informal requirements in terms of inputs and

outputs of the component
Ø  Select an appropriate contract pattern from the contract pattern

library and substitute its parameter slots

Prof. U. Aßmann, CBSE 38

Ex.: Instantiation of a Contract Pattern

Ø  Informal Requirement:
“Whenever the request button is pressed a car should arrive at the
station within 3 minutes.”

Ø  Contract Pattern:
Whenever [E: event] occurs [E2: event] occurs within [I: interval]

Ø  Instantiated Contract:
Whenever req-button-pressed occurs car-arrives-at-station occurs
within 3 min

Ø  Compiles to an hybrid automaton (here: real-time automaton)

Prof. U. Aßmann, CBSE 39

More Contract Patterns

•  whenever [E] occurs [C] holds during following [I]

I
E

C

•  whenever [E1] occurs [E2] occurs within [I]

I
E1 E2

•  [C] during [I] raises [E]
I

E C

Temporal/Continuous expressions for parameters (Events,
Conditions, Intervals)

Prof. U. Aßmann, CBSE 40

Example: Formalization of Informal Requirement
with a Contract Pattern

Ø  Assertion:
•  Whenever the request button is pressed a car should arrives at the station within

3 minutes

Ø  Instantiated in CSL:
•  Whenever [request-button-press] occurs [car-arrives-at-station] holds within

[3min]

Contract with
Ø  Assumption:

•  [40 seconds minimal delay between trains]
•  whenever [train_in] occurs [~train_in] holds during following (0,40]

Ø  Promise:
•  The gate is closed when a train traverses gate region.
•  [gate is closed when a train traverses gate region]
•  whenever [train_in] occurs [position==closed] holds during following [train_in,

train_out]

Prof. U. Aßmann, CBSE 41

Contract Pattern Parameters (Slots) and
Their Typing

Conditions:
•  Boolean variables: C,…
•  x ~ exp -- K=8, x>5, y’= -3y2 +7, x<y
•  Exp.: C1∨C2, C1∧C2, ¬C, C1→C2
Events:
•  Primitive: a, b, c,… Startup
•  Condition change: tr(C), fs(C)
•  Time delay: dly(T)
•  Exp.: e1∧e2, e1∨e2, e1-e2, e when C, e1;e2
Intervals:
•  Designated by two occurrences of events a, b;
 all forms:
 [a,b], [a,b), (a,b], (a,b)

 delay of T time units

first e2 after e1

e1 occurs, but not e2

A condition must
hold true along an

interval

|C| = |tr(C),fs(C)|

Prof. U. Aßmann, CBSE 42

Timers

e

T

e e

T

e

T

PeriodicTimer(T) at e

Timer(T) at e

Ø  e+T ≡ tr(c=T) where c=Timer(T) at e

Prof. U. Aßmann, CBSE 43

CSL Examples with Timers

“Dispatching commands will be refused during first 5 seconds after a car
arrives at station”

Ø  Whenever [car-arrives] occurs
 [dispatch-cmd] implies [refuse-msg] during following [5sec]

„40 sec. minimal delay between trains”
Ø  Whenever [Tin] occurs [Tin] does not occur during following (40 sec]

„Between the time an elevator is called at a floor and the time it stops at
that floor the elevator can pass that floor at most twice.“
Ø  [PassFloor[m]] occurs at most [2] times
 during (CallAtFloor[m], StopAtFloor[m])

Prof. U. Aßmann, CBSE 44

Pattern Occurrence Types

car-request

Occurrence instance

car-arrives car-request

Occurrence instance

car-arrivescar-request
X

Whenever [car-request] occurs [car-arrives] occurs within [3min]

 Flowing occurrences of events - interleaving
occurrence's instances

 Iterative occurrences of events – non interleaving
occurrence's instances

A F<3m3/s A A

[F<3] during [3 Sec] raises [AlarmSignal]

Prof. U. Aßmann, CBSE 45

Automaton Representation
of Iterative Occurences of Events

Wait
Trigger
Event

Wait
Start

Interval ES – ER

Within
Interval

before R

(E & ES) – ER

E – ES

Within
Interval
after R

ES & ER

EF - E

(ER & EF) - E

(ER & EF & E) – ES

(EF & E) - ES

EF & E & ES – ER

E & ES & ER ER – EF

ER & EF & E & ES

 whenever [E] occurs [ER] occurs within [ES,EF]

Prof. U. Aßmann, CBSE 46

More HRC Patterns for Contract Specification

Ø  E: Event, SC: State Condition, I: Interval, N: integer
Ø  Pattern Group “Validity over Duration”
Ø  P1 (hold): whenever [E] occurs [SC] holds during following [I]
Ø  P2 (implication): whenever [E1] occurs [E2] implies [E3] during

following [I]
Ø  P3 (absence): whenever [E1] occurs [E2] does not occur during

following [I]
Ø  P4 (implication): whenever [E] occurs [E/SC] occurs within [I]
Ø  P5: [SC] during [I] raises [E]
Ø  P6: [E1] occurs [N] times during [I] raises [E2]
Ø  P7: [E] occurs at most [N] times during [I]
Ø  P8: [SC] during [I] implies [SC1] during [I1] then [SC2] during [I2]

Prof. U. Aßmann, CBSE 47

27.4. Self-Adaptive Systems

Ø  For future networked embedded systems and cyber-physical
systems, we need verifiable, compositional component models
supporting self-adaptivity.

Ø  Self-adaptivity can be achieved by dynamic product families with
variants that are preconfigured, verified, and dynamically
reconfigured:

•  Contract negotation (dynamic reconfiguration between quality A/P-automata)
•  Polymorphic classes with quality-based polymorphism: the polymorphic

dispatch relies on quality types, quality predicates
•  Autotuning with code rewriting and optimization

Ø  More in research projects at the Chair

CBSE, © Prof. Uwe Aßmann 48

27.5 HRC as Composition System

•  HRC is an interesting combination of a black-box
component model in different views

•  It could be one of the first COTS component models with
viewpoints, but the standarization is unclear at the
moment

Prof. U. Aßmann, CBSE 49

Evaluation of HRC Component Model

Parameterization

Binding points

Contracts Business
services

Infrastructure

Secrets

Development
environments

Types

Versioning

Distribution

Prof. U. Aßmann, CBSE 50

HRC – Composition Technique and Language

Scalability

Adaptation

Metacomposition Aspect Separation

Extensibility Software process

Connection
Product quality

Prof. U. Aßmann, CBSE 51

HRC as Composition System

Component model Composition technique

Composition language

Source or binary components

Greybox components

Automata as interfaces
CSL textual contract patterns with slots

Algebra of composition operators (dominance,
satisfaction, compatibility,
lub, glb, fusion,..)

Verification of quality assertions

Connectors are possible

Visual composition language

