

A Pilot Project for migrating COBOL Code to Web Services

by Harry M. Sneed
ANECON GmbH, Vienna
University of Regensburg

harry.sneed@T-Online.de

Abstract: This paper describes a pilot project
conducted to test the feasibility of constructing web
services from existing mainframe COBOL
programs. The project involved the use of four
tools. The first tool - COBAudit - was intended to
identify candidates for web services. The second
tool - COBStrip - served to extract only that
portion of the code required to fulfill the service.
The third tool - COBWrap – wrapped the code
extracted from original code and converted it to an
executable component. The fourth tool – COBLink
– connected the wrapped component to the web by
generating a WSDL interface from either the
COBOL linkage section or from the original map
definition. The tools were applied to a legacy life
insurance system with more than 20 million lines of
COBOL code running under IMS on the IBM
mainframe.
Keywords: Web services, Migration, COBOL,
Code Stripping, Wrapping, Legacy Systems.

1. Rationale for the project

Currently, many user organizations, especially in
the traditional IBM mainframe market, are trapped
in their old legacy systems. Over the years these
systems have continued to grow and now have such
dimensions that render them practically impossible
to replace. To redevelop them would drive the
owner company into bankruptcy. Alone in
Germany there are some 240 billion lines of
COBOL code in such legacy systems [CW08]. To
redevelop them would cost more than the annual
state budget. Even to reengineer them would cost at
a rate of 4 Euros per Line close to one trillion
Euros. To redevelop them would require that their
requirements be completely recovered and that is
currently beyond the state of the art. There is at
present no technology available for automatically
recovering requirements from legacy code. The
architecture may be recoverable but not the content.
That leaves the IT department with the burden of
having to recollect the requirements from the end
users, who in the meantime have long forgotten
what they originally wanted.

To migrate these systems, for instance from
COBOL to Java, is out of the question due to the
high costs and risks involved. There are tools
available for converting COBOL to Java but none
of them have ever proved themselves in practice.
The Moore tool set worked in the laboratory for a
few selected COBOL-85 programs, but it never
passed the practice test [FRS94.] The tool set from
Fantechi and Nesi at the University of Florence –
C2O2 - never even got out of the laboratory
[FaNe97]. This author worked on the problem for
several years and had a working prototype –
COBTran – which produced executable OO-
COBOL programs from COBOL-85. However this
proved to be a dead end since Object-COBOL was
never accepted by the market [Sned99]. Triangle
Park Technologies worked together with the St.
Petersburg State University to develop a tool set
known as RescueWare for migrating COBOL and
PL/I programs to Java [Tere02]. There was some
initial success with this tool set, but for some reason
the development was discontinued. Current efforts
to migrate legacy languages to Java are focused on
a statement to statement conversion so that the
original structure of the code remains [CTM08].
What comes out is a procedural program in Java
syntax. Such tools can generate a method to
emulate every statement type of the original
language, but the result is far from being object-
oriented. Because of these inherent difficulties of
language conversion, in the past years the focus of
migration has moved from transformation to
integration. [DeLu08]

That leaves the question open as to how to proceed
with legacy systems. If they are small enough they
can be redeveloped. If there is no need to ever
change them, they can be emulated in a modern
Java environment. Otherwise it is hard to say what
to do with them. Once such systems have surpassed
a given size of about 10 million statements there is
little an organization can do to salvage them
without a tremendous investment, an investment
that most IT user departments are not willing to
finance. Wrapping and integrating is a solution
which promises to be cheap and quick.

To redevelop the system under discussion, it was
estimated with several methods including
COCOMO, Function-Point and Data-Point that the
redevelopment would cost at least 2000 person
years. Migrating the system would cost some 500
person years. Just maintaining the status quo of
such a monster system with a 9% annual change
rate requires more than 200 programmers.
Especially in the financial service world laws and
regulations are changing at an increasingly rapid
rate. The Basel-II agreement is typical of the
changes which have been imposed upon the
European financial institutions. To comply with the
new regulations large investments are required at a
time when funds are scarce. This leaves little
resources for redeveloping or migrating existing
applications. If anything is done at all, it must be
done cheaply. The preferred solution is here as
elsewhere in industry a readymade standard
solution. However, for the life insurance business
there is as yet no such solution in sight.

 On the other hand, competition is increasing. Big
financial service providers with a large customer
base are under tremendous pressure. There is a
great need to provide Internet services both to the
sales representatives in the field as well to the
customers themselves. This means providing web
access to the existing systems. Furthermore, to cut
costs and reduce personnel it is imperative to
restructure and streamline the existing business
processes. Neither objective can be attained without
adapting the underlying application systems.

Thus, there are two good reasons for wanting to
open up existing legacy systems and to offer them
as web services. One is to provide Internet access to
certain online transactions. The other is to render it
possible to integrate existing programs as steps in
new business processes. The business processes
must be revised in order to satisfy customer
demands. There is, therefore, a definite need on the
part of large financial service providers to move
toward a service-oriented architecture, as it would
mean cutting costs by eliminating unnecessary
redundancy while at the same time increasing the
quality of the service, but this move can only be
done gradually without disrupting the continuity of
ongoing IT operations and it must be done with the
existing software. Those restrictions pose a great
challenge to software reengineering technology.
[SPL2003]

2. Migration or Integration

It should be pointed out that what is being
described here is not really migration in the original
sense of the word. The word “migration” has until
now been used to describe the moving of a software
system from one environment to another. It might
mean porting to another platform, transforming the

code from one language to another, transferring the
data from one database to another or moving
everything including programs, data and user
interfaces over to a new operating system or
middleware [Horo98].

Integration, is on the other hand, the use of existing
software components in a new environment without
actually physically moving them into that
environment. They remain in their original
environment and are only called upon to remotely
provide a given functionality. The function results
are integrated via the network. Mashups are a good
example of integration [Zou07].

In the literature many authors use the word
migration when what they are really talking about is
integration [CFF06]. Such is not the case here. In
this pilot project the databases are not affected. The
functionality remains as it is. The code is being
modified but not converted. Nothing is being
ported. The programs continue to run in the IMS
environment on the IBM mainframe. They are only
exchanging data with the frontend via the company
intranet. Therefore, this is not a migration in the
true sense of that word.

What is being described here can best be termed as
“integration”. The existing mainframe transactions
are being integrated into a service-oriented
architecture. Instead of interacting directly with
human users via MFS masks on a 3270 terminal,
they are interacting with web clients via a WSDL
interface. These web clients may or may not be
interacting with human users. They are nodes in a
business process network. Consequently the word
integration fits much better to the task at hand.
[Sned06]

3. Previous Work in this Area

It goes without saying that this is not the first
project of this type. The vision of a Service-
Oriented Architecture is like a fata morgana for
many over burdened IT organizations. For many it
seems to be the only hope of breaking out of the
legacy trap in which they find themselves.
Commercial vendors and consultants keen on
exploiting the opportunity are feeding this hope
[KBS04]. The SOA vision has also provoked some
serious work on moving from client/server systems
to web-based systems. There have been a number of
research projects aimed at migrating existing
applications to web services. Leading in this field
are the universities of Benevento and the RCOST
institute in Southern Italy, the universities of
Victoria and Waterloo in Canada and the Software
Engineering Institute (SEI) in the U.S.A [KLS08].

As early as 2001, researchers at the RCOST
Institute in Italy have begun with pilot projects

aimed at converting COBOL applications into Web
applications [ACde01]. Their work lead to the
migration of the first local government systems by
replacing conventional user interfaces with web
pages [BGT02] [BGT03]. Across the Atlantic
researchers at the University of Victoria have been
working for many years developing strategies for
implementing web services, in particular from
existing systems [TDH04]. In the meantime the
Software Engineering Institute has picked up the
subject and set up a research community focused on
the evolution of service-oriented architectures
[KLS07] to which this author has also contributed
[Sned07]. Thus, it cannot be said that there is a lack
of research in this field. What is lacking is large
scale industrial applications. The theoretical
approaches developed in the laboratories have to be
applied in industry in order to prove their viability.
The work described in this paper is a step in that
direction.

4. Goals of the pilot project

Before launching a major migration project this
user wanted to have a proof of concept, i.e. a study
on the feasibility of migrating individual business
functions embedded in legacy programs to a
service-oriented architecture. Like many users, this
user was keen on introducing a modern
architecture, but without having to redevelop all of
the contents. The exact goals of the study were:
1) to measure the sizes, complexities and qualities

of the candidate IMS/COBOL programs in
order to assess the extend of the work to be
done.

2) to access the feasibility of reusing the
candidate components as web services.

3) to determine if it is possible to extract slices of
code from existing COBOL-IMS-DC programs
for reuse as web services.

4) to demonstrate that the selected programs can
be wrapped to work without the IMS-DC TP
monitor.

5) to test whether the wrapped components can be
accessed as web services within the IBM
WebSphere environment.

For the sake of the feasibility study five programs
were selected on the basis of their business content
and their degree of reusability. It was decided not to
deal with the non reusable programs as it would
have cost too much to reengineer them. There were
tools available to automatically reengineer them –
COBRedo – but then the reengineered programs
would have to have been retested before migrating
them. This would have delayed the pilot project and
caused additional costs.

The intention was to gain enough information for
top management to decide whether this was a viable
and affordable approach for migrating to a service-

oriented architecture or not. The only way to judge
such an approach was to try it out.

4.1 Measuring the candidate code

The first goal to be attained was to measure the
existing software in terms of its size, complexity
and quality. All together 7,297 COBOL programs
were processed by the COBAudit tool. The size
measurements taken were, among others, the lines
of code, the number of statements, the number of
data structures and data elements, the number of file
and data base accesses, the number of decisions, the
number of subroutines and the number of
subroutine calls. In all 56 different size
measurements were taken.

The program complexity was measured in terms of
eight complexity metrics, Chapin’s data
complexity, Elshof’s data flow complexity, Card’s
data access complexity, Henry’s interface
complexity, McCabe’s control flow complexity,
McClure’s decisional complexity, Sneed’s
branching complexity and Halstead’s language
complexity. These complexity metrics have been
described in detail in previous papers [Sned95].
Complexity in software is a question of the relation
between software elements and their relationships
to one another. The more relationships there are
relative to the number of elements, the higher the
complexity. The McCabe metric is measuring the
relation between edges and nodes of a graph, the
Henry metric is measuring the relation of module
interactions to the number of modules and the
Halstead metric is measuring the relation between
operands and operators on the one side and
references to them on the other. From this point of
view, complexity of software can be well defined
and easily measured [Sned08].

With the SoftAudit tool all complexity
measurements are normalized to a rational scale,
i.e. they are expressed as a coefficient on a scale of
0 to 1 with 0.5 being the median complexity. Being
over 0.5 indicates that this aspect of the program is
overly complex. Being under 0.5 indicates that the
complexity is not a problem. By inverting the scale
for quality originally proposed in the ISO-9126
standard for product assessment, 0 to 0.4 indicates
low complexity, 0.4 to 0.6 indicates average
complexity, 0.6 to 0.8 indicates high complexity
and over 0.8 indicates that the code is overly
complex [ISO93].

The following complexity measures represent the
average complexities of the COBOL application
system under consideration. They indicate that the
data flow and data access complexities are very
high as a result of the many dependencies on the
underlying data bases. The control flow complexity
is also high because of the many GOTO branches
within the code. Interface complexity is low since

there are few direct interactions between programs.
They are linked via the databases. The language
complexity is low because the same operators and
operators are used over and over again. Decisional
complexity is also low because the business rules
applied are actually very simple. This can be
considered a typical complexity profile of an
average legacy business application working with a
relational database.

DATA COMPLEXITY 0.524
DATA FLOW COMPLEXITY 0.768
DATA ACCESS COMPLEXITY 0.900
INTERFACE COMPLEXITY 0.125
CONTROL FLOW COMPLEXITY 0.678
DECISIONAL COMPLEXITY 0.362
BRANCHING COMPLEXITY 0.578
LANGUAGE COMPLEXITY 0.215
AVERAGE PROGRAM COMPLEXITY 0.518

The program quality was measured in terms of the
quality characteristics modularity, portability,
reusability, convertibility, flexibility, testability,
conformity and maintainability. These quality
metrics too have been described in previous papers
[Sned08]. Judging the quality of a software system
depends very much on the goals one is striving for.
Of particular importance for the sake of reuse as a
web service are the qualities modularity, reusability
and flexibility. Modularity is defined in terms of
high cohesion and low coupling. The fewer
dependencies there are between the individual
program parts, the easier it is to extract them. The
reusability metric has been the subject of a special
paper on reuse measurement. It is concerned with
the self containment of the program parts and their
independence from the environment. Reusable code
blocks should contain no IO operations and no
direct branches into other blocks [Sned98]. Finally
flexibility is an indicator of data independence. The
code should be void of hard coded data to allow it
to be used in a different context.

The following quality measures are representative
of legacy mainframe applications. They indicate
that the programs are inflexible because of their
high use of hard coded data. The reusability is low
because of the many interconnections between code
blocks within the modules and because of the high
usage of global data. Modularity and testability are
also below average as a result of the large size of
the modules.

MODULARITY 0.498
PORTABILITY 0.668
FLEXIBILITY 0.100
CONFORMITY 0.774
TESTABILITY 0.498
CONVERTIBILITY 0.821
REUSABILITY 0.150
MAINTAINABILITY 0.464

AVERAGE PROGRAM QUALITY 0.448

The measurement of the code was intended to
indicate which programs would be problematic
when it came to wrapping them and what would be
the cost of the wrapping project as a whole. The
problematic programs became candidates for
reengineering. The costs of wrapping is dependent
on the size of the programs, their data access and
interface complexity as well as on their modularity,
reusability and flexibility.

This step was fully automated. The input was the
original legacy code, the output was the metric
reports and the code deficiency lists.

4.2 Assessing the Reusability

 Once the code had been measured it could then be
accessed whether it was feasible to reuse the
programs as web services or not. As pointed out
above, the key issues here were modularity, data
independence and self containment. Since much of
the code was redundant, there was no reason to
include it in the wrapped service. It could be
commented out. But this also meant that any
branches or performs to that portion of the code had
to be capped. So, the fewer there were the better.

It was possible to see on hand of the metrics if a
program was reusable or not. If there were mostly
self contained sections and paragraphs invoked via
a central control unit, then these code blocks could
be reused in another context. Also, if the program
had only one entry with a limited number of input
parameters it could be reused as a whole. Of vital
importance for the online transaction programs was
that each program processed only one map. The one
map could be emulated via a single wrapper. If
multiple maps were processed, then several
wrappers would be required.

The reusability assessment was intended to
a.) select programs for reuse and
b.) gain an insight into what portion of the
programs could be readily wrapped without
intensive rework.

As it turned out only 2,863 of the 7,297 programs
analyzed were really reusable. That is less than
40%. The remainder of the programs were either
too intertwined or too dependant on global data.
That indicates that legacy code may not be such a
good source for obtaining web services after all. It
would require a large scale reengineering of the
code to make it more reusable, something most
users are not prepared to finance.

Normally, if the portion of reusable programs is too
low, the project should be abandoned and another
approach taken. An alternative strategy would be to

first conduct a reengineering project to put the
programs in a state where they could be reused.
However since this was only a pilot study, it was
decided to go ahead and process those few
programs which were structured and modular
enough to be reused.

The decision as to whether a program is reusable or
not was based first on a manual assessment of the
metrics, in particular the modularity and reusability
metrics. The next step was to look at the program
code itself to detect whether the code blocks could
be easily separated from another. A final selection
step was to decide whether the program contained a
function worthy of being turned into a web service.
If these criteria were all fulfilled, the program was
selected. This reusability assessment was supported
by the tool SoftRedoc which documents both the
data and the functional dependencies that COBOL
code blocks have among each other. Of course the
decision as to how to classify a program was made
manually. (see Figure 1)

Procedures

MODULE

PROGRAM

Reusabilty of
potentiel
Web Services
should be
> 75% .

SYSTEM

Reusability = 1 -
[Number of external Dependencies

Number of Statements]

Abb. 8.5

External
Daten

Foreign
Modules

Internal
Procedure
Calls

No. of
external
Function Calls

No. of
Statements

No. of
external
Data Accesses

Global
Data

External Dependencies = external Data + external Function Calls

Fig. 1: Evaluating Reusability of Code

4.3 Stripping the Code

Code stripping is a technique used to select given
paths through a program by blending out all of the
data and statements not used. It was originally used
for testing purposes. The idea was to test one path
through a program at a time and not to be
concerned with the rest. The code was submitted to
an automatic slicing machine which left the slice
selected as it was, while commenting out the rest.
Then, the module was compiled and tested for that
one path. This was then repeated for each path until
all control paths had been tested. This technique
was refined and used in a European research project
- TRUST - for testing embedded, realtime software,
where it was not possible to instrument the code
[PuSn89]. However, the technique can also be

applied to business systems as well to isolate strips
of code to be extracted.

In the context of wrapping, the technique of code
stripping is used to generate multiple instances of
the same program. Each instance can be a separate
web service. An instance corresponds to a particular
business rule. In the past, for efficiency reasons,
programs were written to fulfill several business
rules at one time. This led to the intertwining of
business functions with one another. This, among
other things, is one of the main deterrents to reusing
existing programs as web services, since a web
service should correspond to one and only one
business rule, so that the sequence and combination
of business rules can be determined in the business
process which uses the services. This is after all,
one of the major goals of a service-oriented
architecture [BiKw98]. Business processes should
be able to arbitrarily combine individual web
services to meet different requirements.

To determine if this was possible sample complex
programs had to be selected and run through the
stripping machine – COBStrip. COBStrip requires
some human interaction. The user must mark which
results he wishes to obtain from the program. For
this he is given a view of the output data in the Data
Division. For online programs this output data is
normally to be found in the data structure
corresponding to the map of the user interface. In
AS400 programs this is the screen section. For
CICS programs it is the Basic Map Service data
definition. For these programs it was the Message
Format Service map together with the map attribute
bytes. In the case of batch programs, the structure
of the output files is displayed.

By means of data slicing, the tool locates all
COBOL paragraphs required to produces those
results selected by the user. These include not only
the paragraphs or blocks of code where the map
fields are set, but also those paragraphs which
produce intermediate results used by the paragraphs
that set the map fields. The intermediate results are
stored in data tables where it is possible to trace the
final result selected back through the intermediate
results to the original input data by means of
cascading. At the other end of the data flow are
those paragraphs which receive and check the input
maps. Very often output map fields are set from
database contents. So those paragraphs which
access the database also have to be included. What
is left of the COBOL code is placed in comments so
as not to be compiled..

What remains is a partial procedure division
consisting of selected code blocks and a data
division containing only those data structures
processed by the selected paragraphs. It most cases
this amounted to less than 1/3 of the original code.

This was then compiled as a separate stand alone
module. (see Figure 2)

Output

Parameters

Internal

Data

Relocatable

Self-controlled

Input
Parameters

Business Rule

Data

Used by

Source effected
Code

statements

traversed

to

implement

rule

Results

Legacy Code

Fig. 2: Selecting Code to be stripped

If the user wanted to extract several different
business rules from one and the same COBOL
program, then several passes were required, one for
each rule resulting in a different version of that
program for each potential web service. In the case
of particularly large programs as many as 4
different web services could be extracted from one
source code member, one for each desired result set
or service response.

The manual effort involved in this step was the
selection of the desired results. This was done by
displaying the output data structures on the screen
and allowing the user to mark them as depicted in
the following screen shot.

Fig. 3: Marking the desired Results

4.4 Wrapping the Code

Once the stripped versions of the existing COBOL
programs were available and compiled, the next

step was to wrap them behind a WSDL interface.
For this two tools are required: COBWrap and
COBLink.

COBWrap processes a stripped module to replace
the terminal input/output operations with calls to a
wrapper module and to move the input/output data
from the Linkage section to the Working-Storage
section. In the case of IMS the input maps are
received via a call to the IMS transaction monitor:

CALL ‘CBLTDLI’ USING PARAM-NR, IO-PCB,
INPUT-MAP.

The same type of call is used to send the output
map to the terminal.

CALL ‘CBLTDLI’ USING PARAM-NR, IO-PCB,
OUTPUT-MAP.

COBWrap simply places the original call in
comments and inserts another call to the generated
wrapper module behind it.

CALL ‘CBL2WSDL’ USING PARAM-NR, IO-
PCB, INPUT-MAP.

The data in the Linkage-Section of CICS programs
is moved to the Working-Storage Section as CICS
programs are actually subprograms of the CICS TP-
Monitor. In the case of IMS-DC the opposite is
true. The COBOL program is the main program and
the IMS-DC monitor is implemented as a
subprogram to handle the data flow to and from the
user terminal. Therefore, IMS-DC programs, such
as those here, are much easier to wrap. It is only a
question of replacing the IMS-DC calls with calls to
the wrapper. The author has already reported on a
similar project to wrap Assembler-IMS programs in
an earlier project in 1997 [SnMa98]

This step was fully automated. There was no need
for any manual intervention since the wrapping is
based on an analysis of the program interfaces and
these are as IMS macros readily recognizable.

4.5 Linking the wrapped Services

The final step of the extraction process was to
connect the wrapped components to the Internet via
the Websphere middleware. This is where the tool
COBLink comes into play. COBLink generates two
wrapper modules to be linked to the wrapped
program. The input to the generation is the source
code of the altered COBOL program. Based on the
declarations of the input parameters, COBLink
creates a WSDL schema for the web service request
and at the same time generates a COBOL module
for translating that request into the input parameters
of the server program. In a second run, COBLink
creates another WDSL schema for the web service

response while, at the same time, generating a
COBOL module for transferring the output
parameters of the server program into the WSDL
response. (see Figure 4)

Fig. 4: Generated WSDL Interface

The four results of COBLink are the two WSDL
schemas – one for the web service request and the
other for the web service response – plus the two
COBOL wrapper modules – one for handling the
inputs and the other for handling the outputs. The
two COBOL modules are generated from a
template modified and enhanced by the parameter
data taken from server program source. The two
WSDL schemas are generated from the COBOL
interface definitions in the Linkage Section. This
technique has also been published by the author in
an earlier paper [Sned01].

4.6 Testing the wrapped Services

In a subsequent test the wrapped services were
subjected to a number of test requests from a
remote web client. For that the service requests had
to be simulated. Requests were manually edited and
dispatched via a Java AJAX driver. As it turned
out, it was not possible to reuse the existing test
data since the interfaces of the services had
changed. Instead of submitting a MFS map, one
now had to submit a WSDL message. This message
differed not only in structure but also in content.
The input messages contained only a subset of the
original map contents. Thus, creating test cases to
test the wrapped services resulted in much more

effort than was planned. The existing test inputs
had to be manually transformed over into web
service requests.

For the five programs making up the pilot project,
this manual testing was possible but it became
obvious that the test required more effort than what
went into all of the proceeding steps. The reason for
the high costs of testing lies in the changing of the
program interface. Having a new interface, in this
case the WSDL interface, requires setting up test
data which covers the parameters in that interface.
There are tools for randomly generating data based
on the specified data types, but this is not sufficient
to test the business logic. To test the business logic
requires that the data which was originally
submitted via the IMS maps, be refitted to the web
service interface. This has to be done manually by
someone familiar with the application.

The measuring, stripping, wrapping and linking of
the code components could be done automatically
with the use of tools, whereas the testing had to be
done manually. This came as a surprise to the
project stakeholders, who had not contemplated
what it would cost to test all of the web services
taken from the existing code base. For this reason
the migration project was put on hold until a
solution could be found for automatically testing
the services.

In the meantime, the financial crisis brought a stop
to all of the activities aimed at introducing a
service-oriented architecture. The user organization
has decided to remain in their legacy world until the
storm has passed over. The author had to move on
and deal with something else, namely the
conversion of an ancient COBOL-74/VSAM
system into COBOL-85 with DB2.

5. Results of the pilot project

New methods can be easily conceived and
propagated, especially in software technology
where it is very difficult to demonstrate their
feasibility without having access to a real world
industrial environment. In the end it is not the
method which counts, but only the results. No
matter how appealing a method may be, it is
worthless without being able to produce the right
results for the right environment within the time
and budget constraints imposed by the user. The
results of the project presented here were defined
from the start as being:

1) A set of metric reports and graphs depicting the

sizes, complexities and qualities of the COBOL
programs slated to be reused as web services in
a service-oriented environment.

2) Stripped COBOL programs in which only the
selected functions and their data are contained.
All of the other undesired code and data
definitions should have been removed.

3) Wrapped COBOL programs to be reused as
web services in which the calls to the TP-
Monitor, in this case the IMS-DC calls, are
replaced by wrapper calls with a new type of
interface.

4) A wrapper module for each COBOL web
service to receive the web service request and
to convert the XML data contained therein to
the COBOL input data expected by the web
service.

5) A wrapper module for each COBOL web
service to create a web service response from
the COBOL output data and to dispatch it back
to the client.

6) A WSDL schema for the web service request.
7) A WSDL schema for the web service response.

5.1 Metric Reports

The metric reports for each program and each
subsystem included rankings and comparisons as
well as various graphics such as kiviat diagrams
depicting the degree of fulfillment of the eight
quality metrics as well as the mutual relations of the
eight complexity metrics. There are also
management dashboards with gauges for the
different program characteristics. Of particular
importance here was the reusability of programs.
The median reuse rating of 0,5 is divided by the
measured reuse rating to give the effort
multiplication factor to adjust the unadjusted effort
required to adapting the target program to a web
service. All of the 7,297 COBOL programs were
ranked according to this criteria to select the most
likely candidates for web services. (See Figure 5)

+------------------------------+
| RANK PROGRAM QUALITY |
+------------------------------+
| 0001 P20FIVS2 0.591 |
| 0002 P22FIVS3 0.526 |
| 0003 P17FIVS1 0.487 |
| 0004 P18FIVS5 0.432 |
| 0004 P10FIVS0 0.383 |
+------------------------------+
| Average Quality = 0.484 |
| Median Quality = 0.487 |
+------------------------------+

Fig. 5: Ranking Programs for Reusability

5.2 Stripped Programs

For the pilot project to test the feasibility of the
wrapping approach only five of the 7,297 programs
were selected to be stripped. The reasons for
selecting only five programs have already been

given. There were both time and budget restrictions
to this pilot project.

The tool COBStrip displayed the data division of
these programs and the specialist for defining web
services selected those variables which he would
like to have in one web service response, i.e. the
results of a service invocation. The technique used
was similar to that proposed by the author for
extracting business rules in a previous project
[SnEr96]. Then the code was stripped to contain
only those paragraphs required to produce the
desired results. Data not used by these paragraphs
was deleted. What remained was a subset of the
original program. The following example illustrates
a section of code stripped out of a COBOL program
for obtaining the day of the week based on the date.
(see Figure 6)

XM059-C.
* FOR SETTING LANGUAGE
 EVALUATE TRUE
 WHEN SPC = 1
 MOVE LANG-1 (TAB-I) TO DAY-NAME
 WHEN SPC = 2
 MOVE LANG-2 (TAB-I) TO DAY-NAME
 WHEN SPC = 3
 MOVE LANG-3 (TAB-I) TO DAY-NAME
 END-EVALUATE
* FOR LEFT SCHIFT
 IF LRS = 'L'
 CONTINUE
 ELSE
 MOVE DAY-NAME TO WW
 MOVE 10 TO TAB-I
 PERFORM WITH TEST BEFORE UNTIL W1
(TAB-I) NOT = SPACE
 SUBTRACT 1 FROM TAB-I
 END-PERFORM
 PERFORM WITH TEST BEFORE VARYING W-I
FROM 10 BY -1
 UNTIL TAB-I = 0 OR TAB-I = 10
 MOVE W1 (TAB-I) TO W1 (W-I)
 MOVE SPACE TO W1 (TAB-I)
 SUBTRACT 1 FROM TAB-I
 END-PERFORM
 MOVE WW TO DAY-NAME
 END-IF.
 GOBACK.

 Fig. 6: Sample of stripped Code

5.3 Wrapped Programs

The third result was the wrapped programs
themselves. The tool COBWrap scans through the
code to identify all of the IMS-DC calls and to
replace them with calls to the wrapper module. The
original IMS-DC calls are placed in comments. Of
all the results produced this was the easiest to
produce, since it only meant recognizing and
replacing IO macros. The result of this step is
depicted schematically in Figure 7.

RECEIVE MAP.
..........................

<Processing>......

...........
SEND MAP

* RECEIVE MAP.
ENTRY USING MSG
MOVE MSG TO DATA
.....................................
<Processing>

.....................................
MOVE DATA TO MSG
RETURN

Online IMS-DC Program

New Web Service

WSDL
Input

Message

WSDL
Output

Message

Input Map Output Map

from Terminal to Terminal

Web Service Request

Web Service Response
from Client

to Client

COBWRAP Transformation

Fig. 7: Sample of wrapped IMS-DC Code

5.4 The Wrapper Modules

The wrapper modules, one for converting the web
service request and the other for creating the web
service response were generated by COBLink from
the source of the wrapped COBOL program. These
modules are called by the wrapped COBOL
program, the input module to provide the input data
from the web service request and the output module
to create the web service response from the output
data of the COBOL program. The main task is that
of the data conversion. The XML data types in the
WSDL message have to be mapped to the COBOL
data types in the linkage section of the wrapped
program. For this purpose the COBOL data types,
lengths and positions are defined as attributes in the
WSDL schema. The other tasks are to queue the
incoming SOAP messages, to unpack the service
requests from the SOAP messages, to pack the
service responses into SOAP messages and to
dispatch those outgoing messages. The technique of
wrapping is well documented in the pertinent
literature [Keys89]. The structure of a wrapper
module is displayed in Figure 8.

Data
Conversion
Component

IO
Simulation
Component

Message
Qeueing

Component

External Interface (WSDL)

Internal Interface (COBOL)

Fig. 8: Structure of a Wrapper Module

5.5 WSDL Schemas

Besides generating the wrappers, COBLink also
generates the appropriate WSDL schemas, one for
the request and one for the response. A sample
request and the corresponding response are depicted
in Figure 9. These schemas are intended for the web
client to use in producing requests and consuming
responses. Without them, it would be very difficult
to create a proper WSDL which is consistent with
the expectations of the COBOL web service. These
schemas are also used by the wrapper modules to
interpret the structure of the incoming requests, to
convert the data from XML to COBOL and back
from COBOL to XML and to generate the structure
of the outgoing responses (see Figure 9)

<!DOCTYPE "xm059i" SYSTEM "xm059i.xsd">
<xm059i>
 <DayofWeekRequest>
 <DAY>12</DAY>
 <MONTH>10</MONTH>
 <YEAR>1977</YEAR>
 <LANGUAGE>3</LANGUAGE>
 <ALIGNMENT>1</ALIGNMENT>
 </DayofWeekRequest>
</xm059i>

 Sample Request

<!—DOCTYPE XM059O SYSTEM "XM059O.xsd"-->
<XM059O>
 <DayofWeekResponse>
 <RETURN-CODE>00</RETURN-CODE>
 <P4>
<DAYOFWEEK>Mercoledi</DAYOFWEEK>
 </P4>
 </DayofWeekResponse>
</XM059O>

Sample Response
Fig. 9: Generated WSDL Schemas

6. Status of the project and future
work

As of this date the pilot project has been completed.
The five selected programs were wrapped and
tested. Altogether 12 independently executable web
services were extracted from the 5 sample source
programs. Among those 12 web services were:
• a service to confirm the insurance agent id
• a service to collect all of the policies sold by a

given insurance agent in a given time frame
• a service to compute the bonus of an insurance

agent
• a service to authorize access to a policy
• a service to create a match code
• a service to scan thru the policies by means of a

match code
• a service to extract data from a customer record
• a service to update a customer record
• a service to archive a customer record
• a service to collect all beneficiaries of a policy
• a service to extract selected data from a policy

• a service to compute the day of the week

The stripping and wrapping of the services proved
to be feasible, provided the programs selected
satisfy the preconditions for wrapping. It was also
possible to generate the appropriate WSDL
interfaces. It was not possible to convert the test
data. The testing of the web services required a lot
of effort just to set up, let alone to execute, so
testing turned out to be a major barrier to
implementing this technology. If the effort required
to test the 12 web services – 32 person days – is
projected to the several hundreds of web services
required to replicate the whole application, then the
migration would be unfeasible.

It is one thing to create web services from existing
code and another thing to prove that they perform
correctly. The first can be automated. The second
requires significant human effort even if it is
automated. The tester must assign the input
arguments in accordance with the pre conditions
and define the expected results in accordance with
the post conditions of a particular step in a business
process which does not even exist yet. Whereas the
actual wrapping of the web services costs less than
a day per service, the testing of that services costs
2-3 person days. Stakeholders find it difficult to
accept this. It is, therefore, absolutely essential to
find a way to automate the testing of reused web
services based on the test data of the original legacy
components. The author is currently searching for a
practical solution to this problem. In the meantime,
it is only possible to wrap transactions as a whole at
the level of the user interface.

This brings up the question of what should be done
first – the design of the business processes or the
development of the web services. If web services
are made first as is the case here, it is not sure they
will fit to the business processes being designed,
especially since the business analysts doing the
business process modeling are not concerned with
the availability of the services. If, on the other hand,
the business processes are designed first, then it is
sure that none of the existing mainframe programs
will fit to them. So here again, we are faced with
another chicken and egg problem. Fortunately, it is
not up to the author to solve that problem. His task
was to demonstrate that web services can be created
from existing mainframe programs and this task has
been accomplished.

For the future, there is still much work to be done to
make the COB2WEB tool set more reliable and
more usable. There is also still some optimizing
work to be done, for instance when a paragraph
contains a GO TO into another paragraph, it might
be better to include that code in the paragraph from
whence the GO TO comes. At present, if only one
field in a data structure is referred to, then the
whole data structure is included in the stripped

module. That too might be improved upon, but it is
always dangerous to change the structure of data,
since that can result in undesired side effects. In any
case there is still much to be done, even if the
approach appears to work for the sample taken. The
biggest remaining task is, of course, to automate the
testing of the migrated web services without having
to create a whole new test data base. This will be no
easy task.

The underlying tools of the COBWEB tool set are
implemented themselves in COBOL. The graphical
user interface to the underlying tools, which run in
the background, is implemented in Delphi. The
work data required by the tools is stored in local
tables. The user interface could as always be
improved to allow the user to better select the
desired results. However this is a minor problem
compared with that of testing the results.

7. Conclusion

This contribution has presented a tool supported
approach to reusing existing COBOL programs as
web services. For this purpose the author has
developed a tool kit COB2WEB which performs
the necessary adaptations to the target program and
which generates the code required to wrap that
program behind a WSDL interface. The tools have
been applied in a pilot project to create web
services for a large insurance company. The further
use of the tools is for the time being suspended until
the project is continued. Whether it continues or nor
depends on a lot of factors, the least of which is the
technical quality of the tools. The main factors are
of a political nature, i.e. whether the user really
wants to migrate his IT production to a service-
oriented architecture. From a technical point of
view, the current focus is on the test process in
connection with the certification of web services
[Sned08].

References:

[Acde01] Aversano, L./Canfora, G./deLucia, A.:
“Migrating Legacy System to the Web”, in Proc. of
CSMR-2001, IEEE Computer Society Press,
Lisabon, March 2001, p. 148
[BGT02] Bodhuin, T./Guardabascio, E./Tortorella,
M.: “Migrating COBOL Systems to the Web”,
WCRE-2002, IEEE Computer Society Press,
Richmond, Nov. 2002, p. 329
[BGT03] Bodhuin, T./Guardabascio, E./Tortorella,
M.: “Migration of non-decomposable software
systems to the Web using screen proxies” Proc. of,
WCRE-2003, IEEE Computer Society Press,
Victoria, B.C., 2003, p. 165
[BiKw06] Bichler,M./Kwei-Jay, L.: „Service
oriented Computing“ IEEE Computer, March,
2006, p. 99

[CFF06] Canfora, G./Fasolino, H./ Frattolillo, G.:
“Migrating Interactive Legacy System to Web
Services”, Proc. of CSMR-2006, IEEE Computer
Society Press, Bari, March 2006, p. 23
[CTM08] Ceccato, M./Tonella,P./Matteotti,C.:
“GoTo Elimination Strategies in the Migration of
Legacy Code to Java”, IEEE Proc. Of CSMR2008,
Athens, April, 2008, p. 53
[Horo98] Horowitz, E.: “Migrating Software to the
World Wide Web”, IEEE Software, May 1998, p.
18
[CW08] Computerwoche, Nr. 32, Report of
German Software Initiative, July, 2008, p. 5
[DeLu08] DeLucia et al.: “Developing Legacy
System Migration Methods and tools for
Technology Transfer” in Software: Practice and
Experience, Vol. 38, No. 13, Nov. 2008
[FaNe97] Fantechi,A./Nesi,P./Somma,E.: „Object-
Oriented Conversion of COBOL“, Proc. of
CSMR1997, Berlin, March, 1997, p. 157
[FRS94] Fergen,H./Reichelt,P./Schmidt,K.:
„Bringing Objects into COBOL - Moore, a tool for
migrating from COBOL to OO-COBOL”, Proc. Of
Int. Conference on Technology of OO Languages
and Systems, TOOLS94, New Orleans,1994, p. 435
[KBS04] Krafzig,D./Banke,K./Schama, D.:
Enterprise SOA, Coad Series, Prentice-Hall, Upper
Saddle River, N.J., 2004, p. 6
[Keys89] Keyes, J.: Datacasting – How to stream
Data over the Internet, Mcgraw-Hill, New York,
1989, p. 241
[KLS08] Kontogiannis, K. /Lewis, G./ Smith, D.:
“The Landscape of Service-oriented Systems: A
research perspective for Maintenance and
Reengineering” in 2nd Workshop on SOA based
systems in Proc. of CSMR2008, IEEE Computer
Society Press, April, 2008, p. 336
[KLS07] Kontogiannis, K./ Lewis, G. Smith, D.: “
A Research Agenda for Service-Oriented
Maintenance” Workshop Proceedings of CSMR-
2007, Amsterdam, 2007, p. 100
[PuSn89] Puhr, P./Sneed, H.: “Code Stripping as a
means of instrumenting embedded systems” in EU
ESPRIT Project 1258 – Report-1258-3, Liverpool,
1989
[SPD03] Seacord, R./Plakosh, D./Lewis, G.:
Modernizing Legacy Systems, Addison-Wesley,
Reading, 2003, p. 120
[Sned07] Sneed, H.: “Migrating to Web Services –
A research framework”, Workshop Proceedings of
CSMR-2007, Amsterdam, 2007, p. 116
[Sned95] Sneed, H. “Understanding Software
through Numbers”, Journal of Software
Maintenance, Vol. 7, No. 6, Nov. 1995, p. 405
[Sned98] Sneed, H.: “Measuring Reusability of
Legacy Software” in Software Process, Volume 4,
Issue 1, March, 1998, p. 43
 [SnMa98] Sneed,H., Majnar, R.: „“A Case Study
in Software Wrapping“, Proc. of Int. Conference on
Software Maintenance, IEEE Computer Society
Press, Washington, D.C. Nov. 1998, p. 86-.93

[Sned99] Sneed, H. “Object-oriented Software
Migration, Addison-Wesley Pub., Bonn, 1999
[Sned01] Sneed, H.: “Wrapping Legacy COBOL
Programs behind an XML Interface”, Proc. Of
WCRE-2001, IEEE Computer Society Press,
Stuttgart, Oct. 2001, p. 189
[SnEr96] Sneed, H./ Erdoes, K.: “Extracting
Business Rules from Source Code”, Proc. of IWPC-
96, IEEE Computer Society Press, Berlin, March,
1996, p. 240
[Sned06] Sneed, H.: ”Integrating legacy Software
into a Service oriented Architecture”, in Proc. of
CSMR-2006, IEEE Computer Society Press, Bari,
March 2006, p. 3
[Sned08] Sneed, H.: “Certification of Web
Services” in 2nd Workshop on SOA based systems
in Proc. of CSMR2008, IEEE Computer Society
Press, April, 2008, p. 336
[Sned08] Sneed, H. “Measuring 75 million lines of
code” Proc. of IWSM-2008, Munich, Springer
Pub., Nov. 2008, p. 271
[TDH04] Tilley, S./ Distante, D./ Huang, S.: ”Web
Site Evolution via Transaction Reengineering”,
Proc. of WSE 2004, Chicago, Sept. 2004, p. 31
[Tere02] Terekhov,A./Koznov,D./Boulychev,D.:
“Project specific languages and their application in
Reengineering”, IEEE Proc. Of CSMR2002,
Budapest, March, 2002, p. 177
[Zou07] Ying Zou, Qi Zhang, Xulin Zhao:
Improving the Usability of e-Commerce
Applications using Business Processes, IEEE
Trans. on S.E., Vol. 33, No. 12, Dec. 2007, p. 837

