
Academic Skills for Computer Scientists, © Prof. Uwe Aßmann
1

31. Diferent Types of Research
Hypotheses, Questions, Methods, and
Results in Software Engineering

Prof. Dr. Uwe Aßmann
Softwaretechnologie

Technische Universität Dresden
2015-0.4, 15-5-16

http://st.inf.tu-dresden.de/teaching/asics

1) Shaw's classifcation of
Hypothesis and Questions

2) Types of papers

[Library of Congress WPA poster]

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

2

Obligatory Literature

► [Shaw-Research] Mary Shaw. What makes good research in software
engineering? Int. Journal of Software Tools for Technology Transfer (STTT),
4(1):1-7, 2002.

► [Shaw-ETAPS02] Mary Shaw. Slide set of key note at ETAPS 2002. Good
summary of [Shaw-Research]

► Mary Shaw's web site http://spoke.compose.cs.cmu.edu/shaweb/
► [Bundy] Alan Bundy. How to Write an Informatics Paper. Web page:

– http://homepages.inf.ed.ac.uk/bundy/how-tos/writingGuide.html

► [Gonzalez] Fabio A. Gonzalez. Writing a Research Paper Depto. de Ing. de
Sistemas e Industrial Universidad Nacional de Colombia, Bogota

http://spoke.compose.cs.cmu.edu/shaweb/

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

3

References

► Dieter Rombach. Klaus Endres. A Handbook of Software and Systems
Engineering. Addison-Wesley.

► [Xu-Nygard] Dianxiang Xu and Kendall E. Nygard. Threat-driven modeling
and verifcation of secure software using aspect-oriented petri nets. IEEE
Trans. Software Eng, 32(4):265-278, 2006.

► Fun:
– Scientifc Balloons

● http://www.centennialofflight.gov/essay/Dictionary/Scientifc_Balloons/DI72.h
tm

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

4

Tribute

► The web site of Mary Shaw's research course, its literature link page
– http://spoke.compose.cs.cmu.edu/ser04/R/bib-meta.htm

Mary Shaw: “A research paper is a purposeful,
designed artifact, just like a software system.
Apply software design techniques to paper design:
► Start with the requirement: read the call for

papers
► Select an architecture: plan the sections, what

they say
► Plan a schedule: allow time for review, revision
► Check consistency: type-check text like code”

http://spoke.compose.cs.cmu.edu/shaweb/images/mary-shaw.jpg

Academic Skills for Computer Scientists, © Prof. Uwe Aßmann
5

31.1 Shaw's Classifcation of Research
Hypotheses in Software Engineering

.. and how to make more template abstracts out of
the classes

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

6

The Shaw Model of Research in Software Engineering

Research
Question

Research
Result

Research
Method

Research
Validation

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

7

The Extended Shaw Model for Research Hypothesis

Research
Question

Research
Result

Research
Method

Research
Hypothesis

Research
Success Criteria

Research
Validation

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

8

 Method
Procedure / technique

Qualitative or
descriptive model

Analytic model (quantitative,
continuous)

Empirical model

Tool / System /
Notation (language)

Specifc solution

(Experience) Report

Development Method/
 means of design

Method for analysis

Method for comparison

Design, evaluation, analysis of a
particular instance

Generalization or
characterization

Feasibility

Research ResultResearch ResultResearch Question Research Question

Analysis

Experience

Example

Evaluation

Persuasion

Research ValidationResearch Validation

Model

Shaw's Original Facet Classification

Design pattern

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

9

Research Questions

Type of Question Examples of Research Questions

New Development Method or
means of development

How can we do/create (or automate doing) X? Is there a best
practice how to do X? A design pattern?

Optimized
Development
Method

What is a better way to do/create X?

Method for analysis How can I evaluate the quality/efficiency/correctness of X? How
do I choose between X and Y?

Method for
comparison

How do I systematically compare between X and Y?
What are the criteria for comparison and contrast?

Design, evaluation, or analysis
of a particular instance

What is a (better) design or implementation for application X?
What is property X of artifact/method Y? How does X compare
to Y? What is the current state of X / practice of Y?

Generalization or
characterization

Given X, what will Y (necessarily) be? What, exactly, do we
mean by X? What are the important characteristics of X? What
is a good formal/empirical model for X? What are the varieties of
X, how are they related?

Advantages of
classifications

Investigate the special features of all classes of a classification.
Find criteria to test membership in these classes and then apply
the special features.
Example: AG hierarchy, XGRS classes

Feasibility Does X even exist, and if so what is it like? Is it possible to
accomplish X at all?

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

10

Research Results

Types of Research Results Example of Research Result

Procedure / Technique / Process New/better ways to do development/analysis tasks

Model Qualitative or
descriptive
model

Structure/taxonomy/ontology for problem area; framework Informal
guidance, informal domain analysis

Analytic model Structural model that permits formal analysis, automation

Empirical model Empirical predictive models based on real data

Tool / System Tool that embodies model or technique

Notation (language) New language with better X. Ex.: Gradual typing;

Specific solution Solution to application problem applying SE principles, or result of
specific analysis

(Experience) Report Interesting observations, rules of thumb, heuristics best practices,
case studies, industrial case studies

Theorem New theorem in an existing model. Ex: Register allocation with graph
cliques is polynomial (complexity), equivalence

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

11

Research Validation (Evaluation)

Type of validation Examples of Phrases

Analysis

I have analyzed my result and find it satisfactory through …
● for a empirical model: ..data on controlled use
● for a controlled experiment: ...a carefully designed statistical experiment

Experience My result has been used on real examples by someone other than me, and the
evidence of its correctness / usefulness / effectiveness is …
● for a qualitative model: ….narrative
● for a empirical model, tool: … some data, usually statistical, on practice
● for a notation, technique: … a comparison of this with similar results in

actual use

Example Here’s an example of how it works on...
● for a toy example: perhaps motivated by reality
● for a slice of life: a system that I have been developing

Evaluation Given the stated criteria, my result...
● for a descriptive model: .. adequately describes the phenomena of interest
● for a qualitative model: ...accounts for the phenomena of interest...
● for an empirical model: ...is able to predict ... because ..., or ... gives

results that fit real data … Includes feasibility studies, pilot projects

Persuasion I thought hard about this, and I believe that...
● for a technique: ..if you do it the following way...
● for a system: ... a system constructed like this would...
● for a model: … this model seems reasonable...
● for feasibility: … my working system is persuasive, even without analysis

Blatant assertion No serious attempt to evaluate result

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

12

ArtefactCharacterizations

 Method Procedure/Technique/
Process

Qualitative or
descriptive model

Analytic model

Empirical model

Tool / System

Notation (language)

Specific solution

(Experience) Report

Theorem

Development Method/Means

Method for analysis

Method for comparison

Design, evaluation, analysis of a
particular instance

Generalization or
characterization

Classifications

Feasibility

ResultResultQuestionQuestion

Analysis

Experience

Example

Evaluation

 Experimental eval.

Empirical eval.

Persuasion

ValidationValidation

Model

The Shaw Facet Classifcation, Slightly Extended with
Success Criterion and Limit Statement

Success
Criterion

Success
Criterion

Existential

Documenting

Automating

Olympic
(quantitative)

Efficient

Comparative

Proof

Limiting

Limit
Statement

Limit
Statement

Real
Limit

Assumption

Warrant

Backing

Qualifier

Design pattern

Academic Skills for Computer Scientists, © Prof. Uwe Aßmann
13

31.3 Types of Papers based on the Shaw
Facets

Academic Skills for Computer Scientists, © Prof. Uwe Aßmann
14

31.3.1 Problem Analysis Papers

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

15

Problem-Objective Analysis Papers

► Already done in Unit 1
► Use ZOPP, B-POPP, GQM, AO-PA, etc. to analyze the problems and goals

of
– a stakeholder
– a domain
– a method

► Defne success factors for possible future solutions
► Indicate how solutions could look like

► SWOT Strategic Analysis Paper
– For research areas or technologies, strategic analytic papers along the SWOT

analysis are possible.

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

16

Aspect-Oriented Classifcation Papers

► Evaluate a SoC space to write a paper
► Fix a set of concerns (concern space)
► Fix a set of things (artifact space)
► Defne a crossproduct and discuss every combination (separation of

concerns)

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

17

Critique Paper (Limitation Paper, Technical Problems
Paper)

► A critique paper contains an analysis
– why another approach is deficient,
– Bug in proof found

– why it has its limits,
– limits were not mentioned
– limits were found

– why a paper used unrealistic assumptions
– why an idealized research result does not work in practice
– Invalid assumptions (invalid warrant)
– why a paper should have used a qualifer, but didn't

► E. W. Dijkstra. Goto statement considered harmful. Communications of the
ACM, 11:147-, 1968. Final judgement on unstructured programming in C and
C++.

► Per Brinch Hansen. Java's Insecure Parallelism. ACM SIGPLAN Notices, 34
(4):8, April 1999. Brinch Hansen's condemnation of Java, based on his
background on monitors:

– Per Brinch Hansen. Monitors and Concurrent Pascal: a personal history.
ACM SIGPLAN Notices, 28(3):1-35, March 1993.

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

18

Critique Paper (Limitation Paper, Technical Problems
Paper)

► In a well-known approach, you have identifed a technical problem
– a defciency | a limit | a prerequisite or precondition

► In your paper, you cure the technical problem, remove the limit, generalize
the preconditions:

► Limit discussion: discuss the limits of the well-known technology.
– D. W. Wall. Limits of instruction-level parallelism. In Conference on

Architectural Support of Operating Systems IV, pages 176-188. ACM, 1991.
– Wall's paper showed that on instruction level, many programs have only up to

6 threads, which limits parallelism

Limit: number of threads<=6
How large is the

average possible number
of threads?

Measurements of
possible amout of

parallelism

Numerical threshold
on parallelism

Numerical threshold
on parallelism

Limit of parallelismLimit of parallelism
Significant Benchmark

study

Significant Benchmark
studyLimitLimit

Revision
of design/
technique/
algorithm

ResultResultQuestionQuestion ValidationValidation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

Academic Skills for Computer Scientists, © Prof. Uwe Aßmann
19

31.3.2 Teaching Papers

 A new language may solve some problems easier than
another existing one

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

20

Tutorial Paper

► A good tutorial paper contains:
– A set of running examples
– Bottom-up explanation of concepts and ideas
– Precise defnitions of concepts
– Classifcations of concepts
– Illustrative fgures
– Some theorems (idealistic research)
– or case studies (practical research)

► In the SEW course, we use
– Markus Müller-Olm, David Schmidt, Bernhard Steffen. Model-Checking.

A Tutorial Introduction. Springer LNCS, Volume 1694, 1999, p 848f
● http://www.springerlink.com/content/l437dulbgk67jl6m/

– [BW04] Timed Automata: Semantics, Algorithms and Tools, Johan Bengtsson and Wang
Yi. In Lecture Notes on Concurrency and Petri Nets. W. Reisig and G. Rozenberg (eds.),
LNCS 3098, Springer-Verlag, 2004

● http://www.it.uu.se/research/group/darts/papers/texts/by-lncs04.ps

– [BDL04] A Tutorial on Uppaal, Gerd Behrmann, Alexandre David, and Kim G. Larsen. In
proceedings of the 4th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems (SFM-RT'04). LNCS 3185.

● http://www.cs.auc.dk/~adavid/publications/21-tutorial.pdf

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

21

Tutorial Paper

InsightTutorial Examples

Pedagogic structure
Good examples

How to use X?
How to program X?
How to overview

technology T?

Easy to read
Comprehensive examples

Illustrative diagrams

OlympicOlympic

Simpler, more
comprehensive

overview

Simpler, more
comprehensive

overview

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

22

Generalization Paper, Based on Experience

► A generalization paper introduces a more general technique, or generalizes
or abstracts several other techniques

ReportGeneralization Experience

Report on generalized X
covering more use cases

What do we mean by X?
How to generalize X?

How can X also treat Y?

Experience Report about Use;
showing more use cases

Olympic
(quantitative)

Olympic
(quantitative)

more abstract
more general

more abstract
more general

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

23

“Solution Pattern” Paper: Special form of
Generalization Paper

► How can I solve a standard problem in a specifc context with a standard
solution?

■ Process patterns, organizational patterns, antipatterns, ...
■ See course “Design Patterns and Frameworks”

Question

Qualitative or
Descriptive Model

Generalization Example

Pattern description in
an abstracted form,

so that it can be
instantiated to other

scenarios

How to provide
a standard solution

for a standard problem?

Pattern description must
have several examples

where the pattern
already occurs in systems,

processes, methods,
literature

Olympic
(qualtitative)

Olympic
(qualtitative)

more flexible
more general

more extensible
more variable

better evolvable
less costly

more flexible
more general

more extensible
more variable

better evolvable
less costly

Result
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

24

Design Pattern Papers

► Design papers need to discuss well-known design solutions for well-known
problems

– The criteria of a pattern catalogue (e.g., Gamma)
– The forces under which they apply
– Solution patterns

► The research hypothesis is “documenting” because a design pattern should
not be new, but well-experienced

– There must be several examples, because the pattern must be well-
experienced

Descriptive model of
architectural scenario

Descriptive model of
architectural scenario Design patternDesign pattern Several ExamplesSeveral Examples

Descriptive model of
object scenarios

Which micro-architecture
should be chosen under
a set of design forces?

Look, the structure has
the following advantages

DocumentingDocumenting

extensible
systems

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

Academic Skills for Computer Scientists, © Prof. Uwe Aßmann
25

34.3.3 Typical Structures of POSE Papers

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

27

[Gonzalez] Paper Structure (Sections)

► Title: should already contain the controlling idea (thesis)
► Attribution: Author list, ev. with footnotes on supporting research organizations
► Abstract e.g., with MOPARC or Gul Caramel
► Introduction should follow a ZOPP-like problem analysis

– Paragraphs with Background, Problem, Success criteria, Research Question, Research
Method, Research Result, Solution: Way how to achieve the result, Roadmap

► Background: Terminology, background works
► Solution

– Depends on the type of research question, method

► Validation, e.g., Experimental evaluation: what are the fndings of the experiments or
analyses?

► Discussion: Discuss advantages, disadvantages, limits, unique features
► Comparison to Related Work: what is the unique feature of the result?
► Conclusion: Draw a conclusion
► Acknowledgement: Often, research funding organizations want to be

acknowledged. Do also not forget helpful colleagues or your supervisor
► References
► Appendices

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

28

Shaw's Paper Structure (Sections)

► http://spoke.compose.cs.cmu.edu/write/t/d/std-otl.htm
► Abstract
► Introduction (with motivation, problem defnition, research question,

overview/roadmap of the paper)
► Related work A (Background: what is necessary to understanding the

present result)
► Meat of the paper (the part of the structure that depends on the result;

pretty diferent)
► Related work B (relations to other work that compare this work to

alternatives or otherwise require the present result as a prerequisite)
► Summary, conclusions, next steps
► Acknowledgements, in partiular funding sources
► Bibliography
► Possibly appendices (the standard rule for appendices places them after

the bibliography, which is a nuisance)

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

29

Bundy's Paper Structure

► http://homepages.inf.ed.ac.uk/bundy/how-tos/writingGuide.html
► Title should summarize the hypothesis (thesis, contribution) of the paper.

The “controlling idea” must shine out
► Abstract state the contribution
► Introduction motivate the contribution of the paper
► Literature Survey allows for positioning the paper into the context
► Background (Background: what is necessary to understanding the present

work)
► Theory
► Specifcation
► Implementation
► Evaluation
► Related work comparison with competitors
► Further Work
► Conclusion
► Appendices

http://spoke.compose.cs.cmu.edu/write/t/d/std-otl.htm

Academic Skills for Computer Scientists, © Prof. Uwe Aßmann
30

31.4 More Specifc, Newman-Abstract-
Like Papers

 All Newman template abstracts can be entered into
the Shaw classification.

Academic Skills for Computer Scientists, © Prof. Uwe Aßmann
31

31.4.1 New Solution Paper (Enhanced
Solution)

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

32

Enhanced/Improved Method (Optimization
Hypothesis)

► Special subclass of “Enhanced Solution”

Procedure / technique / Method
Procedure / technique / MethodOptimized

Development Method

Optimized
Development Method ExperienceExperience

Improved MethodCan Method do better? Experience Report about Use
showing olympic improvement

OlympicOlympic

more abstract
more general

Procedure / technique / Method
Procedure / technique / MethodOptimized

Development Method

Optimized
Development Method ExperienceExperience

Improved Method
Can Method do better, yield

more and cost less?
Experience Report about Use

showing more efficiency

EfficiencyEfficiency

more utility
less cost

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

33

Optimization Technology Paper

► Present an optimization technology (more than an optimized algorithm)
► Show why the current technology is too slow or inefficient
► Show metamodels of optimizing technology
► Give a systems' component diagram
► Give some central algorithms

– Prove termination
– Analyze complexity
– Prove quality features

► Show a case study which proves that your stuf is more efficient

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

34

Language Revision Papers

► A revision paper extends a critique paper with a revision proposal
► Friedrich Steimann. A radical revision of UML's role concept. In Andy

Evans, Stuart Kent, and Bran Selic, editors, UML 2000 - The Unified
Modeling Language. Advancing the Standard. Third International
Conference, York, UK, October 2000, Proceedings, volume 1939 of LNCS,
pages 194-209. Springer, 2000.

► Friedrich Steimann and Thomas Kühne. A radical reduction of UML's core
semantics. Lecture Notes in Computer Science, 2460:34-, 2002.

New Model of Roles and
their semantics in UML

How can the limits of the
Association concept in UML

be removed?

Some systems
simplified

New MetamodelNew Metamodel
Limit of a language conceptLimit of a language concept Carefully chosen examplesCarefully chosen examples

Limit removalLimit removal

Revision
of design/
technique/
algorithm

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

35

New Method (with Automation Hypothesis),
Validated with Examples

► A combination result shows that a so far uncorrelated method from another
branch in science can solve problem X

– Ex.: Graph rewrite systems can describe program optimizations
– How to use Datalog to solve traffic problems

2-player games to allocate
registers

Can register allocation be
done with game theory?

Register allocation for
benchmark suite on simulator

New MethodNew MethodCan Method do sth?
Can Method tell you X?

Can Y solve X?

Can Method do sth?
Can Method tell you X?

Can Y solve X?
Carefully chosen examplesCarefully chosen examples

AutomatingAutomating

X realized by
technique Y

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

36

Empirical Validation by Statistics

Analytic modelAnalytic modelMethod for analysisMethod for analysis AnalysisAnalysis

Cost Estimation modelCan we predict cost? Statistical comparison

ExistentialExistential

PredictionPrediction

► Empirical validation is possible by
– statistics
– controlled experiments with user groups
– feld studies

► Example: [Xu-Nygard] reduces attack trees to aspect-oriented PetriNets and
verifies absence of intrusions: first time automating intrusion checking

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

37

Not Easy to Publish:
Persuasion for Optimized Method

New MethodNew MethodOptimized Method?Optimized Method? PersuasionPersuasion

Better XHow can we do X better? Look, it works...

Olympic or
Efficency

Olympic or
Efficency

Prediction

► Idea paper, is more interesting and sometimes published:

► Hard to Publish:

New MethodNew MethodFeasibilityFeasibility ExampleExample

Realization XCan X be automated?
It works in these cases

under these
frame conditions

AutomatingAutomating

Prediction

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

38

Change Assumptions Paper (“..dennoch..”)

► Weak change assumptions paper:

New ModelNew ModelSpecific instanceSpecific instance PersuasionPersuasion

Now working XUnder new assumptions
or frame conditions,
how can we do X?

Look, it works...

► Strong change assumptions paper:

**

Automating

New ModelNew ModelSpecific instanceSpecific instance ExperienceExperience

Now working XUnder new assumptions
or frame conditions,
how can we do X?

Look, it worked in the
following industrial projects

**

Automating

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

Academic Skills for Computer Scientists, © Prof. Uwe Aßmann
39

31.4.2 “New Concepts” Paper (Enhanced
Model)

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

40

Enhanced Model (EM) (Generalized model)

► Enhanced Model:

Problem: Existing <model-type> models are deficient in dealing with
<properties> of <solution strategy>.

Result and Solution: An enhanced <model-type> is described, capable of
providing more accurate analyses / predictions of <properties> in <solution
strategy> designs.

Validation: The model has been tested by comparing analyses / predictions
with empirically measured values of <properties>.

Enhanced ModelEnhanced ModelGeneralizationGeneralization anyany

Now covering predictions
of X

Can we predict X?
Findings from

empirical case studies

olympic or
efficient

olympic or
efficient

Existential
Empirical evaluation

Qualitative, analytic,
emprical Model

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

41

Kiczales, Lamping, et.al. “Open Implementation”: Defnition
Essay

► [OpenImp] Outline:
■ 1. Introduction
■ 2. A Base Case
■ 3. Separation of Use from Implementation Strategy Control
■ 4. Scope Control

. Choosing the scope control

■ 5. Subject Matter
. Tradeofs

■ 6. Style of the ISC code
■ 7. The Design space

► Why does this outline work? problem-solution paper (“enhanced model”):
Abstract: “An examination of existing software systems shows that an increasingly important technique
for handling this problem is to design the module’s interface in such a way that the client can assist or
participate in the selection of the module’s implementation strategy. We call this approach open
implementation.

When designing the interface to a module that allows its clients some control over its implementation
strategy, it is important to retain, as much as possible, the advantages of traditional closed
implementation modules. This paper explores issues in the design of interfaces to open imple-
mentation modules. We identify key design choices, and present guidelines for deciding which choices
are likely to work best in particular situations.”

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

42

Model Presentation Paper

► [Atkinson/Kühne 2003, A Foundation for Metamodeling] presents a 2-
dimensional metamodeling scheme for metamodeling.

– Classification in 2 dimensions, different instance-of-relationships

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

Enhanced ModelEnhanced ModelGeneralizationGeneralization ExampleExample

Now covering simpler
models of P

Can we simpler model X
and avoid modeling

problems P?

olympic olympic

Existential
Example evaluationQualitative Mega-Model

Academic Skills for Computer Scientists, © Prof. Uwe Aßmann
43

31.4.3 “New Language” Paper (Enhanced
Model)

 A new language may solve some problems easier than
another existing one

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

44

Simple Language Journal Paper

Philip M. Marden, Jr., Ethan V.
Munson. PSL: An Alternate Approach
to Style Sheet Langauges for the
World Wide Web. Journal of Universal
Computer Science, vol. 4, no 10(1998),
Springer

► Why does this outline work?
“enhanced model” paper:

Abstract: “Style sheets, which are used to specifiy the
appearance of documents, we rapidly growing in their
importance for the World Wide Web. Cascading Style
Sheets are now in widespread use and work on a
future Web Standard, the Extensible Style Sheet
Language (XSL) is proceeding at a rapid pace. In this
paper, we show how a different style sheet language,
PSL, represents an attractive midpoint between CSS
and XSL in complexity and power. PSL is based on
general language design principles that give its simple
syntax, easily-described semantics, and considerable
expressive power. Our testbed MPMosaic uses
Proteus, an portable style sheet system, to support
PSL.”

► Outline:
■ 1. Introduction
■ 2. CSS, XSL, and DSSL
■ 3. The PSL Language

. 3.1. Properties and Rules

. 3.2. Tree Elaboration

. 3.3. Box Layout

. 3.4. Other Features

. 3.5 Combining PSL's Services

■ 4. Comparing PSL and CSS
. 4.1. Syntactic Complexity
. 4.2. Semantic Consistency
. 4.3. Expressive Power

■ 5. Experience with MPMosaic (a
PSL-based browser)

. This shows some functionality,
views, which are not available
in a classical CSS-based
browser

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

45

LanguageLanguageMidpointMidpoint Better, new functionalityBetter, new functionality

What is a midpoint in power
between CSS and XSL?

Case study

BalanceBalance

in Syntax,
Semantics,
Expressive

Power

Analysis of differencesEnhanced language
syntax, semantics, examples

Difference model

Research Question
Success
Criterion

Research Result Validation

PSL Style Sheet Language

ImprovementImprovement

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

46

Language Paper

► Maribel Fernandez, Helene Kirchner,
Olivier Namet. A Strategy Language
for Graph Rewriting. In G. Vidal (ed.),
Logic-Based Program Synthesis and
Transformation (LOPSTR). 21st
International Symposium, 2011,
Springer

► Why does this outline work?
“enhanced model” paper:

Abstract: “We give a formal semantics for a graph-
based programming language, where a program
consists of a collection of graph rewriting rules, a
user-defined strategy to control the application of
rules, and an initial graph to be rewritten. The
traditional operators found in strategy languages for
term rewriting have been adapted to deal with the
more general setting of graph rewriting, and some
new constructs have been included in the language to
deal with graph traversal and management of
rewriting positions in the graph. This language is part
of the graph transformation and visualisation
environment PORGY.”

► Outline:
■ 1. Introduction
■ 2. Background: Port Graph

Rewriting
■ 3. The Strategy Language

. 3.1. Syntax and Informal
Description

. 3.2. Semantics

■ 4. Examples
■ 5. Properties

. Proofs about semantic features

■ 6. Implementation
■ 7. Related Work and Conclusion

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

47

Language Paper “The TXL Language”

► James R. Cordy. The TXL source
transformation language. Sci.
Comput. Programming, 61(3), 2006.

► “enhanced tool” paper covering many
more nice applications:

Abstract: “TXL is a special-purpose programming
language designed for creating, manipulat- ing and
rapidly prototyping language descriptions, tools and
applications. TXL is designed to allow explicit
programmer control over the interpretation, application,
order and backtracking of both parsing and rewriting
rules. Using first order func- tional programming at the
higher level and term rewriting at the lower level, TXL
provides for flexible programming of traversals, guards,
scope of application and parameterized context. This
flexibility has allowed TXL users to express and exper-
iment with both new ideas in parsing, such as robust,
island and agile parsing, and new paradigms in rewriting,
such as XML markup, rewriting strategies and contex-
tualized rules, without any change to TXL itself. This
paper outlines the history, evolution and concepts of TXL
with emphasis on its distinctive style and philoso- phy,
and gives examples of its use in expressing and applying
recent new paradigms in language processing.

► 1. What is TXL?

► 2. How TXL Came to Be

■ 2.1 The Turing Language Project

■ 2.2 The Turing eXtender Language

► 3. The Design of the TXL Language

■ 3.1. Goal: Rapid Prototyping

■ 3.2.Goal: Language Extension

■ 3.3 Goal: Example-like Patterns and Replacements

■ 3.4. Goal: Complex Scalable Transformations

► 4. User Refnement of the TXL Language

■ 4.1 functions and Rulesets.

■ 4.2 Explicit Guards

■ 4.3 Lexical Control

■ 4.4. Global Variables and Tables

► 5. Expressing New Paradigms in TXL

■ 5.1 Robust Parsing

■ 5.2 Island Grammars

■ 5.3 Union Grammars

■ 5.4 Agile Parsing

■ 5.5 Parse Tree annotations

■ 5.6. Source Code Markup and XML

■ 5.7 Traversals

■ 5.8 Rewriting Strategies and Scoped Application of Rules

■ 5.9 Contextualized Rules

■ 5.10 Native Patterns

► 6. Transformation as a Programming Paradigm

► 7. Related Work

► 8. Conclusion

Academic Skills for Computer Scientists, © Prof. Uwe Aßmann
48

31.4.3 New Knowledge Paper (Enhanced
Idealized Model)

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

49

Theorem Paper

► A theorem paper is always working on an idealized research result, based
on a model of reality

► LogP Papers of Löwe, Zimmermann, Eisenbiegler discuss the LogP-model
of distributing data and computations on distributed machines

– Much better than the usual PRAM model, because parallel distrubted
machine is modeled more realistically

– L – latency, o - overhead, g - gap

► Wolf Zimmermann and Welf Löwe. Foundations for the integration of
scheduling techniques into compilers for parallel languages. IJCSE, 1(2/
3/4):99-109, 2005.

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

TheoremsTheoremsIdealistic researchIdealistic research ProofProof

This algorithm is
NP-completeDoes X hold in model M?

The proof is done by
induction over the size of the

set

ExistentialExistential

Automating

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

50

Algorithm Analysis/Design Paper

► Papers presenting a new or optimized algorithm need to discuss:
■ Correctness
■ Termination
■ Complexity on a RAM, PRAM or on a logp-machine

. NP-completeness, decidability

. for practical algorithms: linearity, n log n, quadratic, cubic

► Prove quality features, such as memory consumption, energy consumption

TheoremsTheoremsSpecific instanceSpecific instance ProofProof

This sorting algorithm is
O(n log n)

Is algorithm A correct?
Does algorithm A terminate?

What is its complexity?
Are there optimizations?

The proof is done by
induction over the size of the

set

ExistentialExistential

Automating

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

Academic Skills for Computer Scientists, © Prof. Uwe Aßmann
51

31.4.4. Radical Solution

1)

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

52

Groundbreaking Idea Paper

► In recent years, these are harder to publish
► Contains basically a conceptualization of an unknown feld (white space)

► Ex.: Uwe Aßmann. Automatic Roundtrip Engineering. In U. Aßmann, E. Pulvermüller, P. Cointe,
N. Bouraquadi, and I. Cointe, editors, Proceedings of Software Composition (SC) - Workshop
at ETAPS 2003, volume 82 of Electronic Notes in Theoretical Computer Science (ENTCS),
Warshaw, April 2003. Elsevier.

► Defnes diferent classes of round-trip systems, such as “bidirectional weaving systems”,
“partitionable round-trip systems”, etc.

► Validation by examples (weak): explains the diference of TeX and Word
► Nevertheless, 30 citations

Three-Way Adapters as
Dynamic Proxies

New Concept for
Sychronizing

Requirements and Code

Some code systems
simplified

New Conceptualization
(Qualitative model)

New Conceptualization
(Qualitative model)New Concept to do sth

New Concept can tell you X
New Concept Y can solve X

New Concept to do sth
New Concept can tell you X
New Concept Y can solve X

Carefully chosen examplesCarefully chosen examples
AutomatingAutomating

X realized by
technique Y

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

Academic Skills for Computer Scientists, © Prof. Uwe Aßmann
53

31.4.5. Writing a Systems Paper
(Enhanced Tool)

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

54

Obligatory Literature

► Roy Levin and David D. Redell. An Evaluation of the Ninth SOSP
Submissions or How (and How Not) to Write a Good Systems Paper. ACM
SIGOPS Operating Systems Review, Vol. 17, No. 3 (July, 1983), pages 35-
40

► http://infolab.stanford.edu/~widom/paper-writing.html.

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

55

System and Tool Papers

► System papers need to discuss
– Defciencies or limits of other systems

● Market data or studies of economical need

– Success factors and requirements for the system

– Unique features not available in other systems
● Components of the system that contribute to the unique features
● why is automation with a tool important?

– Important use cases

– Limits of the system

– Ev. empirical evaluation

► Tools are special systems which automate things that should otherwise be done by hand
– Aching factors: what aches if the tool is not available?

System System Specific instanceSpecific instance ExperienceExperience

System components:
Requirements editor

Requirements checker
Requirements parser

Formalizer

What can system S do?

Look, the tool worked in the
following industrial projects

AutomatingAutomating

Formalize
textual

requirements

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

56

R. Vuduc , J.W. Demmel, K.A. Yelick. OSKI: A Library of
Automatically Tuned Sparse Matrix Kernels. SciDAC 2005
(Journal of Physics), UCRL-CONF-213753

Outline:
■ 1. Goals and Motivation: Interesting, explicit list of motivations
■ 2. An Introduction to the Tuning Interface by Example

. 2.1. Basic usage: globally migrating applications

. 2.2. Providing explicit tuning hints

. 2.3. Tuning based on implicit profling

■ 3. Saving and restoring tuning transformations
■ 4. Other features
■ 5. Related work
■ 6. Conclusions and future work

► Why does this outline work? constructive hypothesis (automation
hypothesis):

“Abstract. The Optimized Sparse Kernel Interface (OSKI) is a collection of low-level primitives
that provide automatically tuned computational kernels on sparse matrices, for use by solver
libraries and applications. These kernels include sparse matrix-vector multiply and sparse triangular
solve, among others. The primary aim of this interface is to hide the complex decision- making
process needed to tune the performance of a kernel implementation for a particular user’s sparse
matrix and machine, while also exposing the steps and potentially non-trivial costs of tuning at run-
time. This paper provides an overview of OSKI, which is based on our research on automatically
tuned sparse kernels for modern cache-based superscalar machines.”

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

57

Combined Paper on New Method based on New Language and
New Tool

► Thomas R. Dean and James R. Cordy and Andrew J. Malton and Kevin A. Schneider.
Agile Parsing in TXL. Autom. Softw. Eng. 10 (4), 2003

► Outline:
■ 1. Introduction: background, research question
■ 2. Agile parsing – the concept
■ 3. TXL, the tool for agile parsing

. Fig. 2 is a concept map of agile parsing with TXL

. 3.1 TXL language: introduction

. 3.2 TXL Support for Agile Parsing

. 3.3 An example

■ 4. Agile parsing idioms (patterns)
. 4.1 Rule Abstraction
. 4.2 Grammar Specialization
. 4.3 Grammar Categorization
. 4.4. Union Grammars for Translation
. 4.5. Markup
. 4.6 Semi-parsing
. 4.7 Data-structure grammars

■ 5. Experience with use cases
■ 6. Related work

► 7. Conclusions

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

58

Agile Parsing ctd. - Unifcation of Technologies

► Why does this outline work?
■ constructive hypothesis (automation hypothesis): Aigile parsing based on TXL

features can automate several important use cases others can't automate yet.
► The paper unifes several best practices in grammar engineering by generalization

to the new technique of “agile parsing”.

“Abstract. Syntactic analysis forms a foundation of many source analysis and
reverse engineering tools. However, a single standard grammar is not always
appropriate for all source analysis and manipulation tasks. Small custom
modifi cations to the grammar can make the programs used to implement these
tasks simpler, clearer and more effi cient. This leads to a new paradigm for
programming these tools: agile parsing. In agile parsing the effective grammar
used by a particular tool is a combination of two parts: the standard base
grammar for the input language, and a set of explicit grammar overrides that
modify the parse to support the task at hand. This paper introduces the basic
techniques of agile parsing in TXL and discusses several industry proven
techniques for exploiting agile parsing in software source analysis and
transformation.

Academic Skills for Computer Scientists, © Prof. Uwe Aßmann
59

31.4.5. Experience and Heuristics

1) Writing

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

60

Design Papers (“White Paper”, “Red Book”)

► [Hermann Kopetz, Astrit Ademaj, Petr Grillinger, Klaus Steinhammer. The Time-Triggered
Ethernet (TTE) Design.]

► Design papers describing the design of a new technology can describe:
– Basic concepts of the domain

– Success factors and requirements for the design

– Defciencies or limits of other designs

– Overview of the design

– Design rationale (why was the design chosen like that? Which other solutions were
rejected?)

– Unique features not available in other designs

– Important use cases

Design Design Specific instanceSpecific instance ExperienceExperience

Design overview
Design rationale

Demarcation

What can design D do?
Important use cases

AutomatingAutomating

Problem to
automate

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

61

Architecture Papers

► Architecture papers need to discuss
– Defciencies or limits of other systems

● Market data or studies of economical need

– Success factors and requirements for the system

– Unique features not available in other systems
● Components of the system that contribute to the unique features
● why is automation with a tool important?

– Important use cases

– Limits of the system

– Ev. empirical evaluation

► Tools are special systems which automate things that should otherwise be done by hand
– Aching factors: what aches if the tool is not available?

Descriptive model of
Architectural model

Descriptive model of
Architectural model Specific instanceSpecific instance ExamplesExamples

Descriptive model of
Architecture Which architecture should

a class of systems have?

Look, the structure has
the following advantages

AutomatingAutomating

mashup
systems

Analytic model of
Architecture

QuestionResult
Result

Question
Question Validation

Validation
Success Criterion

Success Criterion
Limit Statement

Limit Statement

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

62

Experiment Papers

► Experimental papers measure with benchmarks olympic or efficiency features of
programs, processes, techniques

► Benchmark suites, such as:
► Java Grande Benchmark
► Spec benchmark
► Java Qualitas Corpus

– Ewan D. Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus
Lumpe, Hayden Melton, and James Noble. The Qualitas Corpus: A curated
collection of java code for empirical studies. In Jun Han and Tran Dan Thu,
editors, APSEC, pages 336-345. IEEE Computer Society, 2010.

– Roberto Tonelli, Giulio Concas, Michele Marchesi, and Alessandro Murgia. An
analysis of SNA metrics on the Java Qualitas Corpus. In Arun Bahulkar, K.
Kesavasamy, T. V. Prabhakar, and Gautam Shroff, editors, ISEC, pages 205-
213. ACM, 2011.

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

64

Statistics on Types of Papers

► Shaw's fndings on
papers submitted to
ICSE 2002

Question Result Validation Count

Development method Procedure Analysis 3

Experience 4

Example 7

Qualitative model Experience 2

Persuasion 1

Analytic model Experience 3

Notation/tool Analysis 1

Experience 1

Example 2

Analysis method Procedure Analysis 1

Experience 3

Example 2

Analytic model Analysis 1

Experience 1

Example 2

Tool Example 1

Evaluation of
instance

Specific analysis Analysis 3

Example 1

Answer Analysis 1

Academic Skills for Computer Scientists, © Prof. Uwe Aßmann
65

31.5 Diferent Kind of Research Results

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

66

What You Can Expect from a SE Researcher

► Remember the diference of engineers and technical scientists:
■ An engineer works out systems to solve problems
■ a technical scientist works out methods and techiques for engineers

► Papers (examples):
■ Problem papers
■ Literature analysis studies
■ SWOT analyses (strategic analyses)
■ Solution Pattern descriptions/papers
■ HOWTO-Papers (methods, process patterns)
■ Design pattern papers

► Artefacts (demonstrators often in 1st, 2nd and 3rd generation, most often
not for industrial use):

■ Code Libraries and Frameworks helping other people doing work
■ Model frameworks
■ Tools for automation, for specifc languages
■ Composition systems and reuse langauges
■ Interpreters and compilers for languages
■ Books overviewing a subject area or method

A
ca

de
m

ic
 S

ki
lls

 fo
r

C
om

pu
te

r
S

ci
en

tis
ts

, ©
 P

ro
f.

U
w

e
A

ß
m

an
n

67

The End

Mary Shaw: “A research paper is a purposeful, designed artifact, just like
a software system. Apply software design techniques to paper design:
► Start with the requirement: read the call for papers
► Select an architecture: plan the sections, what they say
► Plan a schedule: allow time for review, revision
► Check consistency: type-check text like code”

