32. Writing Special Types of Papers

Prof. Dr. Uwe Aßmann Softwaretechnologie Fakultät Informatik Technische Universität Dresden 2015-0.4, 15-5-16 http://st.inf.tudresden.de/teaching/asics

- 1) Literature overview papers
- 2) Strategic analysis papers
- 3) Business case papers

Academic Skills for Computer Scientists, © Prof. Uwe Aßmann

- Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research challenges. ACM Trans. Auton. Adapt. Syst., 4(2):14:1-14:42, May 2009.
- Wayne Wolf, Cyber-physical Systems. IEEE Computer, 2009
- [OpenImp] Kiczales Gregor, Lamping John, Christina Videira Lopies, Chris Maeda, Anurag Mendhekar, and Gail Murphy. Open implementation design guidelines. In Proceedings of the 1997 International Conference on Software Engineering, pages 481-490. ACM Press, 1997.
- [Maurya] Ash Maurya. Running Lean. O' Reilly.
- [BMC] Business Model Canvas. www.businessmodelgeneration.com

Purposes of Literature Analysis

- Chapters of Masters and PhD Thesis
- Licenciate Thesis
 - A Swedish Licentiate is a Literature Overview PhD
 - In the German system, a single-authored paper about the thesis is a licentiate

A Survey Paper (Literature Analysis) is an Enhanced Model Paper

• A Survey Paper presents a survey of work in an area F.

- Characterization criteria (comparison criteria) are used to structure the field.
- Every approach is characterized or classified according to the criteria
- Features of every approach are *analyzed*
- The results are research questions, research limits, success criteria, i.e., if the literature analysis does not end in a good research hypothesis, it is too shallow
- Ex. First chapters of "Invasive Software Composition"

Attention: every Bachelor/Master/PhD thesis needs at least one chapter of Literature Analysis ("related work")

6)

Content of an "Overview" - Paper

- In a research field, you have read a lot of papers. You produce sections on:
- Principles and basic terminology
- Taxonomy or Facet classification of the field
- **Problem model:** Use a POA to describe the problems of the field
- **Research landscape** with portfolio diagrams or kiviat diagrams
 - **Research project list** of European, DFG, BMBF projects
 - **Technology list**
 - **Technology hierarchy**
- Qualitative comparison model with qualitative comparison criteria
 - one- or multidimensional (Kiviat graphs)
- **Quantitative comparison model** with **scales and metrics**: Use a GQM to evaluate quantitatively
- **Variability model:** describe the variations points of the technology, as well as the main variants. Develop a feature model.
- **Research map:** collect the main research questions
- **Research roadmap:** collect a prospective path for the future. What will be in 3, 5, 10 years?
- Strategy analysis and strategy map: do a strategic analysis, e.g., SWOT, Value Proposition Analysis, Balanced Score Card (BSC)
- **Value chain:** which products exist with which components? who has to collaborate? which technologies are important? which suppliers exist? who is the OEM?

Prof. Uwe Aßmann

 \odot

Principles, Terminology, Classification

- Basic concepts (terms) of a field are defined and explained by examples.
- Definitions are made in
 - definitory sentences
 - definitory paragraphs
- From differentiae of terms, a Taxonomy (hierarchical classification) of the field can be constructed
- A Multihierarchy (multitaxonomy) uses multiple inheritance and leads to an acyclic classification
- If the attributes of a concept do not form differentiae, a Facet classification can be made
 - Facets are independent orthogonal partitions of the concept's attributes

For an overview on the research field and its classification, use a simple concept map [Hierarchy of self-adaptive systems, Salehie Fig 1]

© Prof. Uwe Aßmann

A Simple Taxonomy of Research Challenges

From [Salehie, Fig. 5]

12)

- Facet classification of Requirements
- Martin Glinz: Rethinking the Notion of Non-Functional Requirements

Outline

- 1. Introduction
- 2. A new faceted classification of requirements
 - see Fig. 1
 - 2.1 What and why
 - 2.2 The kind facet
 - 2.3 The representation facet
 - 2.4 The satisfaction facet
 - 2.5 The role facet
 - 2.6 Examples
 - 3. Facet combinations and dependencies
 - 3.1 Typical combinations
 - 3.2 Goals vs. requirements
 - 4. Conclusions
 - summary
 - benefits
 - open issues and next steps

- Classification of a domain (domain model presentation)
 - Mens, Czarnecki, Van Gorp. A Taxonomy of Model Transformations.

Research Landscapes

A **Research Landscape** collects several lists:

- **Related discipline list** enumerates all research disciplines treating the research problem from different angles
- **Research project list** of European, DFG, BMBF projects [Salehie Table III]
- **Technology list** (Register allocation by linear scan, Chaitin graph coloring, attribute evaluation) with examples and citations [Salehie Table i]
- Technology hierarchy [Salehie Fig. 1]
- Relational Matrix analyses compare lists or hierarchies with other lists or hierarchies, e.g.,
 - (research project list x facet classification) [Salehie Table VI]
 - (research project list x taxonomy)
 - (technology list x taxonomy)
 - (technology list x research project list) [Salehie Table V]
- Formal concept analysis is a specific relational matrix analysis. It compares lists of objects with lists of attributes
 - (research project list x technology list) [Salehie Table IV]

Qualitative Comparison Model with Qualitative Criteria

- The criteria list (criteria table, attribute list) collects a simple table to compare technologies, approaches, objects
- Qualitative comparison is usually done then in a boolean matrix, from which an FCA can be started. [Salehie Table IV]

Quantitative Comparison Model using Weighted Scales

- Multi-criteria Attribute Analyses
 - e.g., 2-dimensional attribute analysis of objects (2 criteria), with portfolio diagrams
 - n-dimensional attribute analysis with kiviat diagrams
- Metrics:

- School grading: simple school grades are given to a list of objects or approaches, to evaluate approaches in different dimensions
- This can be displayed by a Kiviat graph
- Other scales can be used

Problem Model of the Field

- Use a problem-objective analysis (ZOPP, B-POPP, BATE-POPP, or GQM) to describe the problems of the field
- ZOPP uses hierarchical problem models
- GQM acyclic problem models

- describe the variations points of the technology, as well as the main variants.
 Develop a feature model.
- (see course Software technology II)

18

Research Challenge Map

- Collect the main research questions
- Example [Wolf-CPS] (only 2 pages)
 - 2 short introduction paragraphs
 - Theoretical underpinnings
 - Efficiency Boost
 - Contrl theory issues
 - Cyber-physical roadmap
 - Conclusion paragraph

Research Roadmap

- Based on a Research Challenge Map, collect a prospective path for the future. What will be in 3, 5, 10 years?
 - Use the national roadmap's circular scheme
- Research Roadmap with Strategy Analysis
 - Do a strategic analysis for the research field, e.g., SWOT, or a BSC
 - Do a Value Proposition Analysis with the field, e.g., PAIN-GAIN POPP
 - How should the research field develop? What should be done? Which risks exist?

Example: Simple Comparative Survey

- J. S. Bradbury, J. R. Cordy, J. Dingel, M. Wermelinger. Survey of Self-Management in Dynamic Software Architecture Specifications. WOSS 2004. ACM.
- Straightforward, simple paper comparing many different technologies.
- Comparison paper of different technologies:
- Comparison on architectural structure, behavior, reconfiguration
- Comparison on change initiation
- Comparison on reconfiguration operations
- Comparison on selection operations
- Scalability of the approaches

S

The Question of a Strategic Analysis

- Where should we go from here?
- What are valuable directions?
- Which goals pay off?
- Important for:
 - research proposals
 - research exposés
 - individual grant proposals
 - research grant proposals

SWOT Analysis for Research Relevance

- SWOT is a 4-dimensional attribute analysis for the development of a strategy for of a project [Albert Humphrey]
- For strategic decisions of your thesis and your research

- VPA is similar to Problem/Goal Analysis, however, it thinks about the pains and the gains of the customer or target group.
 - Pains are problems that hurt the customer
- Usually, the goal is to reduce pain and improve gain.
- A VPA is important in the beginning of a Master's or PhD process, because it helps to clearify the scope of the work.
- Use Pain-Gain-B-POPP to do VPA or Value Proposition Canvas (Osterwalder)
 - http://www.businessmodelgeneration.com/downloads/value_proposition_ca nvas.pdf

The Value Proposition Canvas

5

Designed for:

Designed by:

On:

Iteration

SWOT Analysis for Strategic Analysis

- For a research proposal, a memo to the boss, a white paper to the customers, write a strategic analysis paper
- Define 4 sections S W O T

32.3 Business Case Paper

- with Lean Canvas and BMC
- Useful for grants for venture capital and BMBF Exist
- http://www.exist.de/DE/Home/inhalt.html

28

Lean Canvas [Maurya]

- The Lean Canvas offers a nice structure for business cases
 - for brainstorming and collaborative work
 - for an outline of a business case paper
- Starts with a POA, but bridges it to the customers' and the value proposition

Problem	Solution	Unique Value Proposition		Unfair Advantage	Customer Segments
	Key Metrics			Channels	
Cost Structure			Revenue Streams		

Lean Canvas is adapted from The Business Model Canvas (<u>http://www.businessmodelgeneration.com</u>) and is licensed under the Creative Commons Attribution-Share Alike 3.0 Un-ported License.

Lean Canvas with Filling Order

- Value chain
- which products exist with which components? who has to collaborate? which technologies are important?
- which suppliers exist?
- which customers exist?
- which customer segments exist?
- who is the OEM?

BMC for Business Model Development and Writeup

31

Prof. Uwe Aßmann

 \odot

