

Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl Softwaretechnologie

Hauptseminar "Autonomic Computing" 1. Seminar Day

Dresden, 08.06.2016

Anja Reusch

Introduction

Autonomic Taxi

Introduction

Autonomic Taxi

Table of Contents

- 1. Introduction
- 2. Background
- 3. Rule Based Systems
 - 1. Overview
 - 2. Example
 - 3. Evaluation
- 4. Model Based Systems
 - 1. Overview
 - 2. Example
 - 3. Evaluation
- 5. Reinforcement Learning
 - 1. Overview
 - 2. Example
 - 3. Evaluation
- 6. Conclusion and Recommendations

Introduction

Example:

Autonomic Taxi

- Goals:
 - Carries passengers from one place to another
 - Route planning
 - Drives safely e.g.
 - Brakes if the car in front brakes,
 - Does not cross red traffic lights
 - Stays on the road

08.06.16

Introduction

Example:

Autonomic Taxi

- Goals:
 - · Carries passengers from one place to another
 - Route planning
 - Drives safely e.g.
 - Brakes if the car in front brakes,
 - Does not cross red traffic lights
 - Stays on the road
- Environment:
 - City
 - Roads
 - Highway
 - Traffic Lights
 - Other Cars
- Taxi gets tip after trip

source: http://www.clipartlord.com/wp-content/uploads/2012/10/taxi-cab.png

08.06.16

MAPE-K Architecture

- Introduced by IBM in 2005
- Used to structure automatic software systems
- Acronym for
 - Monitor
 - Analyze
 - Plan
 - Execute
 - Knowledge

 \rightarrow Knowledge is involved in the whole MAPE-K loop.

- System is only based on rules
- Does not posses internal states or models of its environment
- Rules:
 - Action Condition Rules
 - Derived from system and business goals
 - Describe adaptation plans of the system

- System is only based on rules
- Does not posses internal states or models of its environment
- Rules:
 - Action Condition Rules
 - Derived from system and business goals
 - Describe adaptation plans of the system
- Example rule:

<policy></policy>	Smart Brake	
	<condition></condition>	Car in front brakes
	<action></action>	Brake

08.06.16

Rule based ASS - Evaluation

Advantages	Disadvantages
Decisions are made quickly.	Rules can not be adapted to any kind of changes
Lightweight: no need of lot of memory or processing time	Conflicts between rules
	ASS does not consider the state or actions in the past.

- System uses models to represent components and relations in the world
- Model
 - Contains information on the state of the managed element
 - Updated through e.g. fresh sensor readings
 - Represented as graphs

- System uses models to represent components and relations in the world
- Model
 - Contains information on the state of the managed element
 - Updated through e.g. fresh sensor readings
 - Represented as graphs
- Example Models
 - function velocity(time) = current_acceleration * time

- System uses models to represent components and relations in the world
- Model
 - Contains information on the state of the managed element
 - Updated through e.g. fresh sensor readings
 - Represented as graphs
- Example Models
 - function velocity(time) = current_acceleration * time
 - Map

08.06.16

08.06.16

Model Based ASS

Taxi

```
State: {
Velocity: 90 km/h,
Position: ...,
Passengers: ...,
...},
Model: {
    Map,
    Velocity function
    ...},
Rules: {
    Smart Brake,
    Red Traffic Light,
    ...}
Last Action:
    "switch to left lane"
```


Model Based ASS

Model Based ASS

Model based ASS - Evaluation

Advantages	Disadvantages
ASS can make predictions about the future behavior.	Synchronize many models
ASS can avoid state flapping.	Hard to change goals

- Learns policies from performed actions
- Evaluation of usefulness of actions using rewards
- Modifies knowledge i.e. changes the models or utility functions
- Components:
 - Critic (with Reward)
 - Problem Generator
 - Learning Element
 - Performance Standard

- Learns policies from performed actions
- Evaluation of usefulness of actions using rewards
- Modifies knowledge i.e. changes the models or utility functions
- Components:
 - Critic (with Reward)
 - Problem Generator
 - Learning Element
 - Performance Standard
- Example
 - Reward: tip from Passengers
 - Performance Standard: more tip is better

08.06.16

Reinforcement Learning - Evaluation

Advantages	Disadvantages
ASS can operate in an initially unknown environment.	Needs time for training the
ASS can become more competent than its initial knowledge	Needs more memory and processing time

Recommendation and Conclusion

Flexibility, Adaptability

Simplicity, Promptness

Rule Based ASS

Model Based ASS

Reinforcement Learning

Flexibility, Adaptability

Rule Based ASS

Model Based ASS

Reinforcement Learning

Rule Based ASS: High Performance System, Micro-controller

Flexibility, Adaptability

Flexibility, Adaptability

Reinforcement Learning:

Autonomic Vehicle, artificial personal assistant

Thank you!

... Questions?

References

Intelligent agents: Theory and practice

Wooldridge, Michael and Jennings, Nicholas R and others, Cambridge Univ Press, 1995

An architectural blueprint for autonomic computing. IBM White Paper (2006)

A semantic web primer, Antoniou, G., Van Harmelen, F., MIT press (2004)

The vision of autonomic computing,

Kephart, J.O., Chess, D.M., Computer 36(1), 41-50 (2003)

An artificial intelligence perspective on autonomic computing policies,

Kephart, J.O., Walsh, W.E., In:Policies for Distributed Systems and Networks, 2004.POLICY2004.Proceedings. Fifth IEEE International Workshop on. pp. 3–12. IEEE (2004)

Autonomic Computing: Principles, design and implementation,

Lalanda, P., McCann, J.A., Diaconescu, A., Springer Science & Business Media (2013)

Knowledge representation and reasoning,

Levesque, H.J., Annual review of computer science 1(1), 255–287 (1986)

Reinforcement learning in autonomic computing,

Tesauro, G., A manifesto and case studies. Internet Computing, IEEE 11(1), 22-30 (2007)