
CBSE, © Prof. Uwe Aßmann 1

43. View-Based Development

Prof. Dr. Uwe Aßmann
Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de
Version 16-0.1, Juni 4, 2016

1.  View-based development
2.  CoSy, and extensible compiler

component framework
3.  Subject-oriented programming
4.  Hyperspaces
5.  Evaluation

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

2

Obligatory Literature

►  ISC book, chapter 1, 8+9
►  H. Ossher and P. Tarr, Multi-Dimensional Separation of Concerns

and The Hyperspace Approach, Proceedings of the Symposium on
Software Architectures and Component Technology: The State of the
Art in Software Development, Kluwer, 2000
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.3807

►  Wikipedia::view_model

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

3

Non-obligatory Literature

■  Thomas Panas, Jesper Andersson, and Uwe Aßmann. The editing
aspect of aspects. In I. Hussain, editor, Software Engineering and
Applications (SEA 2002), Cambridge, November 2002. ACTA
Press.

■  [COSY] M. Alt, U. Aßmann, and H. van Someren. Cosy Compiler
Phase Embedding with the CoSy Compiler Model. In P. A. Fritzson,
editor, Proceedings of the International Conference on Compiler
Construction (CC), volume 786 of Lecture Notes in Computer
Science, pages 278-293. Springer, Heidelberg, April 1994.

Ø  [UWE] Daniel Ruiz-Gonzalez1, Nora Koch2, Christian Kroiss2, Jose-
Raul Romero3, and Antonio Vallecillo. Viewpoint Synchronization of
UWE Models. Springer.

Ø  [LL95] Claus Lewerentz and Thomas Lindner. Formal development
of reactive systems: case study production cell, volume 891 of
Lecture Notes in Computer Science. Springer, Heidelberg, 1995.

CBSE, © Prof. Uwe Aßmann 4

43.1 View-Based Development

A view is a representation of a whole system from the perspective of a
related set of concerns

[ISO/IEC 42010:2007, Systems and Software Engineering --
Recommended practice for architectural description of software-
intensive systems]

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

5

Constructive and Projective Views

Ø  Views are partial representations of a system
•  Views are constructive if they can be composed to the full representation of the

system
•  Composition needs a merge (symmetric composition) or extend

(asymmetric composition)operator
•  Views are projective if they project the full representation of the systen to

something simpler
•  Projection extracts a view from the full representation of the system
•  Ex. Views in database query languages

Ø  Views are specified from a viewpoint (perspective, context)
•  Viewpoints focus on a set of specific concerns
•  Ex. The architectural viewpoint focuses on

•  The architectural concern
•  The topology and communication
•  The application-specific concern

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

6

Component A Component
A‘

Component
A‘‘ Component A

Component A

Constructive vs Projective Views

Ø  Construction (Composition, merge) and projection
(decomposition, split) are two sides of one coin

composition

composition decomposition

decomposition
View-
point 1

View-
point
ALL

View-
point 2

View-
point 3

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

7

Constructive Views Require Open Definitions

►  An open definition is a
view definition of an object
that can be re-defined,
i.e., extended several
times by different
viewpoints
■  Open definitions can be

extended by the extend
composition operator

►  A constructive view
contains re-definitions of a
set of open definitions
■  Every definition contains

partial information

Component A
Component A

Component A‘

Component A

Component A‘‘

Component A‘

Component A

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

8

Remember: The Lambda-N Calculus
Merges Functions

Ø  Functions in Lambda-N are open definitions
•  Redefinitions are possible
•  Merge is automatic

live () {
 for () {
 eat(), drink ();
 work();
 sleep();
 }
 }
}

live () {
 for () {
 eat(); drink ();
 work(); party();
 sleep();
 }
 }
}

+
merge

live () {
 for () {
 eat(); drink ();
 work(); party();
 sleep();
 }
 }
}

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

9

Example: Merging Classes

Ø  Merging means Unification (merge by name): Identify
•  Common elements: merge
•  Disjoint elements: union
•  conflicting elements: try to resolve conflicts

class Person {
 String name;
 int salary;
 work() { .. }
 drink { .. }
 eat() { .. }
 live () {
 for () {
 eat(), drink ();
 work();
 sleep();
 }
 }
}

class Person {
 String name;
 real salary;
 work() { .. }
 party{ .. }
 breathe() { .. }
 live () {
 for () {
 eat(); drink ();
 work(); party();
 sleep();
 }
 }
}

+
merge

class Person {
 String name;
 real salary;
 work() { .. }
 party{ .. }
 breathe() { .. }
 drink() { .. }
 eat() { .. }
 live () {
 for () {
 eat(); drink ();
 work(); party();
 sleep();
 }
 }
}

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

10

Merge vs. Extend: Symmetric vs.
Asymmetric Composition

Ø  View composition operators can be symmetric or asymmetric
•  Symmetric composition is commutative
•  Merge of views is symmetric
•  Extend of components is asymmetric

Ø  Both can be implemented in terms of each other

K

K

+
merge

K‘

K

K

+
extend

K‘

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

11

Example: html+css

Ø  From the beginning, SGML, XML and html separated structure from
layout

Web page

Content /
Structure model
.html

Layout model
.css

+
render

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

12

Example: Model-Driven Web Engineering (MDWE)

Ø  [UWE] “This approach has been adopted by most MDWE
methodologies that propose the construction of different views (i.e.,
models) which comprise at least a content model, a navigation and
a presentation model”

Web site

Content model

Navigation model

Presentation
model

Process model

+
merge

CBSE, © Prof. Uwe Aßmann 13

43.2. A Composition System
based on Constructive Views: CoSy

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

14

Problem:
Extensibility (here Compilers)
►  CoSy is a modular component framework for compiler construction

[Alt/Aßmann/vanSomeren94]
■  Built in 90-95 in Esprit Project COMPARE
■  Sucessfully marketed by ACE bV, Amsterdam

►  Goal: extensible, easily configurable compilers
■  Extensions without changing other components

■  Plugging from binary components without recompilations

■  New compilers within half an hour

■  Extensible repository by extensible data structures

■  Very popular in the market of compilers for embedded systems
■  Many processors with strange chip instruction sets

■  Old designs are kept alive because of maturity and cheap production

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

15

CoSy Extensible Repository-Architecture

Lexer

Parser

Semantics

Optimizer

Transformation

Codegen

Blackboard

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

16

O-O Technology doesn’t fit

►  Objects have to be allocated by the parser in base class format, but
new components introduce new attributes into the base class

Optimizer
II

Parser

Optimizer
I

Optimizer
III

K'

K''

K''''

K'''

K = K' + K'‘+K‘‘‘+K‘‘‘‘

K

K K

K

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

17

Syntactic Fragile Base Class Problem in
Object-Oriented Languages

►  In unforeseen extension of a object-oriented system, a base class
has to be extended, which is the smallest common ancestor of all
subclasses, which must know the extension

►  Re-compilation of the class sub-tree required (i.e., the base class is
syntactic fragile)

fragile base class

classes which
must see the extension

The FBCP problem was described in
e.g.,
•  IBM San Francisco: a library with

flexible extensible classes and
business objects

•  IBM SOM: release of new versions
•  Schema changes in object-oriented

data bases
•  Database OBST, FZI, PhD B.

Schiefer

Recompilation area

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

18

Optimizer
II Parser

Optimizer
I

Generated
access layer
(adapter layer)

Logical
view

Generated Factory

A CoSy Compiler is Extensible by Constructive
Views

Ø  Similar in IBM SOM

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

19

Extension with Constructive Views

►  Extension leads to new repository structure and regeneration of
access layer and factories

Optimizer
II

Parser

Optimizer
I

Generated Factory

Generated
access layer
(adapter layer)

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

20

Extension with Constructive Views (Detail)

►  Extension wraps all material classes in the repository by specific composition
filters (decorators)

►  The access layer is a decorator (filter layer)

Optimizer II Parser

Optimizer I

Generated
access layer
(adapter layer)

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

21

CoSy Solution: Constructive Views on the
Repository with Extension Operators for Classes

K

K

+

+

K

Every component keeps
its logical view on the
repository

Physical Layout is a
merge of the logical
views
using a class merge
composition operator

K‘

K‘‘

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

22

Compute from View Specifications the View
Mapping Layer

►  The generated access layer does the view mapping

Optimizer
II

Parser

Optimizer I

Logical view

Generated
Factory

+

+

Generated
access layer

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

23

Implementations of Extensions (Views)

►  By delegation to view-specific delegatees
►  Uses Role-Object Pattern: every view defines a role for an object
■  Flexible, extensible at run-time
■  Slow in navigations
■  Splits logical object into physical ones (may suffer from object schizophrenia, if

Role-Object Pattern is not carefully followed)

►  By extension of base classes (mixin inheritance, GenVoca pattern)
■  Efficient
■  Addresses of fields in subclasses change
■  Leads to hand-initiated recompilations, also at customers' sites (syntactic FBCP)

►  By a view mapping, generated adapter layer (the CoSy solution)
■  Fast access to the repository
■  Generative (syntactic FBCP leads to automatic regenerations)

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

24

Advantages of CoSy

►  Access level must be efficient
■  Macro implementation is generated

►  Due to views, Cosy compilers can be extended easily $$

►  Companies reduce costs (e.g. when migrating to a new chip) by
improved reuse

Is there a general solution to the extensibility
problem?

CBSE, © Prof. Uwe Aßmann 25

43.3 Subject-Oriented Programming

A C++-based class calculus for view-based
programming

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

26

Subject-Oriented Programming (SOP)

►  SOP provides constructive views by open definitions of classes
[Ossher, Harrison, IBM]

►  Component model: Subjects are views on C++ classes
►  Subjects are partial classes consisting of

■  Operations (generic methods)

■  Classes with instance variables (members)

■  Mapping of classes and operations to each other

■  (class,operation) realization-relation: describes how to generate the
methods of the real class from the compositions and the subjects

►  Composition technique:
■  Assemble subjects by composition with composition operators (mix rules,

composition rules)
►  By composition of the subjects the classes are completed step by step and the

mapping of classes and operations is changed
■  The result of the composition is a C++ class system

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

27

A Subject is a View on a Class

// Subject PAYROLL defines a view on class Employee
Subject: PAYROLL {
 Operations: { print() }
 Classes: { Employee()
 with InstanceVariables: _emplName;
 }
 Mapping: {
 Class Employee, Operation print() implemented by
 &Employee::Print()
 // others..
 }
}

Subjects are views on classes
.. and these views can be mixed with composition operators

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

28

SOP for MDA and Refinement

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

29

Composition Operators of SOP
(Mix Rules)
►  Correspondence operators: declare equivalence of views of classes

■  Equate: equate method-implementations and method interfaces in subjects

■  Correspond: Introduce delegation between delegator and delegatee

►  Combination operators
■  Replace: override of features of all classes of a subject

■  Join: linking of parts of subjects

►  Composed composition operators
■  Merge := (Join; Equate): After Join equate implementations and interfaces

■  Override: override features in subject

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

30

Evaluation of SOP as Composition System

►  Advantage
■  C++ applications become simply extensible with new views that can be merged

into existing ones by the extension operators
■  Stakeholder-specific views
■  Design view
■  Implementation view
■  Model-Driven Architecture (MDA) is easily possible:

■  Platform-independent view
■  Platform-specific views

►  Disadvantage:
■  No real composition language: the set of composition operators is fixed!
■  No control flow on compositions

CBSE, © Prof. Uwe Aßmann 31

43.4 Hyperspaces

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

32

Color Coding of Concerns

Fragments can be colored with
regard to a certain concern
(concern mapping)
[Panas, Andersson, Aßmann:
The Editing Aspect of Aspects
SEA 2002]

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

33

Hyperspaces

►  Hyperspaces generalize SOP. Instead of classes, hyperspaces work
on sets of fragments (aka units), i.e, fragment groups
►  Open definitions for classes, methods, and all kinds of other definitions
►  A hyperspace represents an environment for dimensional development, a specific

form of view-based development

■  A hyperspace is a multi-dimensional space over concerns related to
components
■  Each axis (dimension) is a dimension of software concerns

■  Color dimension
■  Texture dimension
■  Striping dimension, etc

►  Each point on the axis is a concern, expressed by tags
■  A concern groups (tags) semantically related fragments to fragment groups
■  Each concern can be seen as a

■  Color in the color dimension (blue, green, yellow…)
■  Texture in the texture dimension (sanded, squared,..)
■  Striping in the striping dimension (vertical stripes, horizontal stripes,..)

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

34

The Concern Matrix of the Hyperspace
Describes the Concern Space
►  Concerns are grouped into an n-dimensional space, arranged in concern dimensions

(ex.: @Lifecycle.design, @Application.querying, @Domain.Transfer)
►  A point of the space forms a concern tuple (@c_1, ..,@ c_n)
►  Every component is related to a tuple of n concerns
►  Every tuple (point) is related to a set of components

Lifecycle
concerns

Domain
concepts

Application
concerns

Requirements

Design

Implementation

.....

Printing
Querying

Account Loan Transfer

Booking
...

Testing

Maintenance

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

35

Fragment Hyperspaces

►  In a fragment hyperspace, the components are program, model, documentation, test
data fragments

►  These fragments are grouped into an n-dimensional space of concerns, arranged in
concern dimensions, with points
►  related to a set of fragments

►  Every fragment is related to n concerns

Lifecycle
concerns

Domain
concepts

Application
concerns

Requirements

Design

Implementation

.....

Printing
Querying

Account Loan Transfer

Booking
...

Testing

Maintenance

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

36

The Hyperspace, a Fragment Space

•  A hyperslice is a view (slice) of a system, based on a selection of concerns
•  A hyperpoint is the view (set of fragments) related to a n-tuple of concerns
•  A basic hyperslice is a view based on one concern of some dimension
•  Composition operation: unify (merge-by-name) of fragment groups by merging of concerns and

hyperslices

Fragment universe (Unit universe): a set of packages of code
and models

A concern groups semantically related
fragments in 1 dimension to a fragment
group (a basic hyperslice)

Hyperslices compose concerns, i.e., generate
larger fragment groups

Hypermodules compose hyperslices

The Hyperspace

A concern tags a fragment A concern belongs to a
dimension

A concern tuple tags a
fragment group with
n converns to a hyperpoint

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

37

hyperslice PersonInfo =
Employment.merge(Political
Concern);

concern PersonalConcern relates to
view PersonalView = {
 class Person {
 String name;
 int age;
 }
}

concern PoliticalConcern relates to
view PoliticalView = {
 class Person {
 string politicalParty;
 int contribution;
 }
}

concern EmploymentConcern relates to
view EmploymentView = {
 class Person {
 Employer employer;
 int salary;
 }
 class Employer { }
}

hyperslice Employment = {
 class Person {
 String name;
 int age;
 Employer employer;
 int salary;
 }
 class Employer { }
}

hyperslice PersonInfo = {
 class Person {
 String name;
 int age;
 string politicalParty;
 int contribution;
 Employer employer;
 int salary;
 }
 class Employer {}
}

hyperslice Employment =
PersonalConcern.merge(EmploymentCon
cern);

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

38

Hyperslices are Composed out of Concerns

►  Hyperslices are named slices through the concern matrix
►  A hyperslice is declaratively complete: every use has a definition

■  A hyperslice can be compiled and executed

Lifecycle
Application
concepts

Application
concerns

Requirements

Design

Implementation

.....

Printing
Querying

Account

Loan
Transfer

Booking
...

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

39

Hypermodules are Named Compositions of
Hyperslices

►  Hypermodules are deployable products

Lifecycle

Application
concepts

Application
concerns

Requirements

Design

Implementation

.....

Printing
Querying

Account

Loan

Transfer

Booking
...

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

40

The Concern Matrix maps Concerns to the
Sets of Fragments

►  via a concern mapping (crosscut graph)
►  one fragment can relate to one tuple of concerns:

■  (concern_1, .., concern_n) <-> fragment

►  The concern mapping results from hand-selection and selection/query
expressions

Lifecycle
concerns Domain

concepts

Application
concerns

Requirements

Design

Implementation

.....

Printing
Querying

Account

Loan
Transfer

Booking
...

Fragment universe

Concern mapping

Concern space

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

41

OSM as Specific Hyperspaces:
The Single Underlying Model (SUM)

•  A viewpoint is a
•  A basic hyperslice is a view related to one concern of every dimension
•  Composition operation: merge of fragments in concerns and hyperslices

SUM (Model fragment universe)

Concerns group semantically related fragments

Hyperslices compose concerns

Hypermodules compose hyperslices

The Hyperspace

CBSE, © Prof. Uwe Aßmann 42

43.4.1 Hyperspace Programming

Example

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

43

Deposit Belt

Robot
Press

Feed Belt

Tin Boxes
Metal Plates

Metal Blanks Rotary Table

The Production Cell Case Study

[LL95]

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

44

Robot

FeedBelt

output input

Rotary
Table

DepositBelt

Press

ProductionCell

piece1 piece2

piece1out

piece2out

arm1

arm2 arm1out

arm2out

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

45

Component Model

►  The components of Hyperspace Programming are concerns,
hyperslices and hypermodules

►  The product is a hypermodule

►  Domain concerns will group the machines and materials of the
production cell

►  Technical concerns group issues with regard to software technology
►  Lifecycle concerns group issues with life cycle of the software

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

46

Composition Technology – Description of the
Artifact Universe

►  The following treats only Hyper/J, an instance of Hyperspaces for
Java
■  The fragment universe (hyperspace) is a subset of some Java packages, classes

and methods
■  Hyper/J supports a selection language to describe the hyperspace
■  Java methods are the fragment unit

►  Here, example ProductionCell
■  The hyperspace, ProductionCell, is a selection of classes from some packages:

// Define a hyperspace in Hyper/J by „sucking in“ all
// classes, methods, fragments of some Java packages
hyperspace ProductionCell = {
 composable class passiveDevices.*
 composable class activeDevices.*
 composable class tracing.*
 composable class visualization.*
 composable class contracts.*
}

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

47

Composition Technology – Concern Mapping

►  For package passiveDevices, we define the following concern mapping
between concerns and Java fragments
►  Tagging (embedded or offline): a name is related to a tag
►  First, we define a default concern, Feature.WorkPieces, which includes by default every

member in the package.
►  Then, the mapping specifies for specific members that they belong to a second concern,

Feature.Transfer.
►  All features belong to one of two concerns of dimension Feature

.  Concerns are named @<dimension>.<concern>

// Decompose the package passiveDevices
// into concerns
package passiveDevices: @Feature.WorkPieces
 operation lifeCycle: @Feature.Transfer
 field ConveyorBelt.pieces: @Feature.Transfer
 operation setPieces: @Feature.Transfer
 operation setPiecesNumber: @Feature.Transfer
 operation getPiecesNumber: @Feature.Transfer

Dimensions
and concerns

Fragments

Mapping

Default mapping
for the entire package

Specific mappings

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

48

Composition Technology – Concern Mapping

►  A second package, activeDevices, models the behavior of active
devices.
■  It contains the classes Press and Robot.

►  The package is grouped into three domain concerns,
■  @Feature.ActiveDeviceBehavior, @Feature.Transfer, and

@Feature.Action

// Decompose the package activeDevices into concerns
package activeDevices: @Feature.ActiveDeviceBehavior
 operation Press.takeUp: @Feature.Transfer
 operation Robot.takeUp: @Feature.Transfer
 operation lifeCycle: @Feature.Action

Default mapping
for the entire package

Specific mappings

Mapping

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

49

Composition Technology – Concern Mapping

A third technical concern, Logging.Tracing, groups all methods from
class TracingAttribute

// Decompose the package tracing into concerns
package tracing: @Logging.Tracing
class TracingAttribute: @Logging.Tracing, @Logging.Data
// This implies:
// operation TracingAttribute.enterAttribute : @Logging.Tracing
// operation TracingAttribute.leaveAttribute : @Logging.Tracing

package visualization: @Visualization.Graphics

 class Vectorgraphics: @Visualization.VectorGraphics
 class BaseGraphics: @Visualization.VectorGraphics,

 @Visualization.PixelGraphics

Default mapping
for the entire package

Specific mappings

Specific mappings

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

50

Composition Language:
Grouping Concerns/Views to Hyperslices

►  Now, we can define the hyperslices of transfer, workpieces, and
tracing
■  They are declaratively complete concerns

►  and compose a hypermodule
■  that groups the hyperslices of transfer, workpieces, and tracing, describing the

transfer of workpieces in the production cell

►  This hypermodule merges the three hyperslices by name, and
brackets all operations of all classes with tracing code.
■  It doesn't contain code that is concerned with actions.

hypermodule TracedProductionCellTransfer = {
used hyperslices: @Feature.Transfer, @Feature.WorkPieces,
@Logging.Tracing
 composition relationships: mergeByName
 bracket "*"."*"
 before @Logging.Tracing.TracingAttribute.enterAttribute()
 after @Logging.Tracing.TracingAttribute.leaveAttribute()
}

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

51

Finally, a System is a Hypermodule

►  Another hypermodule groups active devices without tracing
►  Features can override features in other hyperslices

■  Here, features of active devices override transfer features
■  Although the method lifeCycle from package passiveDevices is contained

in concern Feature.Transfer, the version of concern
Feature.ActiveDeviceBehavior overrides it,

■  and the resulting hypermodule will act in the style of active devices.

hypermodule ProductionCell = {
 hyperslices: @Feature.Transfer, @Feature.WorkPieces,

 @Feature.ActiveDeviceBehavior
 composition relationships: overrideByName
}

hypermodule VisualizingProductionCell = {
 hyperslices: @Feature.Transfer, @Feature.WorkPieces,
 @Feature.ActiveDeviceBehavior, @Visualization.VectorGraphics
 composition relationships: overrideByName
}

•  and this is a hypermodule with visualization:

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

52

Product family

Variability in Hyperspaces

►  With Hyper/J, variants of a system can be described easily by grouping and
composing the hyperslices, and -modules together differently

►  Different selection of concerns and hyperslices makes up different products in
a product family

►  Hyperspaces can include software documentation, requirements
specifications and design models

Hyperspace

Hypermodule

Hypermodule

Hypermodule

Hypermodule

Hypermodule

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

53

Advantages of the Hyperspace Approach

•  Compositional merge resp. extension of fragment sets
–  Classes
–  Packages
–  Methods
–  Hyperslices

Universal extensibility: A language is called universally
extensible, if it provides extensibility for every collection-like
language construct.

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

54

Universal Composability:
Universal Genericity vs Universal Extension

•  BETA and hyperspaces look really similar
–  Fragment components
–  slots vs hooks (parameterization vs extension interface)
–  bind vs merge composition operations

•  BETA is a generic component approach
•  Hyperspaces is an extensible component approach

Universal composability: A language is called universally
composable, if it provides universal genericity and extension.

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

55

43.5 Evaluation:
Hyperspaces as Composition System

Component model Composition technique

Composition language

Source or binary components

Greybox components (concerns,
hyperslices, hypermodules)

Algebra of composition operators

Selection operation for fragments to
describe the hyperspace

Grouping of concerns

Expression-based

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

56

The End - Appendix

Ø  How do constructive and projective views differ?
Ø  Explain the difference of the merge operator and the extend

operator.
•  In LambdaN calculus, is there any difference of merge and extend?

Ø  What happens, if the base language is not functional, i.e., not free of
side effects?

Ø  How do you realize views with mixin-based inheritance (GenVoca
pattern or Mixin Layer pattern)?

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

57

Side Remark: Concern Matrix and Facet Matrix

►  The concern matrix is similar to a facet space
■  Dimensions correspond to facets

.  Dimensions partition the universe differently (n dimensions == n partitions)
■  Concern dimensions correspond to flat facets, lattices of height 3

.  Concerns in one dimension partition the facet

►  Difference of concern matrix and facet matrices
■  Facets describe an object; concerns do not describe an object, but describe all

objects and subjects in the univers
■  Concerns are more like attributes

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

58

(remember DPF) Facet Spaces are Dimensional
Spaces over Objects

►  describing one object, not a fragment space
►  When the facets are flat, every facet makes up a dimension
►  Bottom is 0
►  Top is infinity

Services

Refuel Parking Maintenance

Facet 1

Minimal
Service

Cost

Middle Cheap Expensive

Facet 2

Don't
Know

Configured
Service Powertype Service

P
ro

f.
U

. A
ßm

an
n,

 C
B

S
E

59

Side Remark: The Facet Matrix Describes
Objects Dimensionally

Services Quality

Cost
Parking

Refueling
Maintenance

.....

Cheap
Middle

plain

With
contract

With
guarantee

Expensive

