43. View-Based Development

Prof. Dr. Uwe Allmann 1. View-based development
Technische Universitat Dresden o CoSy, and extensible compiler
Institut fiir Software- und component framework
Multimediatechnik 3. Subject-oriented programming
http://st.inf.tu-dresden.de 4. Hyperspaces

Version 16-0.1, Juni 4, 2016 5. Evaluation

CBSE, © Prof. Uwe ARmann 1

CS Obligatory Literature

2 ISC book, chapter 1, 8+9

H. Ossher and P. Tarr, Multi-Dimensional Separation of Concerns
and The Hyperspace Approach, Proceedings of the Symposium on
Software Architectures and Component Technology: The State of the
Art in Software Development, Kluwer, 2000
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.3807

Wikipedia:.view _model

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

CG Non-obligatory Literature

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

3

= Thomas Panas, Jesper Andersson, and Uwe ABmann. The editing

aspect of aspects. In |. Hussain, editor, Software Engineering and
Applications (SEA 2002), Cambridge, November 2002. ACTA
Press.

[COSY] M. Alt, U. ABmann, and H. van Someren. Cosy Compiler
Phase Embedding with the CoSy Compiler Model. In P. A. Fritzson,
editor, Proceedings of the International Conference on Compiler
Construction (CC), volume 786 of Lecture Notes in Computer
Science, pages 278-293. Springer, Heidelberg, April 1994.

[UWE] Daniel Ruiz-Gonzalez:, Nora Koch., Christian Kroiss., Jose-
Raul Romeros, and Antonio Vallecillo. Viewpoint Synchronization of
UWE Models. Springer.

[LL95] Claus Lewerentz and Thomas Lindner. Formal development
of reactive systems: case study production cell, volume 891 of
Lecture Notes in Computer Science. Springer, Heidelberg, 1995.

43.1 View-Based Development

A view is a representation of a whole system from the perspective of a
related set of concerns
[ISO/IEC 42010:2007, Systems and Software Engineering --
Recommended practice for architectural description of software-
intensive systems]

CBSE, © Prof. Uwe ABmann 4

CG Constructive and Projective Views

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

5

» Views are partial representations of a system

» Views are constructive if they can be composed to the full representation of the
system

« Composition needs a merge (symmetric composition) or extend
(asymmetric composition)operator

* Views are projective if they project the full representation of the systen to
something simpler

» Projection extracts a view from the full representation of the system
 Ex. Views in database query languages

» Views are specified from a viewpoint (perspective, context)
* Viewpoints focus on a set of specific concerns
» Ex. The architectural viewpoint focuses on
« The architectural concern
* The topology and communication
» The application-specific concern

CG Constructive vs Projective Views

6

» Construction (Composition, merge) and projection
(decomposition, split) are two sides of one coin

= AN <
Componari S s) =
Component A om%nen = \VZ 2
2 4 decomposition composition
S = ‘|'¢
<l)=
?Dv QA Component
% Component A A
T decomposition Ncomposition

A
=
YAN

Component A
<] View-

.S Constructive Views Require Open Definitions

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

An open definition is a

view definition of an object

that can be re-defined,

l.e., extended several

times by different

viewpoints

= Open definitions can be

extended by the extend
composition operator

A constructive view

contains re-definitions of a
set of open definitions

= Every definition contains
partial information

Component A

A

Y%

/ Component A
v,

Component A

Component A

A
<

/ Component A
JAN

> S

="

.~

_

\

Com&onent A
=7

' Ss

Com%)nent A“

> 7
<19<>Q —

\Y%

o

Prof. U. ABmann, CBSE

Remember: The Lambda-N Calculus
Merges Functions

8 » Functions in Lambda-N are open definitions

» Redefinitions are possible

* Merge is automatic

live () {

for () {
eat(), drink ();

work();
sleep();

live () {

for () {
eat(); drink ();

work(); party();
sleep();

}
}
}

)

live () {

for () {
eat(); drink ();

work(); party();
sleep();

}
}
}

.S Example: Merging Classes

9

» Merging means Unification (merge by name): Identify
« Common elements: merge

* Disjoint elements: union

« conflicting elements: try to resolve conflicts

Prof. U. ABmann, CBSE

Soft|
Techn|
Gr

class Person {
String name;
int salary;
work() { .. }
drink { .. }
eat() {.. }
live () {

for () {
eat(), drink ();

work();
sleep();

}

}
}

class Person {
String name;
real salary;
work() { .. }
party{ .. }
breathe() { .. }
live () {

for () {
eat(); drink ();

work(); party();

sleep();

}
}
}

merge

class Person {
String name;
real salary;
work() { .. }
party{ .. }
breathe() { .. }
drink() { .. }

eat(){ .
live () {

for () {
eat(); drink ();

work(); party();
sleep();

}
}
}

A | Merge vs. Extend: Symmetric vs.
®5 | Asymmetric Composition

10 » View composition operators can be symmetric or asymmetric
Symmetric composition is commutative
Merge of views is symmetric
Extend of components is asymmetric

» Both can be implemented in terms of each other

K K

Prof. U. ABmann, CBSE

Coitna) = (o) =

. Example: html+css

A
11‘l » From the beginning, SGML, XML and html separated structure from
layout

Content / L t model

Structure model ayout mode
.CSS

.html

L
)
o0
®)
c
c
@©
£
3
<
)
Y
o
o

Web page

CS Example: Model-Driven Web Engineering (MDWE)

12 » [UWE] “This approach has been adopted by most MDWE
methodologies that propose the construction of different views (i.e.,
models) which comprise at least a content model, a navigation and
a presentation model”

Navigation model

Process model

@ Presentation
model

Web site

Content model

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

43.2. A Composition System
] based on Constructive Views: CoSy

CBSE, © Prof. Uwe ARmann 13

A | Problem:
| Extensibility (here Compilers)

14 CoSy is a modular component framework for compiler construction
[Alt/ARmann/vanSomeren94]

= Builtin 90-95 in Esprit Project COMPARE
= Sucessfully marketed by ACE bV, Amsterdam

Goal: extensible, easily configurable compilers
= Extensions without changing other components

= Plugging from binary components without recompilations
= New compilers within half an hour

= Extensible repository by extensible data structures

L
)
o0
®)
c
c
@©
£
3
<
)
Y
o
o

= Very popular in the market of compilers for embedded systems

= Many processors with strange chip instruction sets

= Old designs are kept alive because of maturity and cheap production

I CoSy Extensible Repository-Architecture

*S

A
15

‘] Semantics Transformation

Parser

Optimizer

Prof. U. ABmann, CBSE

Lexer

Codegen

Blackboard

O-0O Technology doesn’t fit

o
16 | » Objects have to be allocated by the parser in base class format, but
new components introduce new attributes into the base class

Optirlnizer Optimizer
I
\t‘\v’

Parser A
N —

L
)
s}
(&)
c
c
®©
S
2
<
D
y—
o
ft
o

K=K+ K'+K"+K""

A | Syntactic Fragile Base Class Problem in
®-, | Object-Oriented Languages

17 In unforeseen extension of a object-oriented system, a base class
has to be extended, which is the smallest common ancestor of all
subclasses, which must know the extension

Re-compilation of the class sub-tree required (i.e., the base class is
syntactic fragile)

The FBCP problem was described in

e.g.,

« |IBM San Francisco: a library with
flexible extensible classes and
business objects

« IBM SOM: release of new versions

« Schema changes in object-oriented
data bases

« Database OBST, FZI, PhD B.

'\ Schiefer

\ classes which
must see the extension

fragile base class

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

Recompilation area

A CoSy Compiler is Extensible by Constructive
®5 | Views

A
18 » Similar in IBM SOM
Optirlnizer

Parser

4 AR\
< Generated Factory
£
;(j Logical
2 view
v
— Generated

access layer
(adapter layer)

Extension with Constructive Views

“

Extension leads to new repository structure and regeneration of
access layer and factories

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

Parser

Optirlnizer
Generated Factory /-

Generated
access layer
(adapter layer)

| Extension with Constructive Views (Detail)

*S

A
20
filters (decorators)

The access layer is a decorator (filter layer)

» Extension wraps all material classes in the repository by specific composition
>

Optimizer |

Parser

L
)
s}
(&)
c
c
®©
S
2
<
D
y—
o
L
o

Generated
access layer
(adapter layer)

21

A | CoSy Solution: Constructive Views on the
Repository with Extension Operators for Classes

Prof. U. ABmann, CBSE

) -

K‘

Every component keeps
its logical view on the
repository

)=
]

KH

Physical Layout is a
merge of the logical
views

using a class merge
composition operator

K

A | Compute from View Specifications the View
o I Mapping Layer

» The generated access layer does the view mapping

=—p>

[] BN Optimizer |
A
h -

dsnerated :
F itory

Logical view

Generated
‘ access layer

L
)
s}
(&)
c
c
@©
£
2
<
D
y—
o
L
o

o2 | Implementations of Extensions (Views)
-

23

L
)
o0
®)
c
c
@©
£
3
<
)
Y
o
o

By delegation to view-specific delegatees
Uses Role-Object Pattern: every view defines a role for an object
= Flexible, extensible at run-time
= Slow in navigations
= Splits logical object into physical ones (may suffer from object schizophrenia, if
Role-Object Pattern is not carefully followed)
By extension of base classes (mixin inheritance, GenVoca pattern)
- Efficient
= Addresses of fields in subclasses change
= Leads to hand-initiated recompilations, also at customers' sites (syntactic FBCP)

By a view mapping, generated adapter layer (the CoSy solution)
= Fast access to the repository
= Generative (syntactic FBCP leads to automatic regenerations)

’S Advantages of CoSy

24 Access level must be efficient
Macro implementation is generated

Due to views, Cosy compilers can be extended easily

Companies reduce costs (e.g. when migrating to a new chip) by
improved reuse

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

Is there a general solution to the extensibility
problem?

43.3 Subject-Oriented Programming

A C++-based class calculus for view-based
programming

| —————

CBSE, © Prof. Uwe ARmann 25

eo— | Subject-Oriented Programming (SOP)

26 SOP provides constructive views by open definitions of classes
[Ossher, Harrison, IBM]

Component model: Subjects are views on C++ classes

Subjects are partial classes consisting of
= Operations (generic methods)

= Classes with instance variables (members)
= Mapping of classes and operations to each other

= (class,operation) realization-relation: describes how to generate the
methods of the real class from the compositions and the subjects

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

Composition technique:

= Assemble subjects by composition with composition operators (mix rules,
composition rules)

By composition of the subjects the classes are completed step by step and the
mapping of classes and operations is changed

= The result of the composition is a C++ class system

.S A Subject is a View on a Class

27

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

Subjects are views on classes
.. and these views can be mixed with composition operators

// Subject PAYROLL defines a view on class Employee
Subject: PAYROLL |

Operations: { print () }
Classes: { Employee()
with InstanceVariables: emplName;
}
Mapping: {

Class Employee, Operation print () implemented by

&Employee: :Print ()
// others..

SOP for MDA and Refinement

.él

L
)
s}
(&)
c
c
®©
S
2
<
D
y—
o
ft
o

A | Composition Operators of SOP
®5 | (Mix Rules)

29 Correspondence operators: declare equivalence of views of classes
= Equate: equate method-implementations and method interfaces in subjects

= Correspond: Introduce delegation between delegator and delegatee

Combination operators
= Replace: override of features of all classes of a subject

= Join: linking of parts of subjects

Composed composition operators
= Merge := (Join; Equate): After Join equate implementations and interfaces

= Override: override features in subject

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

e— | Evaluation of SOP as Composition System

30 Advantage

= C++ applications become simply extensible with new views that can be merged
into existing ones by the extension operators

= Stakeholder-specific views

= Design view

= Implementation view

= Model-Driven Architecture (MDA) is easily possible:
= Platform-independent view
= Platform-specific views

Disadvantage:
= No real composition language: the set of composition operators is fixed!

L
)
o0
®)
c
c
@©
£
3
<
)
Y
o
o

= No control flow on compositions

43.4 Hyperspaces

D |

CBSE, © Prof. Uwe ARmann 31

Prof. U. ABmann, CBSE

Group

Aspec Ik]

L

W[5 ¥ 3w (@@

Aspecl Namne: wulve

T T T T W s Tes

[k

Color Coding of Concerns

ualic vord k) .
lebajec,mauett Jeb-azamtbard Foot'l laansdacue

KD
nal e sindd =i rFa
wedlic vold pecapclocr] C
2eal1c vord Tuna !

57 JEELOGELASE) agRRICETIN;

& = s Suskeor asBust Lberazin;

Cinow vw Tl 18ee i 3 T S o) 1
rn = wen Tes o ALEMMITRTSRT) e
10FaT - dos.cesdlivne)

walic

wolic :
ral1c Loo.zen acussl'ovuilient ez

Software
Technology

0 Aspec -

Hl: Alul

x, Tt oer |
PE. Arxovrel el =R
yuLluslon;
il ol ot x, il oy, Tam e n e
Tan ATl et Fenn, et -
M ¥ _ FumHandiy
unning
0 anper |-
Fili: At
:
A A R ®
FEAr-1L 1K)

Aspedd Harne: |] vulur

mhl= 2 Athe e cwmirda 3pn'cm AT encrrs Torachle o
wbliy weid dodc]

we1C revGans!) |

16 1itloardy) |

Li preupllzesn

s 1
SO T PTG rTeHnaT. T ~heFarra g
Szeca. . priatln dheloet T zhaToxcay

FisTem. QUK. IIRELIL L “Haopati;

Svstenatdo priotlod "FIIIT DOUEN e

T dd Tatnn Tt
bl 3¢3130n DousedoumEoene L, 1uT X vy
FisTax, out. Elo (U ent wove’
FUDLLZZE w16 GoHove It X IRt ¥, scdlean €2.02) |
ublos sooleon baplleE sy, Buect enlt

bl s alen b U oF e Bt ot

|| Fiom Haulng v

niLnng

'
N Ty nl »

| FEEAEAL

Aot Naane: I wulve

[k

ldLe = g, Julhanes

J% ¢=z uzd ot pE 7¢
Preciepess)
s = ol i

S 0T, TOW WIEE TAC SAIERT. ST an <)
Wil 2 em pull)

wedess

FEELIGELASE: | o GETICET 1
ALLeny a3 Lo mens Lumeclon s
"1k oF 1 ok
AT FInTrE T v “

2 - rex Sockszizaelost tLs:ozbn)
Gle new catalrputituesc, s, getluputitoeas() s
Ly - osu Pooidorsam! FegeodulpuStaeaal) L

=iy L RTlTLA VeI T ITRIND 1o o Teenm e oy gt e

4

" L dir: - s

v |1 v Fum Handimy »

ninning

Fragments can be colored with
regard to a certain concern
(concern mapping)

[Panas, Andersson, Alimann:
The Editing Aspect of Aspects

SEA 2002]

o2 | Hyperspaces

33 Hyperspaces generalize SOP. Instead of classes, hyperspaces work
on sets of fragments (aka units), i.e, fragment groups
Open definitions for classes, methods, and all kinds of other definitions
A hyperspace represents an environment for dimensional development, a specific
form of view-based development
= A hyperspace is a multi-dimensional space over concerns related to
components
= Each axis (dimension) is a dimension of software concerns
= Color dimension
= Texture dimension

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

= Striping dimension, etc
Each point on the axis is a concern, expressed by tags

= A concern groups (tags) semantically related fragments to fragment groups
= Each concern can be seen as a

= Color in the color dimension (blue, green, yellow...)

= Texture in the texture dimension (sanded, squared,..)

= Striping in the striping dimension (vertical stripes, horizontal stripes,..)

A'| The Concern Matrix of the Hyperspace

34

Prof. U. ABmann, CBSE

| Describes the Concern Space

Concerns are grouped into an n-dimensional space, arranged in concern dimensions
(ex.: @Lifecycle.design, @Application.querying, @Domain.Transfer)

A point of the space forms a concern tuple (@c_1, ..,@ c_n)

Every component is related to a tuple of n concerns

Every tuple (point) is related to a set of components

Domain
. 1 Transfer concebpts
Lifecycle Account Loan - p
concerns ! ‘o o
I / -
/ R

' ;o /// -~

1 ‘ R

] / -’

e I / ////// R -
] g
Maintenance PP /
Testing | | | [| | 7 v
Implementation | [[[¢~
Design | | |-
Requirements 7
= t =< D>
’’’’’ / I \\ ~ <
g / 1 AN S
" Quervi NS Application
g uerying S concerns
Printing Booking

Fragment Hyperspaces

Printi'ng

L]

35 In a fragment hyperspace, the components are program, model, documentation, test

data fragments

These fragments are grouped into an n-dimensional space of concerns, arranged in

concern dimensions, with points

related to a set of fragments
Every fragment is related to n concerns Domain
- * Transfer concepts
Lifecycle Account Lean "/ P
W concerns I / ’ ,,
m | / /7 ,/’
/7 -,

o I I /// Pt
C l ’/
C R
© 1 s
g """ l ////// /"
< Jtte
> Maintenance ////// - /
qé /
o . e

Testing e /

Implementation P 7
Design P
Requirements 7
A t —— >
”,,’ / I \\ ~ <
’ / : AN BN Applicati
1 . ~
' Querying N pplication
concerns

Booking

CS The Hyperspace, a Fragment Space

36

Prof. U. ABmann, CBSE

e A hyperslice is a view (slice) of a system, based on a selection of concerns
e A hyperpoint is the view (set of fragments) related to a n-tuple of concerns
e A basic hyperslice is a view based on one concern of some dimension

e Composition operation: unify (merge-by-name) of fragment groups by merging of concerns and
hyperslices

Hypermodules compose hyperslices

4

Hyperslices compose concerns, i.e., generate
larger fragment groups

/\

The Hyperspace

A concern groups semantically related A concern tuple tags a
fragments in 1 dimension to a fragment fragment group with
group (a basic hyperslice) n converns to a hyperpoint

4

A concern tags a fragment

A concern belongs to a
dimension

\/

Fragment universe (Unit universe): a set of packages of code
and models

concern PersonalConcern relates to
view PersonalView = {
' class Person {
String name;
int age;

hyperslice Employment =

cern) ;

PersonalConcern.merge (EmploymentCon

/

concern EmploymentConcern relates to
view EmploymentView = {
class Person {
Employer employer;
int salary;

}
class Employer { }

concern PoliticalConcern relates to
view PoliticalView = {
class Person {

string politicalParty;

int contribution;

hyperslice Employment = {
class Person {
String name;
int age;
Employer employer;
int salary;

L
)
s}
(&)
c
c
@©
£
&
<
D
y—
o
L
o

}
class Employer { }

Software
Technology
Group

hyperslice PersonInfo =
Employment.merge (Political
Concern) ;

hyperslice PersonInfo
class Person {

String name;
int age;
string politicalParty;
int contribution;
Employer employer;
int salary;

= {

}
class Employer ({}

CS Hyperslices are Composed out of Concerns

38 Hyperslices are named slices through the concern matrix

A hyperslice is declaratively complete: every use has a definition
= A hyperslice can be compiled and executed

Transfer
Loan ! Application
Lifecycle .) concepts
Account
% 1 1 ”,,v
il I 1 -
O I ! / ’/¢
E) 1 / ”/
1 ,/’
g I ! / /(/ X // 1
< 1 ,/’
=) I 1
‘*é g ,,/ /
o
Implementation .
St ——
Design | | [~ I
Requirements) e
"/'. t RS >
”””” / I \\ ~ <] _
. N ! N Application
1 - ~
1 Querying concerns

Printing Booking

A | Hypermodules are Named Compositions of
®-, | Hyperslices

39 Hypermodules are deployable products
Transfer
// Application
Loan ’ t
Lifecycle I) concepts
Account /!
o I 1 ,
0 ! ! ;
cé" N /V /
£ | I N " X _~ 7 “
5 | T N AN =%
£ (——4 P
Implementation >
Design Pt N\ -~
~ /
Requirements // _
A ‘\: <~ B
iR AN Y Application

. "l Querying e concerns
Printing Booking

A'| The Concern Matrix maps Concerns to the
®5 | Sets of Fragments

40 via a concern mapping (crosscut graph)

one fragment can relate to one tuple of concerns:
= (concern_1, .., concern_n) <-> fragment

The concern mapping results from hand-selection and selection/query
expressions

Lifecycle Lonn Concern spacﬂ

goncerns =~ 1 Transfer Domain Fragment universe
Account // concepts

Concern mapping

..... / -
Implementati L
mplementation w
Design vd
Z

Requirements //
L 1 2 ~\
S I oS Aoplicati
N pplication

1 .
1 Querying* concerns
Printing Booking

Prof. U. ABmann, CBSE

B
»

A'| OSM as Specific Hyperspaces:
®5 | The Single Underlying Model (SUM)

41 e Aviewpointis a
e A basic hyperslice is a view related to one concern of every dimension
e Composition operation: merge of fragments in concerns and hyperslices

/ The Hyperspace \
Hypermodules compose hyperslices

t

Hyperslices compose concerns

t

Concerns group semantically related fragments

4

k SUM (Model fragment universe) /

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

43.4.1 Hyperspace Programming

D |

Example

CBSE, © Prof. Uwe ARmann 42

OS The Production Cell Case Study

43

Prof. U. ABmann, CBSE

Metal Blanks Rotary Table
[\ P
/ \
[Feed Belt J @
—
Robot Press
obo
G r.
7 [b
AJ =
<
Deposit Belt | \ / [LL95]
N
Metal Plates

Tin Boxes

ProductionCell

44

L
)
s}
(&)
c
c
®©
S
2
<
D
y—
o
ft
o

FeedBelt DepositBelt

input

arm2out

piece1out

arm1

piece2out . 10ut

CS Component Model

45 The components of Hyperspace Programming are concerns,
hyperslices and hypermodules

The product is a hypermodule

Domain concerns will group the machines and materials of the
production cell

Technical concerns group issues with regard to software technology
Lifecycle concerns group issues with life cycle of the software

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

A | Composition Technology — Description of the

®5 | Artifact Universe
46 The following treats only Hyper/J, an instance of Hyperspaces for
Java

= The fragment universe (hyperspace) is a subset of some Java packages, classes
and methods

= Hyper/J supports a selection language to describe the hyperspace
= Java methods are the fragment unit
Here, example ProductionCell
= The hyperspace, ProductionCell, is a selection of classes from some packages:

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

// Define a hyperspace in Hyper/J by ,sucking in“ all
// classes, methods, fragments of some Java packages
hyperspace ProductionCell = {

composable class passiveDevices.¥*

composable class activeDevices.¥*

composable class tracing.¥*

composable class visualization.¥*

composable class contracts.*

Composition Technology — Concern Mapping

.S‘l

Prof. U. ABmann, CBSE

Fragments

» [For package passiveDevices, we define the following concern mapping
between concerns and Java fragments

>

>

Tagging (embedded or offline): a name is related to a tag

First, we define a default concern, Feature .WorkPieces, which includes by default every

member in the package.

Then, the mapping specifies for specific members that they belong to a second concern,

Feature.Transfer.

All features belong to one of two concerns of dimension Feature

Concerns are named @<dimension>.<concern>

operation lifeCycle:

field ConveyorBelt.pieces:

peration setPieces:

operation setPiecesNumber:

operation getPieces

er:

// Decompose the package passiveDevices
// into concerns
package passiveDevices:

@Feature
@Feature

@Feature.

@Feature

@Feature.
ure.

QF

s

.WorkPieces _ _
_Transfer Dimensions

Transfer and concerns
.Transfer

Transfe

Mapping

Composition Technology — Concern Mapping

devices.
= |t contains the classes Press and Robot.

o
41 » A second package, activeDevices, models the behavior of active

» The package is grouped into three domain concerns,

= @Feature.ActiveDeviceBehavior, @Feature.Transfer, and
@Feature.Action

L
)
s}
(&)
c
c
®©
S
2
<
D
y—
o
ft
o

// Decompose the package activeDevices into coneérns

package activeDevices: @Feature.ActiveDeviceBehavior
operation Press.takeUp: @Feature.Transfer
operation Robot. takeUp: @Feature.Transfer

operation lifeCycle: @Feature.Action ‘

Mapping

*S

1

L
)
s}
(&)
c
c
®©
S
2
<
D
y—
o
L
o

Composition Technology — Concern Mapping

A third technical concern, Logging. Tracing, groups all methods from
class TracingAttribute

// Decompose the package tracing into concerns
package tracing: @Logging.Tracing

class TracingAttribute: (@Logging.Tracing, (@Logging.Dat
// This implies:
// operation TracingAttribute.enterAttribute : QLogging.Tracing

// operation TracingAttribute.leaveAttribute : @Logging.Tracing

package visualization: (@Visualization.Graphics
class Vectorgraphics: (@Visualization.VectorGraphics

class BaseGraphics: (@Visualization.VectorGraphics,
@Visualization.PixelGraphics

A | Composition Language:

50

Prof. U. ABmann, CBSE

® | Grouping Concerns/Views to Hyperslices

Now, we can define the hyperslices of transfer, workpieces, and
tracing
= Ihey are declaratively complete concerns
and compose a hypermodule
= that groups the hyperslices of transfer, workpieces, and tracing, describing the
transfer of workpieces in the production cell
This hypermodule merges the three hyperslices by name, and
brackets all operations of all classes with tracing code.
= It doesn't contain code that is concerned with actions.
hypermodule TracedProductionCellTransfer = {

used hyperslices: (@Feature.Transfer, (@Feature.WorkPieces,
@Logging.Tracing
composition relationships: mergeByName
bracket "*" "*"
before @Logging.Tracing.TracingAttribute.enterAttribute ()
after @QLogging.Tracing.TracingAttribute.leaveAttribute ()

51

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

Finally, a System is a Hypermodule

Another hypermodule groups active devices without tracing

Features can override features in other hyperslices
= Here, features of active devices override transfer features

= Although the method 1ifeCycle from package passiveDevices is contained
in concern Feature.Transfer, the version of concern
Feature.ActiveDeviceBehavior overrides it,

= and the resulting hypermodule will act in the style of active devices.

hypermodule ProductionCell = {
hyperslices: (@Feature.Transfer, (@Feature.WorkPieces,
@Feature.ActiveDeviceBehavior
composition relationships: overrideByName

}
« and this is a hypermodule with visualization:

hypermodule VisualizingProductionCell = {
hyperslices: (@Feature.Transfer, (@Feature.WorkPieces,
@Feature.ActiveDeviceBehavior, @Visualization.VectorGraphics
composition relationships: overrideByName

Variability in Hyperspaces

52 » With Hyper/J, variants of a system can be described easily by grouping and
composing the hyperslices, and -modules together differently

» Different selection of concerns and hyperslices makes up different products in
a product family

» Hyperspaces can include software documentation, requirements
specifications and design models

Product family

Hypermodule Hypermodule

‘ Hypermodule Hypermodule

Hypermodule

L
)
s}
(&)
c
c
®©
S
2
<
D
y—
o
ft
o

Hyperspace

.3 Advantages of the Hyperspace Approach

53 e Compositional merge resp. extension of fragment sets
— Classes
— Packages
— Methods
— Hyperslices

Prof. U. ABmann, CBSE

Universal extensibility: A language is called universally
extensible, if it provides extensibility for every collection-like
language construct.

A | Universal Composability:
®5 | Universal Genericity vs Universal Extension

>4 e BETA and hyperspaces look really similar
— Fragment components
— slots vs hooks (parameterization vs extension interface)
— bind vs merge composition operations

e BETA is a generic component approach
e Hyperspaces is an extensible component approach

Prof. U. ABmann, CBSE

Universal composability: A language is called universally
composable, if it provides universal genericity and extension.

A | 43.5 Evaluation:
®, | Hyperspaces as Composition System

55

Component model

Composition technique

Algebra of composition operators

Source or binary components

Selection operation for fragments to

Greybox components (concerns, _
describe the hyperspace

hyperslices, hypermodules)
Grouping of concerns

Prof. U. ABmann, CBSE

Expression-based

Composition language

.g The End - Appendix

56

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

YV V

How do constructive and projective views differ?

Explain the difference of the merge operator and the extend
operator.

In LambdaN calculus, is there any difference of merge and extend?
What happens, if the base language is not functional, i.e., not free of
side effects?
How do you realize views with mixin-based inheritance (GenVoca
pattern or Mixin Layer pattern)?

57

L
(75}
m
(@)
c
c
©
e
2
<
)
W
e
o

Side Remark: Concern Matrix and Facet Matrix

The concern matrix is similar to a facet space
= Dimensions correspond to facets
Dimensions partition the universe differently (n dimensions == n partitions)
= Concern dimensions correspond to flat facets, lattices of height 3
Concerns in one dimension partition the facet

Difference of concern matrix and facet matrices

= Facets describe an object; concerns do not describe an object, but describe all
objects and subjects in the univers

« Concerns are more like afttributes

A | (remember DPF) Facet Spaces are Dimensional
®-, | Spaces over Objects

58 describing one object, not a fragment space
When the facets are flat, every facet makes up a dimension
Bottom is O
Top is infinity

| Eacet1 | _Facet2 |

0
m
©
£ Services Cost
& / 5 \ / X \
<
>
o Parking Refuel I‘*Iaintenanc : Cheap Middle Expensive
\ Minimal \ Don't
Service \ / Know

N/

Configured .
Sewiﬁe Powertype Service

Prof. U. ABmann, CBSE

A
*5
59

Side Remark: The Facet Matrix Describes

Quality

Objects Dimensionally
| With
guarantee
With ,/
: contract -
Services , ! /
plain / o
| L ~
| L S - /
//
..... /
Maintenance //
Refueling P A
Parking //
VRN
; Middle -,
Cheap Expensive

> Cost

