
CBSE, © Prof. Uwe Aßmann

1

46. Invasive Software
Composition (ISC)

Prof. Dr. Uwe Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de

Version 16-0.2, 11.06.16

1. Invasive Software Composition -
A Fragment-Based Composition
Technique

2. What Can You Do With
Invasive Composition?

3. Universally Composable
Languages

4. Functional and Composition
Interfaces

5. Different forms of grey-box
components

6. Evaluation as Composition
Technique

http://www-st.inf.tu-dresden.de/
http://www-st.inf.tu-dresden.de/
http://www-st.inf.tu-dresden.de/
Uwe Assmann, 08.07.2015
Reshuffle slides.
Change 4 and 5?

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

2

Obligatory Literature

► ISC book Chap 4
► www.the-compost-system.org (now obsolete)
► www.reuseware.org

http://www.the-compost-system.org/
http://www.reuseware.org/

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

3

Other References

[AG00] Uwe Aßmann, Thomas Genßler, and Holger Bär. Meta-programming Grey-box
Connectors. In R. Mitchell, editor, Proceedings of the International Conference on Object-
Oriented Languages and Systems (TOOLS Europe). IEEE Press, Piscataway, NJ, June
2000.

[HLLA01] Dirk Heuzeroth, Welf Löwe, Andreas Ludwig, and Uwe Aßmann. Aspect-oriented
configuration and adaptation of component communication. In J. Bosch, editor,
Generative Component-based Software Engineering (GCSE), volume 2186 of Lecture
Notes in Computer Science. Springer, Heidelberg, September 2001.

[Henriksson-Thesis] Jakob Henriksson. A Lightweight Framework for Universal Fragment
Composition. Technische Universität Dresden, Dec. 2008 http://nbn-
resolving.de/urn:nbn:de:bsz:14-ds-1231261831567-11763

Jendrik Johannes. Component-Based Model-Driven Software Development. Technische
Universität Dresden, Dec. 2010 http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63986

Jendrik Johannes and Uwe Aßmann, Concern-Based (de)composition of Model-Driven
Software Development Processes. Model Driven Engineering Languages and Systems -
13th International Conference, MODELS 2010, 2010,Part II, Springer, 2010, LNCS 6395,
URL = http://dx.doi.org/10.1007/978-3-642-16129-2

Falk Hartmann. Safe Template Processing of XML Documents. PhD thesis. Technische
Universität Dresden, July 2011.

http://liinwww.ira.uka.de/csbib?query=+au:JohannesJ*++au:Johannes&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=+au:JohannesJ*++au:Johannes&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=+au:JohannesJ*++au:Johannes&maxnum=200&sort=year
http://liinwww.ira.uka.de/csbib?query=+au:AssmannU*++au:Assmann&maxnum=200&sort=year
http://dx.doi.org/10.1007/978-3-642-16129-2
http://dx.doi.org/10.1007/978-3-642-16129-2
http://dx.doi.org/10.1007/978-3-642-16129-2

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

4

Composition Recipe

Composition Operators

Grey-box Components

System Constructed with an
Invasive Architecture

Invasive
Software

Composition

Composition Process in
Grey-Box Composition Systems

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

5

Invasive Software Composition

• Adds a full-fledged composition language to generic and
view-based programming

• Combines architectural systems, generic, view-based and
aspect-oriented programming

Invasive
Composition

Architectural
development

Generic
Programming

View-Based
Programming

Static Aspect-
Based

Programming

CBSE, © Prof. Uwe Aßmann

6

46.1. Invasive Software Composition -
A Fragment-Based Composition
Technique

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

7

Software Composition

Component Model Composition Technique

Composition Language

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

8

Invasive Software Composition

► A fragment component (snippet
components) is a fragment group
(fragment container, fragment box) with a
composition interface of change points

► A fragment component is a uniform
container for

■ A plain fragment
. a class, a package, a method

■ A generic fragment (group)
■ A fragment group

. an advice or an aspect

. a composition program

 Invasive software composition queries, parameterizes and extends
fragment components

at change points (hooks and slots)
by transformation

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

9

The Component Model of Invasive Composition

► Fragment components have change points
► A change point can be

■ An extension point (hook)
■ A variation point (slot)
■ A query point (out port)

► Example:
■ Extension point: Method entries/exits
■ Variation point: Generic parameters
■ Query point: Contracts that can be queried

Change points of a fragment component are
fragments or positions,

which are subject to change

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

10

Hooks for Extension

► A hook is an extension point of a fragment component
► Hooks can be implicit or explicit (declared)
► An implicit hook is given by the component's language

■ We draw implicit hooks inside the component, at the border
■ Example: Method Entry/Exit

► An explicit hook is marked up by the component author
► Between hooks and their positions in the code, there is a hook-fragment

mapping

Method.entry

Method.exit

m (){

 abc..
 cde..

}

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

11

A Hook can Relate to Many Code Points

► A hook can relate to many code points (1:n-hook-fragment mapping)
► Example:

► Method Entry refers to a code point at the beginning the the method
► Method Exit refers to n code points before return statements

Method.entry

Method.exit

boolean m (){

 abc..
 cde..
 if (cond) {

 return true;
 } else {

 return false;
 }
}

>

>

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

12

Slots for Parameterization (Declared Hooks)

► A slot is a variation point of a component, i.e., a code parameter
► Slots are most often declared (explicit), which must be declared by the

component writer
■ They are implicit only if they designate one single program element in a

fragment
■ We draw slots as crossing the border of the component

► Between slots and their positions in the code, there is a slot-fragment
mapping

Declarations

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

13

The Composition Technique of Invasive
Composition

 Invasive Software Composition
 queries, parameterizes and extends

fragment components
at implicit and declared change points (hooks and

slots)
by transformation

An invasive composition operator treats
declared and implicit slots, hooks, and query points

uniformly

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

14

Composer

Invasively transformed code

The Composition Technique of Invasive
Composition

► A composer (composition operator) is a static metaprogram (program
transformer) modifying a slot or hook of a fragment component

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

15

Object-Oriented Metamodeling of Composers

• In the following, we assume an object-oriented metamodel of fragment
components, composers, and composition languages.

• The COMPOST library [ISC] has such a metamodel (in Java)

• Composers work on Composables (Changepoints or Boxes)

Box (Fragment Component)

Hook findHook(String name)

Composer

Box bind()
Box extend()
Box clone()
Box rename(String name)
Box merge(Box other)

Hook Slot

ChangePoint

bind()
extend()
rename(String name)

Composable

Query Point
Rudiment

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

16

Box component = readBoxFromFile(“m.java”);

component.findHook(„mod“).bind(“synchronized”);

component.findHook(„mid“).bind(“f();”);

Box component = readBoxFromFile(“m.java”);

component.findHook(„mod“).bind(“synchronized”);

component.findHook(„mid“).bind(“f();”);

mod

mid

<<mod:Modifier>>
m (){

 abc..
 <<mid:Statement>>
 cde..

}

synchronized m (){
 abc..
 f();
 cde..
}

Bind Composer Parameterizes Fragment
Components at Slots

• Like in BETA, for uniformly generic components

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

17

Unbound
Slot

(Fully)
Bound

Slot

Remove fragmentBind
with fragment

 Slot Binding State Diagram

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

19

Box component = readBoxFromFile(“m.java”);

component.findHook(„MethodEntry“).extend(“print(\”enter m\”);”);

component.findHook(„MethodExit“).extend(“print(\”exit m\”);”);

Box component = readBoxFromFile(“m.java”);

component.findHook(„MethodEntry“).extend(“print(\”enter m\”);”);

component.findHook(„MethodExit“).extend(“print(\”exit m\”);”);

MethodEntry MethodEntry

MethodExit

MethodExit

m (){

 abc..
 cde..

}

m (){
 print(“enter m”);
 abc..
 cde..
 print(“exit m”);
}

Extend Operator Universally Extends the Fragment
Components at List Hooks

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

20

Merge Operator Provides Universal Symmetric
Merge

► The Extend operator is asymmetric, i.e., extends hooks of a fragment
component with new fragment values

► Based on this, a symmetric Merge operator can be defined:

merge(Component C1, Component C2) :=

 extend(C1.list, C2.list)

► where list is a list of inner components, inner fragments, etc.

► Both extend(f) and merge(f,g) work on fragments
■ Extend works on all collection-like language constructs
■ Merge on components with collection-like language constructs

Uwe Assmann, 09.07.2014
show several return points

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

21

Unbound
Hook

Extended
Hook

Extend with
fragment

Extend with
fragment

Remove
fragment

 Hook Extension State Diagram

Remove
fragment

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

22

“{ if (p == null) return 19;
if (result == 0) return 10;}” 
component.findHook(„ContractQuery“).query();

“{ if (p == null) return 19;
if (result == 0) return 10;}” 
component.findHook(„ContractQuery“).query();

ContractQuery

int findoutAge(Person p){
 if (p == null) return 19;
 abc..
 result = cde..
 if (result == 0) return 10;
}

Query Operator Delivers Fragments out of the
Fragment Component

{
if (p == null) return 19;

if (result == 0) return 10;
}

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

23

component.findHook(„ContractQuery“).remove();component.findHook(„ContractQuery“).remove();

Contract

int findoutAge(Person p){
 if (p == null) return 19;
 abc..
 result = cde..
 if (result == 0) return 10;
}

Remove Operator Removes Rudiment Fragments
out of the Fragment Component

int findoutAge(Person p){

 abc..
 result = cde..

}

Contract

Rudiment

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

24

Basic Composition Operators

Approach Composables Composers Variation/Extension
points

Components extend Implicit member list

merge Open definitions

Slots bind Variation point

unbind

Hooks extend Extension point

Query port query Query point

Rudiment remove

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

25

Applied to Classes, Invasive Extension Integrates
Feature Groups

► The Extend operator integrates feature groups and roles into classes
■ Delegatee merge: because a delegatee can be merged with delegator
■ Role merge: because a feature group can play a role

► The semantics of extension lies between inheritance and delegation
► This leads to class caluli with many inheritance operators with specific

semantics

Extend
invasively

K

K-privateKK-subclassK

Inherit Delegate

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

26

Class Calculi

► [Gilad Bracha and William Cook. Mixin-based inheritance. In N. Meyrowitz,
editor, Proceedings of the OOPSLA ECOOP '90, number 25(10) in ACM
SIGPLAN NOTICES, pages 303--311. ACM Press, 1990.]

► The CoSy Data Definition Language for data in the repository (fSDL) is a
class calculus language

■ [H.R. Walters, J.F.Th. Kamperman and T.B.Dinesh. An extensible
language for the generation of parallel data manipulation and control
packages. Computer Science/Department of Software Technology. CS-
R9575 1995 http://oai.cwi.nl/oai/asset/4931/4931D.pdf]

► A class calculus is an algebra with composition operators over classes
■ Different forms of sharing (inheritance) operators (e.g., mixins, generics)
■ Merge operators

. Sum of classes (+)

■ Associative and commutative operators
■ Distribution operators

. Product of classes (*)

. Wrapping of classes

■ Projection operators
. Differencing of classes
. Projection of classes

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

27

On the Difference of Declared and Implicit Hooks

► Invasive composition unifies generic programming (BETA) and view-based
programming (merge composition operators)

■ By providing bind (parameterization) and extend for all language
constructs

synchronized public print () {
if (1 == 2)

 System.out.println(“Hello World”);
 return;
 else
 System.out.println(“Bye World”);
 return;
}

/* @genericMYModifier */ public print() {

 // <<MethodEntry>>

 if (1 == 2)

 System.out.println(“Hello World”);

 // <<MethodExit>>

 return;

 else

 System.out.println(“Bye World”);

 // <<MethodExit>>

 return;

}

Hook h = methodComponent.findHook(“MY”);
if (parallel)
 h.bind(“synchronized”);
else
 h.bind(“ ”);
methodComponent.findHook(“MethodEntry”).b
ind(“”);
methodComponent.findHook(“MethodExit”).bi
nd(“”);

Hook h = methodComponent.findHook(“MY”);
if (parallel)
 h.bind(“synchronized”);
else
 h.bind(“ ”);
methodComponent.findHook(“MethodEntry”).b
ind(“”);
methodComponent.findHook(“MethodExit”).bi
nd(“”);

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

28

You Need Invasive Composition

► Adaptation of static relations
■ Inheritance relationship: multiple and mixin inheritance
■ Delegation relationship: When delegation pointers have to be inserted
■ Import relationship of packages
■ Definition/use relationships (adding a definition for a use)
■ Type-safe template expansion: When templates have to be expanded in

a type-safe way

► When physical unity of logical objects is desired
■ Invasive extension and merges roles into classes
■ No splitting of roles, but integration into one class

► When the resulting system should be highly integrated
■ When views should be integrated constructively

CBSE, © Prof. Uwe Aßmann

30

46.1.2 Composition Languages

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

31

Composition Programs and Their Languages

► Imperative languages: Java (used in COMPOST and Reusewair), C, ..
► Graphical languages: boxes and lines (used in Reuseware)
► Functional languages: Haskell
► Scripting languages: TCL, Groovy, ...
► Logic languages: Prolog, Datalog, F-Datalog
► Declarative Languages: Attribute Grammars (used in SkAT), Rewrite

Systems

Basically, every language may act as a composition
language, if its supports basic composers like bind, query,

and extend.

Basically, every language may act as a composition
language, if its supports basic composers like bind, query,

and extend.

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

32

Composition Level

Component
Model

Composition
Technique

Composition
Language:
Composition
Expressions

Composition
Language:
Composition
Expressions

Composition System

Component
Model of
Composition
Language

Composition
Technique
for Composition
Language

Composition
Language for
Composition
Language

Composition Language

Q2: Component and
Composition Language Level

► Acyclic composition programs form composition expressions
► Configuration of component systems
► Holds for both black-box and grey-box composition systems

Metacomposition Level

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

33

Homogeneous Composition Systems

► A homogeneous composition system employs the same composition
language and component language.

■ Otherwise, it is called heterogeneous

► In a homogeneous composition system, metacomposition is staged
composition.

► A point-cut language (cross-cut language) is a simple composition
language.

L

L
Composition
Level

Component
Level

L

L'
Composition
Level

Component
Level

Homogeneous Compsition System Heterogeneous Compsition System

L

L
Composition
Level

Component
Level

L

Meta-
Composition
Level

CBSE, © Prof. Uwe Aßmann

34

46.2. What Can You Do With
Invasive Composition?

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

35

Invasive Composition

Adds a full-fledged composition language to generic and view-based
programming

Combines architectural systems, generic, view-based and aspect-oriented
programming

Invasive
Composition

Architectural
development

Generic
Programming

View-Based
Programming

Static
Aspect-
Based

Programming

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

36

Advanced Applications of
Invasive Composition

Invasive
Composition

 Meta
composition

Staged
composition

of big
systems

Active
Documents with
Transconsistent

compostion

Build and
configuration
management

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

37
Components Composers Change points

Generic fragments bind Slots

Fragments extend Hooks

Architectural
Components

Connectors,
Invasive connectors
Encapsulation operators

Ports

Classes Mixin operators,
inheritance operators

Class member lists

Views Merge operators, extend
operators

Open definitions

Core, aspectual
components

Weaver (distributor,
complex extender)

Join points

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

38

Universally Generic Programming

• ISC is a fully generic approach
• In contrast to BETA, ISC offers a full-fledged composition

language
• Generic types, modifiers, superclasses, statements,

expressions,...
• Any component language (Java, UML, ...)

<< ClassBox >>

class SimpleList {
 genericTType elem;
 SimpleList next;
 genericTType getNext() {
 return next.elem;
 }
}

T

class SimpleList {
 WorkPiece elem;
 SimpleList next;
 WorkPiece getNext() {
 return next.elem;
 }
}

<< ClassBox >>

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

39

Universal Constructive View Programming

• ISC is a uniform and universal view-programming approach
• The Extend operator realizes open definitions for all language

constructs: methods, classes, packages

• The Merge operator realizes symmetric composition for all language
constucts

• Additionally, ISC offers a full-fledged composition language

<< PackageBox >>

class SimpleList {
 ..
}
class AdvancedList {
 ..
}

E

<< PackageBox >>

class SimpleList {

 ..
}
class AdvancedList {

 ..
}

E
..extension..

..extension..

..extension..

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

40

Client Library

Client Library

Blackbox connection with glue code

Client Library

Invasive Connection

Blackbox
Composition

Invasive
Composition

Invasive Connections

► In contrast to ADL, ISC offers invasive connections [AG00]
► Modification of static relationships between program elements possible

(inheritance, delegation relations)

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

41

Invasive Architectural Programming

► [ISC] shows how invasive connectors achieve tightly integrated systems
by embedding the glue code into senders and receiver components

■ Separation of topological and transfer connectors

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

42

Connection A Connection B

Transfer Selection Transfer Selection

Topological
Connection

Separation of Topological from Transfer Aspect

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

43

Unbound
Port

Topologically
Bound

Port

(Fully)
Bound

PortTransfer Selector

Topological
Connector

Full
Connector

Deconnector

Transfer Deselector

Unlinker

Port Binding State Diagram of an Invasive
Connector

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

44

<< MethodBox >><< MethodBox >>

<< ClassBox >>

Sender Receiver

out in

<< MethodBox >><< MethodBox >>

<< ClassBox >>

Sender

<< ClassBox >>

Receiver

out in
<< MethodBox >> Pack

 Arguments

 Pack
 Arguments

<< ClassBox >>

SenderGate

<< ClassBox >>

ReceiverGate

SendSend

Unpack
Arguments

<< MethodBox >>

<< ClassBox >>

Receive

Gate Objects: Glue Separate

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

45

Sender Receiver
<< ClassBox >><< ClassBox >>

<< MethodBox >><< MethodBox >>
out in

<< MethodBox >> Pack
 Arguments

 Pack
 Arguments

SendSend

Unpack
Arguments

Receive

Invasive Connection

► Embedding communication gate methods into a class

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

46

Sender Receiver
<< ClassBox >><< ClassBox >>

<< MethodBox >>
 Pack
 Arguments

 Pack
 Arguments

SendSend

Unpack
Arguments

Receive

<< MethodBox >>

Invasive Connection

► Embedding glue code into sender methods

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

47

inherit

■ inheritance :=
■ copy first super class
■ extend with second

super class
■ mixin_inheritance :=

■ Bind superclass
reference

Class Calculi: Universal Inheritance and Mixins

► Extension can be used for inheritance, mixins
► In contrast to OO languages, ISC offers tailored inheritance operations,

based on the extend operator
► Mixins can be used to simulate static roles

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

48

inherit

Mixin Inheritance Works Universally for Languages
that don't have it

► Invasive composition can
model mixin inheritance
uniformly for all languages

► e.g., for XML
► inheritance :=

■ copy first super document
■ extend with second super

document

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

49

Document Engineering:
Invasive Document Composition for XML

► Invasive composition can be used for document languages,
too [Hartmann2011]

► Example List Entry/Exit of an XML list
► Hooks are given by the Xschema

 ...
 ...

List.entry

List.exit

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

50

List Entry List Entry

List ExitList Exit

 ...
 ...

XMLcomponent.findHook(„ListEntry“).extend(„... ”);

XMLcomponent.findHook(„ListExit“).extend(“... ”);

 ...
 ...
 ...
 ...

Hook Manipulation for XML

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

51

Universal Weaving for AOP (Core and Aspect
Components)

Distributor

Aspect

Core

Pointcut
specification

► Complex composers distribute
aspect fragments over core
fragments

► Distributors (distribution
operators) extend the core

■ Distributors are more
complex operators, defined
from basic ones

■ Before, after, around are
specific extension
operators

► Static aspect weaving can be
described by distributors,
extending static hooks

■ ISC does not have a
dynamic joinpoints

■ Crosscut specifications can
be interpreted

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

52

Debugging AspectDebugging Aspect

Persistency AspectPersistency AspectCore
(Algorithm)

Core
(Algorithm)

OpOp

Distributor
(Weaver)

OpOp
OpOp

OpOp

OpOp

OpOp
OpOp

Persistency

Persistency
Debugging

Debugging

Distributors are Composition Programs

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

53

Distributor
System

Distributors Weave Relations
between Core and Aspect

See optional Chapter “Specifying Crosscut Graphs with Graph Rewriting”

Pointcut
specification

Core
(Algorithm)

Core
(Algorithm)

Aspect
Aspect

CBSE, © Prof. Uwe Aßmann

55

46.3 How to Make a Language
Universally Composable

Universally Composable
Languages with for universal type-safe

genericity and extension

Meta-Composition Systems
to Design Composition Systems

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

56

Core
L

Reuse-L

Core
L

Hooks
for L

Universally Composable Languages
[Henriksson-Thesis]

Universally composable: A language is called universally composable, if it
provides type-safe universal genericity and universal extensibility

► The language has to be enriched with an invasive component model

Reuse language: Given a metamodel of a core language L, a metamodel of
a universally composable language can be generated (the Reuse-L)

► The Reuse language describes the composition interfaces of the components, an important part
of the component model

► The component model can be composed by metamodel composition

Slot and Hook metamodel: added to the core language metamodel
► Realizes universal composability by defining slots and hook constructs, one for

each construct in the core language

Slots
for L

Full-L (component model)

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

57

Reuse

Names
Reuse-L

Component
 model

Core
L

UHUL

• The core and the reuse language have two levels

Language-
specific
knowledge ...

Language-
neutral
knowledge ...

Hooks
for L

Slots
for L

Core

Structure of a Universally Composable Language

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

58

Reuse

Names
Reuse-
UML

Component
 model

Core
UML

UHUL

• .. an extension of UML with slot and hook model

Language-
specific
knowledge ...

Language-
neutral
knowledge ...

Hooks
for UML

Slots
for UML

Core

Reuse-UML, a Universally Composable Language

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

59

Reuse

Names
Reuse-
XML

Component
 model

Core
XML

UHUL

• .. an extension of XML with slot and hook model

Language-
specific
knowledge ...

Language-
neutral
knowledge ...

Hooks
for XML

Slots
for XML

Core

Reuse-XML, a Universally Composable Language

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

60

Reuse

Names
Reuse-
Java

Component
 model

Core
Java

UHUL

• .. an extension of Java with slot and hook model

Language-
specific
knowledge ...

Language-
neutral
knowledge ...

Hooks
for Java

Slots
for Java

Core

Reuse-Java, a Universally Composable Language

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

61

The Reusewair Technology

► [Henriksson-Thesis] Phd of Jakob Henriksson, 2008

http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1231251831567-11763
► Reusewair was the world-wide first technology and tool to build reuse

languages (component models) and composition systems for any text-
based language

■ Grammar-based (EBNF)
■ Generic strategy for applying composition operators on components

(based on Design Pattern Visitor)
■ Composition tools, type checker, come for free

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

62

The Reuseware Tool

► www.reuseware.org (Phd of Jendrik Johannes, 2010)
► http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63986
► Reuseware is a tool to build reuse languages (component models) and

composition systems for text-based and diagramm-based languages
■ Eclipse-based
■ metamodel-controlled (metalanguage M3: Eclipse e-core)
■ Plugins are generated for composition
■ Composition tools come for free
■ Textual, graphic, XML languages

► Framework instantiation is supported for variation and extension
► Jobs open!

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

63

The SkAT Tool

► Phd of Sven Karol, 2014
► Open source project

■ https://bitbucket.org/svenkarol/skat/wiki/Home

► SkAT is a tool to build reuse languages (component models) and
composition systems for text-based and diagram-based languages

■ Based on Reference-Attribute-Grammar (RAG)
■ And metamodels (metalanguage M3: Eclipse e-core)
■ Declarative composition constraints control the composition
■ Composition tools come for free
■ Textual, graphic, XML languages

► Framework instantiation is supported for variation and extension
► Jobs open!

CBSE, © Prof. Uwe Aßmann

64

46.4. Staging of Composition:
Composition and Functional
Interfaces

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

65

Declared HooksImplicit Hooks

Provided
Method

Program Elements
or Code Positions

Output Port

Input Port Required
Method

Composition vs Functional Interfaces

► Composition interfaces contain hooks and slots
■ static, based on the component model at design time

► Functional interfaces are based on the component model at run time and
contain slots and hooks of it

http://www.reuseware.org/
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63986

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

66
Composition Interface (Boxes with
Declared Hooks)

Functional Interface (Classes or
Modules with Methods)

Functional Interfaces are Generated from
Composition Interfaces

► 2-stage generative process

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

67

C1 C2 C3

C2 C3

C3

Execution of a Composition Program

► A compostion program transforms a set of fragment components step by
step, binding their composition interfaces (filling their slots and hooks),
resulting in an integrated program with functional interfaces

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

68

Code Fragment
Components

Runtime
components

Fragment
component model

Runtime
component model

(objects)

Stage-0
Composition level
language: OO-Language

Stage-1
language: binary
machine language

Stage-0

The Stages of Normal O-O Languages

► Produces code from fragment components by parameterization and
expansion

► The run-time component model fits to the chip

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

69

COTS
components

Code Fragment
Components

Run time
components

Generic COTS
component model

Fragment
component model

Run time
component model

Component Models on Different Levels
in the Software Process

Standard COTS models are just models for binary code components

Stage-0
Composition level
language: Java

Stage-1
language: binaries
and linker

Stage-2
language: machine
language

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

70

COTS
components

Code Fragment
Components

Run time
components

Generic COTS
component model

Fragment
component model

Run time
component model

Component Models on Different Levels
in the Software Process

Another stage can be introduced by UML model composition from which
Java code is generated [Johannes 10]

Stage-1
Composition level
language: Java

Stage-2
language: binaries
and linker

Stage-3
language: machine
language

UML Model
Fragment

Components

UML Model
Fragment

component model

Stage-0
Composition level
language: UML

Uwe Assmann, 08.07.2015
Passt nicht in fluss?

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

71

Staging

► With a universal composition system as Reuseware, stages can be
designed (stage design process)

► For each stage, it has to be designed a universally composable language:

component models

composition operators

composition language

composition tools (editors, well-formedness checkers, component library
etc.)

Uwe Assmann, 08.07.2015
Plain Java should be on stage 1

CBSE, © Prof. Uwe Aßmann

72

46.5. Different Forms of Greyboxes
(Shades of Grey)

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

73

Invasive Composition and Information Hiding

► Invasive Composition modifies components at well-defined
places during composition

■ There is less information hiding than in blackbox approaches
■ But there is...
■ ... that leads to greybox components

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

74

Refactorings
Transformations
Metaprograms

Refactoring is a Whitebox Operation

► Refactoring works directly on the AST/ASG
► Attaching/removing/replacing fragments
► Whitebox reuse

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

75

Composition
with implicit
hooks

Refactorings
Transformations
Metaprograms

Modifying Implicit Hooks is a Light-Grey Operation

► Aspect weaving and view composition works on implicit
hooks (join points)

► Implicit composition interface

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

76

Refactorings
Transformations
Metaprograms

Parameterization as Darker-Grey Operation

► Templates work on declared hooks
► Declared composition interface

Composition
with declared
hooks

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

77

Composition
with declared
hooks

Composition
with implicit
hooks

Refactorings
Transformations
Metaprograms

Systematization Towards Greybox Component
Models

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

78

RefactoringRefactoring

Refactoring Builds On Transformation Of Abstract
Syntax

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

79

ComposerComposer

Invasively transformed code

Invasive Composition Builds On Transformation Of
Implicit Hooks

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

80

ComposerComposer

Invasively transformed code

Invasive Composition Builds On Transformation on
Declared Hooks

CBSE, © Prof. Uwe Aßmann

81

46.6 Invasive Software Composition
as Composition Technique

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

82

Invasive Composition: Component Model

► Fragment components are graybox components
■ Composition interfaces with declared hooks
■ Implicit composition interfaces with implicit hooks
■ The composition programs produce the functional interfaces

. Resulting in efficient systems, because superfluous functional interfaces
are removed from the system

■ Content: source code
. binary components also possible, poorer metamodel

► Aspects are just a special type of component
► Fragment-based parameterisation a la BETA

■ Type-safe parameterization on all kinds of fragments

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

83

 Invasive Composition: Composition Technique

► Adaptation and glue code: good, composers are program transformers
and generators

► Aspect weaving
■ Parties may write their own weavers
■ No special languages

► Extensions:
■ Hooks can be extended
■ Soundness criteria of lambdaN still apply
■ Metamodelling employed

► Not yet scalable to run time

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

84

Composition Language

► Various languages can be used
► Product quality improved by metamodel-based typing of compositions
► Metacomposition possible

■ Architectures can be described in a standard object-oriented language
and reused

► An assembler for composition
■ Other, more adequate composition languages can be compiled

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

85

Conclusions for ISC

► Fragment-based composition technology
■ Graybox components
■ Producing tightly integrated systems

► Components have composition interface
■ From the composition interface, the functional interface is derived
■ Composition interface is different from functional interface
■ Overlaying of classes (role model composition)

► COMPOST framework showed applicability of ISC for Java
■ (ISC book)

► The Reusewair, Reuseware and SkAT Composition Frameworks extends
these ideas

■ For arbitrary grammar-based languages
■ For metamodel-based languages

► http://reuseware.org
► https://bitbucket.org/svenkarol/skat/wiki/Home

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

86

Invasive Composition as Composition System

Component model Composition technique

Composition language

Source or binary components

Greybox components

Composition interfaces
with declared an implicit hooks

Algebra of composition operators

Uniform on declared and implicit hooks

Complex composition operators can be
defined by users

Standard Language

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

87

What Have We Learned

► With the uniform treatment of declared and implicit hooks and slots,
several technologies can be unified:

■ Generic programming
■ Connector-based programming
■ View-based programming

. Inheritance-based programming

■ Aspect-based programming
■ Refactorings

P
ro

f .
U

. A
ß

m
an

n,
 C

B
S

E

88

The End

► Why is it good to explicitly specify composition with a composition program ?
► Explain how to write an aspect weaver with an imperative composition

language
► Explain the difference of hooks, slots and query points
► Explain invasive connection
► Why can invasive software composition explain so many different

programming styles?
► How would you build a composition system for UML activity diagrams?
► Can you imagine the ingredients of a XML composition system?

http://reuseware.org/
https://bitbucket.org/svenkarol/skat/wiki/Home

	Slide 1
	Obligatory Literature
	Other References
	Composition Process in Grey-Box Composition Systems
	Invasive Software Composition
	Slide 6
	Software Composition
	Invasive Software Composition
	The Component Model of Invasive Composition
	Hooks
	A Hook can Relate to Many Code Points
	Slots (Declared Hooks)
	The Composition Technique of Invasive Composition
	The Composition Technique of Invasive Composition
	Object-Oriented Metamodeling of Composers
	Bind Composer Parameterizes Fragment Components at Slots
	Slot Binding State Diagram
	Slide 19
	Merge Operator Provides Universal Symmetric Merge
	Hook Extension State Diagram
	Query Operator Delivers Fragments out of the Fragment Component
	Slide 23
	Basic Composition Operators
	Slide 25
	Slide 26
	On the Difference of Declared and Implicit Hooks
	You Need Invasive Composition
	Slide 30
	Composition Programs
	Slide 32
	Homogeneous Composition Systems
	Slide 34
	Invasive Composition
	Slide 36
	Slide 37
	Universally Generic Programming
	Universal Constructive View Programming
	Invasive Connections
	Invasive Architectural Programming
	Separation of Topological from Transfer Aspect
	Port Binding State Diagram
	Gate Objects: Glue Separate
	Invasive Connection
	Invasive Connection
	Universal Inheritance and Mixins
	Slide 48
	Invasive Document Composition for XML
	Hook Manipulation for XML
	Universal Weaving for AOP (Core and Aspect Components)
	Distributors are Composition Programs
	Distributors Weave Relations between Core and Aspect
	Slide 55
	Universally Composable Languages
	Structure of a Universally Composable Language
	Reuse-UML, a Universally Composable Language
	Reuse-XML, a Universally Composable Language
	Reuse-Java, a Universally Composable Language
	The Reusewair Technology
	The Reuseware Tool
	The SkAT Tool
	Slide 64
	Composition vs Functional Interfaces
	Functional Interfaces are Generated from Composition Interfaces
	Execution of a Composition Program
	The Stages of ISC
	Component Models on Different Levels in the Software Process
	Component Models on Different Levels in the Software Process
	Staging
	Slide 72
	Invasive Composition and Information Hiding
	Refactoring is a Whitebox Operation
	Modifying Implicit Hooks is a Light-Grey Operation
	Parameterization as Darker-Grey Operation
	Systematization Towards Greybox Component Models
	Refactoring Builds On Transformation Of Abstract Syntax
	Invasive Composition Builds On Transformation Of Implicit Hooks
	Invasive Composition Builds On Transformation on Declared Hooks
	Slide 81
	Invasive Composition: Component Model
	Invasive Composition: Composition Technique
	Composition Language
	Conclusions for ISC
	Invasive Composition as Composition System
	What Have We Learned
	The End

