
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

Part V: Applications of Composition Systems
50. Transconsistent Composition for Active Documents and
Component-Based Document Engineering (CBDE)

1.  Problems of Document Composition
2.  Invasive Document Composition
3.  Invasive Architectures for Active

Documents
4.  Transconsistency

1.  A Graph-Theoretic Definition
of Transconsistency

2.  Transconsistent Architectures
5.  Architectural Styles for Transconsistent

Architectures

Prof. Dr. Uwe Aßmann
Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/
cbse

Version 16-1.1, Juli 6, 2016

Component-Based Software Engineering (CBSE) 2

Classical
Component Systems

Architecture Systems

Aspect Systems

View Systems

Darwin
BPMN

Aspect/J
AOM

Invasive Composition
Piccola Gloo

Standard Components
Reflection

Architecture as Aspect
Connectors

Aspect Separation
Crosscut graphs

Composition
Operators

Composition
Language

Object-Oriented Systems C++ Java Objects as
Run-Time Components

Modular Systems Modules as Compile-
Time Components

Composition Filters
Hyperspaces

Software
Composition
Systems

.NET CORBA
Beans EJB

The Ladder of Composition Systems

Shell scripts
Modula Ada-85

COSY
ACME

Uniform Composition Systems Universal ISC
Transconsistency

Component-Based Software Engineering (CBSE)

Literature

►  U. Aßmann. Architectural Styles for Active Documents.
http://dx.doi.org/10.1016/j.scico.2004.11.006

Ø  [Hartmann] Falk Hartmann. Safe Template Processing of XML Documents.
PhD thesis. Technische Universität Dresden, July 2011.
•  http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-75342

►  Andreas Bartho. Creating and Maintaining Consistent Documents with
Elucidative Development. PhD Thesis, TU Dresden, 2014.
►  http://www.vogtverlag.de/buecher/9783938860762_Inhaltsverzeichnis.pdf

Component-Based Software Engineering (CBSE)

Overview

1.  Some problems in document processing
1.  And why they require document architecture

2.  Invasive composition of active documents
3.  Export declarations as a basis for architecture of active documents
4.  Features of acyclic, interactive architectures

1.  Transconsistency, a novel evaluation concept for composition programs for
active documents

2.  Transconsistent architectural styles for active documents
5.  Conclusions for web engineering

Component-Based Software Engineering (CBSE)

Architecture and Composition

►  One of the central insights of the software engineering in the 1990s is:

►  Purpose: Get a second level of variability
■  Architecture and components can be varied independently of each other
■  Scale better by different binding times of composition programs
■  Be uniform for many products of a product family

►  However, how to be uniform also for documents?

Separate architecture (composition)
from

the base components

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

50.1 Problems in
Document Construction

Component-Based Software Engineering (CBSE)

Some Problems
1 – \cite in LaTeX

►  As already McIlroy.68 has shown, we need components for a ripe industry

@InProceedings{ mcilroy.68b,
 author = "M. Douglas McIlroy",
 title = "Mass-Produced Software Components",
 booktitl = "Software Engineering Concepts and Techniques (1968 {NATO}
 Conference of {S}oftware Engineering)",
 editor = "J. M. Buxton and Peter Naur and Brian Randell",
 publisher = {NATO Science Committee},
 pages = "88--98",
 month = oct,
 year = "1968"
}

Component-Based Software Engineering (CBSE)

Usual Solution

►  Problem: Document is active, i.e., contains generated components

►  Prodedure:
■  Latex writes citation to .aux-file
■  bibtex greps them and produces a .bbl file
■  .bbl file is included into document

►  How does the architecture of a latex document look like that regenerates all

generated components?

Component-Based Software Engineering (CBSE)

bibtex

Maybe Like This...

\cite
\cite

\cite

\cite

.bib
file

\bibliography{} .bbl
file

Component-Based Software Engineering (CBSE)

Problem 2 – Deliverable Definitions in LaTeX Project Plan

►  Procedure:
■  extract deliverables by perl script
■  concat to latex table
■  include table

►  How does the architecture of that document look like?

\begin{deliverables}
EASYCOMP workshop I &\DIS.1.1 & \UKA & 12 & W & PU & 18 \\
EASYCOMP workshop II &\DIS.1.2 & \UKA & 12 & W & PU & 30 \\
Web-based Composition Centre &\DIS.2 & \UKA & 3 & H & PU & 36 \\
Composition Handbook &\DIS.3 & \UKA & 14 & R & PU & 24 \\
Final Report &\DIS.4 & \UKA & 6.5 & R & CO/PU & 36 \\
\end{deliverables}

Component-Based Software Engineering (CBSE)

perl

Like This...

\begin{deliverable} pattern
„\begin{deliverable}“

\input{deliverables} deliverable
table

\begin{deliverable}
\begin{deliverable}

\begin{deliverable}

Component-Based Software Engineering (CBSE)

Query Should Use the Abstract Syntax Tree (AST)

►  Regular expressions are too weak

\begin{deliverable} AST definition

\input{deliverables} „definition
table“

\begin{deliverable}
\begin{deliverable}

\begin{deliverable}
AST

walker

Component-Based Software Engineering (CBSE)

Problem 3 – A Simple Web Page, Generated By a Database

<html>
..
<table>
 <tr> <td> Employee </td> <td> Address </td> </tr>
 <tr> <td> Uwe Assmann </td> <td> Farhagsvägen 128 </td> </tr>
 <tr> <td> Robert Kaminski </td> <td> Platensgatan 9 </td> </tr>
 <tr> <td> Jens Gustavsson </td> <td> Stora Torget 14 </td> </tr>
</table>
..
</html>

Component-Based Software Engineering (CBSE)

MySQL

Like This...

Uwe Assmann:Fårhagsvägen 128
Robert Kaminski:Platensgatan 9
Jens Gustavsson: Stora Torget 14

script

XSLT

is replaced by
<table>

starts

Component-Based Software Engineering (CBSE)

Problem 4: Big Spreadsheets

►  Ex.: Electra Spreadsheet, used for contract negotiations about project
budges with the EC
►  About 10 summary pages, generated from participant figures
►  4 pages per participant
►  Horrible error handling

►  No architecture available....

Component-Based Software Engineering (CBSE)

The Need for Document Architectures

►  Why don't we define document architectures?
■  That allows for extracting the architecture and separating it from „components“

►  Software architecture and composition have been successful for
■  Developing in the large
■  Software reuse

►  Why don't we define a document architecture language?
■  That allows for expressing the coarse grain structure of documents?
■  And unify it with software architecture / software composition?

Component-Based Software Engineering (CBSE)

But An Architectural Language For Documents is Difficult..

►  Well, connectors as binding elements between components don't suffice
■  It must be composition operations or other mechanisms (such as AG) that glue the

components together
■  We need composition languages for uniform composition

►  There are some other problems...
■  Invasiveness
■  Transconsistency

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

50.2. Invasive Composition of
Active Documents

Component-Based Software Engineering (CBSE)

The Elements of Composition for Active Documents

Component Model

Invasiveness
e.g., for XML

Composition Technique

Query operators
Documents are active, i.e., need
re-generation (transclusion and

transconsistency)

Composition Language

Documents need architectures

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

50.3. Invasive XML Composition

•  [Hartmann]

Component-Based Software Engineering (CBSE)

A Greybox Component Model For
Uniform XML Composition

►  A document fragment
component is a fragment group
of a document language
■  OpenOffice XML, Word XML,

AbiWord, many others
►  Uniform representation for

■  Text
■  Pictures
■  Sheets

 Invasive document composition adapts and extends
document fragment components

at hooks
by transformation

Component-Based Software Engineering (CBSE)

Implicit Hooks For XML

►  A hook (extension point) is given by the document language
►  In XML given by the DTD or Xschema

►  Hooks can be implicit or explicit (declared)
■  We draw implicit hooks inside the component, at the border

►  Example List Entry/Exit

 ...
 ...

List.entry

List.exit

Component-Based Software Engineering (CBSE)

The Composition Technique of Invasive Composition

►  A composer is a tag transformer from unbound to bound hooks
 composer: box with hooks --> box with tags

 Invasive Document Composition

 parameterizes and extends
document components

at hooks
by transformation

Component-Based Software Engineering (CBSE) 24

List Entry List Entry

List Exit
List Exit

 ...
 ...

// Composition program:

box.findHook(„ListEntry“).extend(„... ”);

box.findHook(„ListExit“).extend(“... ”);

 ...
 ...
 ...
 ...

Component-Based Software Engineering (CBSE) 25

Composer

Invasively transformed tags

►  Invasive Composition works
uniformly over code and data

►  Allows to compose XML
documents uniformly

►  Extend operation implements
what we need for document
architectures

Invasive XML Composition

Component-Based Software Engineering (CBSE) 26

Operations on XML Hooks

Basic Operators
►  bind (parameterize)
►  extend
►  rename
►  Copy
►  Self-expand (script in

slot markup language)

Derived Operators
Ø  Inherit
Ø Weave (distribute)

•  With point-cut
specification

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

50.3 Query Operators for
Extracting Fragments
from Document Components

Component-Based Software Engineering (CBSE)

Documents Must be Decomposed by Query Operators

►  For architecture of active documents, we need fragment composition and
decomposition, fragment extraction and selection, fragment
exporting and hiding
►  For fragment-based composition of documents, other documents need to be

decomposed, extracted and selected
■  Fragment querying with a query operator using a fragment query

language
■  Fragment selection or query
■  Fragment component search

►  In the simplest case, components export all fragments (white-box)
■  Visibility can be controlled by fragment export languages forming export interfaces

Component-Based Software Engineering (CBSE)

Query Operator with Query Language 1

►  Basic Operation to query Fragments:
►  query: ExprInQueryLanguage à ExportedDefinitions

\cite
\cite

\cite

\cite

\bibliography{}

Query language with
regular expressions like
„\cite{.+}“

Example 1:

Component-Based Software Engineering (CBSE) 30

Query Operator with Query Language 2

\begin{deliverable}

\input{deliverables}

\begin{deliverable}
\begin{deliverable}

\begin{deliverable}

 Query language based on
abstract syntax tree,
together with regular
expressions

Example 2:

Component-Based Software Engineering (CBSE) 31

Query Operator with Query Language 3

Uwe Assmann:Fårhagsvägen 128
Robert Kaminski:Platensgatan 9
Jens Gustavsson: Stora Torget 14

Query language:
Relational algebra,

started by script

Example 3:

Component-Based Software Engineering (CBSE) 32

Another Simple Query Language is XSLT

<html>
..

<table>
 <tr>
 <td>Employee</td>
 <td>Address</td>
 </tr>
 <tr>
 <td>Uwe Assmann</td>
 <td>Farhagsvägen 128</td>
 </tr>
 <tr>
 <td>Robert Kaminski</td>
 <td>Platensgatan 9</td>
 </tr>
</table>
</html>

XSLT

Component-Based Software Engineering (CBSE) 33

Basic Operations on Hooks of Active Documents

Basic Operators
►  bind (parameterize)
►  extend
►  rename
►  copy
►  query

Derived Operators
Ø  Inherit
Ø Weave (distribute)

•  With point-cut
specification

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

50.3.2 Export Operators for
Exporting Fragments
from Document Components

Component-Based Software Engineering (CBSE)

Fragment Query Operators and Their Languages

►  A exported fragment (provided or published fragment) is defined by a
component of an active document and exposes to the external world

►  The programmer declares the exported item in a fragment export language
►  a markup language (explicit definition, embedded)
►  Often the explicit specification of exports of fragments is too cumbersome

►  The fragment export language can be a fragment query language
►  a query language (implicit definition, exbedded), to select fragments from a

component
►  a query language (implicit definition, exbedded)
►  a position addressing language (implicit, exbedded)

►  In whitebox reuse, fragment export and query language coincide

Component-Based Software Engineering (CBSE) 36

Basic Operations on Hooks of Active Documents

Basic Operators
►  bind (parameterize)
►  extend
►  rename
►  copy
►  query
►  publish

Derived Operators
Ø  Inherit
Ø Weave (distribute)

•  With point-cut
specification

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

50.4 Explicit Invasive Architectures
for Active Documents

Component-Based Software Engineering (CBSE) 38

The Architecture of Case 1
\cite in LaTeX

query(„\cite{.+}“)

\cite
\cite

\cite

\cite

.bib
file

\bibliography{}
.bbl
file

bibtex

extend

query(„@InBook{.*}“)

Component-Based Software Engineering (CBSE)

The Architecture of Case 1
With Multiple Components

Ø  Architecture of Active Document does not depend on the number
of input components

query(„\cite{.*}“)

\cite

\cite

\cite

\cite

\bibliography{} .bbl
file

bibtex

extend

.bib
file

query(„@InBook{.*}“)

Component-Based Software Engineering (CBSE)

 AST

AST walker

The Architecture of Case 2
Deliverables

\begin{deliverable}

\input{deliverables} deliverable
table

\begin{deliverable}
\begin{deliverable}

\begin{deliverable}

extend

Component-Based Software Engineering (CBSE)

Advantages of Export Declarations For Example 1

►  We have queried the document's architecture
►  LaTeX becomes simpler

■  query is separated into the composition level
►  Standard language to write the compositions

■  no architectural language required
►  Documents are real components, with a composition interface

Component-Based Software Engineering (CBSE)

Advantages for Example 2

►  LaTeX cannot interprete the AST
■  and cannot treat relational algebra either

►  We can employ many different definition (query, markup) languages
►  We can employ many different connection and composition languages

■  and write connectors with them
►  Flexible composition approach

Component-Based Software Engineering (CBSE)

MySQL

The Architecture of Case 3
Database-driven Web Document

Uwe Assmann:Fårhagsvägen 128
Robert Kaminski:Platensgatan 9
Jens Gustavsson: Stora Torget 14

XSLT

bind
<table>

Component-Based Software Engineering (CBSE)

Architecture of Spreadsheets (Case 4)
©

 P
ro

f.
 U

.
A

ß
m

an
n

44

Component-Based Software Engineering (CBSE)

Advantages of Architectures for Active Documents

►  Better separation of concerns: A lot of embedded scripts in HTML is
composition code, let's move it out!

►  Better reuse
■  Scripts are removed from HTML pages
■  The template can be reused in other contexts where the table expansion is not

required
►  Simplifying web engineering

Component-Based Software Engineering (CBSE)

Afterthought: What Flows Through an Active Document

►  In contrast to a software architecture, in active documents document
fragments flow
■  Like in a spreadsheet, the dataflow graph is acyclic (spreadsheet-documents)
■  Generation and modification of values are modeled with export declaration

languages (script languages)
►  In contrast to a software architecture, the values only change when the user

changes a component
■  Pushed once through that graph, the document is updated
■  Transclusion works for dataflow graphs!

►  Requirements for Active Document Architectures
■  Fragment queries or export definitions
■  Invasive embedding of results
■  Hot update of all computations (aka transconsistency)

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

50.4 Transconsistency –
A New Architectural Principle for Hot Update in
Composed Active Documents

Component-Based Software Engineering (CBSE)

Transclusion

►  Transclusion is embedded sharing of document components in distributed
editing scenarios with hot update
■  Invented by Ted Nelson, the inventor of hypertext

►  „hot update“ (incremental update)
■  Every change in a definition is immediately shared by all uses
■  Realized by reference and special edit protocols
■  Semantics is between call by name and call by value

►  Nelson says: “That's what the computer is all about”

http://xanadu.com.au/
ted/

Component-Based Software Engineering (CBSE)

AST walker

Hot Update is Necessary in Active Documents

\begin{deliverable} AST

\input{deliverables} deliverable
table

\begin{deliverable}
\begin{deliverable}

\begin{deliverable}

extend

Transclusion Semantics

Component-Based Software Engineering (CBSE)

Transconsistency of Active Documents (Immediate Update)

►  The architecture of an active document should obey immediate (hot) update
(transconsistency)
■  Transclusion only deals with equality of hooks, but does not treat operations or

modifications
■  Dependent components must be updated immediately

►  For transconsistency, transclusion is a basis
■  Transconsistency requires a data-flow graph over operations in the document, i.e.,

a data-flow-based architecture
■  Whenever the input of a slice of the data-flow graph changes, recompute the

result by reevaluating the slice
►  Transconsistency requires invasive embedding

■  The component model of an active document must be graybox, otherwise
embeddings are not possible

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

50.4.1. A Graph-Theoretic
Definition of Transconsistency

Component-Based Software Engineering (CBSE)

Transclusion in Flow Graphs of Embedding Operations

►  Let D be a dataflow graph of embedding operations, a bipartite graph of
EmbeddingOperations and Values.

►  D is called transclusive, if:
■  If an input value changes, all dependent values are declared inconsistent

immediately, until they are reembedded

embedding

embedding

Component-Based Software Engineering (CBSE)

Transconsistency in Data Flow Graphs

►  Let D be a dataflow graph,
a bipartite graph of Operations
and Values.

►  D is called transconsistent, if the
hot update condition is true:
■  If an input value changes, all

dependent values are declared
inconsistent immediately, until
they are recomputed

immediately

Component-Based Software Engineering (CBSE)

embedding

Transconsistency in Active Documents

►  Let A be an active document with an underlying dataflow graph D for
document parts.

►  Then, D is called the architecture of A.
►  A is called transconsistent, if D is transconsistent

embedding

Component-Based Software Engineering (CBSE)

Transclusion and Transconsistency

Transconsistency
=

Transclusion +
Data flow graph

Transconsistent Architecture
=

Transconsistency + Architecture

Transclusion
=

Invasive Embedding +
Incrementality (hot update)

Component-Based Software Engineering (CBSE)

Transconsistency Goes
Beyond Transclusion

►  Transclusion only treats embedding and hot update
►  It does not treat

■  Operations beyond embedding
■  Data flow graphs of these operations
■  Components

Component-Based Software Engineering (CBSE)

Examples for Transconsistency in Applications

Ø  Spreadsheets: A spreadsheet relies on a dataflow graph (pipe-and-filter)
■  It is a set of slices, i.e., a set of expressions, or scriptlets
■  A scriptlet describes a dataflow graph of operations
■  Every slice is independent, i.e., can be recomputed independently

►  Spreadsheets are simple active document with transconsistency, i.e.,
immediate update

►  Spreadsheets do not have architecture
■  No component model nor composition interface

Ø  Web Form Documents: Servlet-based documents rely on re-expansion if
users change forms or templates

►  The servlets span up a data flow graph
■  Templates and form inputs are the inputs
■  Result pages the output

►  The regeneration is an implementation of transconsistency

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

50.4.2 Transconsistent
Architectures

•  Uniform Composition of Active Documents with Staging and
Transconsistency

Component-Based Software Engineering (CBSE)

Transconsistent Documents

►  Transconsistent documents are active documents with explicit
transconsistent architecture
■  Like spreadsheets, but with explicit architecture
■  Based on a

.  Dataflow graph

.  Graybox component model (invasive embedding)

.  Incrementaility (Hot update)
►  Purpose of Transconsistent Architectures

■  Transconsistency copes interactive editing
■  This is fundamentally different to the so-far batch-oriented style of software

construction, software build, and software execution
■  Transconsistency is needed in software editing, too

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

50.5 Transconsistent Architectural
Styles

•  Composition of Active Documents with Staging and
Transconsistency

Component-Based Software Engineering (CBSE)

Spreadsheet-Documents (1-Pass Active Documents) and
Pipe-And-Filter Architectures

►  Spreadsheet-Documents: A spreadsheet-document is a an active
document with a data-flow (pipe-and-filter) architecture
■  Resembles spreadsheets, but with explicit architecture
■  The question is how often the filter architecture is evaluated for transconsistency
■  A web form (e.g., JSP) is a distributed spreadsheet-document

■  A spreadsheet-document can be made transconsistent in 1 pass
over the data-flow architecture (1-pass active document)

Component-Based Software Engineering (CBSE)

Distributed 1-Pass Document
Web Form Processing with JSP

►  Should be transconsistent...

Form field

Form result Html
snippet

Servlet
expansion

Java servlet Class

JSP

Component-Based Software Engineering (CBSE)

2-Pass Transconsistent Documents

►  Transconsistent documents underly a dependency graph for their update
■  This dependency graph must be acyclic

►  Evaluation classes for transconsistent documents
■  1-pass problems along the document (all definitions before uses)
■  2-pass (backpatch problems) along the document
■  Statically orderable along the dependencies (similar to wavefront or OAG)
■  Form processing

Component-Based Software Engineering (CBSE) 64

Ex.: Citations and Bibtex
(2-Pass-Document)

\cite{\(.*\)}

references

all in set

.bbl
file

bibtex

.bib
file

query(„@InBook{.*}“) bibref
file

Component-Based Software Engineering (CBSE) 65

Ex.: References
(2-Pass-Document)

\ref{\(.*\)}

references

all in set

chapter
numbers

unification

ref
file

\label{\(.*\)}

all in set

label
file

Component-Based Software Engineering (CBSE) 66

Ex.: Central Tables (2-Pass-Document)

deliverable
table

\begin{deliverable}
.*
\end{deliverable}

deliverables

all in set

Component-Based Software Engineering (CBSE) 67

Ex.: Person Cost Calculation Central Tables (2-Pass-
Document)

sum up
person months

\begin{tasks}
.* & \(.*\) \\
\end{tasks}

PersonMonths

all in set

Component-Based Software Engineering (CBSE)

Stream-Documents (Spreadsheet Documents with Pipe
Ports)

►  Instead of being a closed document, spreadsheet-documents can be open in
the sense that they take in data streams over stream ports

►  Such a change corresponds to a document extension, but works via
communication channels/connectors

►  User changes and sends via ports are the similar effects
■  User change: change component values
■  Send via ports: change from external world

Component-Based Software Engineering (CBSE) 69

Transconsistent Documents:
Roundtrip Engineering Documents

Requirements aspect

Testing aspect

Core
(Algorithm)

Op

Consistent
roundtrip

editing of views

Op
Op

Op

Op

Op Op

Testing

Architecture aspect

Architecture

Component-Based Software Engineering (CBSE) 70

Transconsistent Architectural Styles for Active Documents

2-Pass Active Documents

Stream-Documents

Round-trip
Documents

Spreadsheet-Documents
(interactive)

1-Pass Active Documents

Web-Form-Documents
(distributed, interactive)

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

50.6. Benefit of Transconsistent
Architectures For Active Documents

Component-Based Software Engineering (CBSE)

Advantages of Transconsistent Active Documents

►  Beyond standard document models (such as OLE):
■  Explicit distinction between architecture and content
■  Better reuse
■  Can be combined with staged composition for Web engineering

►  Beyond spreadsheets:
■  Full table and sheet extension, not only value transconsistency (table extension

hot update)
►  Beyond template-based documents:

■  Decentralized definition of databases/relations
►  Benefits for Web Engineering

■  Transconsistent active documents provide a first unified model for web- and
document engineering

■  Beyond simple approaches such as JSP, ASP
■  Improvement of quality:

.  Documentative due to architecture

.  Gets rid of the spagetti code in web engineering

Component-Based Software Engineering (CBSE)

Summary

►  For engineering of active documents, explicit distinction of architectures is
important
■  Invasive embedding is required
■  Data flow graphs are required

►  Transconsistent architectures are an important architectural styles for active
documents
■  Rely on an extended concept of transclusion
■  Cope with streams of interactive input

Component-Based Software Engineering (CBSE)

The End

Ø  What is the difference of a transconsistent composition program and a
normal one?

Ø  Compare transclusion and transconsistency.
Ø  Why is an architecture important for an active document?

