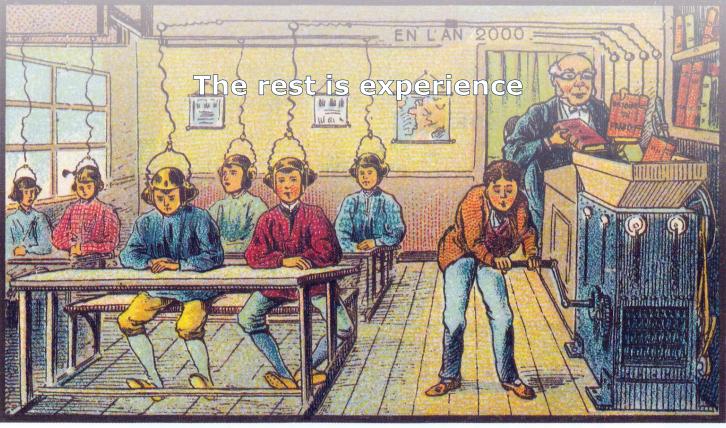


Fakulty of Computer Science Institute for Software and Multimedia Technology, Software Technology Group

How To Do Scientific Presentations

Lecture ASiCS SS2017 Speaker Thomas Kühn


Basis

We learn ...

by ...

painting writing presenting

examining paintings reading articles watching presentations

At School France in XXI Century 19 Jhd., Wikimedia Commons, (Public Domain)

Beginners Guide Scientific Presentations Learning by Doing Learning by Watching TA UNG aArtist.com

Death-by-Presentation by Frits Ahlefeldt-Laurvig (http://www.flickr.com/photos/hikingartist/3515471358/)

3 / 30

What is the goal of the presentation?
Why are you giving the presentation?
When will your presentation be held?
How will you support your statements?
Where will your presentation be held?
Who will be your audience?

- Rudyard Kipling, I Keep Six Honest Serving Men ...

20%	70%	10%
Motivation	Core Statements	Conclusion

- Every Presentation tells a story
- Continuous use of **one** running example
- Conclude by summarizing core statements
- Prefer a linear narrative

Rough Outline

- Introduction
- Background
- Core statement
- End

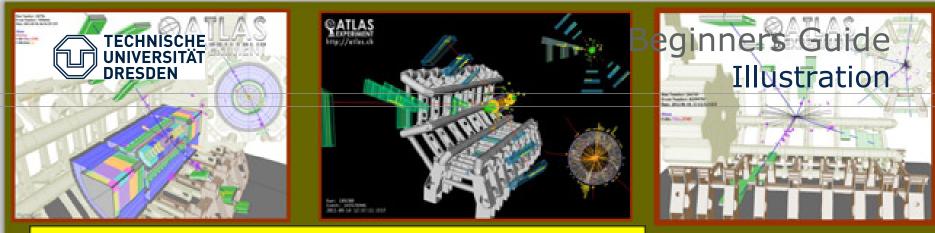
(outline, motivation, example) (context, problems, history) (idea, solution, results) (conclusion, outlook)

"Story Grammar" [Piesk1997]

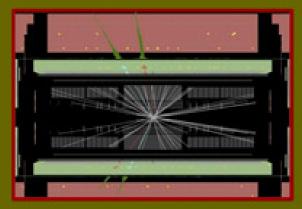
- 1. Problem / Importance
 - Hero has unsolvable problem
- 2. Needs:
 - Hero lacks a "slice of heaven"
- 3. Wish:
 - Hero has a goal to strive for
- 4. Antagonist:
 - Antagonists pursue the same goal
- 5. Plan / weapon / tool:
 - Hero uses it to reach the goal
- 6. Battle:
 - Battle between hero and antagonists
- 7. Insight:
 - Insight is gained after battle is won

Motivation Problems Goals State of the Art Solution **Evaluation** Results

DO NOT


Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

Beginners Guide Illustration



Status of Standard Model Higgs searches in ATLAS

Using the full datasets recorded in 2011 at $\int s= 7$ TeV and 2012 at $\int s=8$ TeV: up to 10.7 fb⁻¹

Fabiola Gianotti (CERN), representing the ATLAS Collaboration

- Short lists (max. 7 words)
- Use short, precise formulations
- Use clean templates (without decorations)
- Commit to one (sans serif) font
- Use (few) colors consistently

- Sharp (high-resolution) images
- Use **bold**, *italic*, <u>underline</u> for highlighting
- Use figures to illustrate complex processes
- Use *animations/transition effects* only to explain complex relationships
- Present only significant information

- Practice, practice, practice
- Conceive precise formulations, metaphors, examples
- Especially, practice slide transitions
- Train self-control *(facial expression, gestures, intonation, ...)*
- Avoid useless filler words (*ehm*, *so*, *also*, *yes*...)
- Avoid long anecdotes, stick to the point
- Find ways to calm yourself

- In which context will you give your presentation?
 - Knowledge of your audience
 - Type of event
 - Goals of the event / your presentation
- What is the core statement of your presentation?
- What story do you tell?
- Which example do you use?
- Which illustrations will you choose?

Outline

Beginners Guide

- **Scientific Presentations**
- Learning by Doing
- Learning by Watching

Death-by-Presentation by Frits Ahlefeldt-Laurvig (http://www.flickr.com/photos/hikingartist/3515471358/)

ILA UNE

16 / 30

aArtist.com

Scientific Presentations

Figure 1: Alexander von Humboldt, Wikimedia Commons (Public Domain)

High Standards for Scientific Presentations

- Complex topics
- Fixed structure (outline)
- More information in less time
- Requires correct citations
- Depiction of
 - Tables,
 - Statistics, and
 - Mathematical formulae
- Professional audience

- Introduction *Motivation, scientific scope*
- Problem Definition *Problems, goals, success criteria*
- Concept Idea, hypothesis, core statement, method
- Evaluation

Qualitative or quantitative evaluation

- Related work
- Conclusion

Scientific contributions, future work

- Use a *Corporate Design*¹ templates, if available
 - Predefined slide backgrounds
 - Predefined slide layout (may customize)
 - Predefined color scheme
- Create your **own** prototypes
 - Refine the templates towards
 - Space-saving layout
 - Modified background (watermark)
 - Reuse of typical slides

Title, author information, references, ...

- List referenced literature at presentation's end
- Quotation:

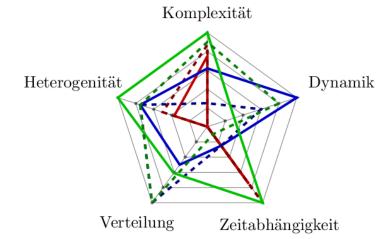
"Software is getting slower more rapidly than hardware becomes faster." – Niklaus Wirth [Wirth1995]

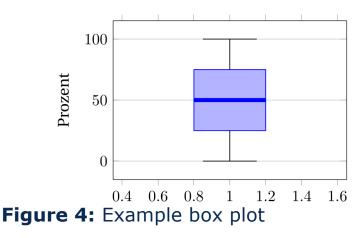

• Citation:

Role-Object-Pattern [Bäumer1998]

• Footnote for web links:

Eclipse¹ is a widely used Development Environment


- 1) www.eclipse.org
- Subtitle for figures, tables, diagrams:
 - Pay attention to copyright licenses (Creative Commons)



Scientific Presentations Statistics and Charts

Figure 3: Radar chart [Kühn2013]

Qualitative Evaluation

- Tables unsuitable
- Focus on interesting details
- Derivation of analysis diagrams
 - Pie charts
 - Radar charts
 - ...

Quantitative Evaluation

- Tables for small analyses
- Plots for larger analyses
 - Line chart
 - Box plots

• ...

Few Mathematical Formulae

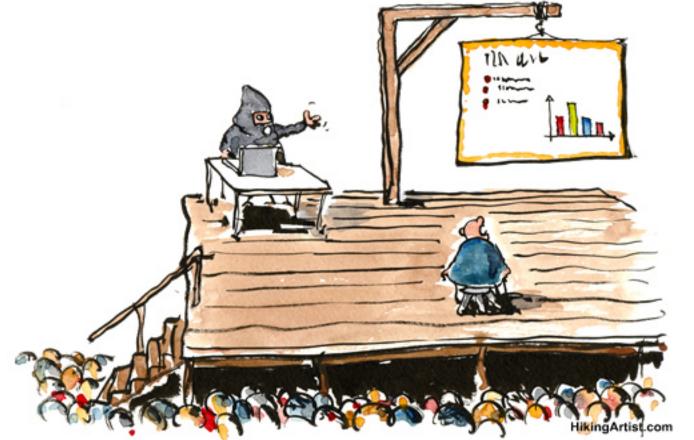
- Simply use special characters card: $(R \rightarrow N \times N) \cup (Rel \rightarrow N \times N \times N \times N)$
- Integrated formal editor

$$\sum_{m=3}^{n/2} \frac{1}{\ln(m)} \frac{1}{\ln(n-m)} \approx \frac{n}{2\ln^2(n)}$$

Many Mathematical Formulae and Definitions

• Better use *LaTeX/Beamer* instead

- Take knowledge of audience/type of event into account
- A good story and example is crucial
- Avoid overloading your presentation
- Focus only on important information/facts
- Every slide must answer a question (Who?, What?, Why?, How?, ...)
- Follow scientific practices and standards (Citations, Bibliography, List of references)
- Use suitable illustrations for complex statements



Learning by Doing PowerPoint[™] Karaoke

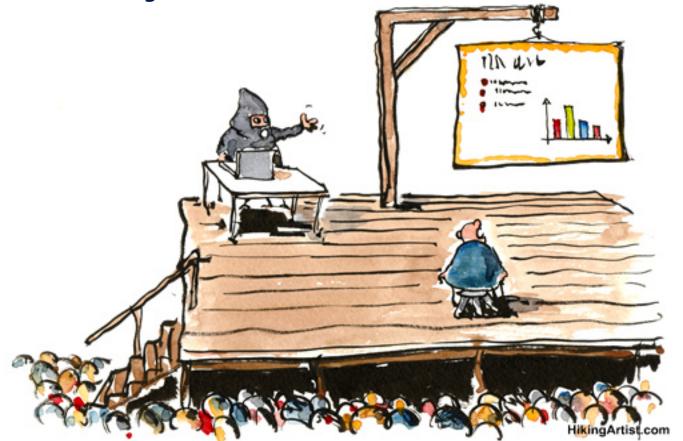
Task:

- Present 2-3 unknown slides
- Convince your audience
- Cope with the stress

24 / 30

Death-by-Presentation from Frits Ahlefeldt-Laurvig (http://www.flickr.com/photos/hikingartist/3515471358/)

Learning by Doing


Toyogeki Movie in Toyooka, Wikimedia Commons (GNU Free Documentation License)

Learning by Watching The Good, the Bad, and the Ugly

Task:

- Why is a certain presenter good/bad?
- Who tells a story?
- Who designed the best slides?

Death-by-Presentation by Frits Ahlefeldt-Laurvig (http://www.flickr.com/photos/hikingartist/3515471358/)

26 / 30

Lernen durch Betrachten The Good, the Bad, and the Ugly

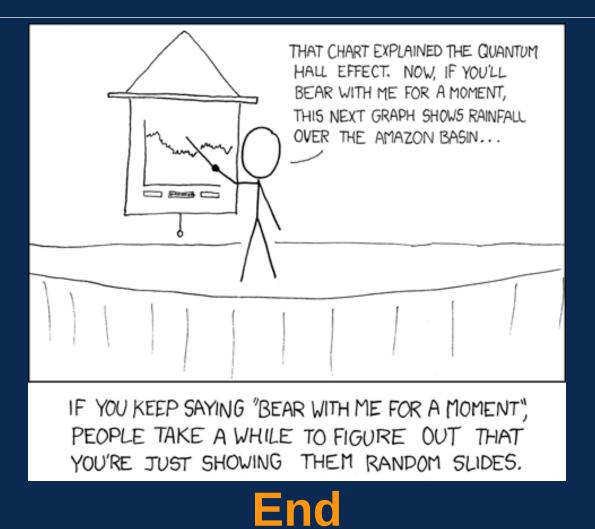
http://www.youtube.com/watch? v=xWFsdbP71ZA

https://www.youtube.com/watch? v=ucBssR7RFJc (My 2nd worst presentation)

http://cdn.media.ccc.de/congress/2013/mp4/30 c3-5304-en-**CounterStrike**_h264-hq.mp4

http://cdn.media.ccc.de/congress/2013/mp4/30 c3-5537-en-**Glass_Hacks**_h264-hq.mp4

Toyogeki Movie in Toyooka, Wikimedia Commons (GNU Free Documentation License)


This presentation is based on:

- Academic Skills in Computer Science (AsiCS) Bertram Fronhöfer, Christoph Wernhard, und Uwe Aßmann Lecture in winter semester (2013)
- Wissenschaftliches Arbeiten und Lerntechniken.
 Erfolgreich studieren gewusst wie!
 Christine Stickel-Wolf und Joachim Wolf
 Updated and revised edition (2009)

How To Do Scientific Presentations

[Bäumer1998] The Role Object Pattern

Dirk Bäumer, et al.

Washington University Dept. of Computer Science (1998)

[Gianotti2012] Status of Standard Model Higgs searches in ATLAS

Fabiola Gianotti Representing the ATLAS Collaboration, CERN (2012)

[Kühn2013] Tools and Materials in the Context of Cyber-Physical Systems

Thomas Kühn

Diplomarbeit, TU Dresden (2013)

[Piesk1997] Natürlichsprachliche Interaktion mit autonomen 3D-Charakteren Konzeption und Implementierung eines virtuellen Darstellers als dialogfähigen Agenten.

Jens Piesk Diplomarbeit, Köln (1997)

[Wirth1995] A Plea for Lean Software

Niklaus Wirth Computer 28.2 (1995)

