
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

Component-Based Software Engineering (CBSE)
10. Introduction

Prof. Dr. Uwe Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/cbse

05.04.2017

Lecturer: Dr. Sebastian Götz

1. Basics of Composition Systems

2. Historic Approaches and
Black-Box Composition

3. Gray-Box Composition

Component-Based Software Engineering (CBSE)

The Power of Components

http://upload.wikimedia.org/wikipedia/commons/thumb/1/13/Container_ship_Hanjin_Taipei.jpg/800px-Container_ship_Hanjin_Taipei.jpg

Component-Based Software Engineering (CBSE)

Goals

► Component-based software engineering (CBSE) is the generalization of
object-oriented software engineering (OOSE)

► Understand how to reuse software

► Component models are the basis of all engineering

► What is a composition system?

► The difference of component-based and composition-based systems

► The difference of component and composition systems

► What is a composition operator? composition expression? composition program?
composition language?

► Understand the difference between graybox and blackbox systems
(variability vs. extensibility)

► Understand the ladder of composition systems

► Understand the criteria for comparison of composition systems

Component-Based Software Engineering (CBSE)

The Destructive Power of Ill-Used Components: The
Ariane 5 Launcher Failure

June 4th 1996

Total failure of the

Ariane 5 launcher on its

maiden flight

The following slides are from

Ian Summerville, Software

Engineering

http://www.astronews.com/news/artikel/2002/12/0212-009.shtml

Credit: DLR/Thilo Kranz (CC-BY 3.0) 2013

http://commons.wikimedia.org/wiki/File:Ariane_5ES_with_ATV_4_on_its_way_to_ELA-3.jpg

Component-Based Software Engineering (CBSE)

Ariane 5 Launcher Failure

■ Ariane 5 can carry a heavier payload than Ariane 4

■ Ariane 5 has more thrust (Schub), launches steeper

► 37 seconds after lift-off, the Ariane 5 launcher lost control

■ Incorrect control signals were sent to the engines

■ These swivelled so that unsustainable stresses were imposed on the rocket

■ It started to break up and self-destructed

► The system failure was a software failure

Ian Summerville, Software Engineering

Component-Based Software Engineering (CBSE)

The Problem of Component Reuse

► The attitude and trajectory of the rocket are measured by a computer-
based inertial reference system

■ This transmits commands to the engines to maintain attitude and direction

■ The software failed and this system and the backup system shut down

► Diagnostic commands were transmitted to the engines

■ ..which interpreted them as real data and which swivelled to an extreme position

► Technically: Reuse Problem

■ Integer overflow failure occurred during converting a 64-bit floating point number
to a signed 16-bit integer

► There was no exception handler

■ So the system exception management facilities shut down the software

Ian Summerville, Software Engineering

Component-Based Software Engineering (CBSE)

Software Reuse Error

► The erroneous software component (Ada-83) was reused from the Ariane 4
launch vehicle.

► The computation that resulted in overflow was not used by Ariane 5.

► Decisions were made in the development

■ Not to remove the facility as this could introduce new faults

■ Not to test for overflow exceptions because the processor was heavily loaded.

■ For dependability reasons, it was thought desirable to have some spare processor
capacity

► Why not in Ariane 4?

► Ariane 4 has a lower initial acceleration and build up of horizontal velocity than
Ariane 5

■ The value of the variable on Ariane 4 could never reach a level that caused
overflow during the launch period.

■ That had been proved (proven component contract for Ariane 4)!

■ The contract was not re-proven for Ariane-5

■ There was also no run-time check for contract violation in Ariane-5

Ian Summerville, Software Engineering

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

10.1. Basics of Composition Systems

•Component-based software engineering is built on

composition systems.

•A composition system has a component model, a

composition technique, and a composition language.

Component-Based Software Engineering (CBSE)

Motivation for Component-Based Development

► Component-Based Development is the basis of all engineering

► Development by “divide-and-conquer” (Alexander the Great)

■ Well known in other disciplines

. Mechanical engineering (e.g., German VDI 2221)

. Electrical engineering

. Architecture

► “Make, reuse or buy” decisions (reuse decisions):

► Outsourcing to component producers (Components off the shelf, COTS)

► Reuse of partial solutions

► Easy configurability of the systems: variants, versions, product families

► Scaling business by Software Ecosystems

► Component models and composition systems are the technical basis for all
modern software ecosystems: Linux, Eclipse, AutoSAR, openHAB,…

Component-Based Software Engineering (CBSE)

Mass-produced Software Components

► Mass Produced Software Components [McIlroy, Garmisch 68, NATO
conference on software engineering]:

■ Every ripe industry is based on components, to manage large systems

■ Components should be produced in masses and composed to systems afterwards

Yet this fragile analogy is belied when we seek for analogues of other tangible
symbols of mass production.
•There do not exist manufacturers of standard parts, much less catalogues of

standard parts.

•One may not order parts to individual specifications of size, ruggedness, speed,

capacity, precision or character set.

In the phrase `mass production techniques,' my emphasis is on
`techniques' and not on mass production plain. Of course mass production,

in the sense of limitless replication of a prototype, is trivial for software.

But certain ideas from industrial technique I claim are relevant.
•The idea of subassemblies carries over directly and is well exploited.

•The idea of interchangeable parts corresponds roughly to our term `modularity,' and is

fitfully respected.

•The idea of machine tools has an analogue in assembly programs and compilers.

Component-Based Software Engineering (CBSE)

Mass-produced Software Components

► Later McIlroy was with Bell Labs,

■ ..and invented pipes, diff, join, echo (UNIX).

■ Pipes are still today the most employed component system!

► Where are we today?

Component-Based Software Engineering (CBSE)

“Real” Component Systems

► Lego

► Square stones

► Building plans

► IC‘s

► Hardware bus

► How do they differ from software?

Component-Based Software Engineering (CBSE)

Definitions of Software Components

A software component is a unit of composition

• with contractually specified interfaces

• and explicit context dependencies only.

A software component

• can be deployed independently and

• is subject to composition by third parties.

(ECOOP Workshop WCOP 1997 Szyperski)

A reusable software component is a

• logically cohesive,

• loosely coupled module

• that denotes a single abstraction. (Grady Booch)

A software component is a static abstraction with plugs.

(Nierstrasz/Dami)

Component-Based Software Engineering (CBSE)

What is a Software Component?

► A component is a container with

■ Hidden inner

■ Public outer interface, stating all dependencies explicitly

■ Example: a snippet component is a snippet with

■ Inner: content (most often code snippets/fragments)

■ Outer: variation points, extension points that are adapted during composition

► Example: a class with provided and required interfaces

► Inner: methods as usual

► A component is a reusable unit for composition

► A component underlies a component model

■ that fixes the abstraction level

■ that fixes the grain size (widget or OS?)

■ that fixes the time (static or runtime?)

Component-Based Software Engineering (CBSE)

What Is a Component-Based System?

► A component-based system has the following divide-and-conquer
feature:

■ A component-based system is a system in which a major relationship between the
components is tree-shaped or reducible.

■ See course Softwaretechnologie-II

► Consequence: the entire system can be reduced to one abstract node

■ at least along the structuring relationship

► Systems with layered relations (dag-like relations) are not necessarily component-
based.

■ Because they cannot be reduced

► Because of the divide-and-conquer property, component-based
development is attractive.

► However, we have to choose the structuring relation and the composition model

► Mainly, 2 types of component models are known

■ Modular decomposition (blackbox)

■ Separation of concerns (graybox)

Component-Based Software Engineering (CBSE)

Component Systems (Component Platforms)

► We call a technology in which component-based systems can be produced a
component system or component platform.

► A component system has

for description of

components

for compositions of

components

Component Model Composition Technique

Component-Based Software Engineering (CBSE)

Composition Systems

► A composition system has

Composition

Language

for programming-in-the-

large

and architecture

Component Model Composition Technique

Component-Based Software Engineering (CBSE)

Classical
Component Systems

Architecture Systems

Aspect Systems

View Systems

Darwin
BPMN HRC

Aspect/J
AOM

Invasive Composition
Piccola Gloo

Standard Components
Reflection

Architecture as Aspect
Connectors

Aspect Separation
Crosscutting

Composition
Operators

Composition
Language

Object-Oriented Systems
C++ Java
UML components

Objects as
Run-Time Components

Modular Systems Modules as Compile-
Time Components

Composition Filters
Hyperspaces

Software
Composition
Systems

.NET CORBA
Beans EJB
ArchJava

The Ladder of Composition Systems

Shell scripts
Modula Ada-85

Component-Based Software Engineering (CBSE)

Desiderata for Flexible Software Composition

► Component Model:

■ How do components look like?

■ Secrets, interfaces, substitutability

► Composition Technique

■ How are components plugged together, composed, merged, applied?

■ Composition time (Deployment, Connection, ...)

► Composition Language

■ How are compositions of large systems described?

■ How are system builds managed?

► Be aware: this list is NOT complete!

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

10.2 Historical Approaches to Components

Component-Based Software Engineering (CBSE)

The Essence of the 60s-90s:
LEGO Software with Black-Box Composition

► Procedural systems, stream-based systems

► Modular systems

► Object-oriented technology

► Component-based programming

■ CORBA, EJB, DCOM, COM+, .NET, OSGI

► Architecture languages

Composition recipe

Connectors

Components

Component-based
applications

Component-Based Software Engineering (CBSE)

Procedure Systems

► Fortran, Algol, C

► The procedure is the static component

► The activation record the dynamic one

► Component model is supported by almost all chips directly

■ jumpSubroutine -- return

Caller

Callee

Linker

Component-Based Software Engineering (CBSE)

Procedures as Composition System

Component Model Composition Technique

Composition Language

Content: binary code with symbols

Binding points: linker symbols

procedures (with parameters) and

global variables

Connection by linking object files

Program transformation on object files

Composition time: link-time, static

Component-Based Software Engineering (CBSE)

Modules (Information-Hiding-Based Design a la Parnas)

► Every module hides an important design decision behind a well-defined
interface which does not change when the decision changes.

We can attempt to define our modules “around” assumptions which are likely
to change. One then designs a module which “hides” or contains each one.

Such modules have rather abstract
interfaces which are relatively unlikely to
change.

Module

Module

Linker■ Static binding of functional interfaces to each other

■ Concept has penetrated almost all programming

languages (Modula, Ada, Java, C++, Standard ML,

C#)

Component-Based Software Engineering (CBSE)

Linker

Bound procedure
symbols, no

glue code

A Linker is a Static Composition Operator

► Static linkers compose modules at link time

► Dynamic linkers at run time

Provided

Required

Component-Based Software Engineering (CBSE)

Modules as Composition System

Component Model Composition Technique

Composition Language

Content: groups of procedures

Binding points: linker symbols

procedures (with parameters) and

global variables

Connection by linking object files

Program transformation on object files

Composition time: link-time, static

Component-Based Software Engineering (CBSE)

UNIX Pipes and Filters (McIlroy)

► Communication can take place once or many times
► By Calls (singular) or Streams (continuous)

► UNIX shells offer a component model for streams

■ Extremely flexible, simple

■ Communication with byte streams, parsing and linearizing the objects

► Component model

■ Content: unknown (depens on parsing), externally bytes

■ Binding points: stdin/stdout/stderr ports

■ More secrets: distribution, parallelism etc

► Composition technique: manipulation of byte streams

■ Adaptation: filter around other components. Filter languages such as sed, awk,
perl

■ Binding time: static, streams are connected
(via filters) during composition

► Composition languages

■ C, shell, tcl/tk, python, perl…

■ Build management language makefile

stdinFilter

Filter

stdout

stderr

stdin

pipe

Component-Based Software Engineering (CBSE)

Seite 28
Uwe Aßmann,

17.07.2003,sd&m-Konferenz 2003: Web Services

Shells and Pipes as Composition System

Component Model Composition Technique

Composition Language

Content: unknown (due to parsing),
externally bytes

Binding points: stdin/out ports

Secrets: distribution, parallelism

Adaptation: filter around other components

Filter languages such as sed, awk, perl

Binding time: static

C, shell, tcl/tk, python…

Build management language makefile

Version management with sccs rcs cvs

Component-Based Software Engineering (CBSE)

Communication

• Black-box components communicate either

• Via calls (singular):  algebraic data types, induction

• Via streams (continuous)  coalgebraic data types, coinduction

Component-Based Software Engineering (CBSE)

Seite 30
Uwe Aßmann,

17.07.2003,sd&m-Konferenz 2003: Web Services

Object-Oriented Systems

► Two sorts of components: objects (runtime) and classes (compile time)

■ Objects are instances of classes (modules) with unique identity

■ Objects have runtime state

■ Late binding of calls by search at runtime

Caller

Object

dispatch

Callee

Callee

Callee

Component-Based Software Engineering (CBSE)

Object-Oriented Systems

► Component Model

■ Content: classes (code, static) and objects (values, dynamic)

■ Binding points:

. monomorphic calls (static calls)

. polymorpic calls (dynamically dispatched calls)

► Composition Technique

■ Adaptation by inheritance or delegation

■ Extensibility by subclassing

► Composition Language: none

Component-Based Software Engineering (CBSE)

Seite 32
Uwe Aßmann,

17.07.2003,sd&m-Konferenz 2003: Web Services

Object-Orientation as Composition System

Component Model Composition Technique

Composition Language

Content: binary files, objects

Binding points: static and

polymorphic calls (dynamically

dispatched calls)

Adaptation by inheritance or delegation

Extensibility by subclassing

Component-Based Software Engineering (CBSE)

Commercial Component Systems
(COTS, Components off the Shelf)

► CORBA/DCOM/.NET/JavaBeans/EJB

► Although different on the first sight, turn out to be rather similar

Software bus (mediator, broker, connector)

Caller

Object

Callee

(Server)

Component-Based Software Engineering (CBSE)

CORBA
http://www.omg.org/corba

► Language independent, distribution transparent

► interface definition language IDL

► source code or binary

Component-Based Software Engineering (CBSE)

(D)COM(+), ActiveX
http://www.activex.org

► Microsoft’s model is similar to CORBA. Proprietary

► DCOM is a binary standard

Component-Based Software Engineering (CBSE)

Java Enterprise Beans

► Java only, event-based, transparent distribution by remote method
invocation (RMI)

► source code/bytecode-based

Component-Based Software Engineering (CBSE)

.NET
http://www.microsoft.com

► Language independent, distribution transparent

► NO interface definition language IDL (at least for C#)

► source code or bytecode MSIL

► Common Language Runtime CLR

Component-Based Software Engineering (CBSE)

COTS

► Component Model

■ Content: binary components

■ Secrets: Distribution, implementation language

■ Binding points are standardized

. Described by IDL languages

. set/get properties

. standard interfaces such as IUnknown (QueryInterface)

► Composition Technique

■ External adaptation for distributed systems (marshalling) and mixed-language
systems (IDL)

■ Dynamic call in CORBA

► Composition Language

■ e.g., Visual Basic for COM

Component-Based Software Engineering (CBSE)

Seite 39
Uwe Aßmann,

17.07.2003,sd&m-Konferenz 2003: Web Services

COTS as Composition System

Component Model Composition Technique

Composition Language

Content: binary components

Binding points are standardized

Described by IDL, Standard interfaces

Secrets: distribution, language

Adaptation for distributed systems
(marshalling) and mixed-language systems

Dynamic call in CORBA

VisualBasic for COM

Component-Based Software Engineering (CBSE)

Architecture Systems

► Unicon, ACME, Darwin, Reo (research languages)

■ feature an Architecture Description Language (ADL)

■ EAST-ADL, Artop are ADL in Embedded Software

■ BPEL, BPMN in Web Services

► Split an application into:

■ Application-specific part (encapsulated in components)

■ Architecture and communication (in architectural description in ADL)

■ Better reuse since both dimensions can be varied independently

Component-Based Software Engineering (CBSE)

Connector

Port

Interface

Role

Component Model in
Architecture Systems

► Ports abstract interface communication points

■ in(data), out(data)

■ Components may be nested

► Connectors as special communication components

Component-Based Software Engineering (CBSE)

Architecture can be exchanged independently of
components

► Reuse of components and architectures is fundamentally improved

Component

Component

Component

Component-Based Software Engineering (CBSE)

ACME Studio

Component-Based Software Engineering (CBSE)

Architecture Systems as Composition Systems

Component Model Composition Technique

Composition Language

Source or binary components

Binding points: ports

Adaptation and glue code by connectors

Scaling by exchange of connectors

Architectural language

Component-Based Software Engineering (CBSE)

Web Services and their Languages as Specific ADL

■ Languages: BPEL, BPMN

► Binding procedure is interpreted, not compiled

► More flexible than binary connectors:

■ When interface changes, no recompilation and rebinding

■ Protocol-independent

Caller

Object

Mediator

Callee

(Server)

SOAP

interpretation

Component-Based Software Engineering (CBSE)

Web Services as Composition System

Component Model Composition Technique

Composition Language

Content: not important

Interface Definition Language WSDL

Binding points are described by XML

Binding procedure is interpretation of SOAP

Secrets: distribution, implementation language

Adaptation for distributed systems
(marshalling) and mixed-language systems

Glue: SOAP, HTTP

UDDI, BPEL, BPMN

Component-Based Software Engineering (CBSE)

Composition
recipe

Connectors

Components

Component-based
applications

Black-Box Composition

Component-Based Software Engineering (CBSE)

The Essence of Black-Box Composition

► 3 Problems in System construction

■ Variability

■ Extensibility

■ Adaptation

► In “Design Patterns and Frameworks”, we learned about design patterns to
tackle these problems

► Black-box composition supports variability and adaptation

■ not extensibility

Component-Based Software Engineering (CBSE)

Classical
Component Systems

Architecture Systems

Aspect Systems

View Systems

Darwin
BPMN HRC

Aspect/J
AOM

Invasive Composition
Piccola Gloo

Standard Components
Reflection

Architecture as Aspect
Connectors

Aspect Separation
Crosscutting

Composition
Operators

Composition
Language

Object-Oriented Systems
C++ Java
UML components

Objects as
Run-Time Components

Modular Systems Modules as Compile-
Time Components

Composition Filters
Hyperspaces

Software
Composition
Systems

.NET CORBA
Beans EJB
ArchJava

The Ladder of Composition Systems

Shell scripts
Modula Ada-85

Component-Based Software Engineering (CBSE)

10.3 Gray-box Component Models

Component-Based Software Engineering (CBSE)

Grey-Box Component Models:
The Development of the Last Years

► View-based Programming

► Component merge (integration)

► Component extension

► Aspect-oriented Programming

► Views can cross-cut components

► Component distribution

Component-Based Software Engineering (CBSE)

Structure
Media plan

Light plan Water piple plan

Integrated
house

Aspects in Architecture

Component-Based Software Engineering (CBSE)

Debugging
aspect

Persistence
aspectAlgorithm

Debugging aspect
Persistence aspect

Persistence
aspectDebugging aspect

Weaver-Tool

Debugging aspect

Aspects in Software

Component-Based Software Engineering (CBSE)

Aspect Weavers Distribute Advice Components over Core
Components

Distributor
(Weaver)

► Aspects are crosscutting

► Hence, aspect functionality must

be distributed over the core

► The distribution is controlled by

a crosscut graph
Aspect

Core

Crosscut

graph

Component-Based Software Engineering (CBSE)

Aspect Systems As Composition Systems

Component Model Composition Technique

Composition Language

Core- and aspect components

Aspects are relative and crosscutting

Binding points: join points

Adaptation and glue code by weaving

Weaving is distribution

Weaving Language

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

10.3.1 Full-Fledged Composition Systems

Component-Based Software Engineering (CBSE)

Composition Systems

► All the following composition systems support full black-box and grey-box
composition, as well as full-fledged composition languages:

► Composition filters [Aksit,Bergmans]

► Hyperspace Programming [Ossher et al., IBM]

► Invasive software composition (ISC) [Aßmann]

Component-Based Software Engineering (CBSE)

Client Library

Client Library

Blackbox connection with glue code

Blackbox
Composition

Connectors are Composition Operators

 Usually, connectors connect (glue) black-box components for
communication

Component-Based Software Engineering (CBSE)

Client Library

Client Library

Blackbox connection with glue code

Client Library

Blackbox
Composition

Invasive
Composition

Connectors can be Grey-Box Composition Operators

 Connectors can work invasively, i.e., adapt components inside

Grey-box (Invasive) Connection

Component-Based Software Engineering (CBSE)

Composition Languages in Composition Systems

► Composition languages describe the structure of the system in-the-large
(“programming in the large”)

► Composition programs combine the basic composition operations of the
composition language

► Composition languages can look quite different

► Imperative or rule-based

■ Textual languages

■ Standard languages, such as Java

■ Domain-specific languages (DSL) such as Makefiles or ant-files

■ Graphic languages

■ Architectural description languages (ADL)

► Composition languages enable us to describe large systems

Component-Based Software Engineering (CBSE)

Composition Recipe

Composition Operators

Grey-box Components

System Constructed with an

Invasive Architecture

Invasive

Software

Composition

Composition Process in
Grey-Box Composition Systems

Component-Based Software Engineering (CBSE)

Conclusions for Composition Systems

► Components have a composition interface with variation and extension
points

■ Composition interface is different from functional interface

■ The composition is running usually before the execution of the system

■ From the composition interface, the functional interface is derived

► System composition becomes a new step in system build

Composition

•With
composition
interfaces

Deployment

•With functional
interfaces

Execution

•With functional
interfaces

Component-Based Software Engineering (CBSE)

The End

