
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

11. Metadata, -modelling, and -programming

Prof. Dr. Uwe Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/cbse

13.04.2017

Lecturer: Dr. Sebastian Götz

1. Searching and finding components

2. Metalevels and the metapyramid

3. Metalevel architectures

4. Metaobject protocols (MOP)

5. Metaobject facilities (MOF)

6. Metadata as component markup

Component-Based Software Engineering (CBSE)

Mandatory Literature

► ISC, 2.2.5 Metamodelling

► OMG MOF 2.0 Specification
http://www.omg.org/spec/MOF/2.0/

► Rony G. Flatscher. Metamodeling in EIA/CDIF — Meta-Metamodel and
Metamodels. ACM Transactions on Modeling and Computer Simulation, Vol.
12, No. 4, October 2002, Pages 322–342.
http://doi.acm.org/10.1145/643120.643124

http://doi.acm.org/10.1145/643120.643124

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

11.1. Searching and Finding
Components in Repositories

It should be as easy to find good quality reusable
software assets as it is to find a book on the

internet

Component-Based Software Engineering (CBSE)

Component Repositories

• Components must be stored in component repositories with metadata
(markup, attributes) to find them again

• Descriptions (Metadata)

• Attributes: Keywords, Author data

• Usage protocols (behavioral specifications)

• (Protocol) State machines record the sequence of calls to the component

• Sequence diagrams record parallel interaction sequences of the component

• Contracts (pre/post/invariants) specify conditions on the state before, after
and during the calls

• Examples of Component Repositories

• CORBA

• implementation registry

• interface registry

• COM+ registry

• Commercial Component Stores www.componentsource.com

• Debian Linux Component System (apt, dpkg)

• CTAN TeX Archive

http://www.componentsource.com

Component-Based Software Engineering (CBSE)

Why Searching Components?

 A public component repository is called a market, managed by a trader
(broker)

• Distributing or selling components

• Companies can register components at the trader

• Customers can search components in markets and buy or rent them

 Searching for functionality (interface, contract, protocol)

• Reuse instead of build

• Searching for components to replace own ones

• Semantic substituability should be ensured

 Searching for quality features

• Performance, energy consumption, reliability

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

11.2. An Introduction to Metalevels

“A system is about its domain. A reflective system is about itself.”

Pattie Maes, 1988

Component-Based Software Engineering (CBSE)

Metadata

► Meta: greek for “describing”

► Metadata: describing data (sometimes: self describing data). The type
system is called metamodel (i.e., a model describing a model)

► Metalevel: the elements of the meta-level (the meta-objects) describe the
objects on the base level

► Metamodeling: description of the model elements/concepts in the
metamodel

► Metalanguage: a description language for languages

Metadata

Data,
Code,

Information

Meta level
Concept level

Schema level

Base level
Instance level

Component-Based Software Engineering (CBSE)

Modeling Level 0:
Software Objects

car 1 car1.colorcar1.drive()

Modeling Level 1:
Software Classes
(meta-objects)
(Model)

Car void drive()

Class Method Attribute

Color

Metalanguage concepts
Modelling concepts
(Metametaclasses in the
metametamodel)

Modeling Level 2:
Language
A metamodel is a
language specification

Modeling Level 3:
Conceptual level
A metametamodel is a
metalanguage

Metalevels in Programming Languages
(The Meta-Pyramid)

car driving car color

Modelling
Concept

Language
concepts
(Metaclasses in the
metamodel)

Application
concepts

World
concepts

Real World

<<instance-of>

Component-Based Software Engineering (CBSE)

DSL and CL

 Domain-specific languages (DSL) form extensions on M2

 Composition languages (CL) also

 Language engineering means to develop M2 models (metamodels) using
M3 language

Component-Based Software Engineering (CBSE)

Notation

► We write metaclasses with dashed lines, metametaclasses with dotted lines

<<instance-of>>

<<instance-of>>

<<instance-of>>

car1:Car

Car:Class

Class:ModellingConcept

ModellingConcept

<<instance-of>>

<<instance-of>>

<<instance-of>>

car1

Car

Class

ModellingConcept

Component-Based Software Engineering (CBSE)

Classes and Metaclasses

► Metaclasses are schemata for classes, i.e., describe what is in a class

class WorkPiece { Object belongsTo; }

class RotaryTable { WorkPiece place1, place2; }

class Robot { WorkPiece piece1, piece2; }

class Press { WorkPiece place; }

class ConveyorBelt { WorkPiece pieces[]; }

public class Class {

Attribute[] fields;

Method[] methods;

Class(Attribute[] f, Method[] m) {

fields = f;

methods = m; }}

public class Attribute {

Object type;

Object value; }

public class Method {

String name; List parameters, MethodBody body; }

public class MethodBody { ... }

Metaclasses

Classes in a software system

Component-Based Software Engineering (CBSE)

Creating a Class from a Metaclass

► Using the constructor of the metaclass (Pseudojava used here)

► Then, classes are special objects, instances of metaclasses

Class WorkPiece = new Class(

new Attribute[]{ "Object belongsTo" },

new Method[]{});

Class RotaryTable = new Class(

new Attribute[]{ "WorkPiece place1", "WorkPiece place2" },

new Method[]{});

Class Robot = new Class(

new Attribute[]{ "WorkPiece piece1", "WorkPiece piece2" },

new Method[]{});

Class Press = new Class(

new Attribute[]{ "WorkPiece place" }, new Method[]{});

Class ConveyorBelt = new Class(

new Attribute[]{ "WorkPiece[] pieces" }, new Method[]{});

<<instance-of>>

WorkPiece

Class

RotaryTable

Robot Press

ConveyorBelt

Component-Based Software Engineering (CBSE)

Reflection (Self-Modification, Intercession,
Metaprogramming)

► Computation about the metamodel in the model is reflection

■ Reflection: thinking about oneself with the help of metadata

■ The application can look at their own skeleton and change it

. Allocating new classes, methods, fields

. Removing classes, methods, fields

► This self modification is also called intercession in a meta-object protocol
(MOP)

Data,
Code,

Information

Meta level

Base level

Metadata

Component-Based Software Engineering (CBSE)

Introspection

► Read-only reflection is called introspection

■ The component can look at the skeleton of itself or another component and learn
from it (but not change it!)

► Typical application: find out features of components
■ Classes, methods, attributes, types

► Introspection is very important in component supermarkets (finding
components)

Metadata

Data,

Code,

Information

Data,

Code,

Information

Component A Component B

Component-Based Software Engineering (CBSE)

Reading Reflection (Introspection)

 Used for generating something based on metadata information

Component component = .. get from market ..

for all cl in component.classes do

generate_for_class_start(cl);

for all a in cl.attributes do

generate_for_attribute(a);

done;

for all m in cl.methods do

generate_for_method(m);

done;

generate_for_class_end(cl);

done;

Component-Based Software Engineering (CBSE)

Full Reflection (Run-Time Code Generation)

 Generating code, interpreting, or loading it

for all c in self.classes do

helperClass = makeClass(c.name+”Helper");

for all a in c.attributes do

helperClass.addAttribute(copyAttribute(a));

done;

self.loadClass(helperClass);

self.addClass(helperClass);

done;

“A reflective system is a system in which the application domain
is causally connected with its own domain.“

Patti Maes

Component-Based Software Engineering (CBSE)

Metaprogramming on the Language Level

enum { Singleton, Parameterizable } BaseFeature;
public class LanguageConcept {

String name;

BaseFeature singularity;

LanguageConcept(String n, BaseFeature s) {

name = n;

singularity = s; }

}

LanguageConcept Class = new LanguageConcept("Class", Singleton);
LanguageConcept Attribute = new LanguageConcept("Attribute", Singleton);

LanguageConcept Method = new LanguageConcept("Method", Parameterizable);

Language concepts
(Metamodel)

Metalanguage concepts
Language description concepts

(Metametamodel)

<<instance-of>>

Class

Language
Concept

Attribute Method

Component-Based Software Engineering (CBSE)

Made It Simple

► Modeling Level M-1: real-world objects

► Modeling Level M0: objects in the running program

► Modeling Level M1: programs, classes, types

► Modeling Level M2: language

► Modeling Level M3: metalanguage, language description language

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

11.3. Metalevel Architectures

Component-Based Software Engineering (CBSE)

Repository
with Objects

as Artefacts

Base Level

Metalevel
Repository
with Concepts/

Types/Descriptions

as Artefacts

Metaobjects

Reflection

Meta-
program

Reflective Architecture

► A system with a reflective architecture maintains metadata and a causal
connection between meta- and base level.

■ The metaobjects describe structure, features, semantics of domain objects. This
connection is kept consistent

► Metaprogramming is programming with metaobjects

Component-Based Software Engineering (CBSE)

Examples

► 24/7 systems with total availability

■ Dynamic update of new versions of classes

■ Telecommunication systems

■ Internet banking software

► Self-adaptive systems

■ Systems reflect about the context and themselves and, consequently, change
themselves

► Reflection is used to think about versions of the systems

■ Keeping two versions at a time

Component-Based Software Engineering (CBSE)

Base Level

Metalevel

Metaobjects

Patrik

Introspection
Metaobjects

Introspective Architectures

Patrik

Component-Based Software Engineering (CBSE)

Base Level

MetalevelMetaobjects

Meta-
program

Staged Metalevel Architecture
(Static Metaprogramming Architecture)

Static Time

Dynamic Time

Component-Based Software Engineering (CBSE)

Parsing,
Analysing

Code
Generation,

Pretty

Printing

Intermediate
Representation

AST

Programs in
Target Form

ASG

Programs in
Source Form

Compilers

Component-Based Software Engineering (CBSE)

AST

Programs in
Target Form

ASG

Programs in
Source Form

Compilers Are Static Metaprograms

Meta-
program

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

11.4 Metaobject Protocols (MOP)

Component-Based Software Engineering (CBSE)

Metaobject Protocol (MOP)

► By changing the MOP (MOP intercession), the language semantic is changed

■ or adapted to a context

■ If the MOP language is object-oriented, default implementations of metaclass
methods can be overwritten by subclassing

■ and the semantics of the language is changed by subclassing

■ By changing the MOP of a component from a component market, the
component can be adapted to the reuse context

A meta-object protocol (MOP) is a reflective implementation of

the methods of the metaclasses (interpreter for the language)

describing the semantics, i.e., the behavior of the language

objects in terms of the language itself.

Component-Based Software Engineering (CBSE)

A Very Simple MOP

public class Class {
Class(Attribute[] f, Method[] m) {

fields = f; methods = m;

}

Attribute[] fields; Method[] methods;

}

public class Attribute {

public String name; public Object value;

Attribute (String n) { name = n; }

public void enterAttribute() { }

public void leaveAttribute() { }

public void setAttribute(Object v) {

enterAttribute();

this.value = v;

leaveAttribute();

}

public Object getAttribute() {

Object returnValue;

enterAttribute();

returnValue = value;

leaveAttribute();

return returnValue;

}

}

public class Method {
public String name;

public Statement[] statements;

public Method(String n) { name = n; }

public void enterMethod() { }

public void leaveMethod() { }

public Object execute() {

Object returnValue;

enterMethod();

for (int i = 0; i <= statements.length; i++) {

statements[i].execute();

}

leaveMethod();

return returnValue;

}

}

public class Statement {

public void execute() { ... }

}

Component-Based Software Engineering (CBSE)

Adapting a Metaclass in a MOP By Subclassing

public class TracingAttribute extends Attribute {
public void enterAttribute() {

System.out.println("Here I am, accessing attribute " + name);

}

public void leaveAttribute() {

System.out.println("I am leaving attribute " + name + ": value is " + value);

}

}

Class Robot = new Class(new Attribute[]{ "WorkPiece piece1", "WorkPiece piece2" },
new Method[]{ "takeUp() { WorkPiece a = rotaryTable.place1; } "});

Class RotaryTable = new Class(new TracingAttribute[]{ "WorkPiece place1",

"WorkPiece place2" }, new Method[]{});

Here I am, accessing attribute place1
I am leaving attribute place1: value is WorkPiece #5

Component-Based Software Engineering (CBSE)

An Open Language has a Static MOP

► An Open Language has a
static metalevel architecture
(static metaprogramming
architecture), with a static
MOP

► ... offers its AST as
metamodel for static
metaprogramming

■ Users can write static
metaprograms to adapt
the language

■ Users can override
default methods in the
metamodel, changing
the static language
semantics or the
behavior of the compiler

Language Extensions

Metamodel

Metaobject Protocol

Open
Compiler

Program with
Language Extensions

Program in
Standard Language

Standard
Compiler

Component-Based Software Engineering (CBSE)

An Open Language

► ... can be used to adapt components from a market at compile time

■ During reuse of the component in system generation

■ Static adaptation of components

► Metaprograms are removed during system generation, no runtime overhead

■ Avoids the overhead of dynamic metaprogramming

► Ex.:. Open Java, Open C++

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

11.5 Metaobject Facility (MOF)

A structural metalanguage for graphs

Component-Based Software Engineering (CBSE)

Metaobject Facility (MOF)

A metaobject facility (MOF) is a language specification
language (metalanguage) to describe the context-free structure
and context-sensitive structure of a language and to check the
wellformedness of models.
Dynamic semantics (interpretation) is omitted.

Component-Based Software Engineering (CBSE)

Metaobject Facility (MOF)

► MOF (metaobject facility) of OMG is a metalanguage to describe the structure of

modelling languages, and finally the structure of models as abstract syntax graphs

(ASG)

► MOF was first standardized Nov. 97, available now in version 2.0 since Jan 2006

► MOF is a minimal UML class diagram like language

► MOF provides the modelling concepts: class, inheritance, relation, attribute, signature,

package; but, e.g., method bodies are lacking

■ Constraints (in OCL) on the classes and their relations

► A MOF is not a MOP

■ The MOP is interpretative

■ A MOF specification does not describe an interpreter for the full-fledged language, but provides

only a structural description

Component-Based Software Engineering (CBSE)

MOF Describes, Constrains, and Generates
Structure of Languages on M2

Software Objects car 1 car1.colorcar1.drive()

Software Classes
(metaobjects)
(Model)

Car void drive()

Class Method Attribute

Color

Language concepts
(metaclasses in the
metamodel)

Meta-Concepts in the
metametamodel
(metalanguage
language description)

car driving car color

Programming
Language Concept

Real World

Component-Based Software Engineering (CBSE)

MOF

► A MOF specification (a MOF metamodel) is a typed attributed graph,
containing

► the concepts of a language as metaclasses

► Their relationships as associations between metaclasses

► Their constraints

► With MOF, the context-sensitive structure of languages is described,
constrained, and generated

■ Type systems

. to navigate in data with unknown types

. to generate data with unknown types

. Describing IDL, the CORBA type system

. Describing XML schema

■ Modelling languages (such as UML)

■ Relational schema language (common warehouse model, CWM)

■ Component models

■ Workflow languages

Component-Based Software Engineering (CBSE)

Describing Type Systems with the MOF

Software Objects

car1 car1.colorcar1.drive ()

Software Classes
(Types)

Car void drive()

Class Method Attribute

Color

Software Concepts
(Meta-classes)
(Type Systems such as
IDL, UML, C++, C, Cobol)

Meta-Concepts
(Meta-meta model)
(Meta-object facility MOF)

Concept

Meta-meta-models describe general type
systems!

Component-Based Software Engineering (CBSE)

A Typical Application of MOF:
Mapping Type Systems with a Language Mapping

► The type system of CORBA-IDL is a kind of “mediating type system” (least
common denominator)

■ Maps to other language type systems (Java, C++, C#, etc.)

■ For interoperability to components written in other languages, an interface
description in IDL is required

► Problem: How to generate Java from IDL?

■ You would like to say (by introspection):

for all c in classes_in_IDL_spec do

generate_class_start_in_Java(c);

for all a in c.attributes do

generate_attribute_in_Java(a);

done;

generate_class_end_in_Java(c);

done;

► Other problems:
■ How to generate code for exchange between C++ and Java?

■ How to bind other type systems as IDL into Corba (UML, ...)?

Component-Based Software Engineering (CBSE)

Mapping Type Systems in CORBA

Meta-meta-models are used to describe general type systems

Software Objects

car1 car1.color

car1.drive ()

Software Classes
(Types)

Car void drive()

Class Method
Attribute

Color

Software Concepts
(Meta-classes)
(Type Systems such as
IDL, UML, C++, C, Cobol)

Meta-Concepts
(Meta-meta model)
(Meta-object facility MOF)

Concept

Class

Method

Attribute

Class
Method

Attribute

Class

Method

Attribute

Component-Based Software Engineering (CBSE)

Automatic Data Transformation with the Metaobject
Facility (MOF)

► From two MOF metamodels, transformation bridges are generated

■ And an isomorphic mapping between them

► Transformer functionality can be generated
► Data fitting to MOF-described type systems can automatically be transformed into

each other

■ The mapping is only an isomorphic function in the metametamodel

■ Exchange data between tools possible

■ Code looks like (similarly for all mapped languages):
for all c in classes in Java_spec do

generate_class_mapper_from_Java_To_IDL(c);

for all a in c.attributes do

generate_attribute_mapper_from_Java_To_IDL(a);

done;

generate_class_end_mapper_from_Java_To_IDL(c);

done;

for all c in classes in IDL_spec do

generate_class_mapper_from_IDL_to_C++(c);

for all a in c.attributes do

generate_attribute_mapper_from_IDL_to_C++ (a);

done;

generate_class_end_mapper_from_IDL_to_C++ (c);

done;

Component-Based Software Engineering (CBSE)

Language Mappings for Program and Object Mappings

► Comparing the MOF metamodels s1 and s2 with a language mapping l,
transformers on classes and objects can be generated

Concept

Class
Method

Attribute
Class Method

Attribute

Person void f()
Color

Person void f()
Color

Program transformer (transformation bridge)

s1 s2

:Perso
n

:Color

:Perso
n

:Color

Object transformer

Language mapping l

Component-Based Software Engineering (CBSE)

The MOF as Smallest Common Denominator and
“Mediator” between Type Systems

► From the mappings of the language-specific metamodels to the IDL
metamodel, transformation, query, navigation routines can be generated

IDL metamodel

IDL-
specification

MOF

UML CD metamodel

Transformation
routines

UML-
specification

Data
Instance

Data
Instance

M3

M2

Query/Navigation

M1

M0

Component-Based Software Engineering (CBSE)

Bootstrap of MOF

► MOF is specified in itself (self-describing, lifted metamodel)
■ The structure, relations and constraints of the MOF language can be described with

itself

► The MOF can be bootstrapped with the MOF

► IDL for the MOF can be generated
■ With this mechanism the MOF can be accessed as remote objects from other

languages

■ MOF descriptions can be exchanged

■ Code for foreign tools be generated from the MOF specifications

■ The MOF-IDL forms the interface for metadata repositories (MDR)
http://mdr.netbeans.org

■ Engines in any IDL-mapped language can access an MDR, by using the IDL-
generated glue code

■ Example: OCL Toolkit Dresden
(which also supports EMF/Ecore besides of MDR)

Component-Based Software Engineering (CBSE)

Summary MOF

► The MOF describes the structure of a language

■ Type systems

■ Languages

■ itself

► Relations between type systems are supported

■ For interoperability between type systems and -repositories

■ Automatic generation of mappings on M2 and M1

► Reflection/introspection supported

► Application to workflows, data bases, groupware, business processes, data
warehouses

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - CBSE

11.6 Asserting Embedded Metadata
with Component Markup

.. A simple aid for introspection and reflection...

Component-Based Software Engineering (CBSE)

Example: Generic Types with XML Markup

<< ClassTemplate >>

class SimpleList {
<genericType>T</genericType> elem;
SimpleList next;

<genericType>T</genericType>
getNext() {

return next.elem;
}

}

T

class SimpleList {
WorkPiece elem;
SimpleList next;
WorkPiece getNext()

{
return next.elem;

}
}

<< ClassTemplate >>

Component-Based Software Engineering (CBSE)

Markup Languages

► Markup languages convey more semantics for the artifact they markup

■ For a component, they describe metadata

■ XML, SGML are markup languages

► A markup can offer contents of the component for the external world, i.e.,
for composition

■ Remember: a component is a container

■ It can offer the content for introspection

■ Or even introcession

► A markup is stored together with the components, not separated

Component-Based Software Engineering (CBSE)

Embedded Markup and Style Sheets

• Markup can be defined as embedded or by style sheets

• Embedded markup marks (types) a part of a component in-line

• The part may be required or provided

• Style sheets mark (type) a part of a component off-line

• with a matching language that filters the document contents

• with adressing that points into the component

• positions

• implicit hook names

• adress expressions on compound components

• Some component languages allow for defining embedded markup

• latex (new environments and commands)

• languages with comments (comment markup)

• Style sheets can refer to embedded markup

• Both can be mixed

Component-Based Software Engineering (CBSE)

Markup with Hungarian Notation

► Hungarian notation is a embedded markup method that defines naming
conventions for identifiers in languages

■ to convey more semantics for composition in a component system

■ but still, to be compatible with the syntax of the component language

■ so that standard tools can be used

► The composition environment can ask about the names in the interfaces of
a component (introspection)

■ and can deduce more semantics

Component-Based Software Engineering (CBSE)

Generic Types with Hungarian Notation

 Hungarian notation has the advantage, that the syntactic tools of the base
language work for the generic components, too

<< ClassTemplate >>

class SimpleList {
genericTType elem;
SimpleList next;
genericTType getNext() {

return next.elem;
}

}

T

class SimpleList {
WorkPiece elem;
SimpleList next;
WorkPiece getNext()

{
return next.elem;

}
}

<< ClassTemplate >>

Component-Based Software Engineering (CBSE)

Java Beans Naming Schemes use Hungarian Notation

► Property access

■ setField(Object value);

■ Object getField();

► Event firing

■ fire<Event>

■ register<Event>Listener

■ unregister<Event>Listener

Component-Based Software Engineering (CBSE)

Markup and Metadata Attributes

 Many languages support metadata attributes

► by Structured Comments

■ Javadoc tags

. @author @date @deprecated @entity @invoke-around

► Java annotations and C# attributes are metadata

■ Java annotations:

. @Override @Deprecated @SuppressWarnings

■ C# /.NET attributes

. [author(Uwe Assmann)]

. [date Feb 24]

. [selfDefinedData(...)]

■ User can define their own metadata attributes themselves

■ Metadata attributes are compiled to byte code and can be inspected by tools of an
IDE, e.g., linkers, refactorers, loaders

► UML stereotypes and tagged values

■ <<Account>> { author=”Uwe Assmann” }

Component-Based Software Engineering (CBSE)53

Markup is Essential for Component Composition

► because it supports
introspection and
intercession

■ Components that are
not marked-up cannot
be composed

► Every component model
has to introduce a
strategy for component
markup

► Insight: a component
system that supports
composition techniques
must have some form of
reflective architecture!

► Composition operators need

to know where to compose

► Markup marks the variation

points and extension points

of components

► The composition operators

introspect the components

► And compose

composition
operator

Component-Based Software Engineering (CBSE)

What Have We Learned?

► Metalanguages are important (M3 level)

■ Reflection is modification of oneself

■ Introspection is thinking about oneself, but not modifying

■ Metaprogramming is programming with metaobjects

■ There are several general types of reflective architectures

► A MOP can describe an interpreter for a language; the language is modified
if the MOP is changed

■ A MOF specification describes the structure of a language

■ The CORBA MOF is a MOF for type systems mainly

► Component and composition systems are reflective architectures

■ Markup marks the variation and extension points of components

■ Composition introspects the markup

■ Composition can also use static metaprogramming or open languages

Component-Based Software Engineering (CBSE)

The End

